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Abstract. We consider a motivic analogue of the height zeta function for integral points of equivariant
partial compactifications of affine spaces. We establish its rationality and determine its largest pole.

A major problem of Diophantine geometry is to understand the distribution
of rational or integral points of algebraic varieties defined over number fields. For
example, a well-studied question put forward by Manin in [1] is that of an asymp-
totic expansion for the number of rational/integral points of bounded height. A
basic tool is the height zeta function which is a Dirichlet series.

Around 2000, E. Peyre suggested to consider the analogous problem over func-
tion fields, which has then an even more geometric flavor since it translates as a
problem of enumerative geometry, namely counting algebraic curves of given de-
gree and establishing properties of the corresponding generating series. In view of
the developments of motivic integration by Kontsevich, Denef-Loeser [11], etc., it
is natural to look at a more general generating series which not only counts the
number of such algebraic curves, but takes into account the space they constitute
in a suitable Hilbert scheme.

A natural coefficient ring for the generating series is the Grothendieck ring of
varieties KVark: if k is a field, this ring is generated as a group by the isomor-
phism classes of k-schemes of finite type, the addition being subject to obvious
cut-and-paste relations, and the product is induced by the product of k-varieties.
One interest of this generalization is that it also makes sense in a purely geometric
context, where no counting is available.

Such a situation has been first studied in a paper by Kapranov in [15], where the
analogy with the mentioned diophantine problem is not pointed out. Later, Bourqui
made some progress on the motivic analogue of Manin’s problem, see [4], as well
as his survey report [5].
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In this article, we consider the following situation:

SETTING 1. Let k be an algebraically closed field of characteristic zero. Let
C0 be a quasi-projective smooth connected curve over k and let C be its smooth
projective compactification; we let S =C \C0. Let F = k(C) be the function field
of C and g be its genus.

Let X be a projective irreducible k-scheme together with a non-constant mor-
phism π : X→C . Let G and U be Zariski open subsets of X such that G⊂U ⊂X.
Let L be a line bundle on X; we assume that there exists an effective Q-divisor D
supported on (X \U)F such that L (−D) is ample on XF .

We are interested in sections σ : C → X of π such that σ(CF ) ⊂ GF and
σ(C0) ⊂ U . As in the Hasse principle, existence of local such sections is a neces-
sary condition to the existence of global sections σ.

SETTING 2. We assume that for every v ∈ C0, G(Fv)∩U(ov) ̸= ∅, where ov
is the completion of OC,v and Fv is its field of functions.

We then want to study the family of such sections σ with prescribed degree n=
degσ∗L . This is a geometric/motivic analogue of the variant of Manin’s problem
for integral points.

By Proposition 2.2.2, these conditions define a constructible set MU,n (in some
k-scheme); moreover, the hypothesis on L implies that there exists n0 ∈ Z such
that MU,n is empty for n ≤ n0. Considering the classes [MU,n] of these sets in
KVark, we form the generating Laurent series

ZU (T ) =
∑

n∈Z

[MU,n]T
n

and ask about its properties.
Precisely, we investigate in this paper the motivic counterpart of the situation

studied recently in the paper [8] by Y. Tschinkel and the first author.

SETTING 3. In this paper, we consider the particular case where GF is the
additive group Gn

a,F , UF =GF and XF admits an action of GF which extends the
group action of GF over itself. We also assume that the irreducible components of
the divisor at infinity ∂X =X \G are smooth and meet transversally. Finally, we
restrict ourselves to the case where the restriction of L to the generic fiber XF is
equal to −KXF (∂XF ), the log-anticanonical line bundle.

(As explained at the end of Section 3.1, this line bundle satisfies the previous
ampleness assumption.)

Let L be the class of the affine line A1
k in KVark and let Mk be the localized

ring of KVark with respect to the multiplicative subset S generated by L and the
elements La−1, for a ∈ N>0. An element of KVark is said to be effective if it can
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be written as a sum of classes of algebraic varieties; similarly, an element of Mk is
effective if its product by some element of S is the image of an effective element
of KVark. For example, 1−L−a = L−a(La−1) is effective for every a > 0.

Let Mk{T}† and Mk{T} be the subrings of Mk[[T ]][T−1] generated by
Mk[T,T−1] and the inverses of the polynomials 1−LaT b, where (a,b) ∈N×N>0

are integers such that b > a, respectively b ≥ a. For b > a ≥ 0, 1− La−b =
La−b(Lb−a− 1) is invertible in Mk, so that every element P of Mk{T}† has a
value P (L−1) at T = L−1 which is an element of Mk.

The following theorem is the main result of this paper.

THEOREM 1. Assume the notation and hypotheses of Settings 1, 2, and 3, are
in force.

The Laurent series ZU (T ) belongs to Mk{T}. More precisely, there exists an
integer a ≥ 1, an element PU (T ) ∈Mk{T}† such that PU (L−1) is an effective
non-zero element of Mk, and a positive integer d such that

(1−LaT a)dZU (T ) = PU (T ).

Any k-constructible set M can be written as a finite disjoint union of integral
k-varieties; we let dim(M) be the maximal dimension of these varieties and κ(M)
be the number of such varieties of maximal dimension; they do not depend on the
chosen partition.

COROLLARY 1. For every integer p∈ {0, . . . ,a−1}, one of the following cases
occur when n tends to infinity in the congruence class of p modulo a:

(1) Either dim(MU,n) = o(n),
(2) Or dim(MU,n)−n has a finite limit and log(κ(MU,n))/ log(n) converges

to some integer in {0, . . . ,d−1}.
Moreover, the second case happens at least for one integer p.

We observe that this condition on congruence classes is unavoidable in general.
For example, if L is a multiple L a

0 of a class in Pic(X ), then MU,n =∅ for n " a.
In the arithmetic case, the corresponding question consists in establishing the

analytic property of the height zeta function (holomorphy for ℜ(s)> 1, meromor-
phy on a larger half-plane, pole of order d at s = 1) as well as showing that the
number of points of height ≤ B grows as B(log(B))d−1. Its proof in [8] relies on
the Poisson summation formula for the discrete cocompact subgroup G(F ) of the
adelic group G(AF ). In the present work, we take advantage of the motivic Pois-
son formula recently established by E. Hrushovski and D. Kazhdan in [13] to prove
new results in the geometric setting.

However, in its present form, this motivic Poisson formula suffers two limi-
tations. Firstly, the functions it takes as input may only depend on finitely many
places of the given function field. For this reason, the question we solve in this pa-
per is a geometric analogue of Manin’s problem for integral points, rather than for
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rational points. Secondly, the Poisson formula only applies to vector groups, and
this is why our varieties are assumed to be equivariant compactifications of such
groups.

The plan of the paper is the following.
We begin the paper by an exposition, in a self-contained geometric language, of

the motivic Poisson formula of Hrushovski-Kazhdan. We then gather in Section 2
some preliminary results needed for the proof. In particular, we show in Proposition
2.1.3 that Corollary 1 is a consequence from Theorem 1. For eventual reference,
we also prove there a general existence theorem for the moduli spaces which we
study here, see Proposition 2.2.2. We end this Section by recalling some notation
on Clemens complexes, and on functions on arc spaces with values in Mk.

In Section 3, we lay out the foundations for the proof of Theorem 1. Its main
goal consists in describing the moduli spaces as adelic subsets of the group G.

The core of the proof of Theorem 1 begins with Section 4. We first apply the
motivic Poisson summation formula of Hrushovski and Kazhdan. We show that this
formula gives an expression Z(T ) as a “sum” (in the sense of motivic integration)
over ξ ∈ G(F ) of rational functions Z(T,ξ) whose denominators are products of
factors of the form 1−LaT b for b≥ a. The point is that the term corresponding to
the parameter ξ = 0 is the one which involves the largest number of such factors
with a = b; intuitively, the “order of the pole of Z(T,ξ) at T = L−1” is larger
for ξ = 0 than for ξ ̸= 0. Admitting these facts, it is therefore a simple matter to
conclude the proof of Theorem 1.

The proof of these facts are the subject of Sections 5 and 6. In fact, once rewrit-
ten as a motivic integral, the Laurent series Z(T,0) is a kind of “geometric” motivic
Igusa zeta function. Its analysis, using embedded resolution of singularities, would
be classical; in fact, our geometric setting is so strong that we even do not need to
resolve singularities in this case. For general ξ, however, what we obtain is a sort
of “motivic oscillatory integral”. Such integrals are studied in a coordinate system
in Section 5. Finally, in Section 6, we establish the three propositions that we had
temporarily admitted in Section 4.

In this paper, an important role is played by variants of the local zeta functions
that Igusa had introduced in [14] and which are studied by refining Igusa’s initial
analysis. We are honored to dedicate this work to the memory of late Professor
Igusa. The second author had the privilege to first meet Professor Igusa more than
thirty years ago. He would like to acknowledge the profound impact of Professor
Igusa’s vision on his own research during all these years.

Acknowledgments. The research leading to this paper was initiated during a
visit of the second author to the first author when he was visiting the Institute for
Advanced Study in Princeton for a year. We would like to thank that institution for
its warm hospitality.
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1. The motivic Poisson formula of Hrushovski-Kazhdan. For the con-
venience of the reader, we begin this paper with an exposition of Hrushovski-
Kazhdan’s motivic Poisson summation formula. We follow closely the relevant
sections from [13], but adopt a self-contained geometric language. In the rest of
the paper, we will make an essential use of the formalism recalled here.

To motivate the definitions, let us discuss rapidly the dictionary with the Pois-
son summation formula for the adele groups of global fields. So assume that F
is a global field. Let AF be the ring of adeles of F ; it is the restricted product of
the completions Fv at all places v of F and is endowed with a natural structure
of a locally compact abelian group. The field F embeds diagonally in AF and its
image is a discrete cocompact subgroup. Fix a Haar measure µ on AF as well as a
non-trivial character ψ : AF → C∗. For every Schwartz-Bruhat function ϕ on An

F ,
its Fourier transform is the function Fϕ on An

F defined by

Fϕ(y) =

∫

An
F

ϕ(x)ψ(xy)dµ(x);

it is again a Schwartz-Bruhat function. Moreover, the global Haar measure, additive
character and Fourier transform can be written as products of similar local objects.
Then, one has

∑

x∈Fn

ϕ(x) = µ(AF /F )−n
∑

y∈Fn

Fϕ(y).

The motivic Poisson summation formula provides an analogue of this formal-
ism, when F is the function field of a curve C over an algebraically closed field.
Integrals belong to the Grothendieck ring of varieties, more precisely, to a (suit-
ably localized) variant “with exponentials” of this ring. They are constructed us-
ing motivic integration at the “local” level of completions Fv ; here Fv is iden-
tified with the field k((t)) of Laurent series, so that Fn

v can be considered as an
infinite dimensional k-variety, more precisely, an inductive limit of arc spaces
t−mk[[t]]n ≃L (An

k). Motivic Schwartz-Bruhat functions are elements of relative
Grothendieck rings. The possibility to define the “sum over Fn” of a motivic func-
tion follows from the fact that it is zero outside of a finite dimensional subvariety
of this ind-arc space. The Poisson summation formula then appears as a reformu-
lation of the Riemann–Roch theorem for curves combined with the Serre duality
theorem, as formulated in [19].

1.1. The Grothendieck ring of varieties with exponentials.

1.1.1. Let k be a field. The Grothendieck group of varieties KVark is defined
by generators and relations; generators are k-varieties X (=k-schemes of finite
type); relations are the following:

X−Y,
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whenever X and Y are isomorphic k-varieties;

X−Y −U,

whenever X is k-variety, Y a closed subscheme of X and U =X \Y is the com-
plementary open subscheme. Every k-constructible set X has a class [X] in the
group KVark.

The Grothendieck group of varieties with exponentials KExpVark is defined by
generators and relations (cf. [10, 13]). Generators are pairs (X,f), where X is a k-
variety and f : X→ A1 = Spec(Z[T ]) is a morphism. Relations are the following:

(X,f)− (Y,f ◦u)

whenever X, Y are k-varieties, f : X → A1 a morphism, and u : Y → X a k-
isomorphism;

(X,f)− (Y,f |Y )− (U,f |U)

whenever X is a k-variety, f : X → A1 a morphism, Y a closed subscheme of X
and U =X \Y the complementary open subscheme;

(X×Z A1,pr2)

where X is a k-variety and pr2 is the second projection. We will write [X,f ] to
denote the class in KExpVark of a pair (X,f).

There is a morphism of Abelian groups ι : KVark → KExpVark which sends
the class of X to the class [X,0].

Any pair (X,f) consisting of a constructible set X and of a piecewise mor-
phism f : X→ A1 has a class [X,f ] in KExpVark.

1.1.2. One endows KVark with a ring structure by setting

[X][Y ] = [X×k Y ]

whenever X and Y are k-varieties. The unit element is the class of the point
Spec(k).

One endows KExpVark with a ring structure by setting

[X,f ][Y,g] = [X×k Y,pr∗1f +pr∗2g],

whenever X and Y are k-varieties, f : X→ A1 and g : Y → A1 are k-morphisms;
pr∗1f+pr∗2g is the morphism from X×kY to A1 sending (x,y) to f(x)+g(y). The
unit element for this ring structure is the class [Spec(k),0] = ι([Spec(k)]).

The morphism ι : KVark→ KExpVark is a morphism of rings.
One writes L for the class of A1

k in KVark, or for the class of (A1
k,0) in

KExpVark. Let S be the multiplicative subset of KVark generated by L and the
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elements Ln− 1, for n ≥ 1. The localizations of the rings KVark and KExpVark
with respect to S are denoted Mk and ExpMk respectively. There is a morphism
of rings ι : Mk→ ExpMk.

LEMMA 1.1.3. [10, Lemma 3.1.3] The two ring morphisms ι : KVark →
KExpVark and ι : Mk→ ExpMk are injective.

Proof. For t ∈ A1
k(k), let jt be the map that sends a pair (X,f) to the class

in KVark of the k-variety [f−1(t)]. One observes that j0− j1 defines a morphism
of groups j : KExpVark → KVark. Indeed, for every t ∈ A1

k(k), jt maps the ad-
ditivity relations in KExpVark to additivity relations in KVark. Moreover, jt(Y ×
A1
k,pr2) = [Y ] for every k-variety Y , so that j((Y ×A1

k,pr2)) = 0. This proves the
existence of j. By construction, ι is a section of j, hence ι is injective. !

LEMMA 1.1.4. Let X be a k-variety with a Ga-action and let f : X→A1 be a
morphism. Let k be an algebraic closure of k. Assume that f(t+x) = t+f(x) for
every t∈Ga(k) and every x∈X(k). Then, the class of (X,f) is zero in KExpVark.

Proof. By a theorem of Rosenlicht [18], there exists a Ga-stable dense open
subset U and a quotient map U → Y which is a Ga-torsor. Every such torsor is
locally trivial for the Zariski topology. Consequently, up to shrinking U (and Y
accordingly), this Ga-torsor is trivial, so that there exists a Ga-equivariant isomor-
phism u : Ga×Y ≃ U . Let g : Y → A1 be the morphism given by y -→ f(u(0,y)).
For y ∈ Y (k) and t ∈ A1

k(k), one has f(u(t,y)) = f(t+u(0,y)) = t+ f(u(0,y)).
This shows that the class of (Y,f ◦u) equals the product of the classes of (A1

k, Id)
and (Y,g). It is zero in KExpVark, so that the class of (U,f |U ) is zero too. One
concludes the proof by Noetherian induction. !

1.1.5. Relative variants. Let S be a k-variety. One can define relative ana-
logues KVarS , KExpVarS , MS and ExpMS of the above rings by replacing k-
varieties by S-varieties in the definitions. We write [X,f ]S ∈ KExpVarS for the
class of a pair (X,f), where X is an S-variety and f : X → A1 is a morphism.

Any morphism u : S→ T of k-varieties induces morphisms u! and u∗ between
the corresponding Grothendieck groups. The definitions are similar; let us explain
the case of KExpVar.

Let X be an S-variety and let f : X → A1 be a morphism. Via the morphism
u : S → T , we may view X as a T -variety, so that (X,f) gives rise to a class
[X,f ]T in KExpVarT . This induces a morphism of groups

u! : KExpVarS −→ KExpVarT , [X,f ]S -−→ [X,f ]T .

If u is an immersion, then u! is a morphism of rings.
In the other direction, there is a unique morphism of rings

u∗ : KExpVarT −→ KExpVarS
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such that u∗([X,f ]T ) = (X ×T S,f ◦ pr1) for every pair (X,f) consisting of a
T -variety X and of a morphism f : X→ A1.

Remark 1.1.6. Let A= Z[T ] and B be the localization of A with respect to the
multiplicative subset generated by T and the T n− 1, for n ≥ 1. The unique ring
morphism from A to KVark which sends T to L endowes KVark and KExpVark
with structures of A-algebras. Moreover, Mk ≃B⊗A KVark and ExpMk ≃B⊗A

KExpVark.
More generally, for every k-variety S, KVarS and KExpVarS are A-algebras,

and one has natural isomorphisms

MS ≃B⊗A KVarS ≃Mk⊗KVark KVarS

and
ExpMS ≃B⊗A KExpVarS ≃ ExpMk⊗KExpVark KExpVarS .

Thanks to this remark, we will often allow ourselves to write formulas or
proofs at the level of KExpVarS , when the generalization to ExpMS follows di-
rectly by localization.

