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Abstract. We study the geometry of germs of definable (semialgebraic or subanalytic) sets over
a p-adic field from the metric, differential and measure geometric point of view. We prove
that the local density of such sets at each of their points does exist. We then introduce the
notion of distinguished tangent cone with respect to some open subgroup with finite index in the
multiplicative group of our field and show, as it is the case in the real setting, that, up to some
multiplicities, the local density may be computed on this distinguished tangent cone. We also
prove that these distinguished tangent cones stabilize for small enough subgroups. We finally
obtain the p-adic counterpart of the Cauchy–Crofton formula for the density. To prove these
results we use the Lipschitz decomposition of definable p-adic sets of [5] and prove here the
genericity of the regularity conditions for stratification such as .wf /, .w/, .af /, .b/ and .a/
conditions.
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Introduction

Many fundamental results in motivic integration took their roots in the fertile soil
provided by p-adic integration. The role played by analogy in the developments of
motivic integration cannot be underestimated. The fundamental papers [19] and [18]
took their source in their p-adic counterparts [13] and [16], respectively. The present
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paper is part of a larger project which is to develop a theory a local densities and
tangent cones, and, more ambitiously, microlocal geometry, in a motivic framework.
Since these objects were not considered yet over the p-adics, it was natural to start
by figuring out the p-adic picture, which is of course already of interest for its own
sake, in view of possible arithmetic applications. In fact, as the project advanced, we
realized that the p-adic case already required some substantial issues to be settled
while some unsuspected questions naturally arose. The present paper is devoted to
the study of local metric properties of definable subsets of the p-adic affine space,
with special stress on the local density of these subsets. It contains also results
on tangent cones and existence of regular stratifications. We plan to consider the
motivic analogues of the objects and results of this paper and of its companion [5] in
subsequent work.

We shall start by recalling what is known in the real and complex context regarding
the local density of (sub-)analytic sets. WhenXa is a germ at a of a complex analytic
subset X of real dimension d of the affine space Cn, the local density ‚d .Xa/ of
Xa, sometimes called in this setting the Lelong number of Xa, has been introduced
by Lelong in [33] as the limit of volumes of the intersection of a representative X of
the germ with suitably renormalized balls around a, namely

‚d .Xa/ D lim
r!0

�d .X \ B.a; r//
�d .Bd .0; r//

;

where Bd .0; r/ is the real d -dimensional ball of centre 0 and radius r > 0 and �d

stands for d -dimensional volume. Lelong actually proved that the function

r 7! �d .X \ B.a; r//
rd

decreases as r goes to 0, pointing out, long before this concept has been formalized,
the tame behaviour of the local normalized volume of analytic sets. Two years after
Lelong’s pioneering paper, Thie proved in [41] that the local density of a complex
analytic subset X at a point a is a positive integer by expressing it as a sum of local
densities of the components, counted with multiplicities, of the tangent cone of X at
a. Finally, more than twenty years after Lelong’s definition, Draper proved [20] that
the local density is the algebraic multiplicity of the local ring ofX at a. The definition
of local densities has been extended by Kurdyka and Raby to real subanalytic subsets
of Rn in [32] (see also [31]). In fact, although the arguments in [32] and [31] which
prove the existence of the density in the real subanalytic case were given before the
notion of definable sets in o-minimal structures emerged, they apply to the real o-
minimal setting. A short proof of this existence result, again produced just before the
concept of tame definable sets and involving the Cauchy–Crofton formula, may be
found in the seminal paper [34] for semi-pfaffian sets. In [11] (Theorem 1.3), one can
find a proof in the real o-minimal setting of the existence of the local density viewed



Vol. 87 (2012) Local metric properties of definable sets 965

as the higher term of a finite sequence of localized curvature invariants involving
the Cauchy–Crofton formula and the theory of regular stratifications. Of course,
in the real setting, the density is in general no longer a positive integer, but a non
negative real number, and Kurdyka and Raby proved an appropriate extension of
Thie’s result by expressing again the local density in terms of the density of some
components of the real tangent cone. The existence of the local density at each point
of the closure of a subanalytic set is a manifestation of tameness of these sets near
their singular points. Similarly, tameness in subanalytic geometry is also illustrated
by the tame behavior of local density, viewed as a function of the base-point of the
germ at which it is computed: it is actually proved in [12] that this function along
a given global subanalytic set is a Log-analytic function, that is, a polynomial in
subanalytic functions and their logarithms (see Siu’s paper [40] for similar results in
the complex case). Draper’s result has been extended to the real setting by Comte in
[10] in the following way. Recall that if X is a complex analytic subset of the affine
space of complex dimension d at x, the algebraic multiplicity of the local ring of
X at x is equal to the local degree of a generic linear projection p W X ! Cd , that
is, to the number of points near x in a generic fiber of p. Over the reals, if X is of
local dimension d at x, the number of points in fibers (near x) of a generic linear
projection p W X ! Rd is not generically constant near p.x/ in general. The idea
introduced in [10] to overcome this difficulty is to consider as a substitute for the
local degree of p the sum d.p/ WD P

i2N i � �i , where �i is the local density at p.x/
of the germ of the set of points in Rd over which the fiber of p has exactly i points
near x. The so-called local Cauchy–Crofton formula proved in [10] states that the
average along all linear projections p of the degrees d.p/ is equal to the local density
of X at x and can be considered as the real analogue of Draper’s result. Finally, the
complete multi-dimensional version of the local Cauchy–Crofton formula for real
subanalytic sets is presented in [11] (Theorem 3.1), where the multi-dimensional
substitute of the 0-dimensional local degree d.p/ is obtained by considering the local
Euler characteristic of generic multi-dimensional fibers, instead of the local number
of points.

Now letK be a finite extension of Qp andX be a definable subset (semi-algebraic
or subanalytic) of Kn. Let x be a point of Kn. When one tries to define the local
density of X at x similarly to the archimedean case, one is faced with the problem,
illustrated in 2.1, that the limit of local volumes in general no longer exists. It appears
that the normalized volumes vn ofX in the ballsB.x; n/ WD fw 2 K j ord.x�w/ �
ng has a periodic convergence, that is to say, there exists an integer e > 0 such that
for all c D 0; : : : ; e � 1, .vcCm�e/m2N has a limit vc in Q (see Proposition 2.2.3),
with possibly vc 6D vc0 , for c 6D c0. The reader having essentially in mind the real
case is thus strongly encouraged to start reading this article by the example studied in
2.1 that emphasizes this phenomenon. We resolve that issue by using an appropriate
renormalization device that leads us to express the mean value 1

e
� Pe�1

cD0 vc as the
local density of X at x.
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Another new issue occurring in the p-adic setting is the lack of a natural notion of
a tangent cone. Unlike the real case where only the action of the multiplicative group
R�C has to be considered, in thep-adic case, there seems to be no preferential subgroup
of K� at hand. We remedy this by introducing, for each definable open subgroup of
finite indexƒ inK�, a tangent coneCƒ

x at x which is stable by homotheties inƒ, that
is, which is a ƒ-cone. One should note that such ƒ-cones were already considered
more than twenty years ago in the work of Heifetz on p-adic oscillatory integrals and
wave front sets [25]. Nevertheless, we prove in Theorem 5.6.1 that, given a definable
subset X , among these cones, some are distinguished as maximal for an inclusion
property, and appear as the good tangent cones to be considered, in the sense that
they capture the local geometry of our set. We are then able, by deformation to the
tangent cone, to assign multiplicities to points in the tangent cone Cƒ

x .
Our main results regarding p-adic local densities are Theorem 3.6.2, which is a

p-adic analogue of the result of Thie and Kurdyka–Raby, and Theorem 6.2.1, which is
ap-adic analogue of Comte’s local Cauchy–Crofton formula. An important technical
tool in our proof of Theorem 3.6.2 is provided by Theorem 5.3.6 which allows us to
decompose our definable set into Lipschitz graphs. Such a regular decomposition has
been obtained in [5] and extends to the p-adic setting a real subanalytic result of [29].
In Section 4 we prove the existence of .wf /-regular stratifications for definable p-
adic functions, and consequently the existence of Thom’s .af /-regular stratifications
for definable p-adic functions, .w/-regular, or Verdier regular, stratifications, and
Whitney’s .b/-regular stratifications for p-adic definable sets (Theorem 4.2.5).

During the preparation of this paper, the authors have been partially supported
by grant ANR-06-BLAN-0183. We also thank the Fields Institute of Toronto, where
this paper was partly written, for bringing us exceptional working conditions.

1. Preliminaries

1.1. Definable sets over the p-adics. Let K be a finite field extension of Qp with
valuation ringR. We denote by ord the valuation and set jxj WD q�ord.x/ and j0j D 0,
with q cardinality of the residue field of K. If x D .xi / is a point in Km and n is an
integer, we denote byB.x; n/ the ball inKm given by the conditions ord.zi �xi / � n,
1 � i � m.

We recall the notion of (globally) subanalytic subsets ofKn and of semi-algebraic
subsets of Kn. Let LMac D f0; 1;C;�; �; fPngn>0g be the language of Macintyre
and Lan D LMac [ f�1;[m>0Kfx1; : : : ; xmgg, where Pn stands for the set of nth
powers inK�, where �1 stands for the field inverse extended on 0 by 0�1 D 0, where
Kfx1; : : : ; xmg is the ring of restricted power series over K (that is, formal power
series converging on Rm), and each element f of Kfx1; : : : ; xmg is interpreted as
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the restricted analytic function Km ! K given by

x 7!
´
f .x/ if x 2 Rm;

0 else.
(1.1.1)

By subanalytic we mean Lan-definable with coefficients fromK and by semi-algebraic
we mean LMac-definable with coefficients fromK. Note that subanalytic, resp. semi-
algebraic, sets can be given by a quantifier free formula with coefficients from K in
the language LMac, resp. Lan.

In this section we let L be either the language LMac or Lan and by L-definable we
will mean semi-algebraic, resp. subanalytic when L is LMac, resp. Lan. Everything
in this paper will hold for both languages and we will give appropriate references for
both languages when needed.

For each definable set X � Kn, let C.X/ be the Q-algebra of functions on X
generated by functions jf j and ord.f / for all definable functions f W X ! K�.

We refer to [22] and [17] for the definition of the dimension of L-definable sets.

1.2. The p-adicmeasure. Suppose thatX � Kn is an L-definable set of dimension
d � 0. The setX contains a definable nonempty openK-analytic submanifoldX 0 �
Kn such thatX nX 0 has dimension< d , cf. [17]. There is a canonical d -dimensional
measure �d on X 0 coming from the embedding in Kn, which is constructed as
follows, cf. [39]. For each d -element subset J of f1; : : : ; ng, with ji < jiC1,
ji in J , let dxJ be the d -form dxj1

^ � � � ^ dxjd
on Kn, with x D .x1; : : : ; xn/

standard global coordinates on Kn. Let x0 be a point on X 0 such that xI are local
coordinates around x0 for some I � f1; : : : ; ng. For each d -element subset J of
f1; : : : ; ng let gJ be the L-definable function determined at a neighborhood of x0 in
X 0 by gJdxI D dxJ . There is a unique volume form j!0jX 0 on X 0 which is locally
equal to .maxJ jgJ j/jdxI j around every point x0 in X 0. Indeed, j!0jX 0 is equal to
supJ jdxJ j. The canonical d -dimensional measure �d on X 0 (cf. [39], [37]), is the
one induced by the volume form j!0jX 0 . We extend this measure to X by zero on
X nX 0 and still denote it by �d .

1.3. Adding sorts. By analogy with the motivic framework, we now expand the
language L to a three sorted language L0 having L as language for the valued field
sort, the ring language LRings for the residue field, and the Presburger language LPR

for the value group together with maps ord and ac as in [8]. By taking the product of
the measure �m with the counting measure on kn

K � Zr one defines a measure still
denoted by �m on Km � kn

K � Zr .
One defines the dimension of an L0-definable subset X of Km � kn

K � Zr as
the dimension of its projection p.X/ � Km. If X is of dimension d , one defines a
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measure �d on X extending the previous construction on X by setting

�d .W / WD
Z

p.X/

pŠ.1W /�d (1.3.1)

with pŠ.1W / the function y 7! card.p�1.y/ \W /.
For such an X , one defines C.X/ as the Q-algebra of functions on X generated

by functions ˛ and q�˛ with ˛ W X ! Z definable in L0. Note that this definition
coincides with the previous one when n D r D 0. Since L0 is interpretable in L, the
formalism developed in this section extends to L0-definable objects in a natural way.

1.4. p-adic cell decomposition. Cells are defined by induction on the number of
variables

1.4.1 Definition. An L-cell A � K is a (nonempty) set of the form

ft 2 K j j˛j�1jt � cj�2jˇj; t � c 2 �Png;
with constants n > 0, �; c in K, ˛; ˇ in K�, and �i either < or no condition. An
L-cell A � KmC1, m � 0, is a set of the form

f.x; t/ 2 KmC1 j x 2 D; j˛.x/j�1jt � c.x/j�2jˇ.x/j; t � c.x/ 2 �Png; (1.4.1)

with .x; t/ D .x1; : : : ; xm; t /, n > 0, � in K, D D pm.A/ a cell where pm is the
projectionKmC1 ! Km, L-definable functions ˛; ˇ W Km ! K� and c W Km ! K,
and �i either < or no condition, such that the functions ˛; ˇ, and c are analytic on
D. We call c the center of the cell A and �Pn the coset of A. In either case, if � D 0

we call A a 0-cell and if � 6D 0 we call A a 1-cell.

In the p-adic semi-algebraic case, cell decomposition theorems are due to Cohen
[9] and Denef [13], [15] and they were extended in [3] to the subanalytic setting
where one can find the following version.

1.4.2 Theorem (p-adic cell decomposition). Let X � KmC1 and fj W X ! K be
L-definable for j D 1; : : : ; r . Then there exists a finite partition of X into L-cells
Ai with center ci and coset �iPni

such that

jfj .x; t/j D jhij .x/j � j.t � ci .x//
aij �

�aij

i j 1
ni ; for each .x; t/ 2 Ai ;

with .x; t/ D .x1; : : : ; xm; t /, integers aij , and hij W Km ! K L-definable functions
which are analytic on pm.Ai /, j D 1; : : : ; r . If �i D 0, we use the convention that
aij D 0.

