
Geometric structures associated to triangulations

as fixed point sets of involutions

E. Falbel

Institut de Mathématiques
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Abstract

We establish that hyperbolic structures and spherical CR structures on a three dimensional
manifold are contained in fixed point sets of a larger class of structures associated to a triangu-
lation of the manifold. We generalize the 5 term relation to this setting.

1 Introduction

Thurston’s first examples of hyperbolic structures on the complement of links were obtained by
using topological ideal triangulations, that is, triangulations with removed vertices [T]. That idea
was the source of a huge number of examples and the proof of the hyperbolic Dehn surgery theorem.
Recently, examples of spherical CR structures (locally modelled on the Heisenberg group, see section
5) obtained by triangulation were constructed in [F] namely for the figure eight knot complement
and the Whitehead link (see also [S] for different constructions and for a Dehn surgery construction
in spherical CR geometry). Both geometries are deeply connected to 3-manifolds although their
relation remains elusive.

The main goal of this paper is to give a common framework to both geometries in order to
make explicit a relation between these geometries. We will start with a triangulation of a 3-
manifold and associate complex invariants to each simplex in the triangulation. Imposing certain
algebraic equations on those invariants we obtain for each triangulation a set of solutions which
are referred to as T-structures. It turns out that (ideal) hyperbolic structures and spherical CR
structures are contained in fixed point sets of two different involutions in the space of T-structures
(Propositions 4.1 and 4.2, Theorem 4.3). This can be seen even for a single simplex and we shall
describe the hyperbolic and CR simplices (hyperbolic tetrahedra are parametrized by the cross-ratio
and CR-tetrahedra are parametrized by a generalized cross-ratio defined in [KR]).

Although T-structures are more general than geometric structures, the most natural instances
arise from hyperbolic or CR structures on manifolds and, more generally, from representations of
the fundamental group of 3-manifolds to PSL(2, C) or PU(2, 1). In fact, constructing appropriate
triangulations of those manifolds and associating to each vertex a point in S2 (in the case of
hyperbolic structures) or S3 (in the CR case) defines T-structures. The problem of deciding if a
particular representation of the fundamental group in PU(2, 1) is the holonomy representation of
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a spherical CR-structure on a manifold is difficult, as opposed to the hyperbolic case. In fact, once
a representation is given, one has to construct 3-dimensional spherical CR tetrahedra which are
glued to form a manifold. This involves defining edges and faces which are carried by the set of
vertices which can be associated to a representation into PU(2, 1). This problem was studied for
the figure eight knot in [F] but is not adressed in the paper.

The special examples arising from real hyperbolic structures (see [T]) and spherical CR struc-
tures obtained by triangulation in [F] for the figure eight knot complement and the Whitehead
link seem to have an intimate relation as their holonomies are defined over the same ring of inte-
gers. This paper offers a first explanation of this fact in the sense that each of the two structures
are points in a complex subspace (corresponding to real hyperbolic structures) and a Lagrangian
subspace (corresponding to spherical CR strucutres) of the moduli of T-structures on a particular
triangulation of the manifold.

Another motivation for this paper, as suggested by R. Benedetti, is the recent work on simplicial
formulae for the Cheeger-Chern-Simons class and its generalized quantum invariants of complements
of links which uses triangulations by hyperbolic tetrahedra (see [N, BB]). I thank R. Benedetti
and Julien Marché for inumerable discussions and comments on earlier versions of the work. I also
thank Pierre-Vincent Koseleff and Pierre Will for discussions on earlier drafts.

2 Triangulations and Simplicial Cross Ratios

Condider an ideal triangulation of a three manifold with cusps. By this we mean a simplicial
complex where the underlying topological space is a manifold if the vertices is deleted.