1.1.7. Functional interpretation of the relative Grothendieck rings.
Elements of KExpVarS can be thought of as motivic functions with source S.
In particular, for ϕ ∈ KExpVarS and a point s ∈ S, considered as a morphism
Spec(k(s))→ S, one writes ϕ(s) for the element s∗ϕ of KExpVark(s). By Lemma
1.1.8 below, a motivic function is determined by its values.

Let u : S→T be a morphism of k-varieties. The ring morphism u∗ : KExpVarT
→ KExpVarS then corresponds to composition of functions.

If u is an immersion, the morphism of rings u! : KExpVarS → KExpVarT cor-
responds in this interpretation to extension by zero. In the general case, we shall
see that it corresponds to “summation over rational points” in the fibers of u.

LEMMA 1.1.8. Let ϕ ∈ KVarS (resp. MS , resp. KExpVarS , resp. ExpMS). If
ϕ(s) = 0 for every s ∈ S, then ϕ= 0.

As a corollary, Lemmas 1.1.3 and 1.1.4 hold for relative Grothendieck groups.

Proof. We give the proof for KExpVarS , the other three cases are similar. Let
us fix a representative M of ϕ in Z[ExpVarS ], the free Abelian group generated by
pairs (X,f), where X is an S-scheme and f : X → A1 is a morphism. Let s be
a generic point of S; since ϕ(s) = 0, the object Mk(s) is a linear combination of
elementary relations. By spreading out the varieties and the morphisms expressing
these relations, there exists a dense open subset U of S such that the object MU

in Z[ExpVarU ] is a linear combination of the corresponding elementary relations,
hence one has [MU ] = 0. On the other hand, we have [MT ](s) = 0 for every point s
in T = S \U . By Noetherian descending induction it follows that [MT ] = 0. Thus
[M ] = 0, and ϕ= 0. !
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1.1.9. Exponential sums. The class θ of a pair (X,f) in KExpVark can be
thought of as an analogue of the exponential sum

∑

x∈X(k)

ψ(f(x)),

when k is a finite field and ψ : k→C∗ is a fixed non-trivial additive character. This
justifies the notation

∑
x∈X ψ(f(x)) for the class [X,f ] in KExpVark.

More generally, let S be a k-variety, let θ ∈ ExpMS and let u : S → A1 be a
morphism. We define

∑

s∈S
θ(s)ψ(u(s)) = θ · [S,u]S ,(1.1.10)

the product being taken in ExpMS , and its result being viewed in ExpMk. Let us
make this definition explicit, assuming that θ = [X,f ]S , where X is a S-variety
and f : X → A1 is a morphism; in this case,
∑

s∈S
θ(s)ψ(u(s)) = [X,f ]S [S,u]S = [X×S S,f ◦pr1 +u◦pr2]S = [X,f +u◦g].

To support this notation, observe that when k is a finite field and s∈S(k), denoting
by g the morphisms X→ S, one has

θ(s) =
∑

x∈X(k)
g(x)=s

ψ(f(x)),

so that

∑

s∈S(k)

θ(s)ψ(u(s)) =
∑

s∈S(k)

⎛

⎜⎜⎝
∑

x∈X(k)
g(x)=s

ψ(f(x))

⎞

⎟⎟⎠ψ(u(s))

=
∑

x∈X(k)

ψ
(
f(x)+u(g(x))

)
.

Let u : S→ T be a morphism of k-varieties. This notation of “summation over
rational points” is consistent with the functional interpretation of the morphism
u! : KExpVarS → KExpVarT . Indeed, for every ϕ ∈ KExpVarS and every t ∈ T ,
one has

u!ϕ(t) =
∑

s∈u−1(t)

ϕ(s),

with notation similar to (1.1.10).
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LEMMA 1.1.11. Let V be a finite dimensional k-vector space, let f be a linear
form on V . Then,

∑

x∈V
ψ(f(x)) =

{
Ldim(V ) if f = 0;
0 otherwise.

Proof. By definition, the left-hand side is the class of (V,f) in KExpVark. This
equals [V ] =Ldim(V ) if f = 0. Otherwise, let a∈ V be such that f(a) = 1 and let us
consider the action of the additive group Ga on V given by (t,v) -→ v+ ta. Since
f(v+ ta) = f(v)+ t, it follows from Lemma 1.1.4 that [V,f ] = 0. !

1.2. Local Fourier transforms.

1.2.1. Schwartz-Bruhat functions of given level and their integral. Let
F ◦ be a complete discrete valuation ring, with field of fractions F and perfect
residue field k; we write ord : F → Z for the (normalized) valuation on F . We as-
sume that F and k have the same characteristic; let us fix a section of the morphism
F ◦ → k, so that F ◦ is a k-algebra. Every local parameter in F , i.e., every element
t ∈ F of valuation 1, then gives rise to isomorphisms k[[t]]≃ F ◦ and k((t))≃ F .

Fix such a local parameter t. For every two integers M ≤ N , we can identify
the quotient set {x; ord(x) ≥M}/{x; ord(x) ≥ N} = tMF ◦/tNF ◦ of the ele-
ments x in F satisfying ord(x) ≥M , modulo those satisfying ord(x) ≥ N , with
the k-rational points of the affine space A(M,N)

k = AN−M
k , via the formula

x=
N−1∑

j=M

xit
i (mod tN ) -−→ (xM , . . . ,xN−1).

For every integer n ≥ 0, let S (Fn;M,N) be the ring ExpM
An(M,N)
k

; its el-

ements are called motivic Schwartz-Bruhat function of level (M,N) on Fn. We
define the integral of such a function ϕ ∈S (Fn;M,N) by the formula

∫

Fn
ϕ(x)dx = L−nN

∑

x∈An(M,N)
k

ϕ(x).(1.2.2)

1.2.3. Compatibilities. The natural injection tMF ◦/tNF ◦→tM−1F ◦/tNF ◦

is turned into a closed immersion

ι : A(M,N)
k −→ A(M−1,N)

k , (xM , . . . ,xN−1) -−→ (0,xM , . . . ,xN−1).

This gives rise to ring morphisms ι∗ : S (Fn;M − 1,N) → S (Fn;M,N) (re-
striction) and ι∗ : S (Fn;M,N) → S (Fn;M − 1,N) (extension by zero). One
has ι∗ι∗ = Id.
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Similarly, the natural projection tMF ◦/tN+1F ◦ → tMF ◦/tNF ◦ induces a
morphism

π : A(M,N+1)
k −→ A(M,N)

k , (xM , . . . ,xN ) -−→ (xM , . . . ,xN−1)

which is a trivial fibration with fiber A1
k. This gives rise to a ring mor-

phism π∗ : S (Fn;M,N) → S (Fn;M,N + 1) and to a group morphism
π∗ : S (Fn;M,N + 1) → S (Fn;M,N) (integration over the fiber). One has
π∗π∗(ϕ) = Lnϕ for every ϕ ∈S (Fn;M,N).

The space of motivic smooth functions on Fn is then defined by

D(Fn) = lim←−
M,ι∗

lim−→
N,π∗

S (Fn;M,N),(1.2.4)

while the space of motivic Schwartz-Bruhat functions on Fn is defined by

S (Fn) = lim−→
M,ι∗

lim−→
N,π∗

S (Fn;M,N).(1.2.5)

These spaces have a ring structure, but S (Fn) has no unit element; the natural
injection S (Fn)⊂ D(Fn) is a morphism of rings. We denote by 1(F ◦)n the class
in S (Fn) of the unit element of S (Fn;0,0).

Observe that ι∗ commutes with the sum over points, while π∗ only commutes
up to multiplication by Ln. Consequently, the integral of a Schwartz-Bruhat func-
tion does not depend on the choice of a level (M,N) at which it is defined. This
gives rise to an additive map S (Fn)→ ExpMk, denoted ϕ -→

∫
Fnϕ. For every

subset W of Fn whose characteristic function 1W is a motivic Schwartz-Bruhat
function, one also writes

∫
W ϕ=

∫
Fnϕ1W .

1.2.6. The Fourier kernel. Let r : F → k a non-zero k-linear map which
vanishes on taF ◦ for some integer a. We define the conductor ν of r as the smallest
integer a such that r vanishes on taF ◦.

In the sequel, our main source of such a linear form will be given by residues
of differential forms. Assume that F is the completion at a closed point s of a
function field in one variable over k, and let ress : ΩF/k→ k be the residue map at
the closed point s [20, p. 154]. Then fix some non-zero meromorphic differential
form ω ∈ ΩF/k and set rs : F → k, x -→ ress(xω). In this case, the conductor of
r is equal to the order of the pole of ω (Theorem 2 of [20]; see also Section 1.3.7
below).

The kernel of the Fourier transform is the element of D(F 2) informally written

(x,y) -−→ ψ(r(xy)) = e(xy).

Let us make explicit this definition.
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Let x ∈ F , let us write x =
∑

nxnt
n, where xn = 0 for n < ord(x). One has

r(x) =
∑ν−1

n=ord(x)xnr(t
n). Consequently, restricted to the subset of F consisting

of elements x such that ord(x) ≤M , r can be interpreted as a linear morphism
r(M,N) : A(M,N)

k → A1
k, for every integer N such that N ≥ ν.

Let N ′′ = M +M ′+min(N −M,N ′ −M ′) = min(M ′+N,M +N ′). The
product map F ×F → F gives rise to a morphism

A(M,N)
k ×A(M ′,N ′)

k −→ A(M+M ′,N ′′)
k .

Let us assume that N ′′ ≥ ν. Composing with r(M+M ′,N ′′), we obtain a morphism

A(M,N)
k ×A(M ′,N ′)

k −→ A1
k,

hence an element of ExpM
A(M,N)
k ×A(M ′,N ′)

k

, whose class in D(F 2) is our kernel.

1.2.7. Fourier transformation. The Fourier transform of a Schwartz-
Bruhat function ϕ ∈S (F ;M,N) is defined formally as

Fϕ(y) =

∫

F
ϕ(x)e(xy)dx.

More generally, we write ⟨x,y⟩=
∑n

j=1xjyj for the self-pairing of Fn and define
the Fourier transform of a Schwartz-Bruhat function ϕ ∈S (Fn;M,N) by

Fϕ(y) =

∫

Fn
ϕ(x)e(⟨x,y⟩)dx,

where, we recall, e(·) is a short-hand notation for ψ(r(·)).
Observe that ϕ -→Fϕ is ExpMk-linear.
Let us make the definition explicit, assuming that n= 1, ϕ is of the form [U,f ],

where (U,g) is a A(M,N)
k -variety and f : U → A1 is a morphism. Then, Fϕ is

represented by

L−N
[
U ×g A(M,N)

k ×A(M ′,N ′)
k ,f(u)+ r(xy)

]

in the Grothendieck group ExpM
A(M ′,N ′)
k

, where we define U×g A(M,N)
k ×A(M ′,N ′)

k

as the fiber product of the A(M,N)
k -varieties (U,g) and (A(M,N)

k ×A(M ′,N ′)
k ,pr1),

viewed as an A(M ′,N ′)
k -variety, the structural morphism

U ×g A(M,N)
k ×A(M ′,N ′)

k −→ A(M ′,N ′)
k

being the projection to the third factor. For this to make sense, we only need to take
M ′ ≤ ν−N and N ′ ≥ ν−M .
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PROPOSITION 1.2.8. Let ν be the conductor of r. Then for every ϕ ∈
S (Fn;M,N), one has Fϕ ∈S (Fn;ν−N,ν−M).

THEOREM 1.2.9. (Fourier inversion) Let ν be the conductor of r. Then for
every ϕ ∈S (Fn;M,N), one has FFϕ(x) = L−nνϕ(−x).

Proof. For simplicity of notation, we assume that n = 1. We may assume that
ϕ is represented by [U,f ] as above. To compute FFϕ, we may set (M ′,N ′) =
(ν−N,ν−M) and (M ′′,N ′′) = (M,N), so that FFϕ is represented by

L−N−N
′
[
U ×g A(M,N)

k ×A(M ′,N ′)
k ×A(M ′′,N ′′)

k ,f(u)+ r(xy)+ r(yz)
]
.

The contribution of the part where x+z ̸= 0 is zero, because of Lemma 1.1.4. The
part where x+ z = 0 is equal to

L−N−N
′
[
U ×g A(M ′,N ′)

k ×A(M ′′,N ′′)
k ,f(u)

]
= L−N−M

′
[
U ×g A(M ′′,N ′′)

k ,f(u)
]

= L−ν [U,f ],

where U is viewed as an A(M ′′,N ′′)
k -variety via the morphism −g. This proves the

theorem. !

1.2.10. This theory is extended in a straightforward way to products of local
fields. Let (Fs)s∈S be a finite family of fields as above, fields of fractions of com-
plete discrete valuation rings F ◦s , with local parameters ts and residue fields ks.
Assume that for each s, ks is a finite extension of k. In practice, one will start from
the function field F of a (projective, smooth, geometrically connected) k-curve C ,
S will be a set of closed points of C , and for every s ∈ S, the field Fs will be the
completion of F at the point s.

For every s ∈ S, write Resks/k for the functor of Weil restriction of scalars;

one has Resks/k(A
m
ks
) ≃ Am[ks:k]

k . For every family (Ms,Ns)s∈S of integers such
that Ms ≤Ns, one then sets

V (n(Ms,Ns)) =
∏

s∈S
Resks/kAn(Ns−Ms)

ks
,

and defines the space of Schwartz-Bruhat functions of levels (Ms,Ns) on
∏

s∈S F
n
s

by

S

(
∏

s∈S
Fn
s ;(Ms,Ns)

)

= ExpMV (n(Ms,Ns)).(1.2.11)
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One then sets

S

(
∏

s∈S
Fn
s

)

= lim−→
(Ms,ι∗)

lim−→
(Ns,π∗)

S

(
∏

s∈S
Fn
s ;(Ms,Ns)

)

.(1.2.12)

There is a natural morphism of rings

⊗

s∈S
S (Fn

s )−→S

(
∏

s∈S
Fn
s

)
.

Contrary to the classical arithmetic case, it is not surjective in general.
The definition of the integral extends to a linear map S (

∏
s∈S F

n
s )→ ExpMk.

Let (rs : Fs → k) be a family of non-trivial k-linearmaps, let νs be the con-
ductor of rs. Then the definition of the Fourier Transform F extends naturally to
S (
∏

s∈S F
n
s ). For every ϕ ∈S (

∏
s∈S F

n
s ), one sets

Fϕ((ys)) =

∫

∏
Fn
s

ϕ(x)e
(∑

⟨xs,ys⟩
)∏

dxs.

Fourier inversion still holds, with the same proof:

FFϕ(x) = L−n
∑

[ks:k]νsϕ(−x).

1.3. Global Fourier transforms.

1.3.1. Let k be a perfect field, let C be a projective, geometrically connected,
smooth curve over k, and let F = k(C) be its field of functions. We fix a non-zero
meromorphic differential form ω ∈ Ω1

F/k.
One can interpret the field F = k(C) as the k-points of an ind-k-variety. The

simplest way to do so consists maybe in considering the family of all Riemann-
Roch spaces L (D) = H0(C,O(D)), indexed by effective divisors D on C . Con-
cretely, L (D) is the set of non-zero rational functions f on C such that div(f)+
D≥ 0, together with the 0 function. It is a finite dimensional k-vector space and we
view it as a k-variety. The natural inclusions from L (D) to L (D′), where D and
D′ are effective divisors such that D′ −D is effective, give this family the structure
of an inductive system, the limit of which is interpreted as k(C).

1.3.2. Global Schwartz-Bruhat functions. For every closed point s ∈ C ,
write ords for the corresponding normalized valuation on F , Fs for the its com-
pletion, and F ◦s for the valuation ring of Fs; we also fix a local parameter ts at
s.

The adele ring AF of F is the subring of
∏

s∈C Fs consisting of families (xs)
such that xs ∈ F ◦s for all but finitely many s. (By abuse of notation, the condition
“s ∈C” means that s belongs to the set of closed points of C .)
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In the classical arithmetic setting, the ring AF has a locally compact totally
disconnected topology, and the space of Schwartz-Bruhat functions on An

F is the
ring of real valued locally constant with compact support on An

F .
We now describe its geometric analogue S (An

F ).
Let S and S′ be finite sets of closed points of C such that S ⊂ S′. There is a

natural morphism of rings:

jS
′

S : S

(
∏

s∈S
Fn
s

)
−→S

(
∏

s∈S ′
Fn
s

)
, ϕ -−→ ϕ⊗

⊗

s∈S ′\S

1(F ◦s )n .

The ring S (An
F ) of global motivic Schwartz-Bruhat function on An

F is defined by

S
(
An
F

)
= lim−→

S⊂C,jS
′

S

S

(
∏

s∈S
Fn
s

)
.

It is important to observe that the global motivic Schwartz-Bruhat functions
on An

F induce the characteristic function of (F ◦s )
n at all but finitely many closed

points s ∈ C . This is a notable difference with the arithmetic setting.

1.3.3. Simple functions. In the classical arithmetic case, simple functions
are characteristic functions of a ball, or of products of balls. Let us describe their
analogues in the motivic setting. Let S be a finite subset of closed points of C ,
let a = (as)s∈S ∈

∏
s∈S Fs, let (Ms,Ns)s∈S be a family of pairs of integers such

that ord(as) ≥Ms for every s ∈ S. Let W =
∏

s∈S Resks/kAn(Ms,Ns)
ks

, let Wa =
Spec(k) and let Wa→W be the canonical map induced, for every s∈ S, by the ts-
adic expansion of as. The motivic function on W associated with the pair (Wa→
W,0) is called a simple function. The corresponding Schwartz-Bruhat function on∏

s∈S F
n
s represents the characteristic function of the product of the balls of centers

as and radius Ns in Fn
s .