Let us also recall the following lemma from [4].



Vol. 87 (2012) Local metric properties of definable sets 969

1.4.3 Lemma. Let X � KmC1 be L-definable and let Gj be functions in C.X/ in
the variables .x1; : : : ; xm; t / for j D 1; : : : ; r . Then there exists a finite partition of
X into L-cells Ai with center ci and coset �iPni

such that each restriction Gj jAi
is

a finite sum of functions of the form

j.t � ci .x//
a��a

i j 1
ni ord.t � ci .x//

sh.x/;

where h is in C.Km/, and s � 0 and a are integers.

The followingp-adic curve selection lemma is due to van den Dries and Scowcroft
[22] in the semi-algebraic case and to Denef and van den Dries [17] in the subanalytic
case. The statement is the p-adic counterpart of the semi-algebraic or subanalytic
curve selection lemma over the reals.

1.4.4 Lemma (Curve selection). LetA be a definable subset ofKn and let x be in xA.
Then there exists a definable function f D .f1; : : : ; fn/ W R ! Kn such that the fi

are given by power series (over K) converging on R such that f .0/ D x, and such
that f .R n f0g/ � A.

The following is a p-adic analogue of a classical lemma by Whitney (see [44]).

1.4.5 Lemma (p-adic Whitney Lemma). Let g W R ! Kn be a map given by n ana-
lytic power series overK, converging onR, such that the mapg is nonconstant. Then,
the limit ` 2 Pn�1.K/ for r ! 0 of the lines `r 2 Pn�1.K/ connectingg.0/withg.r/
exists. Also the limit `0 of the tangent lines `0

r WD fg.r/C�.@g1=@r; : : : ; @gn=@r/jr j
� 2 Kg for r ! 0 exists and `0 D `.

Proof. Since g is nonconstant, for r 6D 0 close to 0 one has g.r/ 6D g.0/ and
.@g1=@r; : : : ; @gn=@r/jr 6D 0, and hence, `r and `0

r are well defined for r 6D 0 close
to 0. We may suppose that g.0/ D 0 and that each of the gi is nonconstant. Write
gi .r/ D P

j �0 aij r
j with aij 2 K and for each i , let ki be the smallest index j such

that aij 6D 0. Then ki > 0 for each i since g.0/ D 0. Let k be the minimum of the
ki . Then clearly ` and `0 are the same line ` connecting 0 and .a1k; : : : ; ank/ 6D 0.
Indeed, the line `r connects 0 and g.r/ which is equivalent to connecting 0 and
g.r/=rk; the point g.r/=rk converges to .a1k; : : : ; ank/ and thus `r converges to
the line `. Likewise, the line `0

r connects 0 and .@g1=@r; : : : ; @gn=@r/jr which is
equivalent to connecting 0 and

1

krk
.@g1=@r; : : : ; @gn=@r/jr I

the point 1

krk .@g1=@r; : : : ; @gn=@r/jr converges to .a1k; : : : ; ank/ and thus also `0
r

converges to ` when r ! 0. �
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1.5. Fix two integers d � m. Let U be an open definable subset of Kd and let '
be a definable analytic mapping U ! Km�d . We view the graph �.'/ of ' as a
definable subset of Km. Let " be a positive real number. We say that ' is "-analytic,
if the norm jD'j D maxi;j j@'i=@xj j of the differential of ' is less or equal than "
at every point of U .

For " > 0, call a function f W D ! Km on a subset D of Kn "-Lipschitz when
for all x; y 2 D one has

jf .x/ � f .y/j � "jx � yj:
The function f is called locally "-Lipschitz when for each x 2 D there exists an open
subset U of Kn containing x such that the restriction of f to U \D is "-Lipschitz.

1.5.1 Lemma. LetU be open inKn and f W U ! Km a function which is "-analytic.
Then f is locally "-Lipschitz.

Proof. Choose u 2 U , and a basic neighborhood Uu of u in U such that the com-
ponent functions fi of f are given by converging power series on Uu, where basic
neighborhood means a ball of the form c C �Rn with c 2 Kn and � 2 K�. We may
suppose that Uu D Rn, that u D 0, and that " D 1. We may also assume that for
each i; j , the partial derivative @fj .x/=@xi is bounded in norm by 1 on Uu. Sinceˇ̌@fj .x/

@xi
.0/

ˇ̌ � 1, it follows that the linear term of fj in xi has a coefficient of norm � 1

for each i; j . By the convergence of the power series, the coefficients of the fj are
bounded in norm, say by N , and we can put U 0 WD fx 2 Rn j jxj < 1=N g. Clearly
U 0 contains u D 0. By the non-archimedean property of the p-adic valuation, the
restriction of f to U 0 is 1-Lipschitz. �

For more results related to Lipschitz continuity on the p-adics, see [5] or Theo-
rem 5.3.6 below. The following lemma is a partial converse of Lemma 1.5.1, espe-
cially in view of the fact that any definable function is piecewise analytic.

1.5.2 Lemma. Let U be a definable open inKn and let f W D ! Km be a definable
analytic function which is locally "-Lipschitz. Then f is "-analytic.

Proof. We proceed by contradiction. Suppose that jDf j > " at u 2 U . Choose
a basic neighborhood Uu of u in U such that the component functions fi of f are
given by converging power series onUu, (here again by basic neighborhood we mean
a ball of the form c C �Rn with c 2 Kn and � 2 K�). We may suppose that
Uu D Rn, that u D 0, and that " D 1. By assumption, we have for some i; j that
j.@fj .x/=@xi /.0/j > 1, hence, the linear term of fj in xi has a coefficient of norm
strictly greater than 1. By the convergence of the power series, the coefficients of the
fj are bounded in norm, say by N , and thus for any x in fx 2 Rn j jxj < 1=N g one
has jf .0/� f .x/j > jxj which contradicts the fact that f is "-Lipschitz with " D 1.

�
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The following is the p-adic analogue of Proposition 1.4 of [32].

1.5.3 Proposition. Let X be a definable subset of dimension d of Km. For every
" > 0, there exists a definable subset Y of X of dimension < d , N."/ � 0, defin-
able open subsets Ui ."/ of Kd , for 1 � i � N."/, definable, "-analytic functions
'i ."/ W Ui ."/ ! Km�d , with graphs �i ."/, and elements �1, …, �N."/ in GLm.R/

such that the sets �i .�i ."// are all disjoint and contained in X , and

X D
[

1�i�N."/

�i .�i ."// [ Y:

Proof. Up to taking a finite partition of X into definable analytic manifolds and
neglecting parts of dimension < d , we may suppose that X is itself a definable
analytic manifold of dimension d . A finite partition of the Grassmann manifold by
sets of diameter less than " (take for instance the distance ı considered in Section 4.2)
induces a partition of the tangent space of X and induces in turn a partition of X .
Let us consider one of these parts, say X again. Fix � a linear transform in GLm.R/

such that for every x 2 X , the distance from �.TxX/ to Kd � f0gm�d is less than
". Then by cell decomposition, one may assume that �.X/ is a graph of an analytic
definable map f from an open set U � Kd toKm�d . Clearly this map is "-analytic,
and, since � is a linear isometry, X is the graph of the "-analytic map ��1 B f B �
from ��1.U / to ��1.f0gd �Km�d /. �

1.5.4 Remark. Although in the statement of Proposition 1.5.3 the real " may be as
small as we want, one can restrict to " D 1 to prove the main Theorems 3.6.2, 5.6.1
and 6.2.1.

The following lemma is classical, see, for example, [21] for the semi-algebraic
case and, for example, [6] for the subanalytic case. Let L� be the language L

together with a function symbol for the field inverse on K� (extended by zero on
zero), function symbols for each n which stands for a (definable) n-th root picking
function n

p on the n-th powers (extended by zero outside the n-th powers), and for
each degree n a Henselian root picking function hn for polynomials of degree n in
the nC 1 coefficients (extended by zero if the conditions of Hensel’s Lemma are not
fulfilled).

1.5.5 Lemma ([21], [6]). Let f W D � Kn ! Km be an L-definable function.
ThenD can be partitioned into finitely many definable piecesDi such that there are
L�-terms ti with f .x/ D ti .x/ for each i and each x 2 Di .
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2. Local densities

2.1. A false start. Let X be a definable subset of Km of dimension d and let x be
a point of Km. Considering what is already known in the complex analytic and real
o-minimal case, a natural way to define the local density of X at x D .x1; : : : ; xm/

would be to consider the limit of qnd�d .X \ B.x; n//, as n ! 1. Unfortunately
this naïve attempt fails as is shown by the following example that we present in
detail in order to caution the reader not to rely too heavily on intuition coming from
the real setting. Take X the subset of points of even valuation in K and x D 0.
Write �K for a uniformizer of R. The unit ball B in K being of measure 1, the ball
�`

K � B D B.0; `/ of radius q�` has volume q�` and, by consequence, the sphere
�`

K � S D �`
K �B n �`C1

K �B of radius q�` has volume q�`.1� q�1/. For k 2 N, let
us first compute the volume of X \ B.0; 2k/. The set X \ B.0; 2k/ is the disjoint
union of the spheres �2j

K � S for j � k and thus has as volume

�1.X \ B.0; 2k// D .1 � q�1/.q�2k C q�2k�2 C � � � / D q�2k

1C q�1
:

On the other hand, the set X \ B.0; 2k � 1/ is also the disjoint union of the spheres
q2j � S for j � k and thus has as volume

�1.X \ B.0; 2k � 1// D q�2k

1C q�1
:

We finally see that in this example the value of the limit lim`!1 �1.X\B.0;`//
�1.B.0;`//

depends
on the parity of `, since

lim
k!1

q2k�1.X \ B.0; 2k// D .1C q�1/�1

and

lim
k!1

q2k�1�1.X \ B.0; 2k � 1// D .1C q/�1:

In our example one notices that the convergence of the ratio �1.X\B.0;`//
�1.B.0;`//

is 2-periodic

and that one may recover the expected local density, which should be 1
2

, by taking the
average of the two limits. To obviate the kind of difficulty presented by this example
(the periodic convergence), we are led to introduce a regularization device that we
shall explain now.

2.2. Mean value at infinity of bounded constructible functions. We will use the
following elementary definition of the mean value at infinity of certain real valued
functions on N.
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2.2.1 Definition. Say that a function h W N ! R has a mean value at infinity if there
exists an integer e > 0 such that

lim
n!1

n�c mod e

h.n/

exists in R for each c D 0; : : : ; e�1 and in this case define the mean value at infinity
of h as the average

MV1.h/ WD 1

e

e�1X
cD0

lim
n!1

n�c mod e

h.n/:

Clearly the value MV1.h/ is independent of the choice of the modulus e > 0.

LetX be a definable subset ofKm, so thatX �N is a definable subset ofKm �Z.
Say that a real valued function g on X � N is X -bounded if for every x in X the
restriction of g to fxg � N is bounded (in the sense that g.fxg � N/ is contained in a
compact subset of R). As has been indicated in the introduction and in the example
of Section 2.1, for an X -bounded function ' in C.X � N/ and x 2 X , the function
'x W N ! Q, n 7! '.x; n/ may not have a unique limit for n ! 1, but it may have
a mean value at infinity MV1.'x/, as we will indeed show in Proposition 2.2.3. We
will moreover show in Proposition 2.2.3 that MV1.'x/, considered as a function in
x 2 X , lies in C.X/ and that MV1.'x/ can be calculated using a single integer e as
modulus when x varies in X .

2.2.2 Lemma. Let ' be in C.X � N/. Suppose that, for each x 2 X , the function
'x W N ! Q, n 7! '.x; n/ has finite image. Then 'x has a mean value at infinity
MV1.'x/ for each x. Moreover, there exist a definable function b W X ! N and an
integer e > 0 such that for all c with 0 � c < e and all x 2 X , the rational number
dc.x/ WD '.x; n/ is independent of n as long as n � b.x/ and n � c mod e. Thus,
for each x 2 X , one has

MV1.'x/ D 1

e

e�1X
cD0

dc.x/:

By consequence, the function MV1.'x/, considered as a function in x 2 X , lies in
C.X/.

Proof. The lemma is a direct consequence of Lemma 1.4.3 and quantifier elimination
in the three sorted language L0 of Section 1.3. Indeed, for ' 2 C.X �N/ there exist,
by Lemma 1.4.3 and quantifier elimination in L0, a definable function b W X ! N
and an integer e > 0 such that for all c with 0 � c < e one has

'.x; n/ D
kX

iD1

n`iqai nhic.x/ (2.2.1)
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for all x 2 X and all n with n � b.x/ and n � c mod e, and where the hic are in
C.X/ and ai in Z. Clearly, by regrouping, we may suppose that the pairs .`i ; ai / are
mutually different. But then, since 'x has finite image for each x 2 X , one must find

'.x; n/ D hjc.x/

for all x 2 X and all n with n � b.x/ and n � c mod e, where j is such that
. j̀ ; aj / D .0; 0/. Hence, one has hjc D dc and we are done. �

2.2.3 Proposition. Let ' be in C.X � N/. Suppose that ' isX -bounded. Then there
exist '0 in C.X � N/ with limn!1 '0.x; n/ D 0 for all x 2 X and such that the
function

gx W N ! Q; n 7! '.x; n/ � '0.x; n/

has finite image. Clearly, the function g W X � N, .x; n/ 7! gx.n/ lies in C.X � N/.
Hence, MV1.gx/ and MV1.'x/ exist and are equal and the function MV1.'x/,
considered as a function in x 2 X , lies in C.X/. Also, if ' � 0 then MV1.'x/ � 0

for all x 2 X .

