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Abstract. The present work is devoted to the study of motivic integration on quotient
singularities.We give a new proof of a form of the McKay correspondence previously proved
by Batyrev. The paper contains also some general results on motivic integration on arbitrary
singular spaces.
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Introduction

Let X be an algebraic variety, not necessarily smooth, over a ¢eld k of characteristic
zero. We denote by LðX Þ the k-scheme of formal arcs on X : K-points of LðX Þ
correspond to formal arcs SpecK ½½t�� ! X , for K any ¢eld containing k. In a recent
paper [8], we developed an integration theory on the space LðX Þ with values incMM, a certain ring completion of the Grothendieck ring M of algebraic varieties
over k (the de¢nition of these rings is recalled in Section 1.9), based on ideas of
Kontsevich [12]. In the most interesting cases, the integrals we consider belong
to a much smaller ring Mloc½ððL� 1Þ=ðLi � 1ÞÞiX 1�, on which the usual Euler
characteristic and Hodge polynomial may be extended in a natural way to an Euler
characteristic Eu and a Hodge polynomial H belonging respectively to Q and
the ring

Z½u; v�½ðuvÞ�1�
uv� 1
ðuvÞi � 1

� �
iX 1

2
4

3
5:

When X is smooth and one considers the total measure of LðX Þ, these invariants
reduce to the usual Euler characteristic and Hodge polynomial, but in general
one obtains interesting new invariants (see [2,3,5,8,18]).
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When X is a normal variety with at most Gorenstein canonical singularities, one
can use the canonical class to de¢ne a measure mGorðAÞ for certain subsets A of
LðX Þ. Now assume X is the quotient of the af¢ne space An

k by a ¢nite subgroup
G of order d of SLnðkÞ. We make the assumption k contains all dth roots of unity.
We denote by LðX Þ0 the set of arcs whose origin is the point 0 in X . One of the
main results of the present paper is Theorem 3.6, which expresses mGorðLðX Þ0Þ in
terms of representation theoretic weights wðgÞ of the conjugacy classes of elements
g of G, de¢ned as

wðgÞ :¼
X

1W iW n

eg;i=d;

with 1W eg;i W d and xeg;i the eigenvalues of g for i ¼ 1; . . . ; n, x being a ¢xed primi-
tive dth root of unity in k. More precisely, the image of mGorðLðX Þ0Þ is equal to that
of

P
½g�2ConjðGÞ L

�wðgÞ in a certain quotient cMM= of cMM, with L the class of the af¢ne
line. The quotient cMM= is de¢ned by requiring that the class of a quotient of a vector
space V by a ¢nite group acting linearly should be that of V . This condition is mild
enough to guarantee that mGorðLðX Þ0Þ and

P
½g�2ConjðGÞ L

�wðgÞ have the same image
in bKK0ðCHMkÞ, an appropriate completion of K0ðCHMkÞ, the Grothendieck group
of the pseudo-Abelian category of Chow motives over k, and in particular have
the same Hodge polynomial and Euler characteristic. This result ^ at least for
the Hodge realization ^ is due to Batyrev [6] and implies, when X has a crepant
resolution, a form of the McKay correspondence which has been conjectured by
Reid [16] and proved by Batyrev [6].
The aim of the present paper is to present an alternative proof of Batyrev’s result

and also to develop further, some basic properties of motivic integration which were
not covered in [8]. Though Batyrev also uses integration on spaces of arcs, the
approach we follow here, which was inspired to us by Maxim Kontsevich, is some-
what different. One of the main differences is that we are able to work directly
on the singular space X instead of going to desingularizations. This allows us to
have a more local approach, in the sense that we can directly calculate the part
of the motivic integral coming from each conjugacy class. More precisely, for each
element g in the group G, we consider LðX Þg0;g, the set of arcs j in LðX Þ0, which
are not contained in the discriminant and may be lifted in LðAn

kÞ to a fractional
arc ~jjðt1=dÞ such that ~jjðxt1=dÞ ¼ g ~jjðt1=d Þ. We prove that the image of
mGorðLðX Þg0;gÞ in cMM= is equal to that of L�wðgÞ.
Let us now brie£y review the content of the paper. In Section 1, we recall some

