Diffeomorphisms preserving \mathbb{R}-circles in three dimensional CR manifolds

E. Falbel
Institut de Mathématiques
Analyse Complexe et Géométrie
4 place Jussieu - Paris France

J. M. Veloso
Faculdade de Matemática - ICEN
Universidade Federal do Pará 66059 - Belém- PA - Brazil

Abstract

\mathbb{R}-circles in general three dimensional CR manifolds (of contact type) are the analogues to traces of Lagrangian totally geodesic planes on S^{3} viewed as the boundary of two dimensional complex hyperbolic space. They form a family of certain legendrian curves on the manifold. We prove that a diffeomorphism between three dimensional CR manifolds which preserve circles is either a CR diffeomorphism or conjugate CR diffeomorphism.

1 Introduction

Given a three manifold M equipped with a contact plane distribution D, we say M is a CR manifold if D is equipped with a complex operator $J: D \rightarrow D$ satisfying $J^{2}=-I d$. Examples of CR manifolds arise naturally as real hypersurfaces in \mathbb{C}^{2} or as boundaries of complex two-dimensional manifolds. The most important example appears as follows: the complex two-dimensional ball

$$
H_{\mathbb{C}}^{2}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}
$$

has boundary S^{3} which is naturally equipped with a distribution $D=T S^{3} \cap J T S^{3}$, where J denotes the standard complex structure of \mathbb{C}^{2}. The group of biholomorphisms of $H_{\mathbb{C}}^{2}$ is $P U(2,1)$ and it acts on S^{3}.
\mathbb{C}-circles (or chains) and \mathbb{R}-circles (or pseudocircles or circles for short) are analogues defined for general CR manifolds to curves in S^{3} obtained as traces of complex lines and Lagrangian totally geodesic subspaces of $H_{\mathbb{C}}^{2}$ in its boundary. More precisely, complex lines through the origin are totally geodesic spaces and their intersection with S^{3} are called chains. The group of biholomorphisms acts transitively on the space of chains. It turns out that a Lagrangian plane passing through the origin is a totally real totally geodesic surface of $H_{\mathbb{C}}^{2}$. Its intersection with the sphere is called an \mathbb{R}-circle. Again, $P U(2,1)$ acts transitively on the space of Lagrangian totally geodesic subspaces.

The generalization of these curves to real hypersurfaces of \mathbb{C}^{2} was considered by E . Cartan [C], where chains and circles (what we call here \mathbb{R}-circles) are defined. Here we will
restrict our attention to \mathbb{R}-circles. Cartan's definition was considered by Jacobowitz in $[\mathrm{J}]$, chapter 9 , where these curves are called pseudocircles and are defined on an abstract three dimensional CR manifold. In this paper we make explicit the system of differential equations satisfied by \mathbb{R}-circles, and use these equations to prove our main theorem (Theorem 7.1) that a diffeomorphism between two CR manifolds which preserve circles is a CR map or an anti CR map. Our motivation was the analogue result for chains in [Ch].

We will first recall general results on CR structures, the group $S U(2,1)$ and the Cartan's connection on a principal bundle $Y \rightarrow M$ with group H (a subgroup of $S U(2,1)$ which is the isotropy of its action on S^{3}) which will be used in our main theorem. We also recall the definition of \mathbb{R}-circles (also called pseudocircles or circles for short) as projections of leaves of an integrable differential system (for more details we refer to [J]). We finally obtain the differential equations which circles satisfy in M (Theorem 6.3) and use them in the proof of our main theorem in the last section.

2 CR structures

For a general reference or this section see [CM, J]. We consider a three manifold M equipped with a contact plane distribution D. A 3-dimensional $C R$-structure (M, D, J) is the contact manifold M equipped with the complex operator $J: D \rightarrow D$ satisfying $J^{2}=-I d$.

If (M, D, J) and $(\tilde{M}, \tilde{D}, \tilde{J})$ are 3-dimensional CR-structures, then a diffeomorphism f : $M \rightarrow \tilde{M}$ is a CR-diffeomorphism if $f_{*}(D)=\tilde{D}$ and $f_{*} J=\tilde{J} f_{*}$. If $f_{*} J=-\tilde{J} f_{*}$, we say that f is a conjugate CR-diffeomorphism.

A CR-structure induces an orientation on D and an orientation of the normal bundle $T M / T D$ given by $X, J X,[X, J X]$ where X is a local section of D.

Fixing a local section X of D one can define a form θ such that $\theta(D)=0$ and such that $\theta([X, J X])=-2$.

Consider $D \otimes \mathbb{C}=D^{1,0} \oplus D^{0,1} \subset T M \otimes \mathbb{C}$. Taking $Z=\frac{1}{2}(X-i J X)$ and $\bar{Z}=\frac{1}{2}(X+i J X)$, we get $[Z, \bar{Z}]=\frac{i}{2}[X, J X]$. We define a form $\theta^{1} \in D^{0,1^{\perp}}$ such that $\theta^{1}(Z)=1$. Then $d \theta(Z, \bar{Z})=-\theta([Z, \bar{Z}])=i$, so

$$
d \theta=i \theta^{1} \wedge \theta^{\overline{1}} \text { modulo } \theta
$$

where we define $\theta^{\overline{1}}=\overline{\theta^{1}}$. If θ^{1} is another form satisfying the equation we have

$$
\theta^{1}=e^{i \alpha} \theta^{1} \text { modulo } \theta
$$

for $\alpha \in \mathbb{R}$.
Let E to be the oriented line bundle of all forms θ as above. On E we define the tautological form ω. That is $\omega_{\theta}=\pi^{*}(\theta)$ where $\pi: E \rightarrow M$ is the natural projection.