Proof. Write again ' as in (2.2.1) for some integer e, where again the pairs .`i ; ai /

are mutually different. Define '0.x; n/ as the partial sumX
i2I

n`iqai nhic.x/

for x 2 X and n satisfying n � b.x/ and n � c mod e, where c D 0; : : : ; e � 1,
where I consists of those i with ai < 0. Extend '0 to the whole ofX � N by putting
it equal to ' for those n with n < b.x/. Since ' is X -bounded, one must have that
ai � 0 for all i , and, for those i with ai D 0 one must have `i D 0. But then, we find

g.x; n/ D hjc.x/

for all x 2 X and all n with n � b.x/ and n � c mod e, where j is such that
. j̀ ; aj / D .0; 0/. For nwith n < b.x/ one clearly has g.x; n/ D 0. The conclusions
now follow from Lemma 2.2.3. �

2.3. Local densities. As already sketched in the introduction, we will define the
local density of an L-definable setX � Km at a point x as the mean value at infinity
of the renormalized measure of the intersection of X with the sphere of radius q�n

around x. At our disposal to show that this is well defined we have Proposition 2.2.3
and Lemma 2.3.1 below which guarantee the existence of the mean value at infinity.
More generally, for a bounded function' in C.X/, we extend' toKm by zero outside
X and we will define the density of ' at any point x 2 Km by a similar procedure,
replacing the measure by an integral of ' on a small sphere around x.
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Let ' be a bounded function in C.X/, meaning that the image of ' is contained
in a compact subset of R. For .x; n/ in Km � N we set

�.'/.x; n/ WD
Z

S.x;n/\X

'.y/�d ; (2.3.1)

where S.x; n/ is the sphere fy 2 Km j jx�yj D q�ng of radius q�n around x. Note
that, by Lemma 2.3.3 below, one could as well work with balls around x instead of
spheres consequently in this section. By [14] for the semi-algebraic case and [3] for
the subanalytic case, the function �.'/ W .x; n/ 7! �.'/.x; n/ lies in C.Km � N/.

Suppose thatX is of dimension d . Then we renormalize �.'/ by dividing it by the
volume of the d -dimensional sphere of corresponding radius and define the resulting
function �d .'/ by

�d .'/.x; n/ WD �.'/.x; n/

�d .Sd .n//
; (2.3.2)

where Sd .n/ is the d -dimensional sphere of radius q�n, namely the set fw 2 Kd j
jwj D q�ng. Note that Sd .n/ has measure equal to .1 � q�d /q�nd and thus, �d .'/

lies in C.Km � N/.
The following lemma yields sufficient conditions for the mean value at infinity of

�d .'/ to exist, in view of Proposition 2.2.3.

2.3.1 Lemma. Let ' be a bounded function in C.X/. Assume X is of dimension d .
Then the function �d .'/ lies in C.Km � N/ and is Km-bounded.

Proof. That �d .'/ lies in C.Km � N/ is shown above, so we just have to show that
�d .'/ is Km-bounded. By the additivity of integrals and by cell decomposition, we
may suppose thatX is a cell of dimension d . By changing the order of the coordinates
if necessary and by Proposition 4.2.3, we may suppose that X projects isometrically
to the first d coordinates of Km. If now M > 0 is such that '.y/ lies in the real
interval Œ�M;M� for all y 2 X , then it is clear by construction that �d .'/.x/ also
lies in Œ�M;M� for all x 2 Km. �

It follows from Lemma 2.3.1 and Proposition 2.2.3 that if ' is a bounded function
in C.X/ one can set

‚d .'/ WD MV1�d .'/; (2.3.3)

that is, for x 2 Km, ‚d .'/.x/ is the mean value at infinity of the function n 7!
�d .'/.x; n/. By Proposition 2.2.3, the function‚d .'/ lies in C.Km/. For x inKm,
we call ‚d .'/.x/ the local density of ' at x. More generally, if ' is bounded on
a neighborhood of some x 2 Km, then ‚d .'/.x/ can be defined by first extending
' by zero outside of this neighborhood and calculate its local density by the above
definitions which is clearly independent of the choice of the neighborhood. One
should also note that ‚d .'/.x/ is zero when x does not belong to the closure of X .
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2.3.2 Definition. Let X be a definable subset of Km of dimension d and let x be a
point in Km. We call the rational number

‚d .X/.x/ WD ‚d .1X /.x/

the local density ofX at x, where 1X is the characteristic function ofX which clearly
lies in C.Km/.

Note that Definition 2.3.2 resembles the definition of the complex and real density
as given in the introduction, where instead of the limit limr!0 one takes MV1.

2.3.3 Lemma. Renormalizing with balls instead of with spheres yields the same
local density functions‚d . Precisely, for L-definable X of dimension d and for ' a
bounded function in C.X/ one has for x 2 Km

‚d .'/ D MV1.� 0
d .'//;

where

� 0
d .'/.x; n/ WD � 0.'/.x; n/

�d .Bd .n//
;

� 0.'/.x; n/ WD
Z

B.x;n/\X

'.y/�d ;

and where Bd .n/ is the d -dimensional ball of radius q�n, namely fw 2 Kd j jwj �
q�ng, and B.x; n/ is the ball fy 2 Km j jx � yj � q�ng around x as defined in 1.1.
In particular, � 0

d
.'/ lies in C.Km � N/ and is Km-bounded and thus its MV1 is

well defined.

Proof. That � 0
d
.'/ lies in C.Km �N/ and isKm-bounded is proven as Lemma 2.3.1.

We have to prove that‚d .'/ D MV1.� 0
d
.'//, that is, for x 2 Km,‚d .'/.x/ is the

mean value at infinity of the function n 7! � 0
d
.'/.x; n/. It is clear that

�.'/.x; n/ D � 0.'/.x; n/ � � 0.'/.x; nC 1/

and that

�d .'/.x; n/ D 1

.1 � q�d /

�
� 0

d .'/.x; n/ � q�d� 0
d .'/.x; nC 1/

�
:

Now we are done by the following fact, which holds for any real constant b 6D 1.
If a function f W N ! R has a mean value at infinity, then so does g W N ! R,
n 7! 1

1�b
.f .n/ � bf .nC 1//, and their mean values at infinity are equal. �
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2.3.4 Example. Let us note that in the example of 2.1 of points of even valuation in
K, one gets ‚1.X/.0/ D 1

2
. More generally, if ƒ is a definable open subgroup of

finite index r in K� and y is a point in K�, we have ‚1.ƒy/.0/ D 1
r

. Indeed, it is
easily checked that ‚1.ƒy/.0/ does not depend on y, hence if y1, …, yr is a set of
representative of K�=ƒ, we have 1 D ‚1

� S
1�i�r ƒyi

�
.0/ D r‚1.ƒ/.0/.

2.3.5 Proposition. Let ' be a bounded function in C.X/ and assume X is of dimen-
sion d . Denote by Q' the extension of ' by zero onKm. Then the support of Q'�‚d .'/

is contained in an L-definable set of dimension < d .

Proof. Suppose X � Km. Since for x not in xX , for all sufficiently large n one has
that �d .'/.x; n/ D 0, the support of‚d .'/ is contained in the closure xX ofX inKn.
After removing a subset of dimension< d we may assumeX is a smooth subvariety
and ' is locally constant (for example after an iterated application of Lemma 1.4.3),
in which case the result is clear. �

2.4. For further use we shall give some basic properties of local densities.

2.4.1 Proposition. Let X be definable subset of dimension d of Km. Then

‚d .X/.x/ D ‚d . xX/.x/;
where xX denotes the closure of X .

Proof. Indeed, by additivity it is enough to prove that ‚d . xX n X/.x/ D 0, which
follows from the fact that ‚d .Y /.x/ D 0 when Y is definable of dimension < d .

�

2.4.2 Proposition. Let X be an L-definable set of dimension d and letM > 0 be a
constant. Consider a sequence of functions'n W X ! R, n 2 N such that the function
.x; n/ 7! 'n.x/ lies in C.X � N/ and such that 0 � 'n � 'nC1 � � � � � M for
all n. Then the function ' defined as sup'n lies in C.X/ and is bounded. Moreover,

‚d .'/.x/ D lim
n
‚d .'n/.x/

and
0 � ‚d .'n/.x/ � ‚d .'nC1/.x/

for each n and x.

Proof. Clearly the function ' is bounded and lies in C.X/ by Proposition 2.2.3. Note
that

�.'/.x;m/ D lim
n
�.'n/.x;m/
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for each m and x by the Monotone Convergence Theorem. Hence, by the definition
of �d , also

�d .'/.x;m/ D lim
n
�d .'n/.x;m/ (2.4.1)

for each m and x. Clearly

0 � �.'n/ � �.'nC1/ and 0 � �d .'n/ � �d .'nC1/ (2.4.2)

for all n, on the whole of X , and hence

0 � ‚d .'n/.x/ � ‚d .'nC1/.x/;

by the definition of ‚d . Now the equality ‚d .'/.x/ D limn‚d .'n/.x/ follows
from (2.4.1), (2.4.2), and the definitions of MV1 and ‚d , by changing the order of
limits over n and over m. �

3. Tangent cones

3.1. Cones. We shall consider the set D of open finite index subgroups ofK� (note
that a finite index subgroup ofK� is automatically open). We order D by inclusion.
Note that for each n > 0, the group Pn of the nth powers inK� lies in D , and anyƒ
in D equals, as a set, a finite disjoint union of cosets of some Pn, see Lemma 3.1.1,
and is thus L-definable. We shall say a certain property (P) holds forƒ small enough,
if there exists ƒ0 in D such that (P) holds for every ƒ 2 D contained in ƒ0.

Let ƒ be a subgroup of K� in D . It acts naturally on Kn by multiplicative
translation � � z WD �z, that is, by scalar multiplication on the vector spaceKn. By a
ƒ-cone inKn we mean a subset C ofKn which is stable under theƒ-action, that is,
ƒ � C � C (note that this implies that ƒ � C D C ). More generally, if x 2 Kn, by a
ƒ-cone with origin x we mean a subset C of Kn such that C � x is stable under the
ƒ-action, where C � x D ft 2 Kn j t C x 2 C g. By a local ƒ-cone with origin x,
we mean a set of the form C \ B.x; n/, with C a ƒ-cone with origin x and n in N.

In Lemma 3.1.1 we describe all possible ƒ-cones which are subsets of K, which
turns out to be very similar to the real situation. In Section 3.2 we will show that
definable sets in dimension 1 locally look like local ƒ-cones (Lemma 3.2.1), and
similarly in families of definable subsets of K (Corollary 3.2.2). From 3.3 on we
will define and study tangent cones and related objects, and formulate one of our
main results on the relation between local densities of definable sets and of their
tangent cones, viewed with multiplicities (the p-adic analogue of Thie’s result), see
Theorem 3.6.2.

3.1.1 Lemma. Let C � K be a set. Then C is aƒ-cone for someƒ in D if and only
if it is either the empty set or it is a finite disjoint union of sets of the form �Pn with
n > 0 and � 2 K. Hence, any cone C � K is a definable set.
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Proof. Clearly the empty set is aƒ-cone for allƒ and � �Pn is aƒ-cone forƒ � Pn,
and similarly for their finite unions. Now let C be a nonemptyƒ-cone for someƒ in
D . Either C D f0g and we are done, or, up to replacing C by tC for some nonzero
t 2 K, we may suppose that 1 2 C . But then ƒ � C and C n ƒ is still a ƒ-cone.
Since the index of ƒ in K� is finite, it follows by a finite process that C consists of
a finite union of sets of the form �ƒ with � 2 K. It remains to prove that ƒ itself is
a finite disjoint union of sets of the form �Pn, for some n 2 N and some � 2 K�.
Since ƒ is open and it must contain an open neighborhood U D 1 C M`

K of 1 for
some ` > 0 and with MK the maximal ideal of R. Let �K be a uniformizer of R.
Since ƒ has finite index in K�, there exists n1 > 0 such that �n1

K lies in ƒ. Now
let n be a big enough multiple of n1 such that tn 2 U for all t 2 R�. Then clearly
Pn � ƒ and we are done since Pn has finite index inK� and hence also inƒ. �

3.2. Local conic structure of definable sets. Let X be a definable subset of Kn

and let x be a point in Kn. We denote by �x W Kn n fxg ! Pn�1.K/ the function
which to a point z 6D x assigns the line containing x and z. That is, for x D 0,
�0 W Kn n f0g ! Pn�1.K/ is the natural projection, and, for nonzero x, the map �x

is the composition of �0 with the translation Kn n fxg ! Kn n f0g, y 7! y � x.
Furthermore we denote by

�X
x W X n fxg ! �x.X n fxg/

the restriction of �x to X n fxg.

3.2.1 Lemma. Let Y be a definable subset of K. Then there exist ƒ in D and a
definable function � W K ! N such that Y \ B.y; �.y// is a local ƒ-cone with
origin y, for all y 2 K. If one writes Y as a finite disjoint union of cells Yi with
cosets �iPni

, then one can take ƒ D PN with N D lcm.ni /i .

Proof. The definability of � is not an issue by the definability of the conditions of
being a localƒ-cone with origin y and so on. By definition, a finite union of localƒ-
cones is again a localƒ-cone. Hence, up to a finite partition using cell decomposition,
we may suppose that Y is a cell. Thus, Y is of the form

Y D ft 2 K j j˛j�1jt � cj�2jˇj; t � c 2 �Png;
for some constants n > 0, �; c in K, ˛; ˇ in K�, and �i either < or no condition.
Up to a transformation t 7! t � c we may suppose that c D 0. We may exclude the
trivial case that Y is a singleton, that is, we may suppose that � 6D 0. Then Y is open,
and moreover, Y is closed if and only if �2 is<. In the case that �2 is no condition,
then the closure of Y equals Y [ f0g. Take y 2 K. If y lies outside the closure of Y ,
then Y \B.y; n/ is empty for sufficiently large n, and the empty set is a ƒ-cone for
any ƒ in D . Also, if y lies in the interior of Y , then Y \ B.y; n/ is a ball around y
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for sufficiently large n, and hence it is a local ƒ-cone with origin y, for any ƒ in D .
Finally, if y D 0 and y lies in the closure of Y , then Y \B.y; n/ D �Pn \B.y; n/ for
sufficiently large n, which is clearly a localƒ-cone with origin y for anyƒ contained
in Pn. �

The following two corollaries of Lemma 3.2.1 are immediate.

3.2.2 Corollary. Let Y be a definable subset of KmC1. For each x 2 Km write
Yx for ft 2 K j .x; t/ 2 Y g. Then there exist ƒ in D and a definable function
� W KmC1 ! N such that Yx \ B.t; �.x; t// is a local ƒ-cone with origin t , for all
.x; t/ 2 KmC1. If one writes Y as a finite disjoint union of cells Yi with cosets �iPni

,
then one can take ƒ D PN with N D lcm.ni /i .