More generally, let us consider a k-variety Z and a morphism u= (us) : Z→
W ; let ϕ ∈ ExpMW×kZ be the motivic function associated with (Z,0), where
Z is considered as a W ×k Z-variety through the morphism u× IdZ . For each
z ∈ Z , we write ϕz for the motivic function on Wk(z) deduced from ϕ. When
z ∈ Z(k), the corresponding Schwartz-Bruhat function on

∏
s∈SF

n
s represents the

characteristic function of the product of the polydiscs of radius Ns and centers
us(z). Consequently, we call ϕ a family of simple functions parameterized by the
k-variety Z .

Let χ ∈ ExpMZ be a motivic function on Z , represented by [X
g−→ Z,f ]Z ,

where X is a Z-variety and f : X → A1 is a morphism. We then define the
Schwartz-Bruhat function

∑
z∈Z χ(z)ϕz on An

F as the one represented by the
pair [X

u◦g−−→W,f ]. By linearity, this definition is extended to every element χ of
ExpMZ .
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LEMMA 1.3.4. Any global Schwartz-Bruhat function on An
F can be written in

this way.

Proof. Let Φ be a global Schwartz-Bruhat function on An
F , represented by a

pair [Z,f ], where Z is a variety over W =
∏

s Resks/kAn(Ms,Ns)
ks

, for some finite
set S of closed points of C and integers (Ms,Ns), and f : Z → A1. Let ϕ be the

family of simple functions parameterized by W given by the pair (W Id−→W,0).
One checks readily that Φ=

∑
w∈W Φϕw. !

1.3.5. Summation over rational points. Letϕ be a global Schwartz-Bruhat
function on An

F , represented by a class ϕS in ExpMk
(∏

s∈S Resks/kAn(Ms,Ns)
ks

)
,

for some finite set S of closed points of C and some family (Ms,Ns)s∈S .
Consider the divisor D = −

∑
Ms[s] on C . For every s ∈ S, the natural em-

bedding of F = k(C) into the field Fs maps L (D) into tMsF ◦s . This gives rise
to a morphism of algebraic varieties α : L (D)n →

(∏
s∈S Resks/kA(Ms,Ns)

k

)n.
We then define

∑
x∈Fnϕ(x) as the image in ExpMk of the element α∗ϕS of

ExpML (D)n . It does not depend on the choice of the set S nor on the choice of the
integers (Ms,Ns) and of the class ϕS .

Let us give a more explicit formula, assuming that ϕS is of the form [X,f ],
where W =

∏
s∈S Resks/kAn(Ms,Ns)

ks
, X is a W -variety and f : X → A1 is a mor-

phism. In that case, one has
∑

x∈Fn

ϕ(x) = [L (D)n×W X,f ◦pr2].(1.3.6)

1.3.7. Reminders on residues and duality for curves. We need to recall a
few results concerning residues, duality and the Riemann-Roch theorem on smooth
curves.

We fix a non-zero meromorphic differential form ω ∈ΩF/k. Let νs be the order
of the pole, or minus the order of the zero, of ω at s, and let ν be the divisor

∑
νs[s]

on C . One has deg(ν) = 2−2g, where g is the genus of C .
For every closed point s ∈ C , we define a map rs : Fs → k by rs(x) =

resC,s(xω), where resC,s : ΩF/k → k is Tate’s residue [20] on the curve C at s;
since the field k is perfect, it is non-zero and its conductor is equal to νs. This
follows from Theorem 2 of [20] if s is a rational point of the curve C; in the
general case, one checks that

resC,s(ω) = Trk(s)/k(resCk(s),s(ω)),

where we indicated the curve as in index.
Let D be a divisor on C . Let L (D) be the set of rational functions y ∈ F×

such that div(y)+D ≥ 0 to which we adjoin 0; this is a finite dimensional k-vector
space.
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Let Ω(D) be the set of meromorphic forms α ∈ ΩF/k such that div(α) ≥ D

(together with α = 0). The map y -→ yω from F to Ω1
F/k induces an isomorphism

L (div(ω)−D)→ Ω(D).
We embed F diagonally in AF . For every divisor D, let AF (D) be the subspace

of AF consisting of families (xs) such that div(xs)+ords(D)≥ 0 for every closed
point s ∈ C . There is an isomorphism of k-vector spaces (see [19, Chapitre II,
Section 5, proposition 3]; see also [20, p. 157])

H1(L (D))≃ AF/(AF (D)+F ).

According to Serre’s duality theorem (see [19, Chapitre II, Section 8, théorème 2];
see also [20, Theorem 5]), the morphism

θ : ΩF/k −→ Hom(AF ,k), α -−→
(
(xs) -−→

∑

s

ress(xsα)

)

identifies Ω(D) with the orthogonal of AF (D)+F in Hom(AF ,k), i.e., with the
dual of H1(L (D)). This contains the theorem of residues according to which

∑

s∈C
ress(xω) = 0

for every x ∈ F .

1.3.8. Global Fourier transformation. Observe that if s is any closed
point of C such that νs = 0, then 1F ◦s is its own Fourier transform. Consequently,
we may define the Fourier transform Fϕ of every global Schwartz-Bruhat func-
tion ϕ ∈ S (An

F ) as the image in S (An
F ) of FϕS , where S is any finite set of

places such that νs = 0 for s ̸∈ S, and ϕS ∈ S (
∏

s∈S F
n
s ) is a representative of

ϕ. By construction, Fϕ is itself a global Schwartz-Bruhat function on the “dual”
space An

F .

THEOREM 1.3.9. (Fourier inversion formula) For every ϕ ∈S (An
F ), one has

FFϕ(x) = Ln(2g−2)ϕ(−x).

Proof. When ϕ is a simple function, this is nothing but the Fourier inversion
formula 1.2.9. The general case follows from Lemma 1.3.4. Indeed, if ϕ is written
as a sum of simple functions

∑
ϕ(z)ψz , it follows from the definitions that Fϕ=∑

ϕ(z)Fψz , so that

FFϕ(x) =
∑

ϕ(z)FFψz(x) =
∑

ϕ(z)Ln(2g−2)ψz(−x)

= Ln(2g−2)ϕ(−x). !
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THEOREM 1.3.10. (Motivic Poisson formula) Let ϕ ∈S (An
F ). Then,

∑

x∈Fn

ϕ(x) = L(1−g)n
∑

y∈Fn

Fϕ(y).

Proof. For simplicity of notation, we assume that n= 1. By Lemma 1.3.4, we
may also assume that ϕ is a simple function ⊗s∈Sϕs, where for each s ∈ S, ϕs is
the characteristic function of the ball of center as ∈ Fs and radius Ns. Let D be the
divisor

∑
s∈SNss on C .

For every s ∈ S, Fϕs is a Schwartz-Bruhat function on Fs and

Fϕ(ys) =

{
ψ
(
ress
(
asysω

))
L−Ns if ords(ys)+ords(D)≥ 0;

0 otherwise.

Then Fϕ is a global Schwartz-Bruhat function on AF , represented by
⊗

s∈S Fϕs

and

Fϕ(y) =

⎧
⎪⎨

⎪⎩

ψ

(
∑

s∈S
ress
(
asysω

)
)

L−deg(D) if div(yω)+D ≥ 0;

0 otherwise.

Recall that the map y -→ yω identifies L (div(ω) + D) with Ω(−D). Let
f : L (div(ω) +D) → k be the linear map y -→ ⟨θ(yω),(as)⟩; it is identically
zero if and only if (as) belongs to the orthogonal Ω(−D)⊥ of Ω(−D) with respect
to the Serre duality pairing. By Lemma 1.1.11, we thus have

∑

y∈F
Fϕ(y) = L−deg(D)

∑

y∈L (div(ω)+D)

ψ(f(y))

=

{
L−deg(D)+dimL (div(ω)+D) if (as) ∈ Ω(−D)⊥,

0 otherwise.

Moreover, the Riemann-Roch formula asserts that

dimL (−D) = dimH1(C,−D)−deg(D)+1− g

= dimΩ(−D)−deg(D)+1− g

= dimL (div(ω)+D)−deg(D)+1− g.

Consequently,

L1−g
∑

y∈F
Fϕ(y) =

{
LdimL (−D) if (as) ∈Ω(−D)⊥,

0 otherwise.
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Let us now compute the left-hand side of the Poisson formula. In the case
where

(as) ∈ Ω(−D)⊥ = AF (−D)+F,

there exists a ∈ F such that ords(a−as)≥Ns for all s. Then,

ϕ(x) =

{
1 if x−a ∈L (−D),

0 otherwise

so that
∑

x∈F
ϕ(x) =

∑

x∈F
ϕ(x−a) =

∑

x∈L (−D)

1 = LdimL (−D).

In the other case, there does not exist any a ∈ k(C) such that ords(a− as) ≥ Ns

for all s. Then, ϕ(x) = 0 for all x ∈ F and
∑

x∈F ϕ(x) = 0. In both cases, this
concludes the proof of the motivic Poisson formula. !

Remark 1.3.11. By Fourier inversion, we have FFϕ(x) =L−ndeg(ν)ϕ(−x)=
L(2−2g)nϕ(−x). Consequently, if we apply the Poisson formula to Fϕ, we obtain

∑

y∈Fn

Fϕ(y) = L(1−g)n
∑

x∈Fn

FFϕ(x) = L(g−1)n
∑

x∈Fn

ϕ(x),

as expected.

2. Further preliminaries.

2.1. Motivic invariants. Let k be a field. For every m≥ 0, let KVar≤mk be
the subgroup of KVark generated by classes of varieties of dimension ≤m. If x ∈
KVar≤mk and y ∈ KVar≤nk , then xy ∈ KVar≤m+n

k . Let (M≤m
k )m∈Z be the similar

filtration on Mk; explicitly, M≤m
k is generated by fractions [X][Y ]−1 where X is

a k-variety, Y is a product of varieties of the form A1, Aa \ {0} (for a ≥ 1), and
dim(X)− dim(Y ) ≤m. For every class x ∈Mk, let dim(x) ∈ Z∪ {−∞} be the
infimum of the integers m ∈ Z such that x ∈M≤m

k . For every x,y ∈Mk, one has
dim(x+ y) ≤ max(dim(x),dim(y)) and dim(xy) ≤ dim(x)+ dim(y); moreover,
dim(xLn) = dim(x)+n for every n ∈ Z.

Assume that k is algebraically closed. For every k-variety X, we denote by
Hp(X) (resp. Hp

c(X)) its pth singular cohomology group (resp. with compact sup-
port) and Q-coefficients (if k = C), or its pth étale cohomology group (resp. with
proper support) and Qℓ-coefficients (for some fixed prime number ℓ distinct from
the characteristic of k). There is a unique ring morphism " from KVark to the poly-
nomial ring Z[t] such that for every variety X, "([X]) is the Poincaré polynomial
of X. Its definition relies on the weight filtration on the cohomology groups with
compact support of X. If k has characteristic zero (which will be the case below),
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the morphism " is characterized by its values on projective smooth varieties: for
every such X, one has

"([X]) ="X(t) =

2dim(X)∑

p=0

dim(Hp(X))tp.

This implies that for every variety X, the leading term of "([X]) is given by
κ(X)t2dim(X), where κ(X) is the number of irreducible components of X of di-
mension dim(X).

One has "(L) = "([P1])− 1 = t2; for every a ≥ 1, "(La− 1) = t2a− 1 =
t2a(1− t−2a) is invertible in the ring Z[[t−1]][t], with inverse

∑

m≥1

t−2ma.

Consequently, the morphism " extends uniquely to a ring morphism from Mk to
the ring Z[[t−1]][t]. For every element x ∈Mk, one has

dim(x)≥ 1
2

deg("(x)).

LEMMA 2.1.1. Let A be a ring and let P1, . . . ,Pr ∈A[T ] be polynomials with
coefficients in A. Assume that for every i, the leading coefficient of Pi is a unit
in A, and that for every distinct i,j, the resultant of Pi and Pj is a unit in A.
Then, for every polynomial P ∈A[T ] and every family (n1, . . . ,nr) of nonnegative
integers, there exists a unique family (Qi,j) of polynomials in A[T ], indexed by
pairs of integers (i,j) such that 1≤ i≤ r and 1≤ j ≤ ni, and a unique polynomial
Q ∈A[T ] such that deg(Qi,j)≤ deg(Pi)−1 for all i,j and

P (T ) =Q(T )
r∏

i=1

Pi(T )
ni +

r∑

i=1

ni∑

j=1

Qi,j(T )Pi(T )
ni−j

∏

k ̸=i

Pk(T )
nk .

Since the leading coefficient of Pi is a unit, Pi is not a zero divisor in A[T ].
Observe that the last equality is a decomposition into partial fractions

P (T )∏r
i=1Pi(T )ni

=Q(T )+
r∑

i=1

ni∑

j=1

Qi,j(T )

Pi(T )j

in the total ring of fractions of A[T ].
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Proof. First assume that r = 1. In this case, the desired assertion follows from
considering the Euclidean divisions by P1 of the polynomial P , of its quotient, etc.

P (T ) =Q1(T )P1(T )+R1(T )

=Q2(T )P1(T )
2 +R2(T )P1(T )+R1(T )

= · · ·
=Qn1(T )P1(T )

n1 +Rn1(T )P1(T )
n1−1 + · · ·+R1(T ),

where Q1, . . . ,Qn1 ∈ A[T ] and R1, . . . ,Rn1 are polynomials of degrees ≤
deg(P1)−1.

Now assume r≥ 2. Let i,j be distinct integers in {1, . . . ,r}. By the assumption
and basic properties of the resultant, there exist polynomials U,V ∈A[T ] such that
1 = UPi + V Pj . Consequently, the ideals (Pi) and (Pj) generate the unit ideal
of A[T ]. By induction on n1, . . . ,nr, it follows that the ideals (

∏
k ̸=iP

nk
k ), for 1≤

i≤ r, are comaximal in A[T ]. Therefore, there exist polynomials U1, . . . ,Ur ∈A[T ]
such that

1 =
r∑

i=1

Ui(T )
∏

k ̸=i

Pk(T )
nk .

By the case r = 1 applied to the polynomials Ui(T ) and Pi(T ), we obtain the
desired decomposition.

Uniqueness is left to the reader. !

LEMMA 2.1.2. Let a,a′ be nonnegative integers and b,b′ be positive integers.
Let d= gcd(b,b′). Then,

Res(1−LaT b,1−La′T b′) = (−1)b
′
Lab′(1−L(a′b−ab′)/d)d.

In particular, this resultant is a unit in Mk if (a,b) and (a′, b′) are not proportional.

Proof. It is sufficient to prove this formula when the ring Mk is replaced by the
ring A = C[L±1/bb′] of Laurent polynomials in an indeterminate L1/bb′ . Then, the
polynomial 1−LaT b is split in A; this leads to the explicit elementary computation

Res(1−LaT b,1−La′T b′) = (−La)b
′ ∏

ζb=1

(1− ζb′La′−ab′/b)

= (−1)b
′
Lab′

∏

ξb/d=1

(1− ξLa′−ab′/b)d

= (−1)b
′
Lab′(1−L(a′−ab′/b)b/d)d

= (−1)b
′
Lab′(1−L(a′b−ab′)/d)d. !
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PROPOSITION 2.1.3. Let Z(T ) =
∑

n∈Z[Mn]T n ∈KVar+k [[T ]][T
−1] be a Lau-

rent series with effective coefficients in KVark.
Let a and d be positive integers and let P (T ) = (1−LaT a)dZ(T ). Assume

that P (T ) belongs to Mk{T}† and that P (L−1) is an effective non-zero element
of Mk. Then, for every p ∈ {0, . . . ,a−1}, one of the following cases occur when n
tends to infinity in the congruence class of p modulo a:

(1) Either dim(Mn) = o(n),
(2) Or dim(Mn)−n has a finite limit and log(κ(Mn))

log(n) converges to some integer
in {0, . . . ,d−1}.
Moreover, the second case happens at least once.

Proof. Without lack of generality, we assume that Z(T ) is a power series. Set
a1 = b1 = a and d1 = d. By assumption, there exist a finite family (ai, bi)2≤i≤r of
integers such that 0≤ ai < bi for all i≥ 2, and integers di such that

Q(T ) = Z(T )
r∏

i=1

(1−LaiT bi)di

is a polynomial in Mk[T ]. Using the fact that 1−LmT n divides 1−LmpT np for
every positive integer p, we may assume that no two pairs (ai, bi) and (aj , bj) are
proportional.