Definition 2.1 A simplicial cross ratio structure associated to a triangulation of a 3-manifold is
a function X which, to each four ordered vertices in a simplex, associates a value in C satisfying
the following axioms

1. (basic symmetry) If [u0, u1, u2, u3] is a simplex then

X[u0, u1, u2, u3] =
1

X[u1, u0, u3, u2]
=

1

X[u1, u0, u2, u3]

2. (edge compatibility) If [u0, u1, u3, u2], [u0, u1, u4, u3], · · · , [u0, u1, un+1, u2] are n simplices which
have a common edge [u0, u1] then

X[u0, u1, u2, u3]X[u0, u1, u3, u4] · · ·X[u0, u1, un+1, u2] = 1,

X[u2, u3, u0, u1]X[u3, u4, u0, u1] · · ·X[un+1, u2, u0, u1] = 1

and

(1+X[u0, u3, u1, u2](X[u3, u1, u0, u2]−1)) · · · (1+X[u0, u2, u1, un+1](X[u2, u1, u0, un+1]−1)) =

(X[u0, u1, u2, u3]X[u0, u3, u1, u2]X[u3, u1, u0, u2] + 1) · · ·

(X[u0, u1, un+1, u2]X[u0, u2, u1, un+1]X[u2, u1, u0, un+1] + 1)

3. (face compatibility) If [u0, u1, u2, u3] and [u1, u2, u3, u4] are simplices with a common face
[u1, u2, u3] then

X[u0, u1, u2, u3]X[u0, u3, u1, u2]X[u0, u2, u3, u1]
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= X[u4, u1, u2, u3]X[u4, u3, u1, u2]X[u4, u2, u3, u1]

and
X[u1, u2, u3, u0]X[u3, u1, u2, u0]X[u2, u3, u1, u0]

= X[u1, u2, u3, u4]X[u3, u1, u2, u4]X[u2, u3, u1, u4]

In view of the symmetries of the cross ratio, for each simplex, we organize the relevant 6 cross
ratios out of the 24 permutations and we write

[[u1, u2, u3, u4]] =

















ω0

ω1

ω2

ω′
0

ω′
1

ω′
2

















=

















X[u1, u2, u3, u4]
X[u1, u4, u2, u3]
X[u1, u3, u4, u2]
X[u3, u4, u1, u2]
X[u2, u3, u1, u4]
X[u4, u2, u1, u3]

















(1)

Remark 1: In the case of points in P 1
C = ∂H3

R
the definition of cross ratio as

X[u0, u1, u2, u3] =
(u2 − u1)(u3 − u0)

(u3 − u1)(u2 − u0)

yields a cross ratio defined on ideal triangulations of real hyperbolic manifolds. In particular, the
last condition is trivialy satified as X[u0, u1, u2, u3]X[u0, u3, u1, u2]X[u0, u2, u3, u3] = −1. Moreover,
we have an aditional symmetry as X[u0, u1, u2, u3] = X[u2, u3, u0, u1].

Remark 2: In the case of points in S3 = ∂H4
R
, the conformal sphere, one can consider for

each quadruple of points, the 2-sphere which contains them and define then the cross ratio as in
the P 1

C case. The ideal triangulations of hyperbolic geometry are a special case of a conformal
triangulation. Note however that one cannot reconstruct the conformal structure from the cross
ratios. The reason is that they do not detect the position between two 2-spheres where two adjacent
simplices live. The edge compatibility relation does not need to be satisfied in the conformal case.

Remark 3: (see section 5) In the case of points in S3 = ∂H2
C

the definition of cross ratio as
([KR])

X[u0, u1, u2, u3] =
〈u3, u1〉〈u2, u0〉
〈u2, u1〉〈u3, u0〉

.

yields a cross ratio defined on triangulations of spherical CR manifolds. In that case we have the
extra symmetry X[u0, u1, u2, u3] = X[u2, u3, u0, u1].

Remark 4: If a triangulation has oriented edges one can associate complex numbers to the
edges using a simple convention (cf. [BB]). For instance, in the simplex [0, 1, 2, 3], the edge [0, 1]
(if it is oriented in that order will have the complex number X[0, 1, 2, 3] if the the edges in the face
[1, 2, 3] are in majority induced by the orientation of the order [1, 2, 3]. In the case of branched
triangulations (cf. [BB]) it is easy to keep track of the orientations of the edges. We obtain for each
simplex (with oriented edges) 6 complex numbers and one can consider a cross ratio as a function
associating to each edge of a triangulation (with oriented edges) a complex number. In our paper
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we prefer to work directly with the 0-skeleton of the simplices which seems more appropriate in the
context of cross-ratios. For difficulties related to the 1-skeleton and the 2-skeleton see [F].