We will most often use the following variant of Corollary 3.2.2, which can be
proved by working on affine charts.

3.2.3 Corollary. LetX be a definable subset ofKn and let x be a point inKn. Then
there exist a definable function ˛x W Pn�1.K/ ! N, that is, ˛x is definable on each
affine chart of Pn�1.K/, and a group ƒ in D such that

.�X
x /

�1.`/ \ B.x; ˛x.`//

is a local ƒ-cone with origin x for every ` in Pn�1.K/. Moreover, ƒ can be taken
independently of x, and one can ensure that .x; `/ 7! ˛x.`/ is a definable function
from Kn � Pn�1.K/ to N.

We shall call a subgroup ƒ in D satisfying the first condition in Corollary 3.2.3
adapted to .X; x/, and if moreover ƒ is adapted to .X; x/ for all x 2 Kn, then we
call ƒ adapted to X .

3.3. Tangent cones. Now, if X is a definable subset ofKn, x a point ofKn, andƒ
in D , we define the tangent ƒ-cone to X at x as

Cƒ
x .X/ WD ˚

u 2 Kn j for all i > 0 there exist z 2 X , � 2 ƒ such

that ord.z � x/ > i and ord.�.z � x/ � u/ > i�:
By constructionCƒ

x .X/ is a closed, definable,ƒ-cone, and, for anyn 2 N,Cƒ
x .X/ D

Cƒ
x .X \ B.x; n//. Furthermore, for definable X; Y � Kn and for ƒ0 � ƒ in D ,

one has

Cƒ
x .X [ Y / D Cƒ

x .X/ [ Cƒ
x .Y /;

Cƒ
x .

xX/ D Cƒ
x .X/;

Cƒ0

x .X/ � Cƒ
x .X/:
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Although the previous inclusion might be strict, dim.Cƒ
x .X// does not depend on

ƒ 2 D by Lemma 3.5.1. We comment some more on the previous inclusion in the
following remarks.

3.3.1 Remark. Let X be a local ƒ-cone with origin x in Kn. Thus, there exist n in
N and C a ƒ-cone with origin x such that X D C \ B.x; n/. In this case for any
ƒ0 � ƒ 2 D , one has

Cƒ0

x .X/ D Cƒ
x .X/ .D C; when C is closed).

Indeed, since X D C \ B.0; n/, we have Cƒ0

x .X/ D Cƒ0

x .C /. But we also have
Cƒ0

x .C / D Cƒ
x .C / (D C , when C is closed).

We indicate why Cƒ
x .C / � Cƒ0

x .C /. Assuming x D 0 for simplicity, let u 2
Cƒ

0 .C / and i 2 N, z 2 C , � 2 ƒ, with ord.z/ > i and ord.�z � u/ > i . We
have z 2 C and thus �z 2 C . Now let �0 2 ƒ0 small enough to ensure that
ord.�0�z/ > i . Then denoting z0 D �0�z, one has z0 2 C . From ord.z0/ > i and
ord..1=�0/z0 � u/ > i , we see that u 2 Cƒ0

0 .C /.
Finally we indicate why Cƒ

x .C / D C , when C is closed. As C is stable by
the ƒ-action, the inclusion C � Cƒ

x .C / is obvious. On the other hand, assuming
again x D 0, if u 2 Cƒ

x .C /, for all i 2 N, there exist z 2 C and � 2 ƒ such that
ord.z/ > i and ord.�z�u/ > i . We can then construct a sequence of points �z 2 C
with limit u, this shows that u 2 C , since C is closed.

3.3.2Remark. WhenX is a definable subset ofK andx a point ofK, by Lemma 3.2.1,
X is a local ƒ-cone at x with origin x, for some ƒ 2 D . By the above remark,
for every ƒ0 � ƒ, and still in the one-dimensional case that X � K, one has
Cƒ0

x .X/ D Cƒ
x .X/.

We cannot expect in general that for X a definable subset of Kn, n > 1, X is a
local ƒ-cone for some ƒ 2 D , but one may at least ask, as it is the case for n D 1,
whether the stability property “there existsƒ 2 D such that for anyƒ0 2 D ,ƒ0 � ƒ,
one has Cƒ0

x .X/ D Cƒ
x .X/” still holds for n > 1. The answer to that question is

yes, as we shall show in Theorem 5.6.1.

3.4. More on "-analytic functions. The following is the p-adic analogue of Propo-
sition 1.7 of [32].

3.4.1 Proposition. Let f W U ! Kn�d be a definable "-analytic function on a
nonempty open subset U of Kd , 0 � d � n. Let � be the graph of f and let z be in
x� . Then, for any group ƒ in D

Cƒ
z .�/ � f.x; y/ 2 Kd �Kn�d j jyj � "jxjg:

Proof. We may suppose that z D 0. Choose ƒ in D . Since

Cƒ
0 .�/ � CK�

0 .�/;
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by definition of Cƒ
0 .�/, we may assume that ƒ D K�. We may also suppose that

" D 1, after rescaling. Suppose by contradiction that there is .x0; y0/ in CK�

0 .�/

with jy0j > jx0j C ı for some ı > 0. Let � 0 be the intersection of � with the open
subset f.x; y/ 2 KdC.n�d/ j jyj > jxj C ıg. By our assumption on .x0; y0/ and by
the definition ofCK�

0 .�/, the set� 0 is nonempty and 0 lies in x� 0n� 0. Apply the Curve
Selection Lemma 1.4.4 to the set � 0 and the point 0. This way we find power series
gi overK in one variable for i D 1; : : : ; n, converging on R, such that g.0/ D 0 and
g.R n f0g/ � � 0 n f0g. But this is in contradiction with Lemma 1.4.5. Indeed, the
tangent line `0

r at r 6D 0 is of the form g.r/C K � tr with some tr 2 Kn satisfying
jy.tr/j � jx.tr/j by "-analyticity of f and the chain rule for differentiation, where
x.tr/ D .tr1; : : : ; trd / and y.tr/ D .trdC1; : : : ; trn/. Hence, the limit `0

0 of the `0
r for

0 6D r ! 0 is of the same form g.0/CK �t0 for some t0 2 Kn with jy.t0/j � jx.t0/j.
On the other hand, the line `r for r 6D 0 connecting g.0/ with g.r/ is of the form
g.r/CK �ur with some ur 2 Kn satisfying jy.ur/j > jx.ur/j C ı. Hence, the limit
line `0 of the `r for r ! 0 has the same description, which contradicts Lemma 1.4.5
and the description of `0

0. �

3.4.2 Corollary. With the data and the notation of Proposition 3.4.1, let x be in xU .
Then there are only finitely many points in x� which project to x under the coordinate
projection Kd �Kn�d ! Kd .

Proof. Suppose by contradiction that there are infinitely many such points. Then the
dimension of x� \ .fxg �Kn�d / is > 0. Thus, there exists z 2 x� such that Cƒ

z .
x� \

.fxg � Kn�d // is of dimension > 0, which is in contradiction to Proposition 3.4.1.
�

3.5. Deformation to the tangent cone. LetX be a definable subset ofKn and let x
be a point ofKn. Fix a subgroupƒ in D . We consider the definable set D.X; x;ƒ/

in Kn �ƒ defined as

D.X; x;ƒ/ WD ˚
.z; �/ j x C �z 2 X�

and its closure

D.X; x;ƒ/

in Kn � K. In D.X; x;ƒ/ one finds back the cone Cƒ
x .X/. Indeed, one has

D.X; x;ƒ/ \ .Kn � f0g/ D Cƒ
x .X/ � f0g, which we identify with Cƒ

x .X/.

3.5.1 Lemma. If X is of dimension d , then D.X; x;ƒ/ is of dimension d C 1 and
Cƒ

x .X/ is of dimension � d . Moreover, dim.Cƒ
x .X// does not depend on the choice

of ƒ 2 D .
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Proof. We may suppose that X is nonempty. Consider the projection

p W D.X; x;ƒ/ �! X; .z; �/ 7�! x C �z:

Since p is surjective and has fibers of dimension 1, we get that D.X; x;ƒ/ is of
dimension dC1. The coneCƒ

x .X/ is contained in f0g[.D.X; x;ƒ/nD.X; x;ƒ//.
Hence, Cƒ

x .X/ is of dimension � d . The last statement follows from

Cƒ
x .X/ D

[
i

�iC
ƒ0

x .X/;

wheneverƒ0 � ƒ is in D and when one writesƒ as a finite union of cosets
S

i �iƒ
0

of ƒ0 in ƒ. �

3.6. Multiplicities on the tangent cones. Let X be a definable subset of Kn of
dimension d , let x be a point of Kn, and let ƒ be in D . To each point z on the cone
Cƒ

x .X/ we will associate a rational number SCƒ
x .X/.z/, called the multiplicity of

.X; x/ at z with respect to ƒ.
Define the function

SCƒ
x .X/ W Cƒ

x .X/ ! Q

as the function sending z to

ŒK� W ƒ�‚dC1.1D.X;x;ƒ//.z; 0/;

with ŒK� W ƒ� the index of ƒ in K�, and with 1D.X;x;ƒ/ the characteristic function
of D.X; x;ƒ/. The function SCƒ

x .X/ is called the specialization of X at x with
respect to ƒ.

The following lemma gives an indication thatSCƒ
x .X/ captures much local infor-

mation of .X; x/; this principle will find a strong and precise form in Theorem 3.6.2
below.

3.6.1 Lemma. The function SCƒ
x .X/ lies in C.Cƒ

x .X//. Moreover

‚dC1.1D.X;x;ƒ//.z; 0/ D 0

for z outside Cƒ
x .X/.

Proof. The function 1D.X;x;ƒ/ is in C.Kn �K/ since D.X; x;ƒ/ is a definable set,
and thus, also ‚dC1.1D.X;x;ƒ// lies in C.Kn �K/. For definable sets A � B , the
restriction of a function in C.B/ to A automatically lies in C.A/, hence, SCƒ

x .X/

lies in C.Cƒ
x .X//. The second statement follows from the fact that the support of

‚dC1.1D.X;x;ƒ// is contained in the closure of D.X; x;ƒ/, which is contained in
.Kn �K�/ [ .Cƒ

x .X/ � f0g/. �
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More generally, if ' is a function in C.X/which is bounded near x, we define the
specialization 	ƒ

x .'/ of ' at x with respect to ƒ in the following way. First define
a function  on Kn � K by  .z; �/ WD '.x C �z/ on D.X; x;ƒ/ and by zero
elsewhere. Then one defines the function

	ƒ
x .'/ W Cƒ

x .X/ ! Q

as the function sending z to ŒK� W ƒ�‚dC1. /.z; 0/. Note that, similarly as in
Lemma 3.6.1, 	ƒ

x .'/ lies in C.Cƒ
x .X// and that ‚dC1. /.z; 0/ D 0 for z outside

Cƒ
x .X/. We recover SCƒ

x .X/ since 	ƒ
x .1X / D SCƒ

x .X/.

The following result, which will be proved in Section 5, states that the local density
can be computed on the tangent cone with multiplicities, for ƒ small enough.

3.6.2 Theorem. Let X be a definable subset of Kn and let x be a point of Kn. For
ƒ small enough

‚d .X/.x/ D ‚d .SC
ƒ
x .X//.0/:

More generally, let ' be a function in C.X/ which is bounded near x. For ƒ small
enough

‚d .'/.x/ D ‚d .	
ƒ
x .'//.0/:

4. Existence of .wf /-regular stratifications

4.1. In his study of stability of the topological type of mappings, R. Thom introduced
the regularity condition .af / in [42], p. 274, as a relative version of condition .a/
of Whitney. The existence of .af /-regular stratifications was proved in the complex
analytic case by H. Hironaka in [27] (Corollary 1, Section 5) using resolution of
singularities, under the assumption “sans éclatement” which is always satisfied for
functions. One can find proofs of the existence of .af / stratifications in the real
subanalytic case in [32], where the Puiseux Theorem with parameters of Pawłucki
(see [38]) is used, and for o-minimal structures on the field of real numbers in [35].

The stronger condition .wf /, the relative version of the so-called condition .w/ of
Verdier (see [43]), was studied in the complex setting, for instance, in [26]. In the real
subanalytic setting, it has been proved that .wf / stratifications exist by K. Bekka in
[1], K. Kurdyka and A. Parusiński in [30] using Puiseux’s Theorem with parameters,
and finally by Ta Lê Loi in [36] for definable functions in some o-minimal structures
over the real field (the o-minimal structure has to be polynomially bounded for the
existence of .wf /-regular stratifications, but need not to be so for the existence of
.af /-regular stratifications).
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4.2. Let us now recall the definitions of .wf / and .af /-regular stratifications. LetX
be a definable subset of Kn, and let .Xj /j 2f1;:::;kg be a finite, definable and analytic
stratification of X satisfying the so-called frontier condition

X i \Xj 6D ; H) X i � Xj ;

where definable and analytic means that the strata Xj are definable, K-analytic
manifolds. Let S be a definable subset of K and let f W X ! S be a definable
continuous mapping such that for any j 2 f1; : : : ; kg, fjXj is analytic and of constant

rank (being 0 or 1). For j 2 f1; : : : ; kg and x 2 Xj , let us denote by TxX
j

f
the

tangent space at x of the fiber f �1
jXj .f .x// of fjXj . Then one says that the pair of

strata .X i ; Xj / satisfies condition .af / at a point x0 2 X i � Xj if and only if for any
sequence .xr/r2Nnf0g of points of Xj converging to x0 and such that the sequence
.Txr

X
j

f
/r2Nnf0g converges in the appropriate Grassmann manifold, one has

lim
r!1 ı.Tx0

X i
f ; Txr

X
j

f
/ D 0; (af )

where ı.�; �/ is a natural distance between linear subspaces of Kn as defined below.
Further, one says that the pair .X i ; Xj / of strata satisfies condition .wf / at x0 if and
only if there exist a constant C and a neighborhood Wx0

of x0 in Kn such that for
any x 2 Wx0

\X i and any y 2 Wx0
\Xj , one has

ı.TxX
i

f ; TyX
j

f
/ � C � jx � yj: (wf )

In both definitions, ı.V; V 0/ denotes the distance between two linear subspaces V
and V 0 of Kn such that dim.V / � dim.V 0/, and is defined by

ı.V; V 0/ D sup
v2V;jvjD1

f inf
v02V 0;jv0jD1

jv � v0jg D sup
v2V;jvjD1

dist.v; SV 0

.0; 1//;

with SV 0

.0; 1/ the unit sphere around 0 of V 0.