material on semi-algebraic geometry over kððtÞÞ from [8]. In fact, we need to
generalize slightly semi-algebraic geometry as developed in [8] to ‘k½t�-semi-algebraic
geometry’ which allows expressions involving t, since k½t�-morphisms naturally
appear in Section 2. Fortunately, this is quite harmless, since most proofs remain
the same. This material on k½t�-semi-algebraic geometry might be useful elsewhere.
One of the main technical dif¢culties of the section is Theorem 1.16 were we extend
the crucial change of variables formula [8] to certain maps which are not birational.
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Section 2 is the heart of the paper, namely the study of the local action of the group G
on arcs. We are then able to deduce the main results in Section 3. In Section 4 we
explain how one can deduce statements at the level of Chow motives and then
realizations, and in Section 5 we express the main results in terms of resolutions
of singularities and we explain the relation with McKay’s correspondence.
Let us remark that k½t�-semi-algebraic sets appear quite naturally in the problem,

since the set LðX Þg0;g is k½t�-semi-algebraic. Nevertheless, it is possible to avoid
the use of k½t�-semi-algebraic geometry here, by using properties of measurable sets
which are developed in the appendix, in particular the fact, proved in Theorem A.8,
that the image of a measurable set under a k½t�-morphism, for varieties of the same
dimension, is again measurable.

1. Preliminaries on Semi-algebraic Geometry and Motivic Integration

1.1. In the present paper by a variety over k, or variety, we always mean a reduced
separated scheme of ¢nite type over a ¢eld k that will be assumed to be of charac-
teristic zero throughout the paper. If X is a variety, we shall denote by Xsing the
singular locus of X .

1.2. ForX a variety over k, we will denote by LðX Þ the scheme of germs of arcs on X .
It is a scheme over k and for any ¢eld extension k � K there is a natural bijection

LðX ÞðKÞ ’Mork�schemesðK ½½t��;X Þ

between the set of K-rational points of LðX Þ and the set of germs of arcs with
coef¢cients in K on X . We will call K-rational points of LðX Þ, for K a ¢eld extension
of k, arcs on X , and jð0Þ will be called the origin of the arc j. More precisely, the
scheme LðX Þ is de¢ned as the projective limit LðX Þ :¼ lim

 �
LnðX Þ in the category

of k-schemes of the schemes LnðX Þ representing the functor

R 7!Mork�schemesðR½t�=tnþ1R½t�;X Þ

de¢ned on the category of k-algebras. (The existence of LnðX Þ is well known (cf. [8])
and the projective limit exists since the transition morphisms are af¢ne.) We shall
denote by pn the canonical morphism, corresponding to truncation of arcs,
pn : LðX Þ�!LnðX Þ: The schemes LðX Þ and LnðX Þ will always be considered with
their reduced structure. If W is a subscheme of X , we set LðX ÞW ¼ p�10 ðW Þ.
Since, in Section 2, we shall lift arcs to Galois covers, we also have to consider

‘rami¢ed’ arcs, so we de¢ne similarly, for d X 1 an integer, the scheme L1=dðX Þ
as the projective limit L1=dðX Þ :¼ lim

 �
L
1=d
n ðX Þ in the category of k-schemes of the

schemes L1=dn ðX Þ representing the functor

R 7!Mork�schemesðR½t1=d �=tðnþ1Þ=dR½t1=d �;X Þ

de¢ned on the category of k-algebras. Of course the schemes L1=dðX Þ are all
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isomorphic to LðX Þ. We shall still denote by pn the canonical morphism
pn: L1=d ðX Þ�!L1=dn ðX Þ and for W a subscheme of X , we set L1=dðX ÞW ¼ p�10 ðW Þ.
The above de¢nitions extend to the case where X is a reduced and separated

scheme of ¢nite type over k½t�. For n in N, one de¢nes the k-scheme LnðX Þ as
representing the functor

R 7!Mork½t��schemesðSpecR½t�=tnþ1R½t�;X Þ;

de¢ned on the category of k-algebras, and one sets LðX Þ :¼ lim
 �
LnðX Þ. The existence

of LnðX Þ is well known, cf. [7] p. 276, and again the projective limit exists since the
transition morphisms are af¢ne. We shall still denote by pn the canonical morphism
LðX Þ ! LnðX Þ.

1.3. Let X and Y be k-varieties. A function h: LðY Þ ! LðX Þ will be called a
k½t�-morphism if it is induced by a morphism of k½t�-schemes Y �k k½t� !
X �k k½t�. We shall denote by the same symbol a k½t�-morphism and the correspond-
ing morphism of k½t�-schemes.