For every i ∈ {1, . . . ,r}, set Pi(T ) = 1−LaiT bi ; its leading coefficient is in-
vertible in Mk. Moreover, for i and j such that 1 ≤ i < j ≤ r, it follows from
Lemma 2.1.2 that the resultant of Pi and Pj is a unit in Mk. Thus, by decompo-
sition in partial fractions (Lemma 2.1.1), there exist polynomials Q0 and Qi,j in
Mk[T ] such that

Z(T ) =Q0(T )+
r∑

i=1

di∑

j=1

Qi,j(T )

(1−LaiT bi)j
(2.1.4)

and deg(Qi,j)≤ bi−1 for every i ∈ {1, . . . ,r}.
For i ∈ {1, . . . ,r} and j ∈ {1, . . . ,di}, write Qi,j =

∑bi−1
n=0 qi,j,nT n, for some

elements qi,j,n ∈Mk. This leads to the following power expansion in Mk[[T ]]:

Z(T ) =Q0(T )+
r∑

i=1

di∑

j=1

bi−1∑

n=0

qi,j,nT
n

∞∑

m=0

(
j+m−1
j−1

)
LaimT bim

=Q0(T )+
∞∑

n=0

⎛

⎝
r∑

i=1

di∑

j=1

(
j+ ⌊n/bi⌋−1

j−1

)
qi,j,n mod biL

ai⌊n/bi⌋

⎞

⎠T n,
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so that for every n > deg(Q0), one has

[Mn] =
r∑

i=1

di∑

j=1

(
j+ ⌊n/bi⌋−1

j−1

)
qi,j,n mod biL

ai⌊n/bi⌋.(2.1.5)

For every i,j, define

[Mn]
i,j =

(
j+ ⌊n/bi⌋−1

j−1

)
qi,j,n mod biL

ai⌊n/bi⌋(2.1.6)

and

[Mn]
i =

di∑

j=1

[Mn]
i,j ,(2.1.7)

so that

[Mn] =
r∑

i=1

[Mn]
i.(2.1.8)

It follows directly from the definitions that for every i ≥ 1 and every n ≥ 1,
dim([Mn]i) ≤ (ai/bi)n+O(1). Since ai ≤ bi for all i, this implies dim([Mn]) ≤
n+ O(1). We will now show that when n belongs to appropriate congruence
classes modulo a, one has the equality dim([Mn]1) = n+O(1). Since ai < bi for
i ≥ 2 and a1 = b1 = a, this will imply the relations dim([Mn]) = n+O(1) and
κ([Mn]) = κ([Mn]1) (for n large enough in this congruence class).

Let n be any integer > deg(Q0), let n = am+n be the Euclidean division of
n by a. It follows from the definition of [Mn]1 that

[Mn]
1L−n =

d∑

j=1

(
j+m−1
j−1

)
q1,j,nLam−n =

d∑

j=1

(
j+m−1
j−1

)
q1,j,nL−n.

It follows from Equation (2.1.4) that

P (L−1) =
[
Z(T )(1−LaT a)d

]

T=L−1
=Q1,d(L−1) =

a−1∑

p=0

q1,d,pL−p.

Since P (L−1) is effective and non-zero, its Poincaré polynomial "(P (L−1)) is
non-zero. Consequently, there must exist an integer p ∈ {0, . . . ,a− 1} such that
dim(q1,d,p) ̸=−∞. We now restrict the analysis to integers n congruent to p modulo
a. Set

dp = max
1≤j≤d

dim(q1,j,p)−p
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and let jp be the largest integer j such that dp= dim(q1,j,p)−p. Looking at Poincaré
polynomials and using that for j ̸= jp, either dim(q1,j,p) < dim(q1,jp,p), or the bi-
nomial coefficient

(jp+m−1
jp−1

)
goes to infinity faster than

(j+m−1
j−1

)
when m→∞, we

get the following asymptotic expansions

dim([Mn]
1L−n) = dp and κ([Mn])∼

(
jp+m−1
jp−1

)
κ(q1,jp,p)

for n large enough and congruent to p modulo a. In particular,

dim([Mn]) = n+O(1) and
log(κ([Mn]))

log(n)
−→ jp−1.

This concludes the proof of the proposition. !

2.2. Existence of the moduli spaces. In this section, we prove a general
proposition that asserts existence of moduli schemes of sections of bounded height
in a general context.

Let k be a field, let C be an irreducible projective smooth k-curve; let η be its
generic point and let F = k(C) be the function field of C . Let C0 be a non-empty
Zariski open subset of C .

Let X be an irreducible projective k-variety together with a surjective flat mor-
phism π : X→C . Let G be a Zariski open subset of XF , assumed to be affine. Let
U be a Zariski open subset of X such that G⊂ UF and π(U)⊃ C0.

Let (Dα)α∈A be a finite family of Cartier divisors on X such that, for each
α, the restriction of Dα to XF is effective and XF \G =

⋃
|Dα|F . For each α,

we also let Lα be the line bundle OX(Dα). Finally, we assume that there exists a
linear combination with positive coefficients L =

∑
λαLα, as well as a Cartier

Q-divisor D on X such that DF is effective, supported by (X \G)F and such that
L (−D) is ample.

Remark 2.2.1. Let L be a line bundle on X and let f ∈ Γ(XF ,L ) be a non-
zero global section. Let us show that there exists an integer m such that for every
section σ : C→X of π satisfying σ(η) /∈ div(f), one has deg(σ∗L )≥−m.

There exists an effective Cartier divisor E on C such that f extends to a global
section of L ⊗π∗(E). Indeed, viewing f as a meromorphic section of L on X,
let us decompose its divisor as the sum H+V of its horizontal (i.e., faithfully flat
over C) and vertical (mapping to a point) irreducible components. By construction,
the components of H are the Zariski closures of the components of the divisor of
f , viewed as a section of L on XF ; consequently, H is effective by hypothesis.
Still by definition, V is a linear combination of irreducible components of closed
fibers. Consequently, there exists an effective divisor E on C such that V ≥−π∗E;
then f extends to a global section of L ⊗π∗(E).
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In particular, for every section σ : C →X of π satisfying σ(η) /∈ div(f), one
has deg(σ∗L )≥−deg(σ∗π∗E) =−deg(E).

PROPOSITION 2.2.2. For every n in ZA , there is a quasi-projective k-scheme
MG,n parameterizing sections σ : C→X of π satisfying the following properties:

• under σ, the generic point η of C is mapped to a point of G;
• for each α ∈A , degC σ

∗Lα = nα.
In that scheme, the sections σ such that σ(C0) ⊂ U constitute a constructible

set MU,n. Moreover, there exists n0 ∈ Z such that MU,n is empty if nα < n0 for
some α ∈A .

Proof. As a standard consequence of the existence of Hilbert schemes, there
exists a k-scheme MX,n which parameterizes sections σ : C → X such that
degC σ

∗Lα = nα for each α. Indeed, the functor of sections σ : C →X is repre-
sented by the open subscheme of the Hilbert scheme HilbX which parameterizes
the closed subschemes of X which are mapped isomorphically by π. By flatness,
each of the condition degC σ

∗Lα = nα is open and closed in the Hilbert scheme.
The condition that the generic point of C is mapped to a point of G means that

σ(C) ̸⊂ |X \G|, while the condition σ(C)⊂ |X \G| defines an closed subscheme
of MX,n. Let MG,n be its complement. By construction, this scheme represents the
given functor, and we have to prove that it is quasi-projective.

First of all, since the restriction to XF of the divisor Dα is effective and disjoint
from G, Remark 2.2.1 asserts that there exists an integer m such that deg(σ∗Lα)≥
−m for every n and every section σ in MG,n.

Let M be an ample Q-line bundle on X of the form L (−D), where D is
a Cartier Q-divisor such that DF is effective and disjoint from G. For every σ ∈
MG,n, one has

degσ∗(M +O(D)) = degσ∗M +degσ∗O(D).

By Remark 2.2.1, there exists an integer m′ such that

degσ∗O(D)≥−m′

for all sections σ ∈MG,n. Therefore, degσ∗M ≤m+
∑
λαnα for all σ ∈MG,n.

By a theorem of Chow [2, XIII, Cor. 6.11], this gives only finitely many possi-
bilities for the Hilbert polynomial (relative to M ) of the image of a section σ
which belongs to MG,n. It is well known that the subschemes of X with given
Hilbert polynomial with respect to the ample line bundle M form a closed and
open subscheme of HilbX , which is projective as a scheme. Consequently, MG,n is
quasi-projective.

It remains to prove that the condition “σ(C0) ⊂ U” defines a constructible
subset of MG,n. Indeed, let T be a scheme and let σ : C×T →X be a morphism.
Let V = σ−1(U) and let Z be the complement of V ∩ (C0×T ) in C0×T ; this is
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a closed subset of C0×T . The set of points t ∈ T such that σ(C0× {t}) ̸⊂ U is
equal to the projection in T of Z , so is constructible, as claimed. !

Remark 2.2.3. Assume that for each α ∈ A the divisor Dα is effective; then
MU,n is actually an open and closed subscheme of MG,n. Indeed, let us write
degσ∗Lα as the intersection number of σ∗C with Dα. By definition of MU,n, this
is a sum of local contributions (σ∗C,Dα)v at all points of C \C0. Since Dα is ef-
fective, each of these contributions is lower semi-continuous as a function of σ (it
may increase on closed subsets), while their sum is the constant nα on MG,n. This
decomposes MU,n as a disjoint union of open and closed subschemes defined by
prescribing the possible values for (σ∗C,Dα)v .

2.3. Clemens complexes. Let X be a smooth algebraic variety over a field
K and let D be an effective divisor with strict normal crossings on X; in other
words, the support ofD is the union of its irreducible components which are them-
selves smooth and meet transversally.

The Clemens complex Cl(X,D) of (X,D) is the simplicial complex whose
points are irreducible components of D, edges are irreducible components of in-
tersections of two distinct irreducible components, etc. By the normal crossing
assumption, all of these schemes are smooth. Thus, the dimension of the Clemens
complex is the maximal number of irreducible components of D whose intersec-
tion is non-empty, minus 1. For every integer d, we also write Cld(X,D) for the
set of simplices (also called faces) of dimension d of Cl(X,D).

The analytic Clemens complex Clan(X,D) is the subcomplex of Cl(X,D)
consisting of those simplices Z ∈ Cl(X,D) such that Z(K) ̸= ∅. One writes
Clan,max(X,D) for the set of maximal faces of Clan(X,D) and Clan,d(X,D) for
the set of faces of dimension d of Clan(X,D).

If L is an extension of K, the divisor DL on XL still has strict normal crossings
and one writes ClL(X,D) = Cl(XL,DL) and Clan

L (X,D) = Clan(XL,DL).

2.4. Motivic residual functions on arc spaces. Let k be an algebraically
closed field of characteristic zero, let R be the complete discrete valuation ring
k[[t]], and let K = k((t)) be its field of fractions.

Let X be a flat R-scheme of finite type, equidimensional of relative dimension
n.

For every integer m ≥ 0, we write Lm(X ) or X (m) for the mth Green-
berg space of X , see Section 2.3 of [16] for the precise general definition. Let
us simply recall that X (m) is the algebraic variety over k which represents the
functor ℓ -→ X (ℓ[[t]]/(tm+1)) on the category of k-algebras. There are natural
affine morphisms pm+1

m : X (m+ 1)→X (m); consequently, the projective limit
L (X ) = lim←−m

Lm(X ) exists as a k-scheme. Let pm : L (X )→Lm(X ) be the
canonical projection. When X =X⊗kR, for some k-variety X, then Lm(X ) is
the space of m-jets of X, and L (X ) is the arc space of X.
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The paper [9] introduces a general definition of constructible motivic functions
on arc spaces. In this paper, we shall mostly consider the following more restrictive
class: We define a motivic residual function h on L (X ) to be an element of the
inductive limit of all relative Grothendieck groups MX (m). Recall that MX (m) is
a localization of the Grothendieck ring KVarX (m); in particular, a motivic residual
function comes from the latter ring if it is given by a formal linear combination of
varieties H →X (m); in addition to the cut-and-paste relations at the heart of the
definition of the Grothendieck groups, we identify the diagrams H →X (m) and
H×X (m) X (m+1)→X (m+1). The fiber product structure of varieties gives
rise to a ring structure on the set of motivic residual functions on L (X ).

An example of such a motivic residual function is the characteristic function
of a constructible subset W of L (X ): such a W is of the form p−1

m (Wm) for
a constructible subset Wm of Lm(X ) and 1W is given by the obvious diagram
Wm→X (m). Let A be an algebraic variety over k, and let a be its class in Mk;
then the motivic residual function a1W is the diagram A×Wm → X (m), the
map being the second projection composed by the inclusion of Wm into X (m).
Motivic residual functions on L (An) are examples of Schwartz-Bruhat motivic
functions in Kn with support in Rn (see Section 1.2.3).

3. Setup and notation. In this Section, we fix the notation that will be
used for the rest of the paper. Compared with the introduction, we denote vari-
eties fibered over the base curve by script letters, and use capital letters for their
generic fiber. This reflects the fact that, even if models are given in the statement
of Theorem 1, its proof requires us to adjust them somewhat.

3.1. Algebraic geometry. Let k be an algebraically closed field of charac-
teristic zero, let C0 be a smooth quasi-projective connected curve over k, let C be
its smooth projective compactification and let S =C \C0. Let F = k(C) = k(C0)
be the function field of C; let ηC be its generic point.

Let G be the group scheme Gn
a and let X be a smooth projective equivariant

compactification of GF . In other words, X is a smooth projective F -scheme con-
taining GF as a dense open subset, and the group law GF ×GF → GF extends
as a group action GF ×X → X. The boundary X \GF of GF in X is a divisor.
In this paper, we make the hypothesis that this divisor has strict normal crossings.
More precisely, we assume that its irreducible components are geometrically irre-
ducible, smooth and meet transversally, so that for every p, the intersection of any
p of those components is either empty or smooth of dimension n− p. This is a
slightly stronger assumption that the one done in the arithmetic case [8], where we
only made this hypothesis after base change to F . The general case can be treated
in a similar way, by constructing appropriate weak Néron models; we leave it to
the interested reader.

We write D =X \GF and (Dα)α∈A for the family of its irreducible compo-
nents. The divisors Dα form a basis of the group Pic(X), and a basis of the monoid
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Λeff(X) of effective divisors in Pic(X). We will freely identify line bundles on X
with divisors whose support is contained in the boundary, and with their classes in
the Picard group.

Up to multiplication by a scalar, there is a unique GF -invariant meromorphic
differential form ωX on X; its restriction to GF is proportional to the form dx1 ∧
· · ·∧ dxn. Its divisor, or its class, is the canonical class KX of X. The divisor
−div(ωX) can be written as

∑
ραDα for some integers ρα ≥ 2 (see [12], Theorem

2.7). In particular, the anticanonical class K−1
X is effective.

The log-canonical class of the pair (X,D) in Pic(X) is the class of K ′X =
KX +D. Its opposite, the log-anticanonical class, is given by

∑
ρ′αDα with ρ′α =

ρα−1 for all α. Since ρα ≥ 2 for all α ∈A , the divisor −K ′X can be written as the
sum of an ample line divisor and of an effective divisor (in other words, it is big),
as claimed in the introduction.

We also recall that Hi(X,OX) = 0 for every integer i > 0.

3.2. Models and heights. A model of X over C is a projective flat scheme
π : X → C whose generic fiber is equal to X. If, moreover, X is regular and if
the sum of the non-smooth fibers of X and the closures Dα of the divisors Dα is
a divisor with strict normal crossings on X , then we will say that X is a good
model. One defines analogously good models of X over C0, or even over local
rings whose field of fractions contains k(C).

Embedded resolution of singularities in characteristic zero implies that good
models exist.

We choose a good model π : X → C of X over C .
For every point v ∈ C(k), we write Bv for the set of irreducible components

of π−1(v); for β ∈ Bv, let Eβ be the corresponding component and µβ be its
multiplicty in the special fibre of X at v. Let B be the disjoint union of all Bv,
for v ∈ C(k). Let B1 be the subset of B consisting of those β for which the
multiplicity µβ equals 1; let B1,v = B1∩Bv.

The complement X1 in X of the union of the components Eβ , for β ∈B \B1

and of the intersections of distinct vertical components, is a smooth scheme over
C .

LEMMA 3.2.1. The C-scheme X1 is a weak Néron model of X: for every
smooth C-scheme Z , the canonical map from HomC(Z ,X1) to HomF (ZF ,X)
is a bijection.

Proof. This follows from the fact that the C-scheme X1 is the smooth locus of
the proper map π : X → C , and that X is regular. See [3] for details, especially
p. 61. !

For every α ∈ A , we assume given a divisor Lα on X which extends Dα.
There exists a family of integers (eα,β), all but finitely many of them being equal



MOTIVIC HEIGHT ZETA FUNCTIONS 29

to 0, indexed by α ∈A and β ∈B such that

Lα = Dα+
∑

β∈B
eα,βEβ.(3.2.2)

We also define integers ρβ , for β ∈B, by the formula

−div(ωX) =
∑

α∈A
ραDα+

∑

β∈B
ρβEβ,(3.2.3)

where ωX is viewed as a meromorphic section of the line bundle KX /C .
Since π is proper and C is a smooth curve, the map σ -→ σ(ηC) is a bijection

between the set of sections σ : C →X of π and the set of rational points X(F )
of X. For every line bundle L on X and every section σ : C →X , the degree
degC σ

∗L is the geometric analogue of the height of the corresponding rational
point.

3.3. Local descriptions. Let v ∈ C(k). We write Fv for the completion of
F = k(C) at v. If t is a local parameter of C at v, then Fv ≃ k((t)) and ÔC,v ≃ k[[t]].
Writing an element x of ÔC,v as a power series x0 +x1t+ · · · , we consider k[[t]]
as the set of k-points of the scheme Spec(k[x0,x1, . . .]); writing an element of Fv

as a Laurent series x−mt−m+ · · ·+x0 +x1t+ · · · , we view k((t)) as the set of k-
points of the ind-scheme whose mth term is Spec(k[x−m, . . . ,x0,x1, . . .]). Fixing
an isomorphism G≃Gn

a , we have an identification G(Fv)≃ k((t))n of G(Fv) with
the k-points of an ind-k-scheme. We will say that a subset of G(Fv) is definable
if it can be defined in the language LDP,P of Denef-Pas (see [9, Section 2.1], for
more details). In particular, the set of k-points of a constructible subset of a finite
level of this ind-scheme is definable.