4.2.1 Remark. We have ı.V; V 0/ D 0 if and only if V � V 0. Also, for any V 00 � V 0
such that dim.V / � dim.V 00/, ı.V; V 00/ � ı.V; V 0/.

One says that the stratification .Xj /j 2f1;:::;kg is .af /-regular, respectively .wf /-
regular if any pair .X i ; Xj / of strata is .af /-regular, respectively .wf /-regular at any
point of X i . And finally one says that the stratification .Xj /j 2f1;:::;kg is .a/-regular,
respectively .w/-regular, if it is .af /-regular, respectively .wf /-regular, for S a point
in K.

One starts the proof of the existence of wf -regular stratifications with the key
Lemma 4.2.4 (see [36], Lemma 1.8 for its real version). But before stating this
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lemma, let us introduce as in [5] (Definition 3.9) the notion of jacobian property for
definable functions and recall from [5] that this property is in a sense a generic one
(see Proposition 3.10 of [5] or Proposition 4.2.3 below). This will be used in the
proof of Lemma 4.2.4.

4.2.2 Definition. Let F W B ! B 0 a definable function with B;B 0 � K. We say that
F has the jacobian property if the following conditions hold all together:

.i/ F is a bijection and B;B 0 are balls,

.ii/ F is C 1 on B ,

.iii/ ord
�

@F
@x

� W B ! Z is constant (and finite) on B ,

.iv/ for all x; y 2 B with x 6D y, one has

ord
�@F
@x

�
C ord.x � y/ D ord.F.x/ � F.y//:

It is proved in a much more general setting in [7], Theorem 6.3.7, that the jacobian
property is generic for definable mappings, which in our setting gives the following
statement.

4.2.3 Proposition. Let Y � Km andX � K �Y be definable sets for somem 2 N.
LetM W X ! K be definable. Then there exists a finite partition of X into definable
subsets Xk such that for each y 2 Y , the restrictionM.�; y/ W x1 7! M.x1; y/ ofM
to fx1 2 K j .x1; y/ 2 Xkg is either injective or constant.

Let us then assume, for simplicity, that on X , M.�; y/ is injective. Then there
exists a finite partition of X into cells Ak over Y such that for each y 2 Y and each
ball B such that B � fyg is contained in Ak , there is a (unique) ball B 0 such that the
mapMjB W B ! B 0, x1 7! M.x1; y/ 2 B 0 has the jacobian property.

Now we state and prove the key lemma used in the proof of Theorem 4.2.5.

4.2.4 Lemma. LetM W 
 ! K be a definable and differentiable function on an open
definable subset 
 of Km � K for some m � 0. Assume that x
 \ .Km � f0g/ has
a nonempty interior U in Km. Assume furthermore that M is bounded on 
. Then
there exist a nonempty open definable subset V � U in Km, an integer ˛ > 0 and a
constant d 2 K� such that for all x 2 V and all t with ordt > ˛ and .x; t/ 2 


kDxM.x;t/k � jd j :

In this lemma and later on,DxM.x;t/ means .@M.x; t/=@x1; : : : ; @M.x; t/=@xm/,
and analogously, Dx1

M.x;t/ means @M.x; t/=@x1 and so on, and k � k denotes the
maximum of the component norms.)
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Proof. Let us denote .x; t/ D .x1; : : : ; xm; t / D .x1; y/ the standard coordinates on
Km �K D K �Km, where y D .x2; : : : ; xm; t /. (We will apply cell decomposition
and related results sometimes with x1 and sometimes with t as special variable.) By
the cell decomposition theorem (with special variable t ) we can finitely partition 

such that on each part A such that xA has nonzero intersection withKm � f0g one has

jDxi
M.x;t/j D kDxM.x;t/k D jc.x/j � j�t ja

for some a 2 Q, some � 2 K�, some i 2 f1; : : : ; mg, and some definable function c.
If all these exponents a are nonnegative, then we are done since the jcj, as well as
the boundary functions bounding jt j from below in the cell descriptions are constant
on small enough open subsets V � U . Let us assume that a particular a is negative,
say on a cell where jDx1

M.x;t/j D kDxM.x;t/k. By Proposition 4.2.3 (with special
variable x1) applied to M W .x1; y/ 7! M.x1; y/ there exists a finite number of cells
Ak partitioning 
 such that for each y 2 Km and each ball B with B � fyg � Ak ,
B 3 x1 7! M.x1; y/ has the jacobian property. We necessarily have one of these
cells Ak such that xAk \ .Km � f0g/ has nonempty interior in Km. We may assume
by the cell decomposition theorem (with special variable t ) that Ak contains a subset
B1 � B 0 �W with B1 an open ball in the x1 line, B 0 a Cartesian product of m � 1

balls and W an open definable subset of K� such that 0 2 SW . Then, for any
y D .x2; : : : ; xm; t / 2 B 0�W , by the jacobian property, the one-dimensional volume
�1.M.B1�fyg// equals�1.B1/�jc.x/j�jt ja. Considering that t can approach 0while
jc.x/j stays constant and that M is a bounded mapping, this is a contradiction. �

We can finally prove our result concerning .wf /-regular stratifications.

4.2.5 Theorem. Let X be a definable subset of Kn, S a definable subset of K and
f W X ! S a definable continuous function. Then there exists a (finite) analytic
definable stratification ofX which is .wf /-regular. In particular definable subsets of
Kn also admit .af /, .w/ and .a/-regular definable stratifications.

Proof. We proceed similarly as in [36]. Let .Xj /j 2f1;:::;kg be an analytic and definable
stratification of X such that the fjXj are analytic and such that the rank of fjXj is
constant for all j 2 f1; : : : ; kg. The set wf .X

i ; Xj / of points x 2 X i at which the
pair .X i ; Xj / is .wf /-regular being a definable set, we have to show that this set is
dense in X i . Let us assume that the contrary holds, that is, the set w0

f
.X i ; Xj / of

points ofX i at which the pair .X i ; Xj / is not .wf /-regular contains a nonempty open
subset of X i , and let us obtain a contradiction. Up to replacing X i by a nonempty
subset ofX i and by the definability ofw0

f
.X i ; Xj /, we may suppose thatw0

f
.X i ; Xj /

equals X i .
As the condition .wf / is invariant under differentiable transformations ofKn with

Lipschitz continuous derivative and up to replacing X i by a nonempty open subset
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of X i , we may assume that X i is an open definable subset of Km � f0gn�m. (The
latter transformation exists by cell decomposition, after shrinking X i if necessary.)
Up to replacing X i by a nonempty subset, we may also assume that fjX i is constant,
equal to 0 for simplicity. Indeed, since w0

f
.X i ; Xj / equals X i , we can replace X i

by f �1
jX i .a/ with a 2 f .X i /, since the pair .f �1

jX i .a/; X
j / is .wf /-regular at none of

the points of f �1
jX i .a/.

Now we have two cases to consider:

Case 1. fjXj is constant (in a neighborhood ofX i ). Then condition .wf / is condition
.w/. We proceed as follows.

WriteX i D U �f0gn�m withU open inKm. By the cell decomposition theorem
and the existence of definable choice functions and up to making U smaller, there
exists a definable C 1 function � W U � C ! Xj (called a C 1 wing in Xj in [36]),
whereC is a one-dimensional cell inK� with 0 2 xC , such that �.x; t/ D .x; r.x; t//

and jr.x; t/j < jt j, and furthermore, w0
f
.X i ; Xj / being assumed equal to X i , we

may ask that for all x; t

ı.Km � f0gn�m; T�.x;t/X
j /

jr.x; t/j � jt j�1:

By Remark 4.2.1, one then has

kDxr.x;t/k
jr.x; t/j � ı.Km � f0gn�m; T�.x;t/X

j /

jr.x; t/j :

By cell decomposition and up to replacing the function .x; t/ 7! r.x; t/ by .x; t/ 7!
r.x; t s/ for some integer s > 0, we may moreover assume that on U � C

jr.x; t/j D jaj � jt j`
for some integer ` > 0 and some a 2 K�. But when one applies Lemma 4.2.4 to
.x; t/ 7! r.x; t/=t`, which is a bounded map, one finds a definable nonempty open
subset U 0 of U , and d 2 K� such that for x 2 U 0 and t 2 C with jt j small enough,
kDxr.x;t/k=jr.x; t/j � jd j, a contradiction with the above two displayed inequalities.

Case 2. fjXj has rank 1.
Write X i D U � f0gn�m with U open in Km. Clearly we may suppose that

f .x; y/ 6D 0 for .x; y/ 2 Xj , x 2 U . We further have that for each x 2 U , f .x; y/
goes to 0 when y goes to zero with .x; y/ 2 Xj . Hence there exists a definable
choice function f0 W B.0; 1/ ! f .Xj /[ f0g such that f0.t/ D 0 if and only if t D 0

and jf0.t/j < jt j for nonzero t . Since we assume that w0
f
.X i ; Xj / equals X i , we

may moreover assume that for each x 2 U and nonzero t there exists y satisfying
.x; y/ 2 Xj , jyj < jt j, f .x; y/ D f0.t/, and

ı.Km � f0gn�m; T.x;y/X
j

f
/

jyj � jt j�1:
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Up to replacing f0 by t 7! f0.�t
s/ for some integer s > 0 and nonzero � 2 R,

we may suppose that f0 is continuous. Hence, by the existence of definable choice
functions there exists a continuous definable map ' W U �B.0; 1/ ! Kn�m which is
C 1 onU �.B.0; 1/nf0g/ and such that, for all x 2 U and for all nonzero t 2 B.0; 1/,
'.x; 0/ D 0, .x; '.x; t// 2 Xj ,

ı.Km � f0gn�m; T.x;'.x;t//X
j

f
/

j'.x; t/j � jt j�1 (4.2.1)

and
f .x; '.x; t// D f0.t/: (4.2.2)

It follows by (4.2.2) that the m-dimensional linear space W spanned by the vectors
.0; : : : ; 0; 1; 0; : : : ; 0; @'.x; t/=@xi / for i D 1; : : : ; m is a subspace of T.x;'.x;t//X

j

f
.

Combining this with Remark 4.2.1 and since kDx'.x;t/k � ı.Km � f0gn�m; W /, it
follows that

kDx'.x;t/k
j'.x; t/j � ı.Km � f0gn�m; T.x;'.x;t//X

j

f
/

j'.x; t/j : (4.2.3)

By the Cell Decomposition Theorem 1.4.2, by makingU smaller, and up to replacing
the function .x; t/ 7! '.x; t/ by .x; t/ 7! '.x; bt s/ for some integer s > 0 and some
nonzero b 2 R, we may suppose we have on U � B.0; 1/

j'.x; t/j D jaj � jt j`; (4.2.4)

with a 2 K� and some integer ` > 0, since ' is continuous and '.x; t/ D 0 if and
only if t D 0. Applying Lemma 4.2.4 to the bounded function '.x; t/=t` yields a
contradiction with .4.2.1/ and .4.2.3/ similarly as in case 1. �

4.3. Let X be a definable subset of Kn, and let .Xj /j 2f1;:::;kg be a finite, definable
and analytic stratification ofX satisfying the frontier condition as in 4.2. LetX i and

Xj be strata with X i � Xj and let x0 2 X i . One says .X i ; Xj / satisfies condition
.b/ at x0 if for every sequences xm 2 X i , ym 2 Xj , both converging to x0 and
such that the line Lm containing xm and ym, resp. the tangent space Tym

Xj , both
converge in the appropriate Grassmann manifold to a lineL, resp. a subspace T , then
L � T . Over the reals, it is well known since the seminal work of T. C. Kuo [28] (in
the semi-analytic case), see also [43] (subanalytic case) and [36] (o-minimal case),
that condition .w/ implies condition .b/. Note that obviously .w/ does not imply .b/
in the real differential case and that even in the real algebraic case .b/ does not imply
.w/. In the present setting, we have a similar result (with a similar proof):

4.3.1 Proposition. If .X i ; Xj / satisfies condition .w/ at x0, it also satisfies condition
.b/ at x0.
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Proof. We set X i D W and Xj D W 0. We may assume that W is open in Kr '
Kr � f0g � Kr � Ks D Kn and that x0 D 0. Denote by p the linear projection
Kn ! Ks . If condition .b/ is not satisfied at 0, then, by condition .w/ at 0 and for
some " > 0, one has 0 2 xS n S , with

S D fx 2 W 0 j ı.Kp.x/; TxW
0/ � 2"g:

Use the Curve Selection Lemma 1.4.4 to find an analytic definable function ' W U �
K ! S with 0 2 xU such that k'.t/k � jt j for all t in U . Write ' D .a; b/

with a W U ! Kr and b W U ! Ks . We may assume that ka0.t/k is bounded,
that b and b0 do not vanish, and by analyticity that limt!0 kb.t/k=kb0.t/k D 0.
Since ı.Kb0.t/;Kb.t// ! 0 for t ! 0 which holds by Lemma 1.4.5, we have
ı.Kb0.t/; T'.t/W

0/ � " for t small enough. From the fact that'0.t/ D a0.t/Cb0.t/ 2
T'.t/W

0, it follows that

ka0.t/k
kb0.t/kı.Ka

0.t/; T'.t/W
0/ � ": (4.3.1)

Now, by condition .w/ at 0, there exists C > 0 such that

ı.Ka0.t/; T'.t/W
0/ � Ckb.t/k (4.3.2)

for t small enough. It follows from (4.3.1) and (4.3.2), that, for t small enough,

" � C
kb.t/k
kb0.t/kka0.t/k; (4.3.3)

which contradicts the fact that ka0.t/k is bounded and limt!0 kb.t/k=kb0.t/k D 0.
�

5. Proof of Theorem 3.6.2 and the existence of distinguished tangent ƒ-cones

5.1. Proof of Theorem 3.6.2: a first reduction. The statement we have to prove
being additive, we may cut X into finitely many definable pieces. Also note that we
may assume all these pieces have dimension d around x, since pieces of dimension
< d contribute to zero in both sides in the equality we have to prove. Let us prove
in this subsection that we may reduce to the case were ' D 1X . Suppose that we
know the result for ' D 1X . For the general case we may assume, by additivity and
linearity, that ' D .