We consider the tautological forms defined by the forms above over the line bundle E. That is, for each θ^{1} as above, we let $\omega_{\theta}^{1}=\pi^{*}\left(\theta^{1}\right)$. At each point $\theta \in E$ we have the family

$$
\begin{gathered}
\omega^{\prime}=\omega \\
\omega^{\prime 1}=e^{i \alpha} \omega^{1}+v^{1} \omega
\end{gathered}
$$

where we understand that the forms are defined over E. Those forms vanish on vertical vectors, that is, vectors in the kernel of the map $T E \rightarrow T M$. In order to define nonhorizontal 1-forms we let θ be a section of E over M and introduce the coordinate $\lambda \in \mathbb{R}^{+}$ in E. By abuse of notation, let θ denote the tautological form on the section θ. Therefore the tautological form ω over E is

$$
\omega_{\lambda}=\lambda \theta
$$

Differentiating this formula we obtain

$$
\begin{equation*}
d \omega=\omega \wedge \varphi+i \omega^{1} \wedge \omega^{\overline{1}} \tag{1}
\end{equation*}
$$

where $\varphi=-\frac{d \lambda}{\lambda}$ modulo $\omega, \omega^{1}, \omega^{\overline{1}}, \varphi$ real.
Observe that $\frac{d \lambda}{\lambda}$ is a form intrinsically defined on E up to horizontal forms (the minus sign is just a matter of conventions). In fact, choosing a different section θ^{\prime} with $\theta=\mu \theta^{\prime}$ where μ is a function over M, we can write $\omega=\lambda \theta=\lambda \mu \theta^{\prime}$ and obtain

$$
\frac{d(\lambda \mu)}{\lambda \mu}=\frac{\mu d \lambda+\lambda d \mu}{\lambda \mu}=\frac{d \lambda}{\lambda}+\frac{d \mu}{\mu}
$$

where $\frac{d \mu}{\mu}$ is a horizontal form.
If we write (1) as

$$
\begin{aligned}
d \omega & =\omega^{\prime} \wedge \varphi^{\prime}+i \omega^{\prime 1} \wedge \omega^{\prime \overline{1}}=\omega \wedge \varphi^{\prime}+i\left(e^{i \alpha} \omega^{1}+v^{1} \omega\right) \wedge\left(e^{-i \alpha} \omega^{\overline{1}}+v^{\overline{1}} \omega\right) \\
& =\omega \wedge\left(\varphi^{\prime}-i e^{i \alpha} v^{\overline{1}} \omega^{1}+i e^{-i \alpha} v^{1} \omega^{\overline{1}}\right)+i \omega^{1} \wedge \omega^{\overline{1}}
\end{aligned}
$$

it follows that $\varphi^{\prime}-i e^{i \alpha} v^{\overline{1}} \omega^{1}+i e^{-i \alpha} v^{1} \omega^{\overline{1}}=\varphi$ modulo ω.
We obtain in this way a coframe bundle over E :

$$
\begin{gathered}
\omega^{\prime}=\omega \\
\omega^{\prime 1}=e^{i \alpha} \omega^{1}+v^{1} \omega \\
\varphi^{\prime}=\varphi+i e^{i \alpha} v^{\overline{1}} \omega^{1}-i e^{-i \alpha} v^{1} \omega^{\overline{1}}+s \omega
\end{gathered}
$$

$v^{1} \in \mathbb{C}$ and $s \in \mathbb{R}$ are arbitrary.

Definition 2.1 We denote by Y the coframe bundle $Y \rightarrow E$ given by the set of 1-forms $\varphi, \omega^{1}, \omega^{\overline{1}}, \omega$. Two coframes are related by

$$
\left(\varphi^{\prime}, \omega^{\prime 1}, \omega^{\prime \overline{1}}, \omega^{\prime}\right)=\left(\varphi, \omega^{1}, \omega^{\overline{1}}, \omega\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
i e^{i \alpha} v^{\overline{1}} & e^{i \alpha} & 0 & 0 \\
-i e^{-i \alpha} v^{1} & 0 & e^{-i \alpha} & 0 \\
s & v^{1} & v^{\overline{1}} & 1
\end{array}\right)
$$

where $s, \alpha \in \mathbb{R}$ and $v^{1} \in \mathbb{C}$.

Theorem $2.2([\mathbf{C}, \mathbf{C M}])$ On Y we have unique globally defined forms $\omega, \omega^{1}, \omega_{1}^{1}, \varphi^{1}, \psi$ such that

$$
\begin{aligned}
d \omega & =\omega \wedge \varphi+i \omega^{1} \wedge \omega^{\overline{1}} \\
d \omega^{1} & =\frac{1}{2} \omega^{1} \wedge \varphi+\omega^{1} \wedge \omega_{1}^{1}+\omega \wedge \varphi^{1} \\
d \varphi & =i \omega^{1} \wedge \varphi^{\overline{1}}-i \omega^{\overline{1}} \wedge \varphi^{1}+\omega \wedge \psi \\
d \omega_{1}^{1} & =\frac{3}{2} i \omega^{1} \wedge \varphi^{\overline{1}}+\frac{3}{2} i \omega^{\overline{1}} \wedge \varphi^{1} \\
d \varphi^{1} & =\frac{1}{2} \varphi \wedge \varphi^{1}-\omega_{1}^{1} \wedge \varphi^{1}+\frac{1}{2} \omega^{1} \wedge \psi+Q_{\overline{1}}^{1} \omega \wedge \omega^{\overline{1}} \\
d \psi & =2 i \varphi^{1} \wedge \varphi^{\overline{1}}+\varphi \wedge \psi+\left(R_{1} \omega^{1}+R_{\overline{1}} \omega^{\overline{1}}\right) \wedge \omega
\end{aligned}
$$

with $\omega_{1}^{1}+\overline{\omega_{1}^{1}}=0, \omega, \varphi, \psi$ real and

$$
\begin{gathered}
d Q_{\overline{1}}^{1}-2 Q_{\overline{1}}^{1} \varphi+2 Q_{\overline{1}}^{1} \omega_{1}^{1}=S \omega-\frac{1}{2} R_{\overline{1}} \omega^{1}+T \omega^{\overline{1}} \\
d R_{1}-\frac{5}{2} R_{1} \varphi-R_{1} \omega_{1}^{1}+2 i \bar{Q}_{\overline{1}}^{1} \varphi^{1}=A \omega+B \omega^{1}+C \omega^{\overline{1}} .
\end{gathered}
$$

where A, B, C are functions on Y and C is real.
We can verify easily that structure equations in Cartan or Jacobowitz are the same as here, with the correspondance

$$
\Omega=\omega, \quad \Omega_{1}=\omega^{1}, \quad \Omega_{2}=-\frac{1}{2} \varphi-\omega_{1}^{1}, \quad \Omega_{3}=-\varphi^{1}, \quad \Omega_{4}=\frac{1}{2} \psi
$$

and

$$
R=Q_{\overline{1}}^{1}, \quad S=R_{1} .
$$

$3 \quad \mathrm{SU}(2,1)$

Define

$$
S U(2,1)=\left\{g \in S L(3, \mathbb{C}) \mid \bar{g}^{T} Q g=Q\right\}
$$

where the Hermitian form Q given by

$$
Q=\left(\begin{array}{ccc}
0 & 0 & i / 2 \\
0 & 1 & 0 \\
-i / 2 & 0 & 0
\end{array}\right)
$$