1.4. We now introduce the concept of semi-algebraic and k½t�-semi-algebraic subsets
of the space of arcs LðX Þ. The main motivation for introducing such objects is that in
general being a subset of LðX Þ de¢ned by (Boolean combination of) algebraic
conditions is not a property which is conserved by taking images, i.e. Theorem
1.5 and Proposition 1.7 (1) would not remain true when replacing ‘semi-algebraic’
by ‘(Boolean combination of) algebraic’.
From now on we will denote by �kk a ¢xed algebraic closure of k, and by �kkððtÞÞ the

fraction ¢eld of �kk½½t��, where t is one variable. Let x1; . . . ; xm be variables running
over �kkððtÞÞ and let ‘1; . . . ; ‘r be variables running over Z. A semi-algebraic (resp.
k½t�-semi-algebraic) condition yðx1; . . . ; xm; ‘1; . . . ; ‘rÞ is a ¢nite boolean com-
bination of conditions of the form

(1) ordt f1ðx1; . . . ; xmÞX ordt f2ðx1; . . . ; xmÞ þ Lð‘1; . . . ; ‘rÞ,
(2) ordt f1ðx1; . . . ; xmÞ � Lð‘1; . . . ; ‘rÞ ðmod dÞ,

and

(3) hð acð f1ðx1; . . . ; xmÞÞ; . . . ; acð fm0 ðx1; . . . ; xmÞÞÞ ¼ 0,

where fi are polynomials with coef¢cients in k (resp. fi are polynomials with
coef¢cients in k½t�), h is a polynomial with coef¢cients in k, L is a polynomial of
degree W 1 over Z, d 2 N, and acðxÞ is the coef¢cient of lowest degree of x in
�kkððtÞÞ if x 6¼ 0, and is equal to 0 otherwise. Here we use the convention that
1þ ‘ ¼ 1 and 1 � ‘ mod d, for all ‘ 2 Z. In particular, the algebraic (resp.
k½t�-algebraic) condition f ðx1; . . . ; xmÞ ¼ 0 is a semi-algebraic (resp. k½t�-semi-
algebraic) condition, for f a polynomial over k (resp. k½t�).
A subset of �kkððtÞÞm � Zr de¢ned by a semi-algebraic (resp. k½t�-semi-algebraic)

condition is called semi-algebraic (resp. k½t�-semi-algebraic). One de¢nes similarly
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semi-algebraic and k½t�-semi-algebraic subsets of KððtÞÞm � Zr for K an algebraically
closed ¢eld containing �kk.
A function a : �kkððtÞÞm � Zn ! Z is called simple (resp. k½t�-simple) if its graph is

semi-algebraic (resp. k½t�-semi-algebraic).
We will use in an essential way the following result on quanti¢er elimination due to

J. Pas [15].

THEOREM 1.5. If y is a semi-algebraic (resp. k½t�-semi-algebraic) condition, then

ð9 x1 2 �kkððtÞÞÞ yðx1; . . . ; xm; ‘1; . . . ; ‘rÞ

is semi-algebraic (resp. k½t�-semi-algebraic). Furthermore, for any algebraically
closed ¢eld K containing �kk,

ð9 x1 2 KððtÞÞÞ yðx1; . . . ; xm; ‘1; . . . ; ‘rÞ

is also semi-algebraic (resp. k½t�-semi-algebraic) and may be de¢ned by the same
conditions (i.e. independently of K).

1.6. Let X be an algebraic variety over k. For x 2 LðX Þ, we denote by kx the residue
¢eld of x on LðX Þ, and by ~xx the corresponding rational point
~xx 2 LðX ÞðkxÞ ¼ X ðkx½½t��Þ. When there is no danger of confusion we will often write
x instead of ~xx. A semi-algebraic family of semi-algebraic subsets (resp.
k½t�-semi-algebraic family of k½t�-semi-algebraic subsets) (for n ¼ 0 a semi-algebraic
subset (resp. k½t�-semi-algebraic subset)) A‘, ‘ 2 Nn, of LðX Þ is a family of subsets
A‘ of LðX Þ such that there exists a covering of X by af¢ne Zariski open sets U with

A‘ \ LðUÞ ¼
n
x 2 LðUÞ

�� yðh1ð ~xxÞ; . . . ; hmð ~xxÞ; ‘Þ
o
;

where h1; . . . ; hm are regular functions onU and y is a semi-algebraic condition (resp.
k½t�-semi-algebraic condition). Here the hi’s and y may depend on U and hið ~xxÞ
belongs to kx½½t��.
Let A be a semi-algebraic subset (resp. k½t�-semi-algebraic subset) of LðX Þ. A func-

tion a : A� Zn! Z [ f1g is called simple (resp. k½t�-simple) if the family of subsets
fx 2 LðX Þ