For every point g ∈G(Fv), one can attach local intersection degrees (g,Dα)v,
for α ∈ A , defined as follows. By the valuative criterion of properness, the map
g : Spec(Fv)→GF extends to a morphism g̃ : Spec(ÔC,v)→X and we can con-
sider the pull-back g̃∗Dα of Dα as an effective Cartier divisor on Spec(ÔC,v). We
define (g,Dα)v ∈N by the formula g̃∗Dα = (g,Dα)v[v]. For β ∈Bv, we define an
integer (g,Eβ)v ∈ {0,1} similarly, considering the pull-back of Eβ .

Observe also that
∑

β∈Bv
µβ(g,Eβ)v = 1. In particular, for every g ∈ G(Fv),

there is exactly one index β ∈Bv for which (g,Eβ)v = 1 and one has µβ = 1.
By the valuative criterion properness, every point g ∈ G(F ) extends canoni-

cally to a section σg : C→X .

LEMMA 3.3.1. For every g ∈G(F ) and every α ∈A , one has

degC(σ
∗
g(Dα)) =

∑

v∈C(k)

(g,Dα)v.
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Proof. Since g ∈ G(F ), the Cartier divisor σ∗g(Dα) on C is well-defined and
represents the inverse image by σg of the line bundle OX (Dα). The given formula
asserts that its degree is the sum of its multiplicities at all closed points of C . !

For m ∈NA , we define the subset G(m)v (also denoted G(m) if no confusion
can arise concerning the point v) of G(Fv) as the set of all points g such that
(g,Dα)v = mα for all α ∈ A . For m ∈ NA and β ∈Bv, the subset G(m,β) of
G(m)v consists of points g such that (g,Eβ)v = 1 (hence (g,Eβ′)v = 0 for all
β′ ∈Bv such that β′ ̸= β). When Bv has a single element, we often call it βv.

LEMMA 3.3.2. For every m ∈ NA and every β ∈ Bv, the sets G(m)v and
G(m,β) are bounded definable subsets of G(Fv) and G(Fv) =

⋃
m∈NA G(m)v =⋃

m∈NA

β∈Bv

G(m,β) (disjoint unions).

Proof. Since G is affine, X \GF contains the support of an ample line bundle.
We thus see that the valuations of the coordinates of the points of G(m,β) are
bounded from below. Since Dα (resp. Eβ) is effective, the condition (g,Dα)v ≥ nα

(resp. the condition (g,Eβ)v ≥ 1) defines a definable subset. Taking differences,
one gets that the sets G(m)v and G(m,β) are bounded definable. The last assertion
is obvious. !

LEMMA 3.3.3. There exists a dense open subset C1 of C0 such that for every
closed point v ∈C1, the following properties hold:

(1) One has Bv = B1,v = {βv};
(2) The set G(0)v =G(ov) is a subgroup of G(Fv);
(3) For every m ∈ NA and every β ∈Bv, the set G(m,β) is invariant under

the action of G(0)v .

Proof. By assumption, X is a smooth equivariant compactification of the F -
group scheme GF . By spreading-out, there exists a dense Zariski open subset C1 of
C such that XC1 is a smooth equivariant compactification of the C1-group scheme
GC1 , more precisely, such that the following properties hold:

• The morphism XC1 →C1 is proper and smooth, with geometrically integral
fibers;

• The action GF ×X→X of GF on X extends to an action m : GC1×XC1→
XC1 ;

• The image of the section σ0 ∈X (C1) extending the point 0 ∈G(F ) is dis-
joint from all Dα;

• The morphism g -→m(g,σ0) is an isomorphism from GC1 to an open dense
subscheme of XC1 ;

• The Cartier divisors m∗Dα−pr∗2Dα on GC1×XC1 are trivial, so that XC1 \
GC1 is the union of the divisors Dα,C1 .
This open set C1 satisfies the requirements of the Lemma. !
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LEMMA 3.3.4. Let v ∈ C(k). For every integer r, let G(mr
v) be the bounded

definable subgroup of G(Fv) consisting of points g such that, in the identification
G= Gn

a , ordv(gi)≥ r for i∈ {1, . . . ,n}. For every v ∈C(k), there exists an integer
rv such that, for every m ∈ NA and every β ∈ Bv, G(m,β) is invariant under
G(mrv

v ). Moreover, one can take rv = 0 for all but finitely v ∈C(k).

Proof. When v belongs to the open subset C1 constructed by Lemma 3.3.3,
one may take rv = 0, hence the last claim.

In the remaining of the proof, we fix v ∈ C(k). Fix α ∈ A and let fα be the
canonical global section of OX (Dα) whose zero-divisor is Dα. We need to prove
that there exists an integer rv such that (gg′,Dα)v = (g′,Dα)v and (gg′,Eβ)v =
(g′,Eβ)v, for every g ∈ G(mrv

v ), every g′ ∈ G(F ) ⊂ X (F ), every α ∈ A , and
every β ∈Bv.

Since GF fixes Dα on the generic fiber, the line bundles m∗OX (Dα) and
pr∗2OX (Dα) are isomorphic on GF ×XF and u=m∗fα/pr∗2fα is a rational func-
tion on GF ×X. The domain of definition of u contains GF ×XF . Since X is
proper over C , there exists a closed subset Z of GC disjoint from GF such that u
is defined on the complement of pr−1

1 (Z). Moreover, u(0,x) = 1 on X. Cover X
by finitely many affine open subsets Spec(Ai). Then u defines a rational function
on Gn

a ×Spec(Ai) = Spec(Ai[T]). Since u is defined on Spec(Ai[T][1/ϖv ]), there
exists an integer m such that ϖm

v u ∈ Ai[T] for all i, ϖv denoting an uniformizer
of ov .

It is now clear that if ordv(gi) >m for i ∈ {1, . . . ,n}, then ordv(u(g,x)) = 0
for every integral point of Spec(Ai). Since every rational point of X extends to an
integral point of some Spec(Ai), we obtain the desired conclusion for Dα.

Now fix β ∈Bv. Since Eβ is vertical, Eβ ⊗C F = ∅ and Eβ is fixed by GF

on the generic fiber. Then, the proof is identical to the one for Dα. !

COROLLARY 3.3.5. For every m ∈ NA and every β ∈Bv, the characteristic
function of G(m,β) is a motivic Schwartz-Bruhat function on G(Fv) in the sense
of Section 1.2.3.

3.4. Integral points.

LEMMA 3.4.1. Let U be a flat model of GF over C0 = C \S, let X be a flat
model of X over C . There exists a good model X ′ of X over C whose projection
π′ : X ′ →C factors through X , and a open subset U ′ of X ′ ×C C0 such that for
every point v ∈ C0, the intersection G(Fv)∩U (ov) (taken in U (Fv)) coincides
with the intersection G(Fv)∩U ′(ov) taken in X ′(ov). We may also assume that
U ′ is the complement to a divisor with strict normal crossings in X ′. Moreover,
G(Fv)∩U (ov) is non-empty if and only if U ′(ov) is non-empty.

Proof. Up to replacing U by an adequate blow-up, we may assume that the
open immersion i : GF ↪→X extends to a morphism p : U →X . Then, replacing
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X by some blow-up X ′ and U by its strict transform U ′, we may assume that
p is flat ([17], Théorème 5.2.2); it is then a open immersion. A further blowing-
up allows to assume that X ′ \U ′ is a divisor. Applying embedded resolution of
singularities, we may also assume that X ′ is smooth over k, that the fibers of its
projection to C are divisors with strict normal crossings, as well as X ′ \U ′.

Finally, if G(Fv)∩U (ov) is non-empty, then U ′(ov) is non-empty as well.
Conversely, assume that U ′(ov) is non-empty. Then U ′ meets the smooth locus of
X ′ → C , so that U ′(ov) has non-empty interior; in particular, G(Fv)∩U ′(ov) is
non-empty. !

LEMMA 3.4.2. Let U be a flat model of GF over C0. For every v ∈ C0(k),
U (ov) is a bounded definable subset of G(Fv). For almost all v ∈ C0(k), one has
even U (ov) =G(0)v .

Proof. We may assume that U is an open subset of X ; it is then clear that
U (ov) is definable in G(Fv) and that it equals Gn

a (ov) for almost all v ∈ C0(k)
(Lemma 3.3.3). Let us now prove its boundedness.

We view the n coordinate functions on GF = Gn
a,F as rational functions

f1, . . . ,fn on U , regular over its generic fiber UF = GF . Up to resolving the
indeterminacies of the fi (which replaces U by some other scheme U ′ but does
not change the sets U (ov)), we view the fi as regular morphisms from U to P1

C ,
such that f ∗i ({∞})∩UF =∅.

Cover U by finitely many affine open subsets Spec(Aj). There exists an in-
teger r such that ϖr

vfi ∈ Aj ⊗ ov for all i and j. For every point g ∈ U (ov),
there exists j such that the morphism g : Spec(ov)→ U restricts to a morphism
Spec(ov)→ Spec(Aj), because ov is a local ring. Then, ordv(fi(g)) ≥−r, so that
U (ov) is bounded in G(Fv).

The last assertion follows from the fact that the equality UF =GF extends to
an isomorphism over a dense open subset of C0. !

3.5. Height zeta functions. Let (λα) be a family of positive integers and
let L be the line bundle

∑
α∈A λαLα on the chosen good model X . Let U be a

flat model of GF over the affine curve C0 =C \S. For every integer n ∈ Z, let Mn

be the moduli space of sections σ : C→X such that σ(ηC) ∈G(F ), σ(C0)⊂U
and degC(σ

∗L ) = n. By Proposition 2.2.2, this moduli space exists as a quasi-
projective k-scheme, and is empty for n≪ 0. The geometric analogue of Manin’s
height zeta function is the formal Laurent series in one variable T with coefficients
in Mk given by

Zλ(T ) =
∑

n∈Z

[Mn]T
n ∈Mk[[T ]][T

−1].(3.5.1)

As was already the case in number theory, it is convenient to separate the roles
of the various divisors Dα and to introduce a multivariable height zeta function. So,
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for every n = (nα) ∈ ZA , let Mn be the moduli space of sections σ : C→X such
that σ(ηC) ∈ G(F ), σ(C0) ⊂ U and degC(σ

∗Lα) = nα for every α ∈ A . Again
by Proposition 2.2.2, this moduli space exists as a quasi-projective k-scheme Mn;
moreover, there exists an integer m such that Mn =∅ if nα <−m for some α∈A .
One then defines the generating series

Z(T) =
∑

n∈ZA

[Mn]Tn ∈Mk[[(Tα)]]

[
∏

α

T−1
α

]

.(3.5.2)

By definition of L , we have

Zλ(T ) = Z((T λα)) =
∑

m∈Z

⎛

⎜⎜⎝
∑

n∈ZA

λ·n=m

[Mn]

⎞

⎟⎟⎠Tm ∈Mk[[T ]][T
−1].(3.5.3)

3.5.4. In the sequel, we assume that U is an open subset of X . Its com-
plement consists of the union of the divisors Dα, and of the vertical components
Eβ , for β in a finite subset B0 of B. By Lemma 3.4.1, this does not restrict the
generality. We then set B0

v = B0∩Bv for every v ∈ C(k), and define

B0 = B1 \

⎛

⎝
⋃

v∈C0

B0
v

⎞

⎠ ;

set also B0,v =B0∩Bv. Let mv ∈NA and βv ∈Bv. We say that the pair (mv,βv)
is v-integral if either v ̸∈ C0, or if v ∈ C0, βv ∈B0 and mα,v = 0 for every α. In
other words, the union of the sets G(mv ,βv) for all v-integral pairs (mv,βv) is
equal to U (ov) if v ∈C0, and to G(Fv) otherwise.

3.6. Adelic descriptions. For every subset W of G(AF ) whose charac-
teristic function is an adelic motivic Schwartz-Bruhat function, the intersection
G(F )∩W is represented by a constructible set [W ] over k. Our goal now is to
describe a family of adelic sets G(m,β) which will allow us to recover the con-
structible sets Mn.

Let m = (mv)v and β = (βv)v be families indexed by v ∈ C(k), where mv =
(mα,v) ∈ NA and βv ∈Bv for all v. We say that (m,β) is integral if (mv,βv) is
v-integral for every v. For each family (m,β), define a set

G(m,β) =
∏

v∈C(k)

G(mv ,βv)

in the product of all G(Fv). If (m,β) is integral, then the characteristic function of
G(m,β) is an adelic motivic Schwartz-Bruhat function, because then G(mv,βv)⊂
G(0)v = Gn

a (ov) for almost all v ∈ C0(k) (Lemma 3.3.3).
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For every g ∈G(F )∩G(m,β), one has

degC σ
∗
g(Dα) =

∑

v∈C(k)

mα,v,

and

degC σ
∗
g(Lα) =

∑

v∈C(k)

(
mα,v+ eα,βv

)
.

Such a point g defines an integral point of U (C0) if and only if (m,β) is integral.
To shorten the notation, define, for every v ∈ C(k), every α ∈A , every mv ∈

NA and every βv ∈Bv such that (mv,βv) is v-integral,

∥mv,βv∥α =mα,v+ eα,βv and T∥mv ,βv∥ =
∏

α∈A
T
∥mv,βv∥α
α .(3.6.1)

Similarly, for every m = (mv)v∈C and β = (βv) such that (m,β) is integral, set

∥m,β∥α =
∑

v

∥mv,βv∥α and T∥m,β∥ =
∏

α∈A
T
∥m,β∥α
α .(3.6.2)

For every subset W of G(AF ) whose characteristic function is an adelic mo-
tivic Schwartz-Bruhat function, such as the sets G(m,β), the intersection G(F )∩
W is represented by a constructible set [W ] over k. Consequently, one has the
following adelic description of the height zeta function Z(T) defined by (3.5.2):

Z(T) =
∑

(m,β) integral

[G(m,β)]T∥m,β∥.(3.6.3)

We shall prove our main theorem in the next section by applying the motivic
Poisson summation formula (Theorem 1.3.10) to each term [G(m,β)], assuming
the analysis of the local Fourier transforms of the sets G(mv ,βv) in G(Fv). This
local analysis is postponed to Section 6 and will use computations of “motivic
oscillatory integrals” which are the topic of Section 5.

4. Proof of the theorem.

4.1. Application of the motivic Poisson summation formula. Let W be
any subset of G(AF ) whose characteristic function 1W is an adelic Schwartz-
Bruhat function. The motivic Fourier transform of 1W , denoted F (1W , ·) is
also a Schwartz-Bruhat function on the “dual” group G(AF ). Using Hrushovski-
Kazhdan’s suggestive notation of “sum over F -rational points”, the motivic
Poisson summation formula (Theorem 1.3.10) is the equality

[W ] =
∑

x∈Gn
a (F )

1W (x) = L(1−g)n
∑

ξ∈Gn
a (F )

F (1W ,ξ).(4.1.1)
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(Recall that g is the genus of C .) Recall also that when W is of the form
∏

Wv, the
Fourier transform F (1W , ·) can be written as a product of local Fourier transforms
at all points v of C ,

F (1W , ·) =
⊗

v∈C
Fv(1Wv , ·);

in this expression, almost all factors are equal to 1.
We apply this formula to each of the adelic sets G(m,β), where (m,β) is

integral. From Equation (3.6.3), we thus get

Z(T) =
∑

(m,β) integral

[G(m,β)]T∥m,β∥

=
∑

(m,β) integral

∑

x∈G(F )

1G(m,β)(x)T
∥m,β∥

= L(1−g)n
∑

(m,β) integral

∑

ξ∈G(F )

F (1G(m,β),ξ)T
∥m,β∥.

Let us define a Laurent series Z(T, ·) whose coefficients are adelic Schwartz-
Bruhat function by the formula

Z(T,ξ) =
∑

(m,β) integral

F (1G(m,β),ξ)T
∥m,β∥.(4.1.2)

With this notation, the height zeta function (3.5.2) can be rewritten as

Z(T) = L(1−g)n
∑

ξ∈G(F )

Z(T,ξ).(4.1.3)

In this formula, “summation over F -rational points” of a Laurent series has to be
understood termwise.

4.2. Restriction of the summation domain. The following lemma shows
that the coefficients of the Laurent series Z(T,ξ) given by Equation (4.1.2) are
“uniformly” adelic Schwartz-Bruhat functions.

LEMMA 4.2.1. There exists a finite dimensional k-vector space E, a linear F -
morphism a : EF →GF , and a finite subset Σ⊂C(k) containing S and satisfying
the following properties: for every integral (m,β) and every ξ ∈G(F ),

• If ξ /∈ a(E(k)), then there exists v ∈ C such that Fv(1G(m,β),ξ) = 0;
• If ξ ∈ a(E(k)) and v ̸∈ Σ, then Fv(1G(m,β),ξ) = 1.

Proof. With the notation from Lemma 3.3.4, there is, for every point v ∈C(k),
an integer rv such that the characteristic function of the definable set G(mv ,βv) in
G(Fv) is invariant under the action of the subgroup G(mrv

v ). Consequently, its
Fourier transform vanishes outside of the orthogonal of this subgroup. Let

∑
av[v]
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be the divisor of the global differential form in ΩF/k that has been used to define
the global Fourier transform. For almost all points v, one has av = 0. Moreover,
the orthogonal of G(mrv

v ) contains G(m−rv+av
v ). For every v ∈ C(k), set sv =

−rv+av; one has sv = 0 for all but finitely many points v ∈C(k). By the Riemann-
Roch theorem, the space E of points ξ ∈G(F ) such that ξv ∈G(msv

v ) for all v is a
finite dimensional k-vector space. This proves the first part of the Lemma.