Q`
iD1 ˇi / � q�˛ with ˛ and the ˇi definable functions from X to

Z. Further we may assume that ' � 0 on X . Write X as a possibly infinite disjoint
union parameterized by the values of ˛ and the ˇi . That is,

X D
[

z2Z`C1

Xz; with Xz D fx 2 X j .ˇ1; : : : ; ˇ`; ˛/.x/ D zg:
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Since ' is constant on each of the Xz , by linearity we find for each z

‚d .'z/.x/ D ‚d .	
ƒ
x .'z//.0/;

where 'z is the product of ' with the characteristic function of Xz . By Proposi-
tion 2.4.2 one finds

‚d .'/.x/ D ‚d

� X
z

'z

�
.x/ D

X
z

‚d .'z/.x/

and similarly

‚d .	
ƒ
x .'//.0/ D ‚d .	

ƒ
x

� X
z

'z

�
/.0/ D ‚d

� X
z

	ƒ
x .'z/

�
.0/

D
X

z

‚d .	
ƒ
x .'z//.0/;

and hence ‚d .'/.x/ D ‚d .	
ƒ
x .'//.0/ which finishes the reduction.

5.2. Proof of Theorem 3.6.2: the case d D n. In this subsection, we consider
the case d D n. It is not difficult to see (cf. Corollary 5.3.8 below) that the function
SCƒ

x .X/ is equal to the characteristic function ofCƒ
x .X/ almost everywhere. Hence

it is enough to prove that

‚d .X/.x/ D ‚d .C
ƒ
x .X//.0/

for ƒ small enough.
The proof we shall give is quite analogous to the one of Proposition 2.1 in [32]. By

Corollary 3.2.3, there exists a definable function ˛ W Pn�1.K/ ! N and a subgroup
ƒ in D such that for every ` in Pn�1.K/, .�X

x /
�1.`/\B.x; ˛.`// is a localƒ-cone

with origin x in .�X
x /

�1.`/.
For every n � 0, we consider the ƒ-cone Cn.ƒ/ with origin x generated by

X \ B.x; n/. Note that
Cƒ

x .X/ D \nCn.ƒ/;

hence, if we set
W WD \nCn.ƒ/;

we have W � Cƒ
x .X/. In particular, ‚d .W /.x/ � ‚d .C

ƒ
x .X//.0/. By Proposi-

tion 2.4.2, we know that ‚d .W /.x/ D limn‚d .Cn.ƒ//.x/ and ‚d .C
ƒ
x .X//.0/ D

limn‚d .Cn.ƒ//.x/. By Proposition 2.4.1, we deduce that

‚d .W /.x/ D ‚d .C
ƒ
x .X//.0/:

Since we have

‚d .X/.x/ D ‚d .X \ B.x; n//.x/ � ‚d .Cn.ƒ//.x/;
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we deduce that
‚d .X/.x/ � ‚d .W /.x/:

To prove the reverse inequality, let us consider for n � 0 the definable subsetWn of all
pointsw inW such that ˛.�x.w// � n. By definitionWn \B.x; n/ � X \B.x; n/,
hence

‚d .Wn/.x/ D ‚d .Wn \ B.x; n//.x/ � ‚d .X \ B.x; n//.x/ D ‚d .X/.x/:

Since, by Proposition 2.4.2 again, limn‚d .Wn/.x/ D ‚d .W /.x/, we obtain
‚d .W /.x/ � ‚d .X/.x/, as required.

5.3. Graphs. The main technical result in this subsection is Proposition 5.3.7, which
will be used in subSection 5.5 to conclude the proof of Theorem 3.6.2 and in subSec-
tion 5.6 to prove the existence of distinguished tangent ƒ-cones.

Fix two integers 0 < d � m. Let U be an open definable subset of Kd and let '
be a definable mapping U ! Km�d . The graph � D �.'/ of ' is a definable subset
of Km. Fix a point u in the closure xU of U and ƒ adapted to .U; u/. We assume
that limx!u '.x/ D v, by Corollary 3.4.2. We set w WD .u; v/. The projection to
the first d coordinates Km ! Kd induces a function

# W D.�;w;ƒ/ �! D.U; u;ƒ/:

Note that # is an isomorphism with inverse given by

#�1 W .z; �/ 7�! .z; ��1.'.uC �z/ � v/; �/: (5.3.1)

By Corollary 3.2.3, there exists a definable function ˛ W Pd�1.K/ ! N [ f1g
such that for every ` in Pd�1.K/, .�U

u /
�1.`/ \ B.u; ˛.`// is a local ƒ-cone with

origin u in .�U
u /

�1.`/, with the convention that ˛.`/ D 1 if and only if ` is such that
.�U

u /
�1.`/ \ U D ;. Note that being definable, the function ˛ is continuous on a

dense definable open subset
0 in Pd�1.K/, where dense means that the complement
of
0 has strictly smaller dimension. Let
1 be the definable subset of
0 consisting
of the ` such that for all neighborhoods V of u in Kd , the sets .�U

u /
�1.`/ \ V are

nonempty.

5.3.1 Lemma. Suppose that Cƒ
u .U / is of maximal dimension. Then 
1 contains a

nonempty open subset of Pd�1.K/.

Proof. Let 
c
1 be the complement of 
1 in Pd�1.K/. Clearly 
c

1 is definable. It
is enough to derive a contradiction out of the assumption that 
c

1 is dense. Suppose
thus that
c

1 is dense in Pd�1.K/. By the definability and density of
c
1 and of
0 in

Pd�1.K/, it follows that
c
1 \
0 is dense. Take ` in
c

1 \
0. By the definition of
the tangent cone, one has that .�U

u /
�1.`/\Cƒ

u .U / D ;. Since .�U
u /

�1.
c
1 \
0/ is
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dense and definable in Kd , it follows that Cƒ
u .U / is contained in a definable subset

of dimension< d , a contradiction with Cƒ
u .U / being of maximal dimension, that is,

of dimension d . �

For any definable subset O of Pd�1.K/, consider the definable subset

Cƒ;O
u .U / WD .�U

u /
�1.O/ \ Cƒ

u .U / (5.3.2)

of Cƒ
u .U /.

5.3.2 Lemma. Suppose that Cƒ
u .U / is of maximal dimension. Let O be dense open

in 
1. Then the set Cƒ;O
u .U / also has maximal dimension and is dense open in

Cƒ
u .U /.

Proof. The fact that Cƒ;O
u .U / is open in Cƒ

u .U / follows from general topology. We
only have to prove that Cƒ;O

u .U / is dense in Cƒ
u .U /. As we have noticed in the

proof of Lemma 5.3.1, for every ` in 
c
1 \
0,

.�U
u /

�1.`/ \ Cƒ
u .U / D ;:

Since moreover the sets .�U
u /

�1.
1 n O/ and .�U
u /

�1.
c
1 n 
0/ have dimension

< d , the lemma follows. �

The next lemma ensures in particular that there exist definable sets 
 D O as in
Lemma 5.3.2 such that moreover for all z in Cƒ;�

u .U / and all small enough � in ƒ
one has that uC �z lies in U .

5.3.3 Lemma. Suppose that Cƒ
u .U / is of maximal dimension. Then there is a

dense open definable subset 
 of 
1 such that for all z in Cƒ;�
u .U / of direction

` and for all small enough � in ƒ one has u C �z 2 .�U
u /

�1.`/. Here, small
enough can be taken to mean that ord.�z/ � ˛.`/, where ˛ is as in the beginning of
Section 5.3.

Proof. We assume u D 0 for simplicity. For any ` 2 
, any z 2 `\Cƒ
u .U / and any

� 2 ƒ, one has �z 2 Cƒ
u .U /. Hence what remains to be proved is a consequence of

the inclusion � in the equality of the following claim. �

5.3.4 Claim. For almost all ` in 
1 and with u D 0, one has the following equality
of local ƒ-cones

Cƒ
u .U / \ ` \ B.0; ˛.`// D .�U

u /
�1.`/ \ B.0; ˛.`//:
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Proof of the claim. Since ` 2 
1, .�U
u /

�1.`/ \ B.0; ˛.`// is a local ƒ-cone with
origin 0, and by Remark 3.3.1, we have

.�U
u /

�1.`/ \ B.0; ˛.`// D Cƒ
u ..�

U
u /

�1.`// \ B.0; ˛.`//
� Cƒ

u .U / \ ` \ B.0; ˛.`//:

The inclusion 	 is thus clear for all ` 2 
. We prove the inclusion � in the claim,
for almost all `. This follows from cell decomposition. Let X � .Kd n f0g/�K be
the definable set

f.x; t/ 2 .Kd n f0g/ �K j uC t � x 2 U g;

parametrizing all ` \ U for all lines ` through u. Then X is a finite union of cells
by Theorem 1.4.2. For each x 2 Kd n f0g write Xx for the fiber above x under the
projection X ! Kd . For each x, either 0 lies in the interior of Xx , either 0 lies in
the boundary @Xx ofXx or 0 lies outside the closure ofXx , where @Xx is the closure
ofX minus the interior ofX . In the case that 0 lies in the interior ofXx , one has that
.�U

u /
�1.`/ \ B.u; ˛.`// D B.u; ˛.`// hence the inclusion � is evident.

The inclusion � holds, up to a set of direction ` 2 Pd�1.K/ of dimension< d�1,
for all those x such that 0 lies in @Xx by the almost everywhere continuity of the
functions in x appearing in the descriptions of the cells having 0 in their boundary.
The case that 0 lies outside the closure of Xx needs not to be considered since we
suppose ` 2 
1. �

5.3.5 Corollary. Let d > 0, letU be a definable nonempty open subset ofKd and let
ƒ given by Corollary 3.2.3. Then for all u 2 xU , with Cƒ

u .U / of maximal dimension
d , Cƒ

u .U / is a distinguished ƒ-tangent cone at u for U , that is, for all ƒ0 2 D ,
ƒ0 � ƒ implies Cƒ0

u .U / D Cƒ
u .U /.

Proof. As usual we assume u D 0. Let ƒ as given by Corollary 3.2.3 and ƒ0 2 D ,
ƒ0 � ƒ. We show thatCƒ

u .U / � Cƒ0

u .U /. Let z 2 Cƒ
u .U /, denote by ` its direction

and assume that ` 2 
, with 
 � 
1 as in Lemma 5.3.3. By Lemma 5.3.3 we then
have z 2 Cƒ

u .U \ `/ D Cƒ
u .U \ `/. But since U \ `\B.0; ˛.`// is a localƒ-cone

with origin u, by Remark 3.3.1, we get

z 2 Cƒ
u .U \ `/ D Cƒ0

u .U \ `/ � Cƒ0

u .U /:

Now since we showed Cƒ;�
u .U / D C

ƒ0;�
u .U /, we have Cƒ;�

u .U / D C
ƒ0;�
u .U /.

But by Lemma 5.3.2 we obtain Cƒ;�
u .U / D Cƒ

u .U /. We finally remark that one

also has Cƒ0;�
u .U / D Cƒ0

u .U /, with the same proof as in Lemmas 5.3.1 and 5.3.2,
since any adapted (to U ) ƒ0-cone may be chosen in those lemmas. �
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Proposition 5.3.7 below can be seen as an analogue of Proposition 3.6 of [32]
and has for consequence the existence of distinguished ƒ-tangent cones for general
definable sets and the p-adic analogue of Thie’s formula. As usual, the main point
in the p-adic case is to overcome the lack of connectedness and deal with all its
negative consequences such as the lack of strong enough mean value theorems and
so forth. To go through these difficulties we essentially use the following result, the
main result of [5], which is the p-adic analogue of the existence of the so-called
L-decompositions of real subanalytic sets, obtained in [29], and which will be used
in the proof of Proposition 5.3.7 (c).

5.3.6 Theorem. Let " > 0 and let ' W X � Kn ! Km be a locally "-Lipschitz
definable mapping. Then there exist C > 0 and a finite definable partition of X into
parts X1; : : : ; Xk such that the restriction of ' to each Xi is globally C -Lipschitz.

We will also use Theorem 4.2.5 in the proof of Proposition 5.3.7 in the same
way that Lemma 3.7 of [32] is used in the proof of Proposition 3.6 of [32]. Where
Theorem 4.2.5 gives the existence of .wf /-regular (and consequently .af /, .b/, and
.w/-regular) stratifications for a function f in the definable p-adic setting, we will
only use the genericity of the condition .af / in the p-adic definable case to prove
Proposition 5.3.7.

5.3.7 Proposition. Let " be a positive real number with " � 1. Let U be an open
definable subset of Kd and let ' be a definable mapping U ! Km�d . Fix a point
u in xU , a subgroup ƒ adapted to .U; u/, choose 
 sufficiently small and as in
Lemma 5.3.3, and let Cƒ;�

u .U / be as in (5.3.2). Assume that ' is "-analytic and that
limx!u '.x/ D v by Corollary 3.4.2.

Suppose thatCƒ
u .U / has maximal dimension. Then, possibly after partitioningU

into finitely many open subsets, replacingU successively by each one of these smaller
open subsets, in such a way that ' is globally C -Lipschitz on U by Theorem 5.3.6
and neglecting those U such that Cƒ

u .U / has lower dimension, the following hold

(a) For z in Cƒ;�
u .U / such that u C �z 2 U , for all small enough � 2 ƒ (see

Lemma 5.3.3), the limit

 .z/ WD lim
�!0
�2ƒ

��1.'.uC �z/ � v/

exists in Km�d , yielding a definable function  W Cƒ;�
u .U / ! Km�d .

(b) The function  is locally "-Lipschitz.

(c) The graph of  is dense in Cƒ
w .�.'//.