The group $S U(2,1)$ acts on \mathbb{C}^{3} on the left preserving the cone

$$
\left\{z \in \mathbb{C}^{3} \mid \bar{z}^{T} Q z=0\right\}
$$

The projectivization of this cone is $S^{3} \subset \mathbb{C} P^{2} . S U(2,1)$ has a finite center K which is a cyclic group of order 3 acting trivially on the sphere S^{3}. We define $P U(2,1)=S U(2,1) / K$.

The elements of the Lie algebra $\mathfrak{s u}(2,1)$ are represented by the matrices

$$
\left(\begin{array}{ccc}
u & -2 i \bar{y} & w \\
x & a & y \\
z & 2 i \bar{x} & -\bar{u}
\end{array}\right)
$$

where $i a \in \mathbb{R}, z, w \in \mathbb{R}, x, y \in \mathbb{C}, u \in \mathbb{C}$ and $u-\bar{u}=-a$. Observe that the Lie algebra $\mathfrak{g}=\mathfrak{s} u(2,1)$ is graded:

$$
\mathfrak{g}=\mathfrak{g}^{-2} \oplus \mathfrak{g}^{-1} \oplus \mathfrak{g}^{0} \oplus \mathfrak{g}^{1} \oplus \mathfrak{g}^{2}
$$

where

$$
\begin{gathered}
\mathfrak{g}^{-2}=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
z & 0 & 0
\end{array}\right)\right\} \quad \mathfrak{g}^{-1}=\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \\
x & 0 & 0 \\
0 & 2 i \bar{x} & 0
\end{array}\right)\right\} \\
\mathfrak{g}^{0}=\left\{\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & a & 0 \\
0 & 0 & -\bar{u}
\end{array}\right)\right\} \quad \mathfrak{g}^{1}=\left\{\left(\begin{array}{ccc}
0 & -2 i \bar{y} & 0 \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right)\right\} \quad \mathfrak{g}^{2}=\left\{\left(\begin{array}{lll}
0 & 0 & w \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}
\end{gathered}
$$

We have

$$
\mathfrak{g}^{0}=\mathbb{R} \oplus \mathfrak{u}(1)
$$

where

$$
\mathfrak{u}(1)=\left\{\left(\begin{array}{ccc}
-i q / 2 & 0 & 0 \\
0 & i q & 0 \\
0 & 0 & -i q / 2
\end{array}\right)\right\}
$$

with $q \in \mathbb{R}$ and

$$
\mathbb{R}=\left\{\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -r
\end{array}\right)\right\}
$$

with $r \in \mathbb{R}$.
Define the subalgebra

$$
\mathfrak{h}=\mathfrak{g}^{0} \oplus \mathfrak{g}^{1} \oplus \mathfrak{g}^{2}
$$

The isotropy of the action of $S U(2,1) / K$ on S^{3} at the point $[1,0,0]^{T}$ is the group $H=$ $C U(1) \ltimes N$ (whose Lie algebra is \mathfrak{h}), represented (up to K) by matrices of the form

$$
\left(\begin{array}{ccc}
a & -2 i \bar{a} \bar{b} & a(s-i b \bar{b}) \tag{2}\\
0 & \frac{\bar{a}}{a} & b \\
0 & 0 & \bar{a}^{-1}
\end{array}\right)
$$

where $s \in \mathbb{R}, b \in \mathbb{C} . N$ is the Heisenberg group represented by matrices

$$
\left(\begin{array}{ccc}
1 & -2 i \bar{b} & s-i b \bar{b} \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

4 The Cartan connection

The bundle $Y \rightarrow M$ is a H-principal bundle and we can interpret Theorem 2.2 by introducing the concept of a Cartan connection. In fact, one can represent the structure equations of Theorem 2.2 as a matrix equation whose entries are differential forms. The forms are disposed in the Lie algebra $\mathfrak{s u}(2,1)$ as

$$
\pi=\left(\begin{array}{ccc}
-\frac{1}{2} \varphi-\frac{1}{3} \omega_{1}^{1} & -i \varphi^{\overline{1}} & -\frac{1}{4} \psi \\
\omega^{1} & \frac{2}{3} \omega_{1}^{1} & \frac{1}{2} \varphi^{1} \\
2 \omega & 2 i \omega^{\overline{1}} & \frac{1}{2} \varphi^{1}-\frac{1}{3} \omega_{1}^{1}
\end{array}\right)
$$

It is a simple verification to show that

$$
\begin{equation*}
d \pi+\pi \wedge \pi=\Pi \tag{3}
\end{equation*}
$$

where

$$
\Pi=\left(\begin{array}{ccc}
0 & -i \Phi^{\overline{1}} & -\frac{1}{4} \Psi \\
0 & 0 & \frac{1}{2} \Phi^{1} \\
0 & 0 & 0
\end{array}\right)
$$

Recall that $X^{*}(y)=\frac{d}{d t} t_{t=0} y e^{t X}$ where $e^{t X}$ is the one parameter group generated by the X.
Definition 4.1 A Cartan connection on Y is a 1-form $\pi: T Y \rightarrow$ su $(2,1)$ satisfying:

1. $\pi_{p}: T_{p} Y \rightarrow s u(2,1)$ is an isomorphism
2. If $X \in \mathfrak{h}$ and $X^{*} \in T Y$ is the vertical vector field canonically associated to X then $\pi\left(X^{*}\right)=X$.
3. If $h \in H$ then $\left(R_{h}\right)^{*} \pi=A d_{h^{-1}} \pi$

Theorem 4.2 ([C, CM]) The form π is a Cartan connection.