Moreover, for every (m,β) and every v ∈ C0(k) such that mv = 0 and Bv is a
singleton, then the subset G(mv ,βv) of G(Fv) identifies with G(ov); if, moreover,
av = 0, then the characteristic function of G(ov) is self-dual. Up to enlarging the
set Σ, this implies the second assertion. !

This suggests to introduce, for every place v ∈ Σ, a Laurent series whose co-
efficients are motivic Schwartz-Bruhat functions on G(Fv) by

Zv(T, ·) =
∑

(mv ,βv) integral

Fv(1G(mv ,βv), ·)T
∥mv,βv∥.(4.2.2)

By Lemma 4.2.1, one has F (1G(m,β),ξ)= 0 if ξ ̸∈ a(E(k)), while F (1G(m,β),ξ)=∏
v∈Σ Fv(1G(m,β),ξ) otherwise. Consequently, one has

Z(T) = L(1−g)n
∑

ξ∈a(E(k))

∏

v∈Σ
Zv(T, ·).(4.2.3)

4.3. Local results. In all of this section, we fix a point v ∈ Σ and state
the properties of the Laurent series Zv(T, ·), and of its specialization Zλ,v(T, ·) =
Z((T λα), ·). They will be proved in Section 6. We fix a finite dimensional k-
vector space E and a linear F -morphism a : EF → GF satisfying the conditions
of Lemma 4.2.1. Recall also that U is the good model of GF over C of which we
study the integral sections of bounded height.

PROPOSITION 4.3.1. Assume that v ∈ Σ∩C0. Then Zv(T, ·) is a polynomial
in T. Moreover, Zλ,v(L−1,0) is a non-zero effective element of Mk.

The following result is a motivic analogue of Proposition 4.6 of [7]. In that
paper, some formalism of “residue measures” was introduced, which is useful for
describing the kind of integrals that appear in the right-hand side. Observe indeed
that this is a sum of motivic integrals on arc spaces Lv(DA) attached to the faces
of dimension d of the analytic Clemens complex of (X,D) at the place v.

PROPOSITION 4.3.2. Assume that v ∈C \C0. Then the Laurent series Zv(T,0)
is a rational function. More precisely, there exists a family (Pv,A) of Laurent poly-
nomials with coefficients in Mk, a family (uv,A) of motivic, integer valued func-
tions, indexed by the set of maximal faces A of the analytic Clemens complex
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Clan
v (X,D) such that

Zv(T,0) =
∑

A∈Clan,max
v (X,D)

Pv,A(T)
∏

α∈A

1
1−Lρα−1Tα

and

Pv,A(T)≡ (1−L−1)Card(A)
∫

Lv(DA)
Luv,A(x)dx

modulo the ideal generated by the polynomials 1−Lρα−1Tα, for α ∈A.

COROLLARY 4.3.3. Assume that v ∈C \C0 and that λ= (ρα−1)α. Let dv =
1+ dimClan

v (X,D). The Laurent series Zλ,v(T,0) in the variable T is a rational
function. More precisely, for every non-zero common multiple a of the integers
ρα−1, for α∈A , then Pλ,v(T ) = (1−LaT a)dvZλ,v(T,0) belongs to Mk[T,T−1]
and satisfies

Pλ,v(L−1) = (1−L−1)dv
∑

A∈Clan,max(X,D)
Card(A)=dv

∏

α∈A

a

ρα−1

∫

Lv(DA)
Luv,A(x)dx.

PROPOSITION 4.3.4. Let v ∈ C \C0 and let dv = 1+ dimClan
v (X,D). There

exists a constructible partition (Uv,i) of E \{0} and, for every i, an element Pv,i ∈
ExpMUv,i [T,T

−1] and finite families (av,i,j), (bv,i,j) where av,i,j ∈N, bv,i,j ∈NA ,
such that the restriction to Uv,i of Zv(T,a(·)) equals

∏

j

(1−Lav,i,jTbv,i,j )−1Pv,i(T; ·).

Moreover, assuming that λ = (ρα− 1)α, there exist integers av,i ≥ 1 and dv,i ∈
[0,dv−1] such that the restriction to Ui,v of (1−(LT )av,i)dv,iZλ,v(T,a(·)) belongs
to ExpMUv,i{T}†.

For a moment, we take these three propositions for granted and complete the
proof of Theorem 1.

4.4. Conclusion: Proof of Theorem 1. Recall from Equation (4.2.3) that
our goal is to evaluate the sum

Z(T) = L(1−g)n
∑

ξ∈a(E(k))

∏

v∈Σ
Zv(T, ·).

For every v ∈ C \C0, let dv = 1+ dim Clan
v (X,D); let also d =

∑
v∈C\C0

dv.
Propositions 4.3.1, 4.3.2, and 4.3.4 show that for every ξ ∈ a(E(k)), the Laurent
series Z(T,ξ) =

∏
v∈C Zv(T,ξ) with coefficients in ExpMk is a rational function

of T, and admits a denominator of the form
∏
(1−LaTb).
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We set

Clan,max
∞ (X,D) =

∏

v∈C\C0

Clan,max
v (X,D).

For ξ = 0, with the notation of Proposition 4.3.2, one has

Z(T,0) =
∑

A=(Av)∈Clan,max
∞ (X,D)

∏

v∈C\C0

∏

α∈Av

1
1−Lρα−1Tα

Pv,Av (T)
∏

v∈C0

Zv(T,0).

In particular, if λ= (ρα−1)α, one has

Zλ(T,0) = Z
((
T ρα−1),0

)

=
∑

A=(Av)∈Clan,max
∞ (X,D)

∏

v∈C\C0

∏

α∈Av

1
1− (LT )ρα−1

×Pv,Av

((
T ρα−1)) ∏

v∈C0

Zv
((
T ρα−1),0

)

=
∑

A=(Av)∈Clan,max
∞ (X,D)

PA(T )
∏

v∈C\C0

∏

α∈Av

1
1− (LT )ρα−1

where the polynomial PA ∈Mk[T ] is defined by

PA(T ) =
∏

v∈C\C0

Pv,Av ((T
ρα−1))

∏

v∈C0

Zv((T
ρα−1),0).

Consequently, Zλ(T,0) is both a rational function, and an element of Mk{T};
moreover,

(1−LaT a)dZλ(T,0)

=
∑

A=(Av)∈Clan,max
∞ (X,D)

PA(T )
∏

v∈C\C0

(1− (LT )a)dv−Card(Av)
∏

α∈Av

1− (LT )a

1− (LT )ρα−1 .

The right-hand side of the preceding formula is a polynomial in T with coefficients
in Mk; when one sets T = L−1, only the terms remain for which Card(Av) = dv
for every v, and one gets

∑

A=(Av)∈Clan,max
∞ (X,D)

Card(Av)=dv

PA(L−1)
∏

v∈C\C0

∏

α∈Av

a

ρα−1
.(4.4.1)

It then follows from Propositions 4.3.1 and 4.3.2 that this is an effective element of
Mk, which is non-zero since, by assumption, U (ov) is non-empty for every v∈C0.
In this case, one concludes that Zλ(T,0) has a pole of order exactly d at T = L−1.

For ξ ̸= 0, one deduces in a similar way from Proposition 4.3.4 that the Laurent
series Z(T,ξ) is rational, as well as its specializations. By uniformity, the same
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property holds when one takes the sum over F -rational points, so that the height
zeta function Zλ(T ) is a rational function which belongs to ExpMk{T}.

Since L belongs to Mk and the natural map from Mk to ExpM k is injective
(Lemma 1.1.3), the power series Z(T) is rational when viewed as a Laurent se-
ries with coefficients in Mk. In particular, the specialization Zλ(T ) is a rational
function too.

For every ξ ̸= 0, the specialization Zλ(T,ξ) =Z((T ρα−1),ξ) is a rational func-
tion, and an element of ExpMk{T}. Moreover, Proposition 4.3.4 asserts that the
order of its pole at T = L−1 is strictly smaller than d. Taking for the integer a any
common multiple of the ρα−1 and of the integers av,i appearing in the statement
of Proposition 4.3.4, and summing over rational points ξ ∈G(F ), we obtain that

(1− (LT )a)dZλ(T ) ∈ ExpMk{T}†

and its value at T = L−1 is given by Equation (4.4.1), multiplied by L(1−g)n.
This concludes the proof of Theorem 1.

5. Motivic oscillatory integrals. In this section, we consider a field k of
characteristic zero and let K be the local field k((t)). We write ord for the valuation
of K, normalized by ord(t) = 1, R for the valuation ring of K and m for its max-
imal ideal. The angular component map ac : K → k is the unique multiplicative
map which is trivial on 1+k[[t]], on t, and maps constants a ∈ k to themselves. We
also fix a real number q > 1 and set |x|= q−ord(x).

With the notation of Section 1, let r : K→ k be the linear map, given by r(1) =
1 for n= 0 and r(tn) = 0 otherwise, so that r(a) = res0(adt/t). Set e(·) =ψ(r(·));
it is an analogue of a non-trivial character of R/m.

5.1. Decay of motivic integrals.

LEMMA 5.1.1. Let d be a positive integer and let ξ ∈K be such that |ξ| = 1.
Then, for every a ∈K and every n ∈ N such that ord(a)+n ≤ 0 < ord(a)+ 2n,
one has

∫

ξ+tnR
e(axd)dx= 0.

Proof. We follow the arguments of Lemma 2.3.1 in [8]. One can write
∫

ξ+tnR
e(axd)dx= L−n

∫

R
e(aξd(1+ tnu)d)du.

For u ∈R, all terms starting from the third one in the binomial expansion

aξd(1+ tnu)d = aξd+

(
d

1

)
aξdtnu+

(
d

2

)
aξdt2nu2 + · · ·+

(
d

d

)
aξdtdnud
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belong to m, since ord(a)>−2n and ord(ξ) = 0. Therefore

r(aξd(1+ tnu)d) = r(aξd)+dr(aξdtnu)

and
∫

R
e(aξd(1+ tnu)d)du= [Spec(k),r(aξd)]

∫

R
e(daξdtnu)du.

Since ord(aξdtn) = ord(a)+n≤ 0, Proposition 1.2.8 implies that
∫

R
e(daξdtnu)du = 0,

and the lemma follows. !

For m ∈ Z, let Cm be the annulus defined by ord(x) =m. For d ∈ Z, d ̸= 0,
and a ∈K∗, set

I(m,d,a) =

∫

Cm

e(axd)dx(5.1.2)

in Mk.

LEMMA 5.1.3. The integrals I(m,d,a) satisfy the following properties:
(1) Let m ∈ Z and d ∈ Z, d ̸= 0. Let a,b ∈K∗ be such that ord(b) = ord(a)+

md and ac(b) = ac(a) (mod (k∗)d). Then I(m,d,a) = L−mI(0,d,b).
(2) Assume that k is algebraically closed. Then

I(m,d,a) = L−mI(0,d, tord(a)+md).

In particular, I(m,d,a) depends only on m, d, and ord(a).
(3) If ord(a)+md< 0, then I(m,d,a) = 0.
(4) If ord(a)+md> 0, then I(m,d,a) = L−m(L−1)/L.

Proof. (1) Let u∈ k∗ be such that ac(a)ud = ac(b). By assumption, there exists
v1 ∈ 1+ tk[[t]] such that b= audtmdv1; since k has characteristic zero, there exists
v ∈ 1+ tk[[t]] such that v1 = vd. Let us make the change of variables x= uvtmy.
This gives

I(m,d,a) =

∫

Cm

e(axd)dx= L−m
∫

C0

e(audvdtmdyd)dy

= L−m
∫

C0

e(byd)dy = I(0,d,b).

Assertion (2) follows at once.



MOTIVIC HEIGHT ZETA FUNCTIONS 41

Let us prove (3). Since I(m,d,a) = L−mI(0,d,atmd) we only need to prove
that I(0,d,a) = 0 for ord(a)< 0. Let n=−ord(a). Observe that

I(0,d,a) =
∫

C0

e(axd)dx=

∫

C0

∫

R
e(a(x+ tny)d)dydx= 0.

Since ord(a) < 0, ord(a) + 2n = −ord(a) > 0, hence by Lemma 5.1.1,∫
x+tnR e(ayd)dy = 0 for every x ∈ K such that ord(x) = 0. The statement

follows.
(4) It suffices to prove that I(0,d,a) = (L−1)/L for ord(a) > 0. In this case,

one has r(axd) = 0 for every x ∈R∗, hence the claim. !

Let u ∈ K((x)) be a Laurent series of positive radius of convergence; write
u=

∑
unxn. Let µ ∈ Z be such that u converges on the closed disk Dµ defined by

the inequality ord(x)≥ µ deprived from 0; in other words, µ is such that ord(un)+
nµ→ +∞ when n→ +∞. Let m be an integer such that m ≥ µ; let ν ≥ 0 be
such that ord(un)+nm > 0 for n > ν. By construction, ord(unxn) = ord(un)+
nord(x) > 0 for n > ν and ord(x) =m, so that r(u(x)) = r(uν(x)), for x ∈Dµ

such that ord(x) =m, where uν(x) =
∑

n≤ν unx
n. Therefore, for m≥ µ, we can

define the motivic integrals
∫
Cm

e(u(x))dx as given by
∫
Cm

e(uν(x))dx in Mk.
More generally, for every definable subset W of Dµ, one can define

∫
W e(u(x))dx

as an element of a suitable completion of Mk, and as an element of Mk itself if
ord(x) is bounded from above on W .

PROPOSITION 5.1.4. Let u ∈K((x)) be a Laurent series of positive radius of
convergence; let d = −ordx(u) and a = limx→0u(x)xd. Assume that d > 0. The
motivic integrals

∫

Cm

e(u(x))dx

vanish for every large enough integer m; more precisely, it suffices that u converges
and has no root in the punctured disk defined by ord(x)≥m, and that ord(a)<md.

Proof. Since K has characteristic zero, there exists a ∈ K∗ and a power se-
ries v ∈K[[x]] such that v(0) = 1 and u(x) = ax−dv(x)−d. Let m0 ∈ N be a large
enough integer such that xdu converges on the disk {ord(x) ≥m0} and does not
vanish on this disk. If one writes u=

∑
unxn, we thus have the following proper-

ties:
• one has u−d = a and un = 0 for n <−d;
• for n >−d, ord(un)+nm0 > ord(a);
• when n→+∞, one has ord(un)+nm0→+∞.

Writing v =
∑

n≥0 vnx
n, it follows that ord(vn)+nm0 > 0 for every n ∈ N>0.

Consequently, the change of variables y = xv(x) maps the annuli Cm to them-
selves, for m ≥ m0, and preserves the motivic measure. Therefore, for m ≥m0,
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one has
∫

Cm

e(u(x))dx =

∫

Cm

e(ax−dv(x)−d)dx=

∫

Cm

e(ay−d)dy.

According to Lemma 5.1.3(3), this integral vanishes if ord(a)−md< 0. This con-
cludes the proof of the proposition. !

5.2. Motivic Igusa integrals with exponentials—the regular case.

5.2.1. Setup. Let X be a flat R-scheme of finite type, equidimensional
of relative dimension n, let D be a relative divisor on X . We assume that X is
smooth, everywhere of relative dimension n, and that D has strict normal crossings
over R. Let also X = Xk and D = Dk be their special fibers. Let A be the set of
irreducible components of D ; for α ∈A , let Dα be the corresponding irreducible
component, and let Dα be its special fiber. For every A⊂A , let DA =

⋂
α∈ADα

and let D◦A = DA \
⋃

α/∈ADα; one defines DA and D◦A in a similar way. By defi-
nition of a divisor with normal crossings, every irreducible component of DA has
codimension Card(A).

For every constructible subset W of X, let L (X ;W ) be the constructible
subset of L (X ) parameterizing arcs x∈X (R) whose origin lies in W . For every
m ∈NA , we write W (m) for the constructible subset of L (X ) consisting of arcs
x such that ordDα(x) =mα for every α ∈A .

Let h be a motivic residual function on L (X ). Let f be a meromorphic func-
tion on X such that the polar divisor div∞(fK) of the restriction fK to XK is
contained in the union

⋃
α∈A Dα,K . Let (dα)α∈A be nonnegative integers such

that on XK ,

div∞(fK) =
∑

α∈A
dαDα,K .(5.2.2)

For a family T = (Tα)α∈A of indeterminates, define the motivic Igusa integral
with exponentials

Z(X ,he(f);T) =
∫

L (X )

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx,(5.2.3)

a power series in T with coefficients in ExpM k. Although f is only a rational
function on X , note that r(f) is a well defined residual function on W (m) for
each m ∈ NA , so that we have

Z(X ,he(f);T) =
∑

m∈NA

∏

α∈A
Tmα
α

∫

W (m)
h(x)e(f(x))dx.(5.2.4)

This power series is an analogue of the classical motivic Igusa zeta integrals which
would correspond to the case f = 0.
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More generally, for every subset A⊂A , let

ZA(X ,he(f);T) =
∫

L (X ;D◦A)

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx.(5.2.5)

When A runs among Clan(X,D), the subsets L (X ;D◦A) form a partition of
L (X ) into constructible subsets and we decompose the motivic integral defining
Z(X,he(f);T) as the sum of motivic integrals over each of them, so that

Z(X ,he(f);T) =
∑

A⊂A

ZA(X ,he(f);T).