Proof. We first prove (a). Choose z in Cƒ;�
u .U / such that u C �z 2 U , for all

small enough � 2 ƒ. We can evaluate ' at uC �z for small enough � in ƒ. After
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partitioning U into finitely many open subsets and successively replacing U by each
one of these smaller open subsets, Lemma 1.5.5 implies that when � ! 0, � 2 ƒ,
either ��1.'.u C �z/ � v/ has a limit  .z/ or its norm goes to 1. Applying the
Curve Selection Lemma 1.4.4 to the point .u; v/ and the set

f.uC �z; '.uC �z// 2 Km j � 2 ƒg;
it follows from Lemma 1.4.5 and "-analyticity that the limit  .z/ exists.

Now assume that z 2 C
ƒ;�
u .U / is such that u C �z 2 U \ `, where ` is the

(direction of the) line going through u and z. By Lemma 5.3.3, for all " > 0 there
exist z0; z00 2 C

ƒ;�
u .U / such that u C �z0 2 U , u C �z00 2 U for all � 2 ƒ and

jz � z0j � " and jz � z00j � ". Then we have

j��1Œ.'.uC �z0/ � v/ � .'.uC �z00/ � v/�j � C j��1�.z0 � z00/j � C � ":
This shows that one can define  on Cƒ;�

u by

 .z/ D lim
z0!z

lim
�!0

��1.'.uC �z0/ � v/: (5.3.3)

Let us now prove (b). We first notice that, after suitable finite partition of U and
neglecting those U such that Cƒ

u .U / has lower dimension, we may suppose that the
function  is analytic on Cƒ;�

u .U /. To prove that  is "-analytic on Cƒ;�
u .U /, we

show that the tangent space Tx�. / at a point x of the graph �. / of  , for x in
a dense set of �. /, is contained in C" D f.a; b/ 2 Kd � Km�d j jbj � "jajg.
Since, by (5.3.3), �. / � Cƒ

w .�.'// and since dim.�. // D dim.Cƒ
w .�.'///, it is

enough to prove that at a generic point x of Cƒ
w .�.'// one has TxC

ƒ
w .�.'// � C".

For this we consider the deformation h W D.�.'/; w;ƒ/ ! K to Cƒ
w .�.'// defined

in section 3:5. The fiber h�1.0/ is identified with Cƒ
w .�.'// and for � 2 ƒ

h�1.�/ D f.z; �/ 2 Km �ƒ j w C �z 2 �.'/g
is identified with

fz 2 Km j w C �z 2 �.'/g:
Since ' is "-analytic, for any � 2 ƒ and any y 2 h�1.�/, one has Tyh

�1.�/ � C".
Let us show at x a generic point of Cƒ

w .�.'//, TxC
ƒ
w .�.'// is a limit of tangents

Tyn
h�1.�n/. But this is exactly the genericity in h�1.0/ of the condition .ah/, which

is given by Theorem 4.2.5.

We now prove (c). Let z 2 Cƒ
w .�.'// and .�n/n2N 2 ƒ; .wn/n2N 2 �.'/

be two sequences such that wn ! w and �n.wn � w/ ! z. Denoting by � the
projection from � toU and un D �.wn/, the sequence .un/n2N of points ofU going
to u is such that limn!1 �n.un � u/ D �.z/ WD a 2 Cƒ

u .U /. Now fix " > 0 and
a0 2 Cƒ;�

u .U / with ja � a0j � ". Then uC �a0 2 U for all small enough � 2 ƒ by
Lemma 5.3.3. Then we may suppose, by invoking Theorem 5.3.6, that

j�n.'.un/ � v/ � �n.'.�
�1
n a0 C u/ � v/j � C j�n.un � u/ � a0/j:
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This gives

lim
n!1 j�n.wn � w/ � �n.�

�1
n a0; '.��1

n a0 C u//j � max.C; 1/ � ";

and, finally
jz � .a0;  .a0//j � max.C; 1/ � ";

showing that the graph of  is dense in Cƒ
w .�.'//. �

5.3.8 Corollary. Under the hypotheses and with the notation of Proposition 5.3.7,
assume moreover that " � 1. Write z for variables running over Kd and y for
variables running overKm�d . Then, for almost all .z; y/ 2 Cƒ

w .�.'//, one has that
SCƒ

w .�.'//.z; y/ D 1 D SCƒ
u .U /.z/, and

‚d .SC
ƒ
w .�.'///.0/ D ‚d .C

ƒ
w .�.'///.0/ D ‚d .U /.u/ D ‚d .�.'//.w/:

Proof. We first prove that, for almost all z 2 Cƒ
u .U /, one has that 1 D SCƒ

u .U /.z/.
Let 
 and ˛ be as in Lemma 5.3.3. By Lemma 5.3.3, for z 2 Cƒ;�

u .U /, there exist
an open ball B contained in Cƒ;�

u .U / and containing z, and a ball B1 � K around
0 such that

D.U; u;ƒ/ \ .B � B1/ D B � .ƒ \ B1/:

Hence we can calculate

SCƒ
u .U /.z/ D ŒK W ƒ�‚dC1.D.U; u;ƒ//.z; 0/

D ŒK W ƒ�‚dC1.B �ƒ/.z; 0/ D ‚d .B/.z/

which equals 1 since z 2 B .
Next we prove that SCƒ

w .�.'//.z; y/ D 1 for almost all .z; y/ 2 Cƒ
w .�.'//.

For this purpose, define

D 0 WD f.z; y; �/ 2 D.�.'/; w;ƒ/ j jyj � jzjg;
and consider the natural projection

p W D 0 ! D.U; u;ƒ/; .z; y; �/ 7! .z; �/;

which is in fact injective. Write U 0 for the image of p. By Proposition 3.4.1 and
Lemma 1.4.4, one finds for all .z; y/ 2 Km that

‚dC1.D
0/.z; y; 0/ D ‚dC1.D.�.'/; w;ƒ//.z; y; 0/

and for almost all z 2 Kd that

‚dC1.U
0/.z; 0/ D ‚dC1.D.U; u;ƒ//.z; 0/:
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Since for all .z; y; �/ 2 D 0 one has j.z; y; �/j D j.z; �/j, by the bijectivity of
p W D 0 ! U 0, and by definition of ‚dC1, one finds

‚dC1.D
0/.z; y; 0/ D ‚dC1.U

0/.z; 0/:

This shows that SCƒ
w .�.'//.z; y/ D 1 for almost all .z; y/ 2 Cƒ

w .�.'//. It also
follows that

‚d .SC
ƒ
w .�.'///.0/ D ‚d .C

ƒ
w .�.'///.0/:

We proceed with similar arguments to show the remaining equalities. Assume
from now on until the end of the proof, for simplicity, that w D 0. By Proposi-
tion 5.3.7 (c) one has ‚d .�. //.0/ D ‚d .C

ƒ
w .�.'//.0/. By Propositions 3.4.1

and 5.3.7 and since " � 1, the map z 7! .z;  .z// defined for z in Cƒ;�
u .U /

preserves the norm in the sense that jzj D j.z;  .z//j (recall that one uses the
sup-norm for tuples in an ultrametric setting). Hence, by the definition of ‚d , by
Lemma 5.3.2 and by Section 5.2, one has ‚d .�. //.0/ D ‚d .C

ƒ;�
u .U //.0/ D

‚d .C
ƒ
u .U //.0/ D ‚d .U /.0/. Combining the obtained series of equalities yields

‚d .SC
ƒ
w .�.'///.0/ D ‚d .U /.0/.

Finally we prove that this value also equals ‚d .�.'//.0/, by again a similar
argument. Define U 00 WD fz 2 U j j'.z/j � jzjg. Then, by Lemma 3.4.1 and its
proof based on Lemma 1.4.4, we findCƒ

u .U / D Cƒ
u .U

00/. Hence,‚.Cƒ
u .U //.0/ D

‚d .C
ƒ
u .U

00//.0/ which also equals ‚d .U
00/.0/ by Section 5.2. Since on U 00 the

map z 7! .z; '.z// preserves the norm in the sense that jzj D j.z; '.z//j we find by
the definition of ‚d that ‚d .U

00/.u/ D ‚d .�.'jU 00//.w/ D ‚d .�.'//.w/ which
finishes the proof. �

5.4. An alternative view on cones with multiplicities.. Let X � Kn be definable
and of dimension d . It follows from Proposition 5.3.7 and its Corollary 5.3.8 that
there is a finite definable partition of X into parts Xj which are graphs of "-analytic
Lipschitz functions on open subsets Uj such that, for small enoughƒ,‚d .Xj /.0/ D
‚d .C

ƒ
0 .Xj //.0/ for each j . It follows by additivity thatX

j

‚d .C
ƒ
0 .Xj // D

X
j

‚d .Xj / D ‚d .X/:

This common value can of course be different from ‚d .C
ƒ
0 .X// since Xj and Xk

may have tangent cones which coincide on a part of dimension d for different j , k,
that is, there might be overlap in the unionCƒ

0 .X/ D S
j C

ƒ
0 .Xj /. Let us decompose

Cƒ
0 .X/ into partsCk , k � 1, with the property that a line ` � Ck (through the origin)

belongs to Cƒ
0 .Xj / for exactly k different j . (Note that such decomposition is in

general not unique.) Let us then define the function CMƒ
0 .X/ on Cƒ

0 .X/, up to
definable subsets of Cƒ

0 .X/ of dimension < d , by

CMƒ
0 .X/ D

X
k

k � 1Ck
:
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Any other such decomposition of X into parts Xj will yield the same function
CMƒ

0 .X/ up to a definable subset of Cƒ
0 .X/ of dimension < d , as can be seen

by taking common refinements and by general dimension theory of definable sets.
Clearly ‚d .CM

ƒ
0 .X// D P

j ‚d .Xj / D ‚d .X/. Moreover, by additivity of SC
and by Corollary 5.3.8, for all z 2 Cƒ

0 .X/ up to a definable set of dimension < d

SCƒ
0 .X/.z/ D CMƒ

0 .X/.z/:

In particular it follows that SCƒ
0 .X/.z/ is a nonnegative integer for all z 2 Cƒ

0 .X/

up to a definable set of dimension < d .

5.5. End of proof ofTheorem3.6.2. We consider a definable subsetX of dimension
d in Kn and a point x of Kn. We may assume x lies in the closure of X . Let us fix
0 < " � 1. By Proposition 1.5.3 there exists a decomposition

X D
[

1�i�N."/

�i .�i ."// [ Y

with Y a definable subset of X of dimension < d , definable open subsets Ui ."/ of
Kd , for 1 � i � N."/, definable analytic functions 'i ."/ W Ui ."/ ! Km�d whose
graphs �i ."/ are all "-analytic, and elements �1, …, �N."/ in GLm.R/ such that the
sets �i .�i ."// are all disjoint and contained in X . We denote by ui the image of
��1

i .x/ under the projection toKd and we fixƒ adapted to .X; x/ and to .Ui ."/; ui /

for every 1 � i � N."/. By linearity and since the �i ’s are isometries, we have then

‚d .X/.x/ D
X

1�i�N."/

‚d .�i ."//.�
�1
i .x//

and
‚d .SC

ƒ
x .X//.0/ D

X
1�i�N."/

‚d .SC
ƒ

��1
i

.x/
.�i ."///.0/;

and the result follows from Corollary 5.3.8. �

5.6. Existence of distinguished tangent ƒ-cones. We deduce from Corollary 5.3.5
and Proposition 5.3.7 the existence of distinguished tangent ƒ-cones.

5.6.1 Theorem. Let X be a definable subset of Kn. Then there exists ƒ 2 D such
that for any x 2 xX , Cƒ

x .X/ is a distinguishedƒ-cone, that is to sayƒ0 � ƒ implies
Cƒ0

x .X/ D Cƒ
x .X/.

Proof. We will work by induction on the dimension d of X , where for d D 0 the
statement is trivial. We may work up to a finite partition of X into definable pieces
Xk with distinguished ƒk-cones Cƒk

x .Xk/ for all x and for some ƒk , since one
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can put ƒ WD T
k ƒk and then Cƒ

x .X/ D S
k C

ƒ
x .Xk/ implies that Cƒ

x .X/ is a
distinguished ƒ-cone for all x. Up to a finite partition using Proposition 1.5.3 and
Theorem 5.3.6, we may suppose that X is the graph of some definable C -Lipschitz
and "-analytic map ' W U ! Kn�d , where U is a definable open subset of Kd and
d is the dimension of X .

Fix x 2 xX and write u 2 xU for the projection of x in Kd . We will construct a
distinguished ƒ for this fixed x, with the extra property that in the construction one
could as well take x as a parameter running over Kn and consider the analogue of
the set-up in families parameterized by x, and then only finitely many ƒ will come
up. Taking the intersection of these finitely manyƒ as above then finishes the proof.

First suppose that ' falls under the conditions of Proposition 5.3.7, that is,Cƒ
u .U /

has maximal dimension d for some ƒ 2 D which is adapted to U . We know from
Corollary 5.3.5 that ƒ is distinguished for U , meaning that for ƒ0 � ƒ one has

Cƒ0

u .U / D Cƒ
u .U /: (5.6.1)

Fix ƒ0 � ƒ and consider

 W Cƒ;�
u .U / ! Kn�d

and
 0 W Cƒ0;�0

u .U / ! Kn�d

(the notation being coherent with Proposition 5.3.7). We may suppose that 
 D 
0.
But then Cƒ;�

u .U / D C
ƒ0;�0

u .U / by Equation (5.6.1), and, for any z in this set, we
have .z/ D  0.z/ by Proposition 5.3.7 (a). Hence,  and 0 are the same function.
Taking the closures of the graph of this function, Proposition 5.3.7 (c) now yields that
Cƒ0

x .X/ D Cƒ
x .X/ and we are done in this case.