Remark 5: A large class of cross-ratio simplicial structures are constructed associating to
a PSL(2, C)-valued (or PU(2, 1)-valued as in the last section) representation of the fundamental
group of the (cusped) 3-manifold a symplicial 1-cocycle. In fact, a 1-cocycle defined on a symplex
defines a configuration of 4 points in CP 1 (or S3) by identifying one of the vertices to a point
and then using the 1-cocycle to obtain the other three (see [BB] and [N]) . A generic choice of
the first point (and a generic choice of the 1-cocycle up to a 1-coboundary) will give rise to a
configuration of 4 distinct points. By the same procedure, following all the edges of the simplicial
structure we obtain, generically, a configuration of points in CP 1 (or S3) which is in correspondence
to the vertices of the simplicial structure (this process is called idealization in [BB]). Using that
correspondence, the cross-ratios defined in remarks 1 and 3 for the configuration of points in S2 or
S3 define a cross ratio structure on the original simplicial space equipped with a generic 1-cocycle
with values in PSL(2, C) or PU(2, 1) respectively.

In order to deal with 2←→ 3 moves we will impose moreover the following conditions

Definition 2.2 Let [u1, u2, u3, u4] and [u0, u2, u3, u4] be simplices with the common face [u2, u3, u4],
one considers the 2 → 3 move obtained by decomposition of the union of those simplices in three
simplices [u0, u1, u3, u4], [u0, u1, u2, u4] and [u0, u1, u2, u3]. A mobile simplicial cross ratio structure
along this move is a simplicial cross ratio structure satifying

• One can define a new simplicial cross ratio structure which has the same value in all simplices
of the original triangulation and in the three new ones it has values satisfying the following
relations

X[u0, u1, u2, u3]X[u0, u1, u3, u4]X[u0, u1, u4, u2] = 1,

X[u2, u3, u0, u1]X[u3, u4, u0, u1]X[u4, u2, u0, u1] = 1,

X[u0, u1, u3, u4]X[u1, u2, u3, u4]X[u2, u0, u3, u4] = 1,

X[u3, u4, u0, u1]X[u3, u4, u1, u2]X[u3, u4, u2, u0] = 1.

Remark: The conditions above for a mobile cross ratio structure along the move 2 → 3 can
be interpreted as compatibility conditions for a mobile structure along each bistellar move and we
will not repeat the definition for each of them. In fact, the bistellar move along a face common
to two simplices was described above whereas the bistellar move along a simplex corresponds to a
creation of a new vertex and substitution of this simplex by four others. It involves precisely the 5
abstract simplices above with the interpretation of u0 as the created vertex. Of course, the inverse
moves impose the same relations.

Remark: If one starts with a cross ratio defined over a closed triangulation (each face is
contained in two simplices) satifying only the first axiom of a simplicial cross ratio structure, the
conditions for a mobile cross ratio structure along all 2→ 3 moves imply the other two conditions
for a simplicial structure as it is shown in the next section.
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Definition 2.3 Referring to notation as in equation 1, a simplicial cross ratio structure is said to
be a T− structure if, restricted to each simplex the following relations hold

ω0ω1ω2ω
′
0ω

′
1ω

′
2 = 1 (2)

(

(ω0 − 1)(ω′
0 − 1)− 1

)

+ ω0ω
′
0

(

(ω1 − 1)(ω′
1 − 1)− 1

)

+ ω0ω
′
0ω1ω

′
1

(

(ω2 − 1)(ω′
2 − 1)− 1

)

= 0 (3)

The definition might seem awkward at first sight but it is justified by the existence of two involutions
and the analysis of their fixed point sets.

Remark: For a mobile simplicial cross ratio structure the first equation is automaticaly verified
as long as each simplex is not isolated as shown in the next section.