5 Formulae

In the following we will need the value of $B=A d_{h^{-1}} \pi$, where $h \in H$ is as in (2). We get

$$
\begin{gathered}
B_{31}=2(a \bar{a} \omega) \\
B_{21}=a^{2} \bar{a}^{-1} \omega^{1}-2 a^{2} b \omega \\
B_{11}=-\frac{1}{3} \omega_{1}^{1}-\frac{1}{2} \varphi+2 i a \bar{b} \omega^{1}-2 a \bar{a}(s+i b \bar{b}) \omega \\
B_{22}=\frac{2}{3}\left(\omega_{1}^{1}-3 i a \bar{b} \omega^{1}-3 i \bar{a} b \omega^{\overline{1}}+6 i a \bar{a} b \bar{b} \omega\right) \\
B_{23}=\frac{1}{2}\left(a \bar{a}^{-2} \varphi^{1}-b a \bar{a}^{-1} \varphi+2 a \bar{a}^{-1} b \omega_{1}^{1}+2 a^{2} \bar{a}^{-1}(s-i b \bar{b}) \omega^{1}-4 i a b^{2} \omega^{\overline{1}}-4 a^{2} b(s-i b \bar{b}) \omega\right) \\
B_{13}=-\frac{1}{4}\left((a \bar{a})^{-1} \psi+4 i a^{-1} b \varphi^{\overline{1}}-4 i \bar{a}^{-1} \bar{b} \varphi^{1}-8 i b \bar{b} \omega_{1}^{1}\right.
\end{gathered}
$$

$$
\left.-8 i a \bar{b}(s-i b \bar{b}) \omega^{1}+8 i \bar{a} b(s+i b \bar{b}) \omega^{\overline{1}}+4 s \varphi+8 a \bar{a}\left(s^{2}+(b \bar{b})^{2}\right) \omega\right)
$$

Observe that

$$
B_{11}+\frac{1}{2} B_{22}=-\frac{1}{2}\left(\varphi-2 i a \bar{b} \omega^{1}+2 i \bar{a} b \omega^{\overline{1}}+4 a \bar{a} s \omega\right)
$$

Also, if h is a section (that is a function $h: M \rightarrow H$), then

$$
h^{-1} d h=\left(\begin{array}{ccc}
a^{-1} d a & -2 i\left(a^{-2} \bar{a} \bar{b} d a+a^{-1} \bar{a} d \bar{b}\right) & d s+i \bar{b} d b-i b d \bar{b}+a^{-1}(s-i b \bar{b}) d a+\bar{a}^{-1}(s+i b \bar{b}) d \bar{a} \tag{4}\\
0 & -a^{-1} d a+\bar{a}^{-1} d \bar{a} & a \bar{a}^{-1} d b+a \bar{a}^{-2} b d \bar{a} \\
0 & 0 & -\bar{a}^{-1} d \bar{a}
\end{array}\right)
$$

If

$$
\tilde{\pi}=R_{h}^{*} \pi=h^{-1} d h+A d_{h^{-1}} \pi
$$

and writing

$$
\tilde{\pi}=\left(\begin{array}{ccc}
-\frac{1}{2} \tilde{\varphi}-\frac{1}{3} \tilde{\omega}_{1}^{1} & -i \tilde{\varphi}^{\overline{1}} & -\frac{1}{4} \tilde{\psi} \\
\tilde{\omega}^{1} & \frac{2}{3} \tilde{\omega}_{1}^{1} & \frac{1}{2} \tilde{\varphi}^{1} \\
2 \tilde{\omega} & 2 i \tilde{\omega}^{\overline{1}} & \frac{1}{2} \tilde{\varphi}-\frac{1}{3} \tilde{\omega}_{1}^{1}
\end{array}\right)
$$

we obtain from above

$$
\begin{gathered}
\tilde{\omega}=a \bar{a} \omega \\
\tilde{\omega}^{1}=a^{2} \bar{a}^{-1} \omega^{1}-2 a^{2} b \omega \\
\tilde{\varphi}=\varphi-2 i a \bar{b} \omega^{1}+2 i \bar{a} b \omega^{\overline{1}}+4 a \bar{a} s \omega+\left(-a^{-1} d a-\bar{a}^{-1} d \bar{a}\right) \\
\tilde{\omega}_{1}^{1}=\omega_{1}^{1}-3 i a \bar{b} \omega^{1}-3 i \bar{a} b \omega^{\overline{1}}+6 i a \bar{a} b \bar{b} \omega+\frac{3}{2}\left(-a^{-1} d a+\bar{a}^{-1} d \bar{a}\right) \\
\tilde{\varphi}^{1}=a \bar{a}^{-2} \varphi^{1}-b a \bar{a}^{-1} \varphi+2 a \bar{a}^{-1} b \omega_{1}^{1}+2 a^{2} \bar{a}^{-1}(s-i b \bar{b}) \omega^{1}-4 i a b^{2} \omega^{\overline{1}}-4 a^{2} b(s-i b \bar{b}) \omega+2\left(a \bar{a}^{-1} d b+a \bar{a}^{-2} b d \bar{a}\right) \\
\tilde{\psi}=(a \bar{a})^{-1} \psi+4 i a^{-1} b \varphi^{\overline{1}}-4 i \bar{a}^{-1} \bar{b} \varphi^{1}-8 i b \bar{b} \omega_{1}^{1}-8 i a \bar{b}(s-i b \bar{b}) \omega^{1}+8 i \bar{a} b(s+i b \bar{b}) \omega^{\overline{1}}+4 s \varphi+8 a \bar{a}\left(s^{2}+(b \bar{b})^{2}\right) \omega \\
-4\left(d s+i \bar{b} d b-i b d \bar{b}+a^{-1}(s-i b \bar{b}) d a+\bar{a}^{-1}(s+i b \bar{b}) d \bar{a}\right) .
\end{gathered}
$$