Let us finally consider the case thatCƒ
x .X/ has dimension< d for someƒ (which

happens if and only if Cƒ
u .U / has dimension < d ). We will construct a definable

Y � X such that dim.Y / D dim.Cƒ
x .X// and Cƒ

x .Y / D Cƒ
x .X/. Then we can

replace X by Y and we are done by induction on the dimension.
Let h W D.X; x;ƒ/ ! K be the deformation to Cƒ

x .X/. We assume x D 0 in
what follows, though we keep the notation x. Let L.Cƒ

x .X// be

Cƒ
x .X/ \

e�1[
iD0

S.0; i/;

where e D ŒK� W ƒ�. We call L.Cƒ
x .X// the ƒ-link of Cƒ

x .X/. Note that the
ƒ-cone generated by L.Cƒ

x .X// equals Cƒ
x .X/. Let zL.Cƒ

x .X// be L.Cƒ
x .X// �

.B.0; n/ \ ƒ/ for some ball B.0; n/ around 0. Since there are definable choice
functions, there is a map

d W zL.Cƒ
x .X// ! D.X; x;ƒ/
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with d.z; �/ 2 h�1.�/ for all � and lim�!0 d.z; �/ D z for all z. Since we may and
do suppose that z 6D d.z; �/, the image of d is of dimension dim. zL.Cƒ

x .X/// D
dim.L.Cƒ

x .X/// C 1 D dim.Cƒ
x .X// C 1. We send d. zL.Cƒ

x .X/// into X by
r.z; �/ D � � z and we set Y D r.d. zL.Cƒ

x .X////. Then Y is a definable subset of
X of dimension dim.Cƒ

x .X// and by construction Cƒ
x .Y / D Cƒ

x .X/. �

6. A local Crofton formula

6.1. Local direct image. Let p W X ! Y be a definable function between two
definable sets of the same dimension d . If ' is a function in C.X/ and y is in Y we
set pŠ.'/.y/ D P

x2p�1.y/ '.x/ if p�1.y/ is finite and pŠ.'/.y/ D 0 if it is infinite.
The function pŠ.'/ lies in C.Y /, since the cardinality of p�1.y/ takes only finitely
many values when y runs over Y .

If X is a definable subset of Kn and x is a point of Kn, we define the algebra
C.X/x of germs of constructible functions in C.X/ at x to be the quotient of C.X/
by the equivalence relation ' 
 '0 if 1B.x;n/' D 1B.x;n/'

0 for n large enough. That
definition is only relevant when x is in the closure ofX . Also, if ' is in C.X/x is the
germ of a locally bounded function  ,‚d .'/ WD ‚d . /.x/ does not depend on the
representative  .

Letp W Km ! Kd be a linear projection and letX andY be respectively definable
subsets of Km and Kd such that p.X/ � Y . Fix x in Km. When the condition (�)
is satisfied,

there exists n � 0 such that p�1.p.x// \X \ B.x; n/ D fxg; (�)

then, for every function ' in C.X/, the class of pŠ.'1B.x;n// in C.Y /p.x/ does not
depend on n for n large enough. We denote it by pŠ;x.'/. We also denote by pŠ;x the
corresponding morphism C.X/x ! C.Y /p.x/.

6.2. The local Crofton formula for the local density. For x a point in Kn we
consider Kn as a vector space with origin x and for 0 � d � n, we denote by
G.n; n�d/ the corresponding Grassmannian of .n�d/-dimensional vector subspaces
of Kn. It is a compact K-analytic variety, endowed with a unique measure �n;d

invariant under GLn.R/ and such that �n;d .G.n; n � d// D 1.
For any V in G.n; n � d/, we denote by pV W Kn ! Kn=V , the canonical

projection, whereKn=V is identified with theK-vector spaceKd . This identification
enables the computation of the local density of germs in Kn=V .

Let X be a definable subset ofKn of dimension d and let x be a point ofKn. By
general dimension theory for definable sets there exists a dense definable open subset

.D 
X / of G.n; n � d/ such that for every V in 
 the projection pV satisfies the
condition (�) with respect to .X; x/.
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The following statement is the p-adic analogue of the so-called local Crofton
formula proved in [10] for real subanalytic sets and more generally in [11], again in
the real subanalytic setting, in its multi-dimensional version.

6.2.1 Theorem. Let X be a definable subset of Kn of dimension d and let x be a
point of Kn. Let ' in C.X/x be the germ of a locally bounded function. Then

‚d .'/.x/ D
Z

V 2��G.n;n�d/

‚d .pV Š;x.'// d�n;d .V /:

We may assume that X D xX by Proposition 2.4.1 and that x D 0 and 0 2 X ,
for if 0 62 X , ‚d .X/.0/ D ‚d .pV Š;x.'// D 0 (for generic V ) and the statement of
Theorem 6.2.1 is then true.

In order to emphasize the geometric-measure part of 6.2.1 we start with the fol-
lowing lemma, which is Theorem 6.2.1 forX a definableƒ-cone ofKn of dimension
d contained in some d -dimensional vector space of Kn and ' D 1X .

6.2.2 Lemma. Letƒ 2 D ,… 2 G.n; d/ and X be a definableƒ-cone contained in
… and with origin 0. Then

‚d .X/.0/ D
Z

V 2��G.n;n�d/

‚d .pV .X//.pV .0// d�n;d :

Proof. For every V 2 G.n; n�d/, by linearity of pV , pV .X/ is aƒ-cone ofKn=V

with origin pV .0/, and as dim.…/ D dim.Kn=V /, pV .X/ is isomorphic to X , for
generic V (V 2 
 D 
…). In what follows we denote pV .0/ by 0. Take an integer
e > 0 such that �e

K 2 ƒ, where we recall that �K is a uniformizer of R. The sets X
and pV .X/ being ƒ-cones, one has the following disjoint union relations

X D
a
z2Z

�ze
K � .

e�1a
iD0

X \ S.0; i//;

and pV .X/ D
a
z2Z

�ze
K � .

e�1a
cD0

.pV .X// \ S.0; c//:

It follows by the definition of ‚d that

‚d .X/.0/ D .1 � q�d /�1

e

e�1X
iD0

qid�d .X \ S.0; i// (6.2.1)

and ‚d .pV .X//.0/ D .1 � q�d /�1

e

e�1X
cD0

qcd�d .pV .X/ \ S.0; c//: (6.2.2)
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For each i D 0; : : : ; e � 1, let Ci bea
z2Z

�ze
K � pV .X \ S.0; i//:

One has pV .X/ D `
i Ci by the linearity of pV , and, the Ci are definable since X is

aƒ-cone. Define the disjoint definable sets Ai
c , for i and c going from 0 to e � 1, by

Ai
c D Ci \ S.0; c/:

Clearly
e�1a
iD0

Ai
c D pV .X/ \ S.0; c/:

Moreover, the sets � i�c
K � Ai

c are disjoint by linearity of pV and by bijectivity of pV

on …. By the fact that

qcd�d .A
i
c/ D qid�d .�

i�c
K � Ai

c/;

we obtain

e�1X
cD0

qcd�d .pV .X/ \ S.0; c// D
e�1X
cD0

qcd

e�1X
iD0

�d .A
i
c/

D
e�1X
iD0

qid�d

� e�1a
cD0

� i�c
K � Ai

c

�

D
e�1X
iD0

qid�d .B
i
V /;

(6.2.3)

where B i
V WD `e�1

cD0 �
i�c
K �Ai

c . Let us now considerˆV W … n f0g ! .Kn=V / n f0g,
defined by

ˆV .x/ D �
ord.x/�ord.pV .x//
K � pV .x/:

This map is bijective fromX\S.0; i/ toB i
V , since pV is bijective fromX to pV .X/.

By change of variables one obtains

�d .B
i
V / D

Z
X\S.0;i/

jJac.ˆV /j d�d :

Furthermore, by Fubini,Z
V 2�

�d .B
i
V / d�n;d D

Z
x2X\S.0;i/

Z
V 2�

jJac.ˆV /.x/j d�n;d .V / d�d .x/:

(6.2.4)
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Note that, for x 2 S.0; i/, the quantity �i D R
V 2�

jJac.ˆV /.x/j d�n;d .V / does
not depend on x. Indeed, GLn.R/ acts transitively on S.0; i/, �n;d is invariant
under this action and if g 2 GLn.R/ and x0 D g � x for x; x0 2 S.0; i/, then
Jac.ˆV /.x

0/ D Jac.ˆg�1�V /.x/. Moreover, by linearity of pV , one has that �i D �

is independent of i . It follows from (6.2.2), (6.2.3) and (6.2.4) that

Z
V 2�

‚d .pV .X//.0/ d�n;d .V / D .1 � q�d /�1

e

e�1X
iD0

qid

Z
x2X\S.0;i/

� d�d .x/:

D � � .1 � q�d /�1

e

e�1X
iD0

qid�d .X \ S.0; i//:

Finally, by (6.2.1), we obtainZ
V 2�

‚d .pV .X//.0/ d�n;d .V / D � �‚d .X/.0/:

One gets � D 1 by taking X D … in the latter formula. �

Lemma 6.2.2 may be viewed as the tangential formulation of the local Crofton
formula for general definableƒ-cone sets and its proof captures its geometric measure
content. Note that its proof still works assuming that X is a definable ƒ-cone of
dimension d inKn, instead of a definableƒ-cone of dimension d contained in some
d -dimensional vector space…. Indeed, it is essentially enough to replace, in the proof
of Lemma 6.2.2, ˆV W … n f0g ! .Kn=V / n f0g by the restriction of the mapping
w 7! ‰V .x/ D �

ord.x/�ord.pV .x//
K pV .x/ on the smooth part ofX (the fibers of‰V jX

being counted with multiplicity in the area formula). Hence we get the following
extension of Lemma 6.2.2:

6.2.3 Lemma. Let ƒ 2 D and X be a definable ƒ-cone of Kn with origin 0. Then

‚d .X/.0/ D
Z

��G.n;n�d/

‚d .pV Š;0.1X // d�n;d .V /: �

6.2.4 Remark. For V 2 G.n; n � d/ and y 2 .Kn=V / n f0g, let us denote
by zVy the fiber ‰�1

V .fyg/ of ‰V W Kn n V ! .Kn=V / n f0g, where ‰V .x/ D
�

ord.x/�ord.pV .x//
K pV .x/. Note that zVy � S.0; ordy/ n V and GLn.R/ acts on

zV D f zVy j V 2 G.n; n�d/; y 2 .Kn=V /nf0gg. ForX a definable set of dimension
d in S.0; c/, where c 2 Z, the statement of Lemma 6.2.3 may be reformulated as

�d .X/ D
Z

V 2�

Z
y2S.0;c/�Kn=V

#.X \ zVy/ d�d .y/ d�n;d .V /:
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Now note that the mapping .V; y/ 7! zVy defined from f.V; y/ j V 2 G.n; n�d/; y 2
Kn=V g to zV is one-to-one and that the image of the Haar measure of GLn.R/ under
g 7! g � zV0 (for zV0 fixed in zV ) gives a GLn.R/-invariant measure 	 on zV such that
for E � zV , E subanalytic say, we have

	.E/ D
Z

V 2�

Z
y2S.0;c/�Kn=V

1E . zVy/ d�d .y/ d�n;d .V /:

To obtain the above equality, it is enough to remark that the right hand side gives a
function on subsets of zV which pulls back on GLn.R/ as a Haar measure. With these
notations we see that Lemma 6.2.3 is nothing else than the classical spherical Crofton
formula for X \ S.0; c/ (for a standard reference see [24], Theorem 3.2.48 and note
that the proof may be applied in our setting):

6.2.5 Theorem. Let X be a definable set of S.0; 0/ � Kn of dimension d , then

�d .X/ D
Z

V 2�

Z
y2S.0;0/�Kn=V

#.X \ zVy/ d�d .y/ d�n;d .V /

D
Z

Qv2 zV
#.X \ Qv/ d	. Qv/:

For the general setting we will use the following auxiliary lemma.

6.2.6 Lemma. Let ƒ be in D and let X � Kn be a definable set of dimension d .
Suppose that p W Kn ! Kd is a coordinate projection which is injective onX . Then
there exist definable setsCj of dimension< d and a finite partition ofX into definable
parts Xj such that p is injective on Cƒ

0 .Xj / n Cj for each j .

Proof. Since Cƒ
0 .X/ � CK�

0 .X/ for any ƒ in D , we may suppose that ƒ D K�.
We may also suppose that 0 2 xX nX . Partition CK�

0 .X/ into finitely many definable
partsBj such thatp is injective on each setBj . By linearity ofp we may suppose that
each Bj is aK�-cone. For each j let B 0

j be the definable subset ofKn consisting of
the union of all lines ` 2 Kn through 0 such that the distance between `\S.0; 0/ and
Bj \S.0; 0/ is strictly smaller than the distance between `\S.0; 0/ andBi \S.0; 0/
for all i 6D j . Put X0

j WD X \ B 0
j for each j , and take a finite definable partition

of X into parts Xj satisfying X0
j � Xj for each j . By construction CK�

0 .Xj / D
CK�

0 .X0
j / � Bj . Let Cj be Bj n Bj . Then the Xj and Cj are as desired. �

We now prove Theorem 6.2.1 in its general setting, that is to say, for X a given
definable subset of Kn of dimension d instead of some definable ƒ-cone of Kn as
in Lemma 6.2.3.
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Proof of Theorem 6.2.1. As in the proof of Theorem 3.6.2 we may assume that
' D 1X . Up to a finite partition of X into definable parts we may suppose that
X is the graph of an "-analytic map U � Kd ! Kn�d as in Corollary 5.3.8 and
then it follows by this corollary that

‚d .X/.0/ D ‚d .SC
ƒ
0 .X//.0/ D ‚d .C

ƒ
0 .X//.0/:

For Cƒ
0 .X/ we know that Theorem 6.2.1 holds by Lemma 6.2.3, that is

‚d .C
ƒ
0 .X//.0/ D

Z
V 2��G.n;n�d/

‚d .pV Š;0.1C ƒ
0

.X// d�n;d .V /:

We claim that, for generic V ,

‚d .pV Š;0.1C ƒ
0

.X/// D ‚d .pV Š;0.1X //

which finishes the proof. We prove the claim as follows. Fix V . By Lemma 6.2.6 we
can partition X into finitely many definable parts Xj (depending on V ) such that pV

is injective on Xj and, up to a definable set of dimension < d , also on Cƒ
0 .Xj /. By

additivity it is now enough to prove that

‚d .pV .C
ƒ
0 .Xj ///.0/ D ‚d .pV .Xj //.0/;

which follows from Theorem 3.6.2 for open sets sincepV .C
ƒ
0 .Xj // D Cƒ

0 .pV .Xj //.
�
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