Remark: Special cases include real hyperbolic structures defined by a triangulation by ideal
tetrahedra and spherical CR triangulations. In particular, for each 1-cocycle with values in PSL(2, C)
(or PU(2, 1)) one associates an idealization as in remark 5 and that idealization defines a T-
structure. If the cocycle has values in the parabolic subgrup R ⊂ PSL(2, C) it can be interpreted
as having values in the center of the parabolic subgroup of PU(2, 1) and in this case the T-
structure can be interpreted as being carried by both hyperbolic and spherical CR simplices. I
thank R. Benedetti for discussions concerning that remark. In the case of a topological ideal tri-
angulation with torus boundary components with n tetrahedra, there are n edge equations and 2n
face equations, that is 3n equations. In principle for each simplex there is a 4 complex dimensional
admissible subvariety of (C \ {0})6 making a total of 4n variables. We have enough room for many
solutions. In the hyperbolic case, the face equations are trivial (x0x1x2 = −1) and there is only
one variable for each simplex. In the CR case there are essentially 2 complex variables for each
simplex, the face equations correspond to equality of Cartan’s invariant for each pair of identified
faces.

3 The general 5 term relation

Let [u1, u2, u3, u4] and [u0, u2, u3, u4] be two simplices with a common face [u2, u3, u4] in a mobile
simplicial cross-ratio structure. One considers then the decomposition of the union of those simplices
in three simplices [u0, u1, u3, u4], [u0, u1, u2, u4] and [u0, u1, u2, u3]. A straightforward computation
using the symmetries of a mobile cross ratio structure above gives the following proposition.

Proposition 3.1 If

[[u1, u2, u3, u4]] =

















x0

x1

x2

x′
0

x′
1

x′
2

















and [[u0, u2, u3, u4]] =

















y0

y1

y2

y′0
y′1
y′2
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x1

x2

x0

y0

y2

y1

u1

u2

u4

u3

u0

Figure 1: The 2 tetrahedra of the 5 term relation. The relation x0x1x2 = y0y1y2 should hold.

then

[[u0, u1, u3, u4]] =





















y0

x0

α1
1

y0x′

1
x′

2
α1

y′

0

x′

0

α′
1

x0y′

1
y′

2

α′

1

= 1
y′

0
x1x2α′

1





















,

[[u0, u1, u2, u4]] =























x2

y2

α1

y1

1
y0x′

2
α1

x′

2

y′

2

α′

1

y′

1

1
y′

0
x2α′

1























[[u0, u1, u2, u3]] =























y1

x1
α1

x′

0
y1

= y2y0x
′
1x

′
2α1

1
x′

2
α1

y′

1

x′

1

α′

1

x0y′

1

1
x2α′

1























Proof. A convenient way to organize the computations is to start with an unknown element,
say X(u0, u1, u3, u4). Using the two relations obtained by fixing the edges (u0, u1) and (u3, u4)
respectively we obtain:

X[u0, u1, u3, u4]X[u0, u1, u4, u2]X[u0, u1, u2, u3] = 1,

and
X[u0, u1, u3, u4]X[u1, u2, u3, u4]X[u2, u0, u3, u4] = 1.
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The first equation gives imediately that

X(u0, u1, u3, u4) =
y0

x0
.

The proof follows by writing all relations in this manner.

2

We also obtain the following relations

y0

x0

y1

x1

y2

x2
= 1 (4)

That is x0x1x2 = y0y1y2, and

x′
0x

′
1x

′
2y0y1y2 = 1 x0x1x2y

′
0y

′
1y

′
2 = 1. (5)

That implies the following

Proposition 3.2 The cross ratios of the simplices [u1, u2, u3, u4] and [u0, u2, u3, u4] satify
x0x1x2x

′
0x

′
1x

′
2 = 1 and y0y1y2y

′
0y

′
1y

′
2 = 1. The same property is valid for the simplices [u0, u1, u3, u4],

[u0, u1, u2, u4] and [u0, u1, u2, u3].

Observe that the variables α1 and α′
1 are not determined but they could be fixed by imposing

a further condition on the simplices, for instance that they be geometric as shown in the next
section in the CR case. It is interesting to note that a positive move in the triangulation, that
is a move that augments the number of simplices, introduces a two complex parameter family of
indetermination in the simplicial cross ratio.