For every m ∈NA
>0, let WA(m) be the constructible subset of L (X ;D◦A) defined

by the conditions ordDα(x) = mα for α ∈ A and ordDα(x) = 0 for α ̸∈ A. With
this notation, one has

ZA(X ,he(f);T) =
∑

m∈NA
>0

∏

α∈A
Tmα
α

∫

WA(m)
h(x)e(f(x))dx.

LEMMA 5.2.6. Let A be a subset of A and let B be a set of cardinality equal
to n−Card(A). There exists a measure-preserving definable isomorphism θ from
D◦A×L (A1;0)A×L (A1)B , with coordinates xα (for α ∈A) and yβ (for β ∈B),
to L (X ;D◦A) such that ordDα(θ(x)) = ord(xα) for α ∈ A, and ordDα(θ(x)) = 0
for α /∈A.

Proof. This is a standard fact in the theory of motivic zeta functions. We may
assume that Dα =∅ for α ̸∈A, and that there exist regular functions uα (for α∈A)
on X such that div(uα) = Dα. By definition of a divisor with strict normal cross-
ings, the morphism u= (uα) : X → (A1)A is then smooth. Hence we may assume
that there exists regular functions vβ (for β ∈ B) in X such that the morphism
(u,v) = ((uα);(vβ)) from X to (A1)A× (A1)B is étale. Both of these assump-
tions are only valid up to replacing X by a Zariski dense open subset containing
any given point of the special fibre. Since we only seek for a definable isomor-
phism, they do not restrict the generality.

It then follows from the definition of an étale morphism that the induced mor-
phism L (X ;D◦A)→D◦A×L (A1;0)A×L (A1)B is an isomorphism. It preserves
the motivic measure by construction of latter. Moreover, denoting the standard co-
ordinates on L (A1;0) by xα, for α ∈ A, this isomorphism maps the definable
function ordDα to the function ord(xα). !

In this section and the next one, we study the rationality and the poles of the
Igusa integral with exponentials. We first consider the special case where f is reg-
ular on the generic fiber XK .
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PROPOSITION 5.2.7. Assume that fK is regular on the generic fiber XK . Let
A be a subset of A . The power series ZA(X ,he(f);T) is a rational function.
More precisely, there exists a polynomial QA with coefficients in ExpMk, such
that

ZA(X ,he(f);T) =QA(T)
∏

α∈A

1
1−L−1Tα

and such that

QA(T)− (1−L−1)Card(A)
∫

L (D◦A)
h(x)e(f(x))dx(5.2.8)

belongs to the ideal generated by the polynomials 1−L−1Tα, for α ∈A.

Proof. By Lemma 5.2.6, there is a measure-preserving definable isomorphism
from L (X ;D◦A) to D◦A×L (A1;0)A×L (A1)B , where B is some set of cardi-
nality n−Card(A), with coordinates xα (for α ∈ A), yβ (for β ∈ B) under which
ordDα(x)= ord(xα) for α∈A, and ordDα(x)= 0 for α /∈A. In the sequel, we iden-
tify a point x ∈L (X ;D◦A) with a triple (ξ,x,y), where ξ ∈D◦A, x ∈L (A1;0)A

and y ∈L (A1)B .
Fix an integer a and a regular function g on X such that f = tag. On

L (X ;D◦A), we can expand the function g as a power series

gA(x,y) =
∑

p∈NA

q∈NB

gp,qx
pyq,

where gp,q ∈ O(D◦A)[[t]]. Then

ord(gA(x,y)− gA(0,y)) ≥min
α∈A

ord(xα).

In particular, we see that r(tagA(x,y)) = r(tagA(0,y)) if a+minα∈A ord(xα)> 0.
Let µ be a positive integer such that µ > −a and such that the Schwartz-Bruhat
function h factors through Lµ(X ).

If one has mα ≥ µ for every α ∈A, it then follows that
∫

WA(m)
h(x)e(f(x))dx

=

(
∏

α∈A
L−mα

)∫

ord(x′α)=0
xα=tmαx′α

h(ξ,x,y)e(tagA(x,y))dx′dy

=

(
∏

α∈A
L−mα

)∫

ord(x′α)=0
xα=tmαx′α

h(ξ,0,y)e(tagA(0,y))dx′dy
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=
∏

α∈A

(
L−mα(1−L−1)

)∫

D◦A×L (A1)B
h(ξ,0,y)e(tagA(0,y))dy

=
∏

α∈A

(
L−mα(1−L−1)

)∫

L (DA;D◦A)
h(x)e(f(x))dx.

In general, let

A1 =
{
α ∈A; mα < µ

}
and A2 =

{
α ∈A; mα ≥ µ

}
,

so that A is the disjoint union A = A1 ∪A2. Write x = (x1,x2), where x1 =
(xα)α∈A1 and x2 = (xα)α∈A2 , and split m = (m1,m2) accordingly. Analogously,
one has
∫

WA(m)
h(x)e(f(x))dx =

∏

α∈A2

(
L−mα(1−L−1)

)∫

W ′
A2

(m1)
h(x)e(f(x))dx,

where W ′
A2
(m1) is the definable subset of L (DA2) consisting of arcs x on DA2

with origin on DA2 and such that ordDα(x) =mα for α ∈A1. We can then write

ZA(X ,he(f);T) =
∑

m∈NA
>0

∏

α∈A
Tmα
α

∫

WA(m)
h(x)e(f(x))dx

=
∑

A1⊂A
A2=A\A1

∑

m1∈(0,µ)A1

∏

α∈A1

Tmα
α

×
∑

m2∈[µ,∞)A2

∏

α∈A2

(1−L−1)(L−1Tα)
mα

∫

W ′
A2

(m1)
h(x)e(f(x))dx

=
∑

A1⊂A
A2=A\A1

∑

m1∈(0,µ)A1

(∫

W ′
A2

(m1)
h(x)e(f(x))dx

)
∏

α∈A1

Tmα
α

×
∏

α∈A2

(1−L−1)(L−1Tα)µ

1−L−1Tα
.

It follows from this computation that the power series QA(T) defined by

QA(T) = ZA(X ,he(f);T)
∏

α∈A
(1−L−1Tα)

is in fact a polynomial, which establishes the first assertion of the proposition.
Moreover, if we compute QA(T) modulo the ideal generated by the polynomials
1−L−1Tα for α∈A, only the term corresponding to A1 =∅ and A2 =A survives
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in the sum. In this case, W ′
A2
(m1) = L (D◦A), and we get

QA(T)≡
(∫

L (D◦A)
h(x)e(f(x))dx

)
∏

α∈A
(1−L−1)(L−1Tα)

µ

≡ (1−L−1)Card(A)

(∫

L (D◦A)
h(x)e(f(x))dx

)
,

as claimed. !

COROLLARY 5.2.9. Assume that fK is a regular function on the generic fiber
XK . There exists a family (PA) of polynomials with coefficients in ExpMk, in-
dexed by Clan,max(X,D), such that

Z(X ,he(f);T) =
∑

A∈Clan,max(X,D)

PA(T)
∏

α∈A

1
1−L−1Tα

(5.2.10)

and such that for each A ∈ Clan,max(X,D),

PA(T)− (1−L−1)Card(A)
∫

L (DA)
h(x)e(f(x))dx(5.2.11)

belongs to the ideal generated by the polynomials 1−L−1Tα, for α ∈A.

Proof. By definition, one has

Z(X ,he(f);T)=
∫

L (X )

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx=

∑

A⊂A

ZA(X ,he(f);T).

For each A ⊂ A such that D◦A(k) ̸= ∅, choose a maximal subset A′ ∈
Clan,max(X,D) such that A⊂A′. In the previous formula for Z(X ,he(f);T), we
can collect terms according to the chosen maximal subset. Applying Proposition
5.2.7, we obtain

Z(X ,he(f);T) =
∑

A∈Clan,max(X,D)

∑

B⊂A
B′=A

QB(T)

(
∏

α∈B

1
1−L−1Tα

)

=
∑

A∈Clan,max(X,D)

∏

α∈A

1
1−L−1Tα

∑

B⊂A
B′=A

QB(T)
∏

α∈A\B
(1−L−1Tα).

For every A ∈ Clan,max(X,D), we set

PA(T) =
∑

B⊂A
B′=A

QB(T)
∏

α∈A\B

(1−L−1Tα).
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Then we have

Z(X ,he(f);T) =
∑

A∈Clan,max(X,D)

PA(T)
∏

α∈A

1
1−L−1Tα

.

Moreover, modulo the ideal generated by the polynomials 1−L−1Tα (for α ∈A),
PA(T) is congruent to QA(T), which is itself congruent to

(1−L−1)Card(A)
∫

L (D◦A)
h(x)e(f(x))dx.

This proves the corollary since D◦A = DA for A ∈ Clan,max(X,D). !

5.3. Motivic Igusa integrals with exponentials—the general case. We
keep the setup and notation as described in Section 5.2.1.

In the previous section, we assumed that f was regular on XK . In the gen-
eral case where, on XK , the polar divisor div∞(f) of f is contained in the union⋃

α∈A Dα,K , we shall prove in Proposition 5.3.4 that the motivic Igusa integral
with exponentials is a rational function. Under the additional condition that fK ex-
tends to a regular morphism from XK to P1

K , we have the following more precise
result.

PROPOSITION 5.3.1. Assume that fK extends to a regular map from XK to
P1
K . Let Clan(X,D)0 be the subcomplex of Clan(X,D) where we only keep ver-

tices α ∈ A such that dα = 0. Then there is a family (PA) of polynomials with
coefficients in ExpMk, indexed by the set Clan,max(X,D)0 of maximal faces of
Clan(X,D)0, such that

Z(X ,he(f);T) =
∑

A∈Clan,max(X,D)0

PA(T)
∏

α∈A

1
1−L−1Tα

.(5.3.2)

Proof. Let us first assume that f extends to a regular map from X to P1
R.

The special case Clan(X,D)0 = Clan(X,D) is treated by Proposition 5.2.9. As
in the previous section, we write

Z(X ,he(f);T) =
∑

A∈Clan(X,D)

ZA(X ,he(f);T).(5.3.3)

For every A ∈ Clan(X,D)0, ZA(X ,he(f);T) can be evaluated by the same com-
putation as the one that we performed in the proof of Proposition 5.2.7: there is a
polynomial QA(T) with coefficients in ExpMk such that
∫

L (X ;D◦A)

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx =QA(T)(1−L−1)Card(A)

∏

α∈A

1
1−L−1Tα



48 A. CHAMBERT-LOIR AND F. LOESER

and such that QA(T) is congruent to

∫

L (DA;D◦A)
h(x)e(f(x))dx

modulo the ideal generated by the polynomials 1−L−1Tα.
The general case is treated by adapting the arguments given in the proof of

Proposition 5.2.7. Let indeed A ⊂ A , let A0 = {α ∈ A; dα = 0} and let A1 =
A\A0. Define a function gA on L (X ;D◦A) by

f = gA
∏

α∈A
x−dαα .

Since f extends to a regular map to P1, the divisors of zeroes and of poles of
f do not meet. Consequently, one has dα > 0 for every α ∈ A1, and ord◦gA is
bounded from above. As in the proof of Proposition 5.2.7, gA can be expanded as
a converging power series. Then, applying Proposition 5.1.4, we observe that there
exists an integer m such that the integral

∫

L (X ;D◦A)

∏

α∈A
T

ordDα(x)
α h(x)e(f(x))dx

is equal to the analogous integral but restricted to the subset defined by the inequal-
ities ord(xα)≤m for all α ∈A1. By a similar argument to the proof of Proposition
5.2.7, we conclude that the power series QA(T) defined by

QA(T) = ZA(X ,he(f);T)
∏

α∈A0

(1−L−1Tα)

is in fact a polynomial.
As in the proof of Corollary 5.2.9, the proposition follows by choosing, for

every subset A ⊂ A some maximal subset A′ ∈ Clan(X,D)0 such that A0 ⊂ A′

and regrouping the terms according to the chosen subset.
This concludes the proof when f extends to a regular morphism from X to

P1
R. To treat the general case, recall that there exists a proper birational morphism
π : Y →X which is a composition of blowing-ups with smooth centers contained
in the special fiber such that π∗f extends to a regular map from Y to P1

R. Since π
induces an isomorphism on the generic fiber, it does not modify the set A , nor the
analytic Clemens complexes Clan(X,D) and Clan(X,D)0.

Let D ′α be the strict transform of Dα. Then hα = ordDα−ordD ′α is a con-
structible function on L (Y ) which takes only finitely many values. By the change
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of variable formulas, one has

Z(X ,he(f),T) =
∫

X

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx

=

∫

Y

∏

α∈A
T

ordDα (π(y))
α π∗h(y)e(π∗f(y))LordJπ(y) dy

=

∫

Y

∏

α∈A
T

ordD′α
(y)

α

∏

α∈A
T hα(x)
α π∗h(y)e(π∗f(y))LordJπ(y) dy.

We then decompose this integral according to the values of hα and ordJπ and
compute each individual part as in the first part of the proof. Combining the various
contributions implies the proposition. !

PROPOSITION 5.3.4. The power series Z(X ,he(f);T) is a rational function.

Proof. Let π : Y →X be a proper birational morphism such that the rational
map π∗f extends to a regular morphism from YK to P1

K and such that the horizon-
tal part of π∗D is a relative divisor with strict normal crossings. For every α ∈A ,
we write D ′α for the strict transform of Dα; let (Eβ)β∈B be the family of horizontal
exceptional divisors.

Let α ∈A . There exists a family (mα,β)β∈B of nonnegative integers such that

π∗Dα,K = D ′α,K +
∑

β∈B
mα,βEβ,K .

Consequently, there exists a bounded constructible function uα on L (Y ) such that

π∗ ordDα = ordD ′α +
∑

β∈B
mα,β ordEβ

+uα.(5.3.5)

Let also (νβ)β∈B be the family of positive integers such that

KYK/XK
=
∑

β∈B
(νβ−1)Eβ,K .

This implies that there exists a bounded constructible function v on L (Y ) such
that

ordKY /X
=
∑

β∈B
(νβ−1)ordEβ

+v.
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Then, using the change of variables formula (Theorem 13.2.2 in [9]), we find

Z(X ,he(f);T) =
∫

L (X )

∏

α∈A
T

ordDα (x)
α h(x)e(f(x))dx

=

∫

L (Y )

∏

α∈A
T

ordD′α
(y)+

∑
βmα,β ordEβ

(y)+uα(y)
α

×Lv(y)+
∑

β(νβ−1)ordEβ
(y)
π∗h(y)e(π∗f(y))dy

=

∫

L (Y )

∏

α∈A
T

ordD′α
(y)+uα(y)

α

×
∏

β∈B
Pβ(T)

ordEβ
(y)Lv(y)π∗h(y)e(π∗f(y))dy,

where, for every β ∈B, we have set

Pβ(T) = Lνβ−1
∏

α∈A
T
mα,β
α .(5.3.6)

Let us introduce a family S = (Sβ)β∈B of indeterminates. For every motivic
residual function w on L (Y ) and every rational function g on YK , let us also
define, analogously to Equation (5.2.3), a generating series

Z(Y ,we(g);(T,S)) =
∫

L (Y )

∏

α∈A
T

ordD′α
(y)

α

∏

β∈B
S

ordEβ
(y)

β w(y)e(g(y))dy.

If g induces a morphism from YK to P1
K , it follows from Proposition 5.3.1 and the

proof of Proposition 5.3.4 that Z(Y ,we(g);(T,S)) is a rational function of (T,S),
for every w.

For every p ∈ ZA , let Wp be the constructible subset of L (Y ) on which the
family (uα) equals p. These subsets form a finite partition of L (Y ) and one has

Z(X ,he(f);T) =
∑

p

∏

α∈A
T pα
α Z

(
Y ,1WpLvπ∗he(π∗f);(T,(Pβ(T)))

)
,

where the polynomials Pβ are defined in (5.3.6). Consequently, Z(X ,he(f);T) is
a rational function of T. !

6. Local Fourier transforms. In this section, we finally prove the propo-
sitions stated in Section 4.3.

Fix a place v ∈C(k). We have to study the Laurent series (4.2.2) given by

Zv(T,ξ) =
∑

(mv,βv) integral

F (1G(mv ,βv),ξ)
∏

α∈A
T
∥mv ,βv∥α
α
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=
∑

(mv,βv) integral

∏

α∈A
T
∥mv ,βv∥α
α

∫

G(mv,βv)
e(⟨g,ξ⟩)dg.

Our first step will be to replace the motivic Haar integral with respect to dg
by a motivic integral with respect to the motivic measure on the arc space L (X ).
Then, we will split the motivic integral according to the natural stratification of the
special fibre.

Since the place v is fixed, we often omit the index v from the notation, writing
K ≃ k((t)) for Fv = k(C)v and R≃ k[[t]] for the ring of integers of Fv .

6.1. The Haar integral as a motivic measure. View the invariant top-
differential form dg on GF as a meromorphic top-differential form ωX on X .
Since X is proper over C , one has X (k[[t]]) =X(K). The order of contact of an
arc with the divisor of ω induces an order function ordω : X(K)→Z∪{∞}, which
takes finite values on G(K).

The Poisson summation formula involves (motivic) integrals on k((t))n =
G(F ). The injection G(F )⊂X (k[[t]]) allows to view any Schwartz-Bruhat func-
tion Φ on G(F ) as an exponential motivic function on the arc space L (X ) of X .
The following lemma shows how both motivic integrals are related. It is a motivic
analogue of the standard fact that the Lebesgue mesure on the real line R is the
volume-form associated with the differential form dx, or with the corresponding
singular differential form on P1(R).