We take a particular section h where

$$
b=\frac{\bar{a}}{a},
$$

and write $a=r v$ with $r>0$ and $|v|=1$. The section h depends on functions r, v and s. As $\frac{d a}{a}=\frac{d r}{r}+\frac{d v}{v}$, our above formulas can be writen as

$$
\begin{gather*}
\tilde{\omega}=r^{2} \omega \\
\tilde{\omega}^{1}=r v^{3} \omega^{1}-2 r^{2} \omega \\
\tilde{\varphi}=\varphi-2 i r v^{3} \omega^{1}+2 i r \bar{v}^{3} \omega^{\overline{1}}+4 r^{2} s \omega-2 \frac{d r}{r} \\
\tilde{\omega}_{1}^{1}=\omega_{1}^{1}-3 i r\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)+6 i r^{2} \omega-3 \frac{d v}{v} \tag{5}\\
\tilde{\psi}=\frac{1}{r^{2}} \psi-4 i \frac{1}{r} v^{3} \varphi^{1}+4 i \frac{1}{r} \bar{v}^{3} \varphi^{\overline{1}}-8 i \omega_{1}^{1}+4 s \varphi-8 r v^{3}(1+i s) \omega^{1}-8 r \bar{v}^{3}(1-i s) \omega^{\overline{1}}+8 r^{2}\left(s^{2}+1\right) \omega \\
-4\left(d s+2 s \frac{d r}{r}-6 i \frac{d v}{v}\right)
\end{gather*}
$$

$6 \quad \mathbb{R}$-Circles

General references for this section is [C, J]. The definition (Definition 6.2) of circles by a differential system is due to Cartan, here we introduce a system of differential equations describing them (see Theorem 6.3). In S^{3}, \mathbb{R}-circles are the trace of Lagrangian planes of complex hyperbolic space in its boundary S^{3}. To define the analog of an \mathbb{R}-circle for a CRstructure we begin to impose that the curve is horizontal. In fact we will define the curve in the fiber bundle Y by means of a differential system. The projection of an integral curve will be an \mathbb{R}-circle.

Observe that a curve $\tilde{\gamma}$ in Y projects to a horizontal curve γ in M if and only if

$$
\omega(\dot{\tilde{\gamma}})=0 .
$$

Indeed, as ω is a tautological form of Y over E,

$$
\omega(\dot{\tilde{\gamma}})=\lambda \theta(\dot{\gamma})
$$

where λ is positive and θ is a contact form.
Equation 1 can be written

$$
d \omega=\omega \wedge \varphi+\frac{i}{2}\left(\omega^{1}-\omega^{\overline{1}}\right) \wedge\left(\omega^{1}+\omega^{\overline{1}}\right)
$$

In order to obtain an integrable system we add

$$
\left(\omega^{1}-\omega^{\overline{1}}\right)=0 .
$$

Observe that we could have added instead $\left(\omega^{1}-\omega^{\overline{1}}\right)=0$ and obtain an equivalent system. This differential system is still not integrable. It follows from the structure equations in Theorem 2.2 that

$$
d\left(\omega^{1}-\omega^{\overline{1}}\right)=\frac{1}{2}\left(\omega^{1}-\omega^{\overline{1}}\right) \wedge \varphi+\left(\omega^{1}+\omega^{\overline{1}}\right) \wedge \omega_{1}^{1}+\omega \wedge\left(\varphi^{1}-\varphi^{\overline{1}}\right),
$$

so as $\omega^{1}+\omega^{\overline{1}}$ is not null, we should add the equation

$$
\omega_{1}^{1}=0 .
$$

We rewrite the equation of $d \omega_{1}^{1}$ in 2.2 as

$$
d \omega_{1}^{1}-\frac{3}{2} i \omega^{1} \wedge\left(\varphi^{\overline{1}}+\varphi^{1}\right)-\frac{3}{2} i\left(\omega^{1}-\omega^{\overline{1}}\right) \wedge \varphi^{1}=0 \quad \bmod \omega .
$$

In order to obtain an integrable system we add the equation

$$
\varphi^{1}+\varphi^{\overline{1}}=0
$$

Finally, from the equation of $d \varphi^{1}$ in Theorem 2.2 we get

$$
\left(\omega^{1}+\omega^{\overline{1}}\right) \wedge \psi=0 \quad \bmod \omega, \omega^{1}-\omega^{\overline{1}}, \omega_{1}^{1}, \varphi^{1}+\varphi^{\overline{1}}
$$

so, as above, in order to obtain an integrable system, we impose

$$
\psi=0
$$

Observe that the structure equations shows that the system is integrable because $d \psi$ is already in the ideal generated by the previous forms. We have shown

Proposition 6.1 The differential sistem on Y given by

$$
\begin{equation*}
\omega=\omega^{1}-\omega^{\overline{1}}=\omega_{1}^{1}=\varphi^{1}+\varphi^{\overline{1}}=\psi=0 \tag{6}
\end{equation*}
$$

is integrable
Definition 6.2 The curves in the CR-manifold M that are projections of integral manifolds of the differential system 6 are called \mathbb{R}-circles.

To find the equations of \mathbb{R}-circles directly in the CR manifold M we proceed as in [BS] pg 164 for the case of chains. Take a section $\sigma: M \rightarrow Y$. Suppose $\gamma: I \rightarrow M$ is a circle, and let's apply a transformation $R_{h(t)}$ on $\sigma \gamma(t)$ such that $R_{h(t)} \sigma \gamma(t)$ is inside an integral leaf of 6 . Then

$$
\tilde{\pi}=\left(R_{h(t)} \sigma \gamma(t)\right)^{*} \pi=h^{-1}(t) h^{\prime}(t)+A d_{h^{-1}(t)} \gamma(t)^{*}\left(\sigma^{*} \pi\right) .
$$