�� aðx; ‘1; . . . ; ‘nÞ ¼ ‘nþ1g, ð‘1; . . . ; ‘nþ1Þ 2 Nnþ1, is a semi-algebraic family
of semi-algebraic subsets (resp. a k½t�-semi-algebraic family of k½t�-semi-algebraic
subsets) of LðX Þ.
We will use the following consequences of Theorem 1.5.

PROPOSITION 1.7. (1) If X and Y are algebraic varieties over k, f : LðX Þ ! LðY Þ is
a k½t�-morphism and A is a k½t�-semi-algebraic subset of LðX Þ, then f ðAÞ is a
k½t�-semi-algebraic subset of LðY Þ.
(2) If X is an algebraic variety over k and A is a k½t�-semi-algebraic subset of LðX Þ,

then pnðAÞ is a constructible subset of LnðX Þ.
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Proof. (1) is a direct consequence of Theorem 1.5. The proof of (2) is similar to the
proof of Proposition 2.3 in [8]. &

1.8. By replacing t by t1=d in the de¢nition, one de¢nes similarly semi-algebraic (resp.
k½t�-semi-algebraic) subsets of L1=d ðX Þ.

1.9. We denote byM the Abelian group generated by symbols ½S�, for S a variety
over k, with the relations ½S� ¼ ½S0� if S and S0 are isomorphic and
½S� ¼ ½S0� þ ½S n S0� if S0 is closed in S. There is a natural ring structure on M,
the product being induced by the Cartesian product of varieties, and to any con-
structible set S in some variety one naturally associates a class ½S� inM. We denote
by Mloc the localization Mloc :¼M½L�1� with L :¼ ½A1k�. We denote by FmMloc

the subgroup generated by ½S�L�i with dimS � iW �m, and by cMM the completion
of Mloc with respect to the ¢ltration F �. We will also denote by F � the ¢ltration
induced on cMM. We denote by Mloc the image of Mloc in cMM.
1.10. In fact, for technical reasons appearing in the proof of Lemma 3.4, we shall
need to consider the following quotient M= of M, which is de¢ned by adding
the relation

½V=G� ¼ ½V �;

for every vector space V over k endowed with a linear action of a ¢nite group G. We
shall still denote by L the class of the af¢ne line and, replacingM byM=, one de¢nes
similarly as above rings Mloc= and cMM=.

1.11. Let A be a k½t�-semi-algebraic subset of LðX Þ. We call A weakly stable at level
n 2 N if A is a union of ¢bers of pn: LðX Þ ! LnðX Þ. We call A weakly stable if
it is stable at some level n. Note that weakly stable k½t�-semi-algebraic subsets form
a Boolean algebra. Let X , Y and F be algebraic varieties over k, and let A, resp.
B, be a constructible subset of X , resp. Y . We say that a map p: A! B is a piecewise
morphism if there exists a ¢nite partition of the domain of p into locally closed
subvarieties of X such that the restriction of p to any of these subvarieties is a
morphism of schemes. We say that a map p: A! B is a piecewise trivial ¢bration
with ¢ber F , if there exists a ¢nite partition of B in subsets S which are locally closed
in Y such that p�1ðSÞ is locally closed in X and isomorphic, as a variety over k, to
S � F , with p corresponding under the isomorphism to the projection
S � F ! S. We say that the map p is a piecewise trivial ¢bration over some con-
structible subsetC of B, if the restriction of p to p�1ðCÞ is a piecewise trivial ¢bration
onto C. One de¢nes similarly the notion of a pievewise vector bundle of rank e.
Let X be an algebraic variety over k of pure dimension d (in particular we assume

that X is nonempty) and let A be a k½t�-semi-algebraic subset of LðX Þ. We call A
stable at level n 2 N, if A is weakly stable at level n and pmþ1ðLðX ÞÞ ! pmðLðX ÞÞ
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is a piecewise trivial ¢bration over pmðAÞ with ¢ber Ad
k for all mX n. We call A stable

if it stable at some level n.