4 Geometric structures

We consider the two involutions of C
6:

H :

















ω0

ω1

ω2

ω′
0

ω′
1

ω′
2

















−→

















ω′
0

ω′
1

ω′
2

ω0

ω1

ω2

















and

A :

















ω0

ω1

ω2

ω′
0

ω′
1

ω′
2

















−→

















ω̄′
0

ω̄′
1

ω̄′
2

ω̄0

ω̄1

ω̄2

















Observe that both involutions are defined on Ω. We explicit the fixed set for each of the
involutions in the following

Proposition 4.1 One component of the fixed set of H corresponds to triples (ω0, ω1, ω2) satisfying
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ω1

ω2

ω0

ω′
1

ω′
2

ω′
0

u0

u1

u3

u2

Figure 2: Parameters for a simplex

• ω0ω1ω2 = −1

•
ωi+1 = 1− 1

ωi

We call a simplex with moduli in the above component ideal hyperbolic simplex or conformal

simplex.
Proof. The fixed points of H satisfy ωi = ω′

i. Substituting in the second formula 2.3 we obtain

2ω0 =
1

ω2
2

(

(1− 1

ω1
)2 − 1

)

+ (1− 1

ω2
)2.

The component we are interested is the one where ω0ω1ω2 = −1. Substituting ω1 = −1/ω0ω2 we
get

2ω0 =
1

ω2
2

(

(1 + ω0ω2)
2 − 1

)

+ (1− 1

ω2
)2.

and then

2ω0 =
2ω0

ω2
+ ω2

0 + (1− 1

ω2
)2

and simplifying

(ω0 − (1− 1

ω2
))2 = 0

which gives the result. 2
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Remark that the conventions we used make the moduli ωi correspond to the inverse of the
moduli of a hyperbolic tetrahedron with positive orientation as in Thurston’s conventions.

Proposition 4.2 The fixed set of A corresponds to triples (ω0, ω1, ω2) satisfying

• |ω0ω1ω2| = 1

•

((ω0 − 1)(ω̄0 − 1)− 1) + ω0ω̄0 ((ω1 − 1)(ω̄1 − 1)− 1) + ω0ω̄0ω1ω̄1 ((ω2 − 1)(ω̄2 − 1)− 1) = 0

We call a simplex with moduli in that fixed set a CR simplex. The justification of that definition
will follow from Proposition 5.4.

More generally we say a T− structure is hyperbolic or CR if each simplex is hyperbolic or CR.

Theorem 4.3 Consider the space of T−structures associated to a triangulation. Then hyperbolic
triangulations are fixed by a holomorphic involution and spherical CR triangulations are fixed by
an anti-holomorphic involution.

Proof. The proof follows by combining the involutions defined for each simplex in the triangula-
tion. 2

4.1 Hyperbolic five term relations

Imposing the extra symmetry on the cross ratio given by X[u0, u1, u2, u3] = X[u2, u3, u0, u1], implies
that (x0x1x2)

2 = 1. One of the connected components of solutions to this relation is compatible with
the hyperbolic cross ratio, that is, x0x1x2 = −1. But apparently no further relations are obtained
from the compatibility equations. In order to obtain the other relation (x1 = 1 − 1/x0), one can
impose that the simplices be geometric or consider the 5-term relation (taking into accounts the
symmetries, we only need the first three componets of the cross ratio, moreover the third component
is determined by the relation x0x1x2 = −1):

[[u1, u2, u3, u4]]− [[u0, u2, u3, u4]] + [[u0, u1, u3, u4]]− [[u0, u1, u2, u4]] + [[u0, u1, u2, u3]]





x0

x1

x2



−





y0

y1

y2



 +





y0

x0

α
1

x1x2y0α



−







x2

y2

α
y1

1
x2y0α






+





y1

x1

α
x0y1

1
x2α





where α is an arbitrary complex number. We write the 5 term as an alternate sum for convenience
but in this paper we do not deal with Bloch groups and its generalizations.

Proposition 4.4 If we impose that the second component of each cross ratio is given by a universal
Möbius transformation M applied to the first term , that is z1 = M(z0) where z0 and z1 are any of
the the first and second component of each of the 5 terms, then M(z) = 1− 1/z.

Proof. The proof follows by eliminating α from the 5 equations obtained imposing the general
form M(z) = az+b

cz+d
.

2
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In general, a way to obtain a restricted number of possibilities for α would be to impose that a
polynomial in two variables p(z1, z2) verifies simultaneously the following relations:

p(x0, x1) = p(y0, y1) = p(
y0

x0
, α) = p(

y0y1

x0x1
,

α

y1
) = p(

y1

x1
,

α

x0y1
) = 0.