Taking account of the formulas 5 , it follows from $\tilde{\omega}^{1}-\tilde{\omega}^{\overline{1}}=0$ that $r v^{3} \omega^{1}=r \bar{v}^{3} \omega^{\overline{1}}$, so

$$
\begin{equation*}
v^{3} \omega^{1}=\bar{v}^{3} \omega^{\overline{1}} \tag{7}
\end{equation*}
$$

and therefore v is determined up to a sixth root of unity.
The following equation $\tilde{\omega}_{1}^{1}=0$ says that

$$
\begin{equation*}
0=\omega_{1}^{1}-3 \operatorname{ir}\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)-3 \frac{d v}{v} \tag{8}
\end{equation*}
$$

which determines r.
The next equation is

$$
\begin{aligned}
0=\tilde{\varphi}^{1} & +\tilde{\varphi}^{\overline{1}}=\left(\frac{1}{r} v^{3} \varphi^{1}+2 \omega_{1}^{1}-\varphi+2 r(s-i) v^{3} \omega^{1}-4 i r \bar{v}^{3} \omega^{\overline{1}}+2 \frac{d r}{r}-6 \frac{d v}{v}\right) \\
& +\left(\frac{1}{r} \bar{v}^{3} \varphi^{\overline{1}}-2 \omega_{1}^{1}-\varphi+2 r(s+i) \bar{v}^{3} \omega^{\overline{1}}+4 i r v^{3} \omega^{1}+2 \frac{d r}{r}+6 \frac{d v}{v}\right)
\end{aligned}
$$

so we obtain

$$
\frac{1}{r}\left(v^{3} \varphi^{1}+\bar{v}^{3} \varphi^{\overline{1}}\right)-2 \varphi+2 r s\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)+4 \frac{d r}{r}=0 .
$$

If we pose

$$
z=r^{2} s
$$

we get

$$
\begin{equation*}
d r=-\frac{1}{4}\left(v^{3} \varphi^{1}+\bar{v}^{3} \varphi^{\overline{1}}\right)+\frac{1}{2} r \varphi-\frac{1}{2} z\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right) \tag{9}
\end{equation*}
$$

wich determines z, and so s.
Now the last equation of the integral system is $\tilde{\psi}=0$, or

$$
0=\frac{1}{r^{2}} \psi-4 i \frac{1}{r}\left(v^{3} \varphi^{1}-\bar{v}^{3} \varphi^{\overline{1}}\right)+4 s \varphi-8 r\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)-4\left(d s+2 s \frac{d r}{r}-6 i \frac{d v}{v}\right),
$$

and from this equation we get

$$
d z=\frac{1}{4} \psi-i r\left(v^{3} \varphi^{1}-\bar{v}^{3} \varphi^{\overline{1}}\right)+z \varphi-2 r^{3}\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)+6 i r^{2} \frac{d v}{v}
$$

If we replace equation 8 we obtain

$$
\begin{equation*}
d z=\frac{1}{4} \psi-i r\left(v^{3} \varphi^{1}-\bar{v}^{3} \varphi^{\overline{1}}\right)+z \varphi+2 i r^{2} \omega_{1}^{1}+4 r^{3}\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right) . \tag{10}
\end{equation*}
$$

Consider

$$
\gamma^{\prime}(t)=c Z_{1}+\bar{c} Z_{\overline{1}},
$$

where $Z_{1}, Z_{\overline{1}}, Z_{0}$ are dual vectors to $\omega^{1}, \omega^{\overline{1}}, \omega$. It follows from 7 that $v^{3} c=\bar{v} \bar{c}^{3}$, so $v^{3} c=\rho$, with ρ real. Therefore $c=\rho \bar{v}^{3}$, and $\left(v^{3} \omega^{1}+\bar{v}^{3} \omega^{\overline{1}}\right)\left(\gamma^{\prime}\right)=2 \rho$. If we pose

$$
u=\bar{v}^{3},
$$

we obtain
Theorem 6.3 If $\gamma: I \rightarrow M$ is an \mathbb{R}-circle, and if we write $\gamma^{\prime}=\rho\left(u Z_{1}+\bar{u} Z_{\overline{1}}\right)$, with $\rho \neq 0$ and $|u|=1$, then γ satisfies the following system of differential equations:

$$
\begin{gathered}
\omega=0 \\
\bar{u} \omega^{1}-u \omega^{\overline{1}}=0 \\
\frac{d u}{u}+\omega_{1}^{1}-6 i r \rho d t=0 \\
d r+\frac{1}{4}\left(\bar{u} \varphi^{1}+u \varphi^{\overline{1}}\right)-\frac{r}{2} \varphi+z \rho d t=0 \\
d z-\frac{1}{4} \psi+i r\left(\bar{u} \varphi^{1}-u \varphi^{\overline{1}}\right)-z \varphi-2 i r^{2} \omega_{1}^{1}-8 r^{3} \rho d t=0 .
\end{gathered}
$$

Observe that for each $p \in M$ one can determine a circle passing through p specifying as initial conditions u (with $|u|=1$), $r>0$ and $z \in \mathbb{R}$.

Example 6.4 (The quadric, see [J])

Consider the quadric Q in \mathbb{C}^{2} defined as the null set of

$$
\frac{1}{2 i}\left(z_{2}-\bar{z}_{2}\right)=z_{1} \bar{z}_{1}
$$

Take as

$$
\begin{aligned}
Z^{1} & =d z_{1}, \\
Z^{\overline{1}} & =d \bar{z}_{1}
\end{aligned}
$$

and

$$
Z^{0}=\frac{1}{2}\left(d x_{2}-i \bar{z}_{1} d z_{1}+i z_{1} d \bar{z}_{1}\right),
$$

where $z_{2}=x_{2}+i y_{2}$. The dual fields are

$$
Z_{1}=\frac{\partial}{\partial z_{1}}+i \bar{z}_{1} \frac{\partial}{\partial x_{2}},
$$

$$
Z_{\overline{1}}=\frac{\partial}{\partial \bar{z}_{1}}-i z_{1} \frac{\partial}{\partial x_{2}}
$$

and

$$
Z_{0}=2 \frac{\partial}{\partial x_{2}}
$$

We have

$$
d Z^{0}=i Z^{1} \wedge Z^{\overline{1}}
$$

and

$$
d Z^{1}=0 .
$$

Considering this section $\sigma: M \rightarrow Y$ defined by $Z^{0}, Z^{1}, Z^{\overline{1}}$, we obtain from Cartan equations that $\sigma^{*} \varphi=\sigma^{*} \omega_{1}^{1}=\sigma^{*} \varphi^{1}=\sigma^{*} \psi=0$. In particular $Q_{\overline{1}}^{1}=0$. Replacing this values in equations of Theorem 6.3 we obtain the differential equations for the chains on the quadric,

$$
\begin{gather*}
\frac{u^{\prime}}{u}-6 i \rho r=0, \tag{11}\\
r^{\prime}+z \rho=0 \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
z^{\prime}-8 \rho r^{3}=0 \tag{13}
\end{equation*}
$$