LEMMA 1.12. Let X be an algebraic variety over k of pure dimension d, and let A be a
k½t�-semi-algebraic subset of LðX Þ. There exists a reduced closed subscheme S of
X � k½t�, with dimk½t� S < dimX, and a k½t�-semi-algebraic family Ai, i 2 N, of
k½t�-semi-algebraic subsets of A such that LðSÞ \ A and the Ai’s form a partition
of A, each Ai is stable at some level ni, and

lim
i!1
ðdim pni ðAiÞ � ðni þ 1Þ dÞ ¼ �1:

Moreover, if a : LðX Þ ! Z is a k½t�-simple function, we can choose the partition such
that a is constant on each Ai.

Proof. The proof is literally the same as the one of Lemma 3.1 of [8], noticing
that Lemma 4.4 of [8] also holds for a closed subscheme S of X � k½t� with
dimk½t�S < d. &

LetX be an algebraic variety over k of pure dimension d. Denote by Bt the set of all
k½t�-semi-algebraic subsets of LðX Þ, and by Bt

0 the set of all A in B
t which are stable.

Clearly there is a unique additive measure ~mm: Bt
0�!Mloc satisfying

~mmðAÞ ¼ ½pnðAÞ�L�ðnþ1Þd , when A is stable at level n.

DEFINITION^PROPOSITION 1.13. Let X be an algebraic variety over k of pure
dimension d. Let Bt be the set of all k½t�-semi-algebraic subsets of LðX Þ. There exists
a unique map m: Bt ! cMM satisfying the following three properties.

(1) If A 2 Bt is stable at level n, then mðAÞ ¼ ½pnðAÞ�L�ðnþ1Þd.
(2) If A 2 Bt is contained in LðSÞwith S a reduced closed subscheme ofX � k½t�with

dimk½t� S < dimX , then mðAÞ ¼ 0.
(3) Let Ai be in Bt for each i in N. Assume that the Ai’s are mutually disjoint and that

A :¼
S

i2N Ai is k½t�-semi-algebraic. Then
P

i2N mðAiÞ converges in cMM to mðAÞ.

Moreover we have:

(4) If A and B are in Bt, A � B and if mðBÞ 2 FmcMM, then mðAÞ 2 FmcMM.
This unique map m is called themotivic measure on LðX Þ and is denoted by mLðX Þ or m.
For A in Bt and a: A! Z [ f1g a k½t�-simple function, one de¢nes the motivic
integralZ

A
L�adm :¼

X
n2Z

mðA \ a�1ðnÞÞL�n

incMM, whenever the right-hand side converges incMM, in which case we say that L�a is
integrable on A. If the function a is bounded from below, then L�a is integrable on A,
because of (4).
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Proof. The proof of De¢nition^Proposition 3.2 of [8] generalizes to the present
case because Lemma 4.3 of [8] holds also for X a scheme of ¢nite type over k½t�
(replacing ‘dimension’ by ‘relative dimension’), and because Lemma 2.4 of [8] holds
for ‘semi-algebraic’ replaced by ‘k½t�-semi-algebraic’ (cf. Lemma A.3 below), both
with identically the same proofs. Note that we have to replace Lemma 3.1 of [8]
by Lemma 1.12. &

1.14. Let h: LðY Þ ! LðX Þ be a k½t�-morphism with Y and X of pure dimension d.
Let y be a closed point of LðY Þ n LðYsingÞ and denote by j the corresponding
morphism j: SpecK ½½t�� ! Y , with K a ¢eld extension of k. We de¢ne an element
ordtJ hðyÞ in N [ f1g, the order of the Jacobian of h at y, as follows. Consider
the K ½½t��-module M ¼ j�ðOd

Y Þ and set L :¼M �K½½t�� KððtÞÞ. Here by Od we mean
dth exterior power of the sheaf of differentials. The image ~MM of M in the
KððtÞÞ-vector space L is a lattice of rank 1. One may also consider the image ~NN
of the module j�h�ðOd

X�k½t�jk½t�Þ in L. If ~NN is nonzero, ~NN ¼ tn ~MM for some n in N
and one sets ordtJ hðyÞ ¼ n. When ~NN ¼ 0, one sets ordtJ hðyÞ ¼ 1.
Similarly assume Y is irreducible and let o be an element in Od

Y �k kðY Þ. Denote
by L the K ½½t��-submodule of L generated by j�ðoÞ. If L is nonzero, L ¼ tn ~MM
for some n in Z and one sets ordtoðyÞ ¼ n. When L ¼ 0, one sets ordtoðyÞ ¼ 1.