I do not know what are the possible polynomials.

5 CR geometry (see [G] or [J] for details)

CR geometry is modeled on the Heisenberg group N, the set of pairs (z, t) ∈ C×R with the product

(z, t) · (z′, t′) = (z + z′, t + t′ + 2Im zz′).

The one point compactification of the Heisenberg group, N, of N can be interpreted as S3 which ,
in turn, can be identified to the boundary of Complex Hyperbolic space.

We consider the group U(2, 1) preserving the Hermitian form 〈z,w〉 = w∗Jz defined by the
matrix

J =





0 0 1
0 1 0
1 0 0





and the following subspaces in C3:

V0 =
{

z ∈ C
3 − {0} : 〈z, z〉 = 0

}

,

V− =
{

z ∈ C
3 : 〈z, z〉 < 0

}

.

Let P : C
3 \ {0} → CP 2 be the canonical projection. Then H2

C
= P(V−) is the complex hyperbolic

space and S3 = H2
C

= P(V0) can be identified to N.
The group of biholomorphic transformations of H2

C
is then PU(2, 1), the projectivization of

U(2, 1). It acts on S3 by CR transformations. An involution in PU(2, 1) has a fixed point in the
interior of complex hyperbolic space. If it has fixed points in the boundary of complex hyperbolic
space, one shows that the set of fixed points is a topological circle, called C-circle. We can also
define C-circles as boundaries of complex lines in H2

C
. Using the identification S3 = N ∪ {∞}

one can define alternatively a C-circle as any circle in S3 which is obtained from the vertical line
{(0, t)} ∪ {∞} in the compactified Heisenberg space by translation by an element of PU(2, 1).

A point p = (z, t) in the Heisenberg group and the point ∞ are lifted to the following points in
C

2,1:

p̂ =





−|z|2+it

2
z
1



 and ∞̂ =





1
0
0



 .

Definition 5.1 Given any three ordered points p1, p2, p3 in ∂H2
C

we define Cartan’s angular

invariant A as
A(p1, p2, p3) = arg(−〈p̂1, p̂2〉〈p̂2, p̂3〉〈p̂3, p̂1〉).

The Cartan’s angular invariants classifies ordered triples of points in S3:

Proposition 5.2 ([C], see also[G]) There exists an element of PU(2, 1) which translates an or-
dered triple of points in S3 to another if and only if their corresponding Cartan’s invariants are
equal.
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The CR cross ratio is given by the Koranyi-Reimann invariant introduced in [KR] (see [KR]
and [G] for its properties):

Definition 5.3 The CR cross-ratio associated to four distinct points in S3 is

X[u0, u1, u2, u3] =
〈u3, u1〉〈u2, u0〉
〈u2, u1〉〈u3, u0〉

.

Here, we choose lifts for the points ui which we denote by the same letter. The invariant does not
depend on the choice of lifts.

Consider a generic configuration of four points in S3 (any three of them not contained in a C-
circle) up to overall translation by an element of the automorphism group. One can always arrange
them as the following configuration of distinct points in the Heisenberg group where s, t ∈ R and
z ∈ C.

u0 =∞ u1 = 0 u3 = (1, t) u2 = (z, s|z|2).
(cf. [F, Wi] for different normalizations). Lifting those elements to C

2,1 we may compute

ω0 = X(u0, u1, u2, u3) =
ti− 1

|z|2(si− 1)

ω1 = X(u0, u3, u1, u2) =
1 + ti− 2z + |z|2(1− si)

1 + ti

ω2 = X(u0, u2, u3, u1) =
|z|2(1 + si)

1− ti− 2z̄ + |z|2(1 + si)

The product of the three cross ratios gives the Cartan invariant (see [G])

X(u0, u1, u2, u3)X(u0, u3, u1, u2)X(u0, u2, u3, u1) = e2iA(u1,u2,u3)

We prove the following

Proposition 5.4 There exists a bijection between the set of distinct ordered four points in S3 up
to translation by elements of PU(2, 1) and the set of solutions of 4.2:

• |ω0ω1ω2| = 1

•

((ω0 − 1)(ω̄0 − 1)− 1) + ω0ω̄0 ((ω1 − 1)(ω̄1 − 1)− 1) + ω0ω̄0ω1ω̄1 ((ω2 − 1)(ω̄2 − 1)− 1) = 0

Proof. 1)The generic case(no three points are contained in a C-circle). One can use the expressions
of ω0, ω1, ω2 in terms of z, t, s obtained above in the generic case to verify equations 4.2. Conversely,
suppose that ω̄0ω̄1ω2 6= −1 and ω̄0ω1ω̄2 6= −1. The configuration will be generic in that case. In
particular any three points are not contained on a common C− circle. We have to solve for z, t, s
in terms of ω0, ω1, ω2. We compute ω̄0ω̄1ω2 = i−t

i+t
. Therefore

t = −i
ω̄0ω̄1ω2 − 1

ω̄0ω̄1ω2 + 1
.

Also ω̄0ω1ω̄2 = 1−is
1+is

, therefore

s = i
ω̄0ω1ω̄2 − 1

ω̄0ω1ω̄2 + 1
.
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Substituting the values of t and s in the expression for ω0 we obtain |z|2 = ω̄0ω̄2ω1+1
ω̄0(1+ω0ω1ω̄2)

. and
substituting this value in the expression for ω1 we obtain

z =
1 + ω1(ω̄2 − 1)

ω0ω1ω̄2 + 1
.

Observe that the solution above holds if the following relations between the invariants are
verified (there seems to have a slight mistake in the analogous formula 7.12 for the second equation
in [G]) :

|ω0ω1ω2| = 1

1 + ω1(ω̄2 − 1)

ω0ω1ω̄2 + 1
.

(

1 + ω1(ω̄2 − 1)

ω0ω1ω̄2 + 1

)

=
ω̄0ω̄2ω1 + 1

ω̄0(1 + ω0ω1ω̄2)

The first equation is a necessary and sufficient condition for solving for t and s. The second equation
follows from the compatibility condition comparing the expression for |z|2 and the one for zz̄. It
can be simplified

|ω0|2|1− ω1|2 +

(

1− 2Re
1

ω2

)

= ω0 + ω̄0

or

|ω0|2|1− ω1|2 +
|1− ω2|2 − 1

|ω2|2
= ω0 + ω̄0

By using |ω0|2 = |ω1ω2|−2 we obtain the following

2Re ω0 =
1

|ω2|2
(

|1− 1

ω1
|2 − 1

)

+ |1− 1

ω2
|2

which, in turn, is equivalent combined with |ω0ω1ω2| = 1 to

((ω0 − 1)(ω̄0 − 1)− 1) + ω0ω̄0 ((ω1 − 1)(ω̄1 − 1)− 1) + ω0ω̄0ω1ω̄1 ((ω2 − 1)(ω̄2 − 1)− 1) = 0.

2)In order to treat the non-generic case we use more general coordinates

u0 =∞ u1 = 0 u3 = (z, s) u2 = (w, t),

to obtain

ω̄0ω̄1ω2 =
|w|2 − it

|w|2 + it

and

ω0ω̄1ω2 =
|z|2 − is

|z|2 + is
.

This shows that ω̄0ω̄1ω2 = −1 if and only if w = 0 (in this case t 6= 0 in order that the points
be distinct), that is, u0, u1, u2 are in the same C-circle and ω0ω̄1ω2 = −1 if and only if z = 0 (in
this case s 6= 0), that is, u0, u1, u3 are in the same C-circle. Suppose first that w = 0 (the other
case is similar). In that case ω̄0ω̄1ω2 = −1 and, using this, the other relation becomes simply
|(ω2 − 1)ω̄1 + 1|2 = 0, which implies that ω2 = 1− 1/ω̄1. Consider then

u0 =∞ u1 = 0 u3 = (z, s) u2 = (0, t)

and therefore we compute ω0 = ti/(|z|2 + si), ω1 = ((t− s)i− |z|2)/ti and
ω2 = (−|z|2 + si)/(−|z|2 + (s − t)i). Without loss of generality, we can suppose that t = ±1 by
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considering a further dilation and that z = x > 0 is real by considering a rotation around the t-axis.
If t = 1:

u0 =∞ u1 = 0 u3 = (x, s) u2 = (0, 1)

and ω0 = i/(x2 + si), ω1 = (1 − s)− x2i and ω2 = (−x2 + si)/((s − 1)i − x2) (the last equation is
determined by the first two). Clearly, ω0 determines the whole configuration, as it determines s and
x and the relation is verified. In the same way if t = −1 then ω0 = −i/(|z|2+si), ω1 = (1+s)−|z|2i.
Again ω0 determines the configuration.