One verifies that the curve

$$
\gamma(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t)\right)
$$

given by

$$
x_{1}(t)=\frac{2 t\left(1-t^{2}\right)}{1+6 t^{2}+t^{4}}, \quad y_{1}(t)=-\frac{\left(1-t^{2}\right)\left(1+t^{2}\right)}{1+6 t^{2}+t^{4}}, \quad x_{2}(t)=-\frac{4 t\left(1+t^{2}\right)}{1+6 t^{2}+t^{4}}
$$

is an \mathbb{R}-circle corresponding to $z_{1}(0)=-i, x_{2}(0)=0, u(0)=1, r(0)=1$ and $z(0)=0$.

7 Circle preserving diffeomorphisms are CR or conjugate CR

Theorem 7.1 Let M and \tilde{M} be CR manifolds. If $f: M \underset{\sim}{\rightarrow} \tilde{M}$ is a (local) diffeomorphism such that for every \mathbb{R}-circle γ in M, $f \circ \gamma$ is an \mathbb{R}-circle in \tilde{M}, then f is a $C R$ diffeomorphism or a conjugate $C R$ diffeomorphism.

Proof. Consider the structures Y and \tilde{Y} on M and \tilde{M} respectively, and sections $\sigma: M \rightarrow$ Y and $\tilde{\sigma}: \tilde{M} \rightarrow \tilde{Y}$. Taking the pull back by σ and $\tilde{\sigma}$ of connection forms on Y and \tilde{Y} respectively, we obtain forms $\omega, \omega^{1}, \omega_{1}^{1}, \varphi^{1}, \psi$ on M, and forms $\tilde{\omega}, \tilde{\omega}^{1}, \tilde{\omega}_{1}^{1}, \tilde{\varphi}^{1}, \tilde{\psi}$ on \tilde{M}. Using these forms, we can write circle equations on M and \tilde{M}, as in theorem 6.3. We now consider forms $\tilde{\omega}, \tilde{\omega}^{1}, \tilde{\omega}_{1}^{1}, \tilde{\varphi}^{1}, \tilde{\psi}$ as forms on M (by a slight abuse of notions they denote the forms $\left.f^{*} \tilde{\omega}, f^{*} \tilde{\omega}^{1}, f^{*} \tilde{\omega}_{1}^{1}, f^{*} \tilde{\varphi}^{1}, f^{*} \tilde{\psi}\right)$.

As tangent vectors to circles generate D, then $\tilde{\omega}=0$ on D, so we obtain $\tilde{\omega}=\lambda \omega$. That is, the diffeomorphism is a contactomorphism. We write

$$
\begin{equation*}
\tilde{\omega}^{1}=\alpha \omega^{1}+\beta \omega^{\overline{1}}+c \omega \tag{14}
\end{equation*}
$$

and

$$
\tilde{\omega}^{\overline{1}}=\bar{\beta} \omega^{1}+\bar{\alpha} \omega^{\overline{1}}+\bar{c} \omega
$$

where α, β, c are functions on M. Observe that as $\left.\tilde{\omega}^{1} \wedge \tilde{\omega}^{\overline{1}}\right|_{D}=\left.(\alpha \bar{\alpha}-\beta \bar{\beta}) \omega^{1} \wedge \omega^{\overline{1}}\right|_{D}$ is never null on D, we get

$$
\alpha \bar{\alpha}-\beta \bar{\beta} \neq 0
$$

everywhere on M. We have to show that $\beta=0$ (for f to be a CR diffeomorphism) or $\alpha=0$ (for f to be a conjugate CR diffeomorphism). The idea is to use the arbitrary initial conditions (so vary u, r and z) to obtain enough information on those functions.

The computations we are going to do are on a circle γ, so we can assume from theorem 6.3 that

$$
\omega=\tilde{\omega}=\omega^{1}-u^{2} \omega^{\overline{1}}=\tilde{\omega}^{1}-\tilde{u}^{2} \tilde{\omega}^{\overline{1}}=0 .
$$

Applying this in 14 we obtain

$$
\left(\alpha u^{2}+\beta\right) \omega^{\overline{1}}=\alpha \omega^{1}+\beta \omega^{\overline{1}}=\tilde{\omega}^{1}=\tilde{u}^{2} \tilde{\omega}^{\overline{1}}=\tilde{u}^{2}\left(\bar{\beta} \omega^{1}+\bar{\alpha} \omega^{\overline{1}}\right)=\tilde{u}^{2}\left(\bar{\beta} u^{2}+\bar{\alpha}\right) \omega^{\overline{1}}
$$

therefore

$$
\begin{equation*}
\tilde{u}=\left(\frac{\alpha u^{2}+b}{\bar{\beta} u^{2}+\bar{\alpha}}\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

Define $h: \mathbb{R} \times S^{1} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
h(t, u)=\left(\frac{\alpha(\gamma(t)) u^{2}+\beta(\gamma(t))}{\bar{\beta}(\gamma(t)) u^{2}+\bar{\alpha}(\gamma(t))}\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

for $t \in \mathbb{R}$ and $u \in S^{1} \subset \mathbb{C}$. Applying again Theorem 6.3 we can write

$$
d \tilde{u}=\tilde{u}\left(-\tilde{\omega}_{1}^{1}+6 i \tilde{r} \tilde{\rho} d t\right)=h\left(-\tilde{\omega}_{1}^{1}+6 i \tilde{\rho} \tilde{\rho} d t\right)
$$

and taking the derivative of 16 , we obtain

$$
d \tilde{u}=\frac{\partial h}{\partial u} d u+\frac{\partial h}{\partial t} d t=\frac{\partial h}{\partial u} u\left(-\omega_{1}^{1}+6 i r \rho d t\right)+\frac{\partial h}{\partial t} d t .
$$