LEMMA 1.15. Let X and Y be k-varieties of pure dimension d and let
h : LðY Þ ! LðX Þ be a k½t�-morphism. Then the function y 7! ordtJ hðyÞ is k½t�-simple
on LðY Þ n LðYsingÞ. Similarly, if Y is irreducible and o belongs to Od

Y �k kðY Þ,
the function y 7! ordtoðyÞ is k½t�-simple on LðY Þ n LðYsingÞ.

Proof. Direct veri¢cation. &

Under the preceding assumptions, we extend the functions ordtJ hðyÞ and ordtoðyÞ
by 1 to a k½t�-simple function on LðY Þ.

THEOREM 1.16 (Change of variables formula). Let X and Y be algebraic varieties
over k, of pure dimension d. Let h: LðY Þ ! LðX Þ be a k½t�-morphism. Let A and
B be k½t�-semi-algebraic subsets ofLðX Þ andLðY Þ, respectively. Assume that h induces
a bijection between B and A. Then, for any k½t�-simple function a: A! Z [ f1g such
that L�a is integrable on A, we have

Z
A
L�adm ¼

Z
B
L�a h�ordtJ hðyÞdm:

Proof. By resolution of singularities we may assume that Y is smooth. If h is
induced by a proper birational morphism from Y to X , then Theorem 1.16 is a direct
consequence of Lemma 3.4 of [8]. In the general case it is a direct consequence of
Lemma 1.12 and the following Lemma 1.17. &
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For X a variety and e in N, we set

L
ðeÞ
ðX Þ :¼ LðX Þ n p�1e ðLeðXsingÞÞ:

We call a subset A of LðX Þ cylindrical at level n if A ¼ p�1n ðCÞ, with C a constructible
subset of LnðX Þ. We say that A is cylindrical if it is cylindrical at some level n.

LEMMA 1.17. Let X and Y be algebraic varieties over k, of pure dimension d, with Y
smooth. Let h: LðY Þ ! LðX Þ be a k½t�-morphism. Let B � LðY Þ be cylindrical and put
A ¼ hðBÞ. Assume that ordtJ hðjÞ has constant value e <1 for all j 2 B, and that
A � Lðe

0Þ
ðX Þ for some e0 in N. Then A is cylindrical. Morever, if the restriction of

h to B is injective, then, for n 2 N large enough, we have the following:

(a) If j and j0 belong to B and pnðhðjÞÞ ¼ pnðhðj0ÞÞ, then pn�eðjÞ ¼ pn�eðj0Þ.
(b) The morphism hn�: pnðBÞ ! pnðAÞ induced by h is a piecewise trivial ¢bration with

¢ber Ae
k .

Proof. Let n in N be large enough. We may assume that B is cylindrical at level
n� e. That A is cylindrical at level n is an easy consequence of the following
assertion:

(a00) For all j in B and x in LðX Þ, with pnðhðjÞÞ ¼ pnðxÞ, there exists y in LðY Þ with
hðyÞ ¼ x and pn�eðjÞ ¼ pn�eðyÞ (whence y 2 B, since B is cylindrical at level
n� e) .

The proof of (a00) is the same as the proof of assertion (a00) in Lemma 3.4 of [8].
(Note that with the notation of loc. cit. B is contained in De;e0 .) Assertion (a) is
a direct consequence of (a00), taking x ¼ hðj0Þ and using the injectivity of hjB. It
remains to prove (b). Because of (a), we may assume that X and Y are af¢ne.
Let s: LnðX Þ ! LðX Þ be a section of the projection pn: LðX Þ ! LnðX Þ such that
the restriction of pnþe  s to pnðAÞ is a piecewise morphism. The existence of such
a section has been shown in the proof of Lemma 3.4 of [8]. Since A is cylindrical
at level n, sðpnðAÞÞ is contained in A. Let y be the mapping

y: pnðAÞ�!B: x7 �!h�1ðsðxÞÞ:

We will prove the following assertion:

(c) The map pn  y : pnðAÞ ! pnðBÞ is a piecewise morphism.