LEMMA 6.1.1. Let Φ ∈S (Fn). Then the motivic integral
∫
G(K)Φ(g)dg can

be rewritten as
∫

L (X )
Φ(x)L−ordω(x) dx

where dx denotes the motivic measure on the arc space L (X ).

Proof. Let us begin with a remark. Let Z be a smooth projective K-scheme
and let ω be a meromorphic differential form on Z . Let f be a motivic function on
Z . By this, we mean that one is given a proper flat R-model Z of Z , an integer
m, and a class ϕ ∈ ExpMLm(Z ). We identify the function associated with a triple
(Z ,m,ϕ) and the function associated with the triple (Z ,m+ 1,π∗ϕ), where π
is the canonical morphism from ExpMLm(Z ) to ExpMLm+1(Z ) defined by base
change; similarly, if p : Z ′ →Z is a morphism of models, we identify the func-
tions associated with triples (Z ,m,ϕ) and (Z ′,m,p∗ϕ). Then one defines the
integral

∫
Z(K)f |ω| of the motivic function f with respect to ω by the formula

∫

Z(K)
f |ω|=

∫

L (Z )
ϕ(z)L−ordω(z)dz,
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where dz is the motivic measure on the arc space L (Z ). We may even assume that
the smooth locus Z 0 of Z is a weak Néron model of Z and restrict the integral
over L (Z 0). The definition of motivic integration and the change of variables for-
mula (Theorem 13.2.2 in [9]) shows that this integral is independent of the choice
of the triple (Z ,m,ϕ) that defines f .

Let us show how this remark implies our lemma.
Let P = Pn = ProjR[x0, . . . ,xn] be the natural compactification of GR =

An = Spec(R[x1, . . . ,xn]), let P = PK . Let ω be the differential form dx1∧ · · ·∧
dxn on GR; we will write ωP or ωX according to ω being viewed as a meromorphic
differential form on P or on X . Since X is regular, one has

∫

X(K)
Φ(x) |ωX |=

∫

L (X )
Φ(x)L−ordωX (x)dx.

However, this integral can be computed starting from the model P , and one has

∫

X(K)
Φ(x) |ωX |=

∫

P (K)
Φ(p) |ωP | .

Since div(ωP ) = (n+1)div(x0), ordωP (x) = (n+1)min(0,ord(x1), . . . ,ord(xn))
for every (x1, . . . ,xn) ∈ Kn. Consequently, by the very definition of the motivic
integral on G(K), this last integral equals

∫
G(K)Φ(g)dg. It suffices to show this

equality for simple functions, as in Section 1.3.3. Let (m1, . . . ,mn) be a family
of integers and let Ω be the set of points in Kn such that ord(xi) =mi for every
i ∈ {1, . . . ,n}. Set m0 = 0, let m = min(m0, . . . ,mn), and let j ∈ {0, . . . ,n} be
such that m = mj . We view Ω in the affine chart {xj = 1} of P and identify it
with

∏
0≤i≤n
i ̸=j

tmi−mR×. Therefore, its dp-measure (that is, its motivic volume with

respect to the arc space of P) equals

∫

Ω
dp= L

∑
i̸=j(mi−m)(1−L−1)n = (1−L−1)nL

∑
miL−(n+1)m.

On the other hand, Ω is also viewed as the set
∏n

i=1 t
−miR× in Kn hence its dg-

integral is given by

∫

Ω
dg = L

∑
mi(1−L−1)n.

Consequently,

∫

Ω
dg =

∫

Ω
L−ordω(p)dp.

This concludes the proof of the lemma. !
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6.2. Partitions of unity. Let B1 be the subset of Bv consisting of those
β for which the multiplicity µβ equals 1. Let X1 be the complement in X of the
union of the components Eβ , for β ∈Bv \B1, and of the intersections of distinct
vertical components. As we know from Lemma 3.2.1, this is a weak Néron model
of X over Spec(R).

For every subset A ⊂A and every β ∈B1, let ∆(A,β) be the locally closed
subset of the special fibre Xv corresponding to points x̃ which belong to the hori-
zontal divisors Dα, for α ∈A, and to no other, as well as to the vertical divisor Eβ ,
but no other. Let Ω(A,β) be its preimage in L (X ) by the specialization morphism
L (X )→Xv.

Recall that we have defined in Section 3.5.4 a subset B0 of B such that for
every point x ∈ G(Fv), the integrality condition “x ∈U (oFv ) if v ∈ C0” holds if
and only if there exists β ∈B0 such that x ∈ Ω(∅,β).

Let L (A1) ≃ Spec(k[a0,a1, . . .]) be the arc space of the affine line, and let
L (A1;0) be its closed subspace consisting of arcs based at the origin. Let A be a
subset of A . By Lemma 5.2.6, there is a definable isomorphism which preserves
the motivic measure from Ω(A,β) to the product of L (A1;0)A×k ∆(A,β) with
L (A1)n−Card(A). Moreover, this isomorphism induces the following equalities, for
g ∈G(F ):

(g,Dα)v =

{
ordv(xα) if α ∈A

0 otherwise,
(6.2.1)

(where, as in Lemma 5.2.6, xα is the α-component of the image of g) and

(g,Eγ)v =

{
1 if γ = β

0 otherwise.
(6.2.2)

Recall that in Equation (3.2.3), we had defined integers ρβ such that

−div(ωX) =
∑

α∈A
ραDα+

∑

β∈B
ρβEβ.

This implies

−ordω(x) = ρβ +
∑

α∈A
ρα ordv(xα).(6.2.3)

Recall also the definition of integers eα,β in Equation 3.2.2:

Lα = Dα+
∑

β∈B
eα,βEβ.
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To shorten the notation below, we then let

ρ(A,β) = ρβ +
∑

α∈A
ραeα,β.(6.2.4)

We also define eα to be the constructible function

eα(·) =
∑

β∈B
eα,β ordEβ(·)(6.2.5)

on L (X ) so that eα(g) = eα,β for every g ∈G(Fv) such that (g,Eβ)v = 1.
Using this notation and applying Lemma 6.1.1, we can rewrite the motivic

Fourier transforms Zv(T,ξ) as sums of motivic integrals over arc spaces Ω(A,β).

LEMMA 6.2.6. For every motivic residual function h on L (X ) and every
ξ ∈G(Fv), one has

∫

G(Fv)

∏

α∈A
T (g,Lα)v
α h(g)e(⟨g,ξ⟩)dg

=
∑

A⊂A
β∈B1

∏

α∈A
T
eα,β
α Lρβ

∫

Ω(A,β)

∏

α∈A
(LραTα)

ord(xα)h(x)e(⟨x,ξ⟩)dx.
(6.2.7)

6.3. Places in C0: Proof of Proposition 4.3.1. Let v be a place in C0.
In this case, Z(T,ξ) is given by Lemma 6.2.6, taking for motivic function h the
characteristic function of the set U (o) within G(Fv). In other words, one has h≡ 0
on Ω(A,β) if A ̸=∅ or β ̸∈B0, and h≡ 1 otherwise. Consequently,

Z(T,ξ) =
∑

β∈B0

∏

α∈A
T
eα,β
α Lρβ

∫

Ω(∅,β)
e(⟨x,ξ⟩)dx.

We see in particular that it is a polynomial. Assume that ξ = 0. Then, the factor
e(⟨x,ξ⟩) equals 1, so that

Z(T,0) =
∑

β∈B0

∏

α∈A
T
eα,β
α Lρβ [∆(∅,β)]L−n.

In particular,

Zλ(L−1,0) = Z((L1−ρα),0) =
∑

β∈B0

∏

α∈A
L(1−ρα)eα,βLρβ [∆(∅,β)]L−n.

This is an effective element of Mk, non-zero unless U (o) = ∅. By the last asser-
tion of Lemma 3.4.1 and the hypothesis of Setting 2, this concludes the proof of
Proposition 4.3.1.



MOTIVIC HEIGHT ZETA FUNCTIONS 55

6.4. Trivial character (places in C \C0): Proof of Proposition 4.3.2. As-
sume that v ∈ C \C0. Then, Z(T,0) is given by Lemma 6.2.6, applied with h≡ 1.
This leads to the following computation:

Z(T,0) =
∑

A⊂A
β∈B1

∏

α∈A
T
eα,β
α Lρβ

∫

Ω(A,β)

∏

α∈A
(LραTα)

ord(xα) dx

=
∑

A⊂A
β∈B1

∏

α∈A
T
eα,β
α Lρβ [∆(A,β)]L−n+Card(A)

∏

α∈A

∫

L (A1;0)
(LραTα)

ord(x)dx.

In the last formula, the integral over L (A1;0) is given by a geometric series, fa-
miliar in the theory of motivic Igusa functions. Indeed, for every α ∈A,

∫

L (A1;0)
(LραTα)

ord(x) dx=
∞∑

m=1

(LραTα)
m
∫

ord(x)=m
dx

=
∞∑

m=1

(LραTα)
mL−m(1−L−1)

= (1−L−1)
Lρα−1Tα

1−Lρα−1Tα
.

Consequently,

Z(T,0) =
∑

A⊂A
β∈B1

∏

α∈A
T
eα,β
α Lρβ [∆(A,β)]

×L−n+Card(A)(1−L−1)Card(A)
∏

α∈A

Lρα−1Tα

1−Lρα−1Tα
.

(6.4.1)

For every pair (A,β) such that ∆(A,β) ̸= ∅, fix a maximal subset A0 of A
such that A ⊂ A0 and ∆(A0,β) ̸= ∅. Let us fix such a maximal set A0 and let
us then collect the terms of Equation (6.4.1) corresponding to pairs (A,β) that are
associated with A0. The corresponding subseries of Z(T,0) is then given by

ZA0(T,0) =
∑

β∈B1
(A,β) -→A0

∏

α∈A
T
eα,β
α Lρβ [∆(A,β)]

×L−n+Card(A)(1−L−1)Card(A)
∏

α∈A

Lρα−1Tα

1−Lρα−1Tα
.

Consequently, there exists a Laurent polynomial PA0(T) such that

ZA0(T,0)
∏

α∈A0

(1−Lρα−1Tα) = PA0(T).
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From this expression, we also see that modulo the ideal generated by the polyno-
mials 1−Lρα−1Tα, for α ∈ A , only the terms corresponding to A = A0 remain,
so that we have

PA0(T)≡
∑

β∈B1

∏

α∈A
L(1−ρα)eα,βLρβ [∆(A0,β)]L−n+Card(A0)(1−L−1)Card(A0).

Let uA0 be the motivic residual function on L (X ) which is given by

ρβ +
∑

α∈A
(1−ρα)eα,β

on Ω(A0,β). By definition of motivic integration, one has
∫

L (DA0 )
LuA0 =

∑

β∈B1

∫

Ω(A0,β)
Lρβ

∏

α∈A
L(1−ρα)eα,β

=
∑

β∈B1

Lρβ
∏

α∈A
L(1−ρα)eα,βL−n+Card(A0)[∆(A,β)]

so that

PA0(T)≡ (1−L−1)Card(A0)
∫

L (DA0 )
LuA0 .

The right-hand side of the preceding congruence being a non-zero effective element
of Mk, this concludes the proof of Proposition 4.3.2.

COROLLARY 6.4.2. Let d= 1+dimClan(X,D) and let a be a non-zero multi-
ple of the integers ρα−1, for α ∈A . The Laurent series Zλ(T,0) in one variable
T is a rational function which belongs to Mk{T}. Moreover, (1−LaT a)dZλ(T,0)
belongs to Mk[T,T−1] and

(1−LaT a)dZλ(T,0)
∣∣∣
T=L−1

= (1−L−1)d
∑

A∈Clan,d(X,D)

∏

α∈A

a

ρα−1

∫

L (DA)
LuA(x)dx.

6.5. Non-trivial characters (places in C \C0): Proof of Proposition 4.3.4.
Assume that v belongs to C \C0. In this Section, we establish the behavior of the
Fourier transform Zv(T,a(ξ)) for non-zero ξ ∈ E. Since the place v is fixed, the
motivic Igusa integrals Zv(T, ·) and Zλ,v(T, ·) are denoted Z(T, ·) and Zλ(T, ·)
respectively.

By Proposition 5.3.4, we already know that for each ξ, Z(T,(ξ)) is rational,
with denominator given by products of polynomials of the form 1−LnTm for some
n∈N and m ∈NA which are described through some Clemens complex. To prove
Proposition 4.3.4, we have to prove two more properties: first, that this rationality
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property holds uniformly on the strata of some constructible partition (Ui), and
second, that for each i, there exists an integer e ∈ [0,d− 1] and an integer a ≥ 1
such that the restriction to Ui of (1−LaT a)eZλ(T, ·) = (1−LaT a)eZ((T λα

α ), ·)
belongs to ExpMUi{T}†.

The following analysis thus refines the proof of Proposition 5.3.4. It is very
close to the one of [8], except for the replacement of p-adic oscillatory integrals by
the motivic integrals of Section 5.3.

Recall that any point ξ ∈G(Fv) gives rise to a linear form fξ = ⟨ξ, ·⟩ on GFv ,
hence to a rational function on X, or even on X . More generally, the morphism
a : EFv→G induces a regular function fE on G×Fv EFv , hence a rational function
on X ×kE. We view fE as a family of regular functions on G, resp. as a family
of rational functions on X , both indexed by E and study the variation, for p ∈ E,
of the divisors div(fa(p)).

LEMMA 6.5.1. Let P be a reduced k-scheme of finite type and let a : PFv →G
be an Fv-morphism. Let fP be the associated rational function on X ×kP . There
exists a decomposition of P as a disjoint union of smooth locally closed subsets Pi,
and for each i, a map πi : Yi→X ×k Pi which is a composition of blowing-ups
whose centers are smooth over Pi, with generic fiber invariant under the action of
GFv ×k Pi, and do not meet GFv ×k Pi such that the rational function π∗i fP on Yi

defines a regular morphism from Yi×k Pi to P1
R and such that the horizontal part

of π∗i (D ×k Pi) is a relative divisor with strict normal crossings.

Proof. The arguments of Lemma 3.4.1 of [8] furnish a partition (Pi) of P by
smooth locally closed subsets and morphisms πi : Yi,Fv →X×Fv Pi,Fv which are
compositions of blowing-ups whose centers are smooth over Pi,Fv and do not meet
GFv ×Fv Pi,Fv such that the rational function π∗i fP defines a regular morphism
Yi,Fv ×Fv Pi,Fv → P1

Fv
.

Let us fix such a stratum Pi and call it P ; similarly, we write π for πi and Y for
Yi. Up to replacing P by a dense open subset P ′, and applying embedded resolution
of singularities to the Zariski closures of the centers of the blowing-ups which
define π, we obtain a morphism π′ : Y →X ×k P ′, composition of blowing-ups
with smooth centers over P ′, such that π′Fv

: YFv → XFv ×Fv P
′
Fv

satisfies the
preceding assumptions. We then view the morphism fP as a rational map Y ×k

P ′ ##$ P1. Above a dense open subset P ′′ of P ′ we resolve its indeterminacies by
a further composition of blowing-ups whose centers are smooth over P ′ and do not
meet the generic fiber. We can now repeat these arguments for P \P ′′, so that the
lemma follows by Noetherian induction. !

We apply the preceding lemma to E \{0} and fix such a stratum, which we call
P . Set Y =YFv . For p∈P , let Yp be the fiber of Y above p under the composition
Y →X ×k P → P ; let Yp = (Yp)Fv .

For p ∈ P , by the change of variable formula (Theorem 13.2.2 in [9]), both
Z(T,0) and Z(T,a(p)) can be computed as motivic integrals on L (Yp). Since
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the rational function fa extends to a regular morphism from YFv ×PFv to P1
Fv

,
Proposition 5.3.1 gives an explicit form for Z(T,a(p)) as a rational function,
whose denominator is controlled in terms of the Jacobian divisor of Y/X and the
sub-complex Clan(Yp,Yp \G)0 of Clan(Yp,Yp \G) corresponding to the irreducible
components of Y \G along which fa(p) has no pole. Since the sub-complex
Clan(Yp,Yp \G)0 of Clan(Yp,Yp \G) depends constructibly on p ∈ P , this implies
the first part of Proposition 4.3.4.

The final part of the proof follows by applying the geometric arguments leading
to the proof of Proposition 3.4.4 of [8]. For every p ∈ P , the Clemens complex of
(Yp,Yp \G) has distinguished vertices, those coming from X which we denote by
D′α, and exceptional ones, corresponding to divisors contracted by πp, which we
denote by E′β . Since Yp → X is G-equivariant, the rational function fa(p) has a
divisor divX(fa(p)) on X whose strict transform dominates the divisor of fa(p) on
Yp: their difference is an effective linear combination of the divisors E′β (Lemma
1.4 of [6]). Moreover, the relative Jacobian divisor of Yp/Xp is a linear combination
of these divisors, with positive coefficients.

As in Section 3.4 of [8], these geometric facts imply that only the distinguished
vertices of Clan(Yp,Yp \G), that is, those of Clan(X,X \G), intervene. Moreover,
letting dp = 1+dim(Clan(X,X \G)0) and d= 1+dim(Clan(X,X \G)), then one
has dp < d (cf. Lemmas 3.4.5 and 3.5.4 of [8]).

Applying Proposition 5.3.1, we conclude that there exists an integer a such that
(1−LaT a)dpZλ(T,a(p)) ∈Mk{T}† for every p ∈ P .

This concludes the proof of Proposition 4.3.4.
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