From the equality of the right sides on the two lines above we obtain

$$
\begin{equation*}
\tilde{r}=A r+B \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
A(t, u)=\frac{\rho u}{\tilde{\rho} h(t, u)} \frac{\partial h}{\partial u}(t, u) \tag{18}
\end{equation*}
$$

and B is a function of t, u. Taking the derivative of 17 and replacing the circle equation

$$
d \tilde{r}=-\frac{1}{4}\left(\overline{\tilde{u}} \tilde{\varphi}^{1}+\tilde{u} \tilde{\varphi}^{\overline{1}}\right)+\frac{\tilde{r}}{2} \tilde{\varphi}-\tilde{z} \tilde{\rho} d t
$$

we obtain

$$
-\frac{1}{4}\left(\overline{\tilde{u}} \tilde{\varphi}^{1}+\tilde{u} \tilde{\varphi}^{\overline{1}}\right)+\frac{1}{2}(A r+B) \tilde{\varphi}-\tilde{z} \tilde{\rho} d t=
$$

$$
=A\left(-\frac{1}{4}\left(\bar{u} \varphi^{1}+u \varphi^{\overline{1}}\right)+\frac{r}{2} \varphi-z \rho d t\right)+\left(\frac{\partial A}{\partial u} r+\frac{\partial B}{\partial u}\right)\left(-u \omega_{1}^{1}+6 \text { iur } \rho d t\right)+\left(\frac{\partial A}{\partial t} r+\frac{\partial B}{\partial t}\right) d t,
$$

and solving for \tilde{z} we obtain

$$
\begin{equation*}
\tilde{z}=C z+D r^{2}+E r+F, \tag{19}
\end{equation*}
$$

where, in a short form,

$$
\begin{gather*}
C=\frac{A \rho}{\tilde{\rho}} \tag{20}\\
D=-6 i \frac{\rho u}{\tilde{\rho}} \frac{\partial A}{\partial u} . \tag{21}
\end{gather*}
$$

Taking the derivative of 19 we obtain

$$
\begin{gathered}
d \tilde{z}=C\left(\frac{1}{4} \psi-i r\left(\bar{u} \varphi^{1}-u \varphi^{\overline{1}}\right)+z \varphi+2 i r^{2} \omega_{1}^{1}+8 r^{3} \rho d t\right) \\
+(2 r D+E)\left(-\frac{1}{4}\left(\bar{u} \varphi^{1}+u \varphi^{\overline{1}}\right)+\frac{r}{2} \varphi-z \rho d t\right)+\left(\frac{\partial C}{\partial u} z+\frac{\partial D}{\partial u} r^{2}+\frac{\partial E}{\partial u} r+\frac{\partial F}{\partial u}\right)\left(-u \omega_{1}^{1}+6 i u r \rho d t\right) \\
+\left(\frac{\partial C}{\partial t} z+\frac{\partial D}{\partial t} r^{2}+\frac{\partial E}{\partial t} r+\frac{\partial F}{\partial t}\right) d t
\end{gathered}
$$

By theorem 6.3 and 17, 19 we have
$d \tilde{z}=\frac{1}{4} \tilde{\psi}-i(A r+B)\left(\overline{\tilde{u}} \tilde{\varphi}^{1}-\tilde{u} \tilde{\varphi}^{\overline{1}}\right)+\left(C z+D r^{2}+E r+F\right) \tilde{\varphi}+2 i(A r+B)^{2} \tilde{\omega}_{1}^{1}+8(A r+B)^{3} \tilde{\rho} d t$.
Replacing this in the above equation, we get a polynomial equation in z and r :

$$
\begin{equation*}
A_{30} r^{3}+A_{11} r z+A_{20} r^{2}+A_{10} r+A_{00}=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{11}=\left(D-3 i u \frac{\partial C}{\partial u}\right) \rho=-9 i u \frac{\rho^{2}}{\tilde{\rho}} \frac{\partial A}{\partial u} . \tag{23}
\end{equation*}
$$

As r and z can take arbitrary values in \mathbb{R} we obtain that all coeficients of 22 are null. If we replace 18, 20 and 21 in $A_{11}=0$ we obtain

$$
18 i \frac{\rho^{3}}{\tilde{\rho}^{2}} \frac{\left(u^{2} \alpha \bar{\beta}-\bar{u}^{2} \bar{\alpha} \beta\right)(\alpha \bar{\alpha}-\beta \bar{\beta})}{(\alpha u+\beta \bar{u})^{2}(\bar{\beta} u+\bar{\alpha} \bar{u})^{2}}=0
$$

As u is any complex number such that $|u|=1$ and $\alpha \bar{\alpha}-\beta \bar{\beta} \neq 0$, we obtain $\alpha \bar{\beta}=0$. It follows from 14 that if $\beta=0$ then f is a CR diffeomorphism and if $\alpha=0$ we get that f is a conjugate CR diffeomorphism.

References

[BDS] Burns, D., Diederich, K., Shnider, S.: Distinguished curves in pseudoconvex boundaries. Duke Math. J. 44 (1977), 407-431.
[BS] Burns, D., Shnider, S.: Real Hypersurfaces in complex manifolds. Proceedings of Symposia in Pure Mathematics, 30 (1977), 141-168.
[Ch] Cheng, J.-H.: Chain preserving diffeomorphisms and CR-equivalence, Proc. Amer. Math. Soc. 103 (1988),75-80.
[C] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl., (4) 11 (1932) 17-90 (or Ouevres II, 2, 12311304); II, Ann. Scuola Norm. Sup. Pisa, (2) 1 (1932) 333-354 (or Ouevres III, 2, 1217-1238).
[CM] Chern, S. S. , Moser, J.: Real Hypersurfaces in Complex Manifolds . Acta Math. 133 (1974) 219-271.
[J] Jacobowitz, H.: An Introduction to CR Structures, vol. 32,Mathematical Surveys and Monographs, American Mathematical Society, Providence,Rhode Island, 1990