Using (c), the proof of (b) is the same as in the proof of Lemma 3.4 in [8], except that
we have to replace the assertion that y in loc. cit. is a piecewise morphism by the
slightly weaker assertion (c) above.
It only remains to prove (c). Let x be in pnðAÞ and y in pnðBÞ. Using assertion (a) we

see that y ¼ ðpn  yÞðxÞ if and only if there exists ~yy in pnþeðBÞ such that y ¼ pnð~yyÞ and
hnþe�ð~yyÞ ¼ pnþeðsðxÞÞ. Thus, the graph of the map pn  y is constructible and assertion
(c) follows from the next lemma. &
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LEMMA 1.18. Let X and Y be algebraic varieties over k and let U and V be con-
structible subsets of X and Y respectively. If f : U ! V is a map whose graph is
a constructible subset of X � Y, then f is a piecewise morphism.

Proof. Well known. &

Remark 1.19. All the material in this section (before 1.18) generalizes to ‘X and Y
algebraic varieties’ replaced by ‘X and Y separated reduced schemes of ¢nite type
over k½t�’. In that case Xsing denotes the locus of points at which X is not smooth
over k½t�, ‘dimension’ has to be replaced by ‘relative dimension over k½t�’, and in
1.17 one replaces the hypothesis ‘Y smooth’ by ‘Y � kðtÞ smooth’. Moreover
one can also work with schemes over k½½t�� instead of over k½t�, replacing everywhere
k½t� by k½½t��. The proofs remain essentially the same, but since this is not needed
in the present paper, we do not give details here.

2. Study at the Origin

2.1. Let d X 1 be an integer and let k be ¢eld of characteristic 0 containing all dth
roots of unity. Let G be a ¢nite subgroup of GLnðkÞ of order d. We ¢x a primitive
dth root of unity x in k. We denote by ConjðGÞ the set of conjugacy classes in
G. We let G act on An

k and we consider the morphism of schemes
h: ~XX ¼ An

k�!X ¼ An
k=G:We denote by 0 the origin in ~XX and X . Let ~DD be the closed

subvariety of ~XX consisting of the closed points having a nontrivial stabilizer and
let D be its image in X (the discriminant). We denote by LðX Þg (resp. L1=dð ~XX Þg)
the complement of LðDÞ (resp. L1=dð ~DDÞ) in LðX Þ (resp. L1=dð ~XX Þ), and de¢ne similarly
LðX ÞgW (resp. L1=dð ~XX ÞgW ) when W is a subscheme of X (resp. ~XX ).
Let j be a geometric point of LðX Þg0. So j is given by a morphism

j: SpecK ½½t�� ! X with K an algebraically closed over¢eld of k. The generic point
of the image of j is in X n D and the special point is 0. We can lift j to a morphism
~jj making the following diagram commutative:

SpecK ½½t1=d �� �!
~jj
~XX????y
????yh

SpecK ½½t�� �!
j

X :

ð2:1:1Þ

There is a unique element g in G such that

~jjðxt1=dÞ ¼ g ~jjðt1=dÞ: ð2:1:2Þ

If we change ~jj in the diagram (2.1.1), g will be replaced by a conjugate. If we denote
by LðX Þg0;g the set of j’s in LðX Þ

g
0 such that there exists ~jj satisfying (2.1.2), we have

LðX Þg0;g ¼ LðX Þ
g
0;g0 for g and g0 in the same conjugacy class, and we have a
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decomposition LðX Þg0 ¼
‘
LðX Þg0;g, for g running over a set of representatives of the

conjugacy classes.
For each g in G, choose a basis bg in which the matrix of g is diagonal, and denote

by xeg;i , the diagonal coef¢cients, with 1W eg;i W d, 1W iW n.

LEMMA 2.2. Let g be in G. A point ~jj in L1=dð ~XX Þg projects to a point in LðX Þg0;g if and
only if it is in the G-orbit of a point in L1=d ð ~XX Þg of the form

~jjðt1=dÞ ¼ ðteg;1=dj1ðtÞ; . . . ; t
eg;n=djnðtÞÞ ð2:2:3Þ

in the basis bg.
Proof. It follows from (2.1.2) that a point of L1=d ð ~XX Þg which projects to a point in
LðX Þg0;g is in the G-orbit of a point of the form (2.2.3). To conclude observe that,
in the basis bg, G-invariant polynomials are sums of monomials of the form
xm1
1 . . . x

mn
n , with d dividing

P
1W iW n eg;imi. &

2.3. We consider the morphism of k½t�-schemes

~ll: An
k½t��!X � k½t� ðx1; . . . ; xnÞ7�!hðteg;1=dx1; . . . ; teg;n=dxnÞ;

where x1; . . . ; xn are the af¢ne coordinates corresponding to the basis bg. This is
indeed a k½t�-morphism, since, in the basis bg, G-invariant polynomials are sums
of monomials of the form xm1

1 � � � x
mn
n , with d dividing

P
1W iW n eg;imi. The morphism

~ll induces a k½t�-morphism ~ll�: LðAn
kÞ ! LðX Þ0. Note that Lemma 2.2 implies that

LðX Þg0;g ¼ ~ll�ðLðA
n
kÞÞ \ LðX Þ

g: ð2:3:4Þ

PROPOSITION 2.4. For every g in G, LðX Þg0;g is a k½t�-semi-algebraic subset of LðX Þ.
Proof. This follows directly from (2.3.4) and Proposition 1.7 (1). &

2.5. For g in Gwe denote by Gg the centralizer of g in G. It follows from Theorem 1.5
that LðAn

kÞ=Gg is a semi-algebraic subset of LðAn
k=GgÞ.

LEMMA 2.6. The morphism ~ll is invariant under the action of Gg on An
k½t�. Moreover

the ¢bers of ~ll� above LðX Þg0;g are Gg-orbits.
Proof. The ¢rst assertion is clear because the eigenspaces of g are invariant

subspaces under the action of Gg. Next we prove the second assertion. Let
x ¼ ðx1; . . . ; xnÞ and x0 ¼ ðx01; . . . ; x

0
nÞ be in a same ¢ber of ~ll� above LðX Þ

g
0;g, and set

~jj ¼ ðteg;1=dx1; . . . ; teg;n=dxnÞ and ~jj0 ¼ ðteg;1=dx01; . . . ; t
eg;n=dx0nÞ:

Then (2.1.2) holds for ~jj, and also for ~jj replaced by ~jj0. There exists s in G such that
~jj0 ¼ sð ~jjÞ. Hence, (2.1.2) also holds for ~jj and g replaced by sð ~jjÞ ¼ ~jj0 and sgs�1

respectively. Thus s ¼ sgs�1 and s 2 Gg. But the equality sð ~jjÞ ¼ ~jj0 implies that
sðxÞ ¼ x0. &
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By Lemma 2.6, ~ll induces a morphism of k½t�-schemes

l: ðAn
k=GgÞ � k½t��!X � k½t�:

The morphism l induces a k½t�-morphism

l�: LðAn
k=GgÞ�!LðX Þ:

2.7. Considering LðAn
kÞ=Gg as a (semi-algebraic) subset of LðAn

k=GgÞ we have by
(2.3.4) and Lemma 2.6 that l� induces a bijection between
LðAn

kÞ=Gg \ l
�1
� ðLðX Þ

g
Þ and LðX Þg0;g.

3. Motivic Gorenstein Measure of Quotients

3.1. Let X be an irreducible normal algebraic variety over k of dimension d and
assume X is Gorenstein with at most canonical singularities at each point. Hence,
there exists oX in Od

X �k kðX Þ generating Od
X at each smooth point of X , and, since

X is canonical, div h�ðoX Þ is effective for any resolution h: Y ! X . So by pulling
back to Y and using the change of variables formula Lemma 3.4 of [8], we see that
L�ordtoX is integrable on LðX Þ (see 1.14 for the de¢nition of ordtoX ). Furthermore,
the function ordtoX does not depend on the choice of oX . Hence, one may de¢ne
the motivic Gorenstein measure mGorðAÞ of a k½t�-semi-algebraic subset A of
LðX Þ as

mGorðAÞ :¼
Z

A
L�ordtoXdmLðX Þ

in cMM.
3.2. Let d X 1 be an integer and let k be ¢eld of characteristic 0 containing all dth
roots of unity. Let G be a ¢nite subgroup of SLnðkÞ of order d. Set X ¼ An

k=G
and let h: An

k ! X be the projection. The variety X has only canonical Gorenstein
singularities and we can take oX in On

X=k � kðX Þ such that h�ðoX Þ ¼ dx1 ^ � � � ^ dxn.
For g inG, recall the weight wðgÞ of g is de¢ned as wðgÞ :¼

P
1W iW n eg;i=d, where the

eg;i’s are as in 2.1, i.e. 1W eg;i W d and xeg;i are the eigenvalues of g for i ¼ 1; . . . ; n.
Note that wðgÞ 2 N n f0g, since G � SLnðkÞ.

LEMMA 3.3. For any g in G, we have

mGorðLðX Þg0;gÞ ¼ L