2

Example: A special case of tetrahedra consists of those having a Z2 anti-symplectic symmetry
(see [F, Wi]). Without loss of generality one can assume that the symmetry is (0, 1, 2, 3) → (1, 0, 3, 2)
and a simple calculation shows that this is the case if and only if ω0 ∈ R

+. In fact, symmetric
tetrahedra can be characterized in the coordinates above as those with t = s and therefore ω0 = 1

|z|2 ,

ω1 = 1+ti−2z+|z|2(1−ti)
1+ti

and ω2 = |z|2(1+ti)
1−ti−2z̄+|z|2(1+ti) . In particular for z = ω = 1

2 + i
√

3
2 and t =

√
3

we obtain ω0 = 1, ω1 = −ω, ω2 = 1.

5.1 The CR five term relation

In this section we explicit a 5-term relation in the CR case. The five term relation corresponding
to general tetrahedra is given by constructing the vectors in C

6 corresponding to

[[u1, u2, u3, u4]]− [[u0, u2, u3, u4]] + [[u0, u1, u3, u4]]− [[u0, u1, u2, u4]] + [[u0, u1, u2, u3]]

where

[[u1, u2, u3, u4]] =

















X[u1, u2, u3, u4]
X[u1, u4, u2, u3]
X[u1, u3, u4, u2]
X[u3, u4, u1, u2]
X[u2, u3, u1, u4]
X[u4, u2, u1, u3]

















=

















x0

x1

x2

x′
0

x′
1

x′
2

















In the hyperbolic case the first component of the vector in C
6 determines the other 5 component.

That is, we might write

[[u1, u2, u3, u4]]H = X[u1, u2, u3, u4]

In the CR case we might use only the first 3 components of the vector in C
6, that is, we write

[[u1, u2, u3, u4]]CR
=





X[u1, u2, u3, u4]
X[u1, u4, u2, u3]
X[u1, u3, u4, u2]





where each coefficient in the column vector is a KR invariant as defined before. Bellow we will
write [[u1, u2, u3, u4]]CR

without the subindex CR.

Theorem 5.5 For a spherical CR structure the five term relation is

[[u1, u2, u3, u4]]− [[u0, u2, u3, u4]] + [[u0, u1, u3, u4]]− [[u0, u1, u2, u4]] + [[u0, u1, u2, u3]]
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x0

x1

x2



−





y0

y1

y2



 +





y0

x0

z1
1

x̄1x̄2y0z1



−







x2

y2

z1

y1

1
x̄2y0z1






+





y1

x1
z1

x̄0y1

1
x̄2z1





where

z1 = 1 + x̄0y1y2 −
(

x0x1x2 − x0x1 + x0

y0y1y2 − y0y1 + y0

)

(1 + ȳ0y1y2)

Proof. The formula follows from the general 5 term relation by making x′
i = x̄i and y′i = ȳi.

It remains to determine α = z1. In order to do so we determine the tetrahedra u1 = (z, s|z|2),
u2 = (1, t), u3 = 0, u4 = ∞ and u0 = (z′, s′|z′|2). Observe that in that case x0x1x2 = y0y1y2 and
solving for the variables t, s, z, s′, z′ we obtain

t = −i
1− x0x1x2

1 + x0x1x2
s = −i

1− x̄0x1x2

1 + x̄0x1x2
s′ = −i

1− ȳ0y1y2

1 + ȳ0y1y2

z̄ =
x0x1x2 − x0x1 + x0

1 + x0x1x2
z̄′ =

y0y1y2 − y0y1 + y0

y0y1y2 + 1

On the other hand we compute

z1 = X[u0, u4, u1, u3] =
zz̄(i + s)− 2izz̄′ + z′z̄′(i− s′)

z′z̄′(i− s′)

the expression for z1 is obtained substituting in the last formula the equations above. 2
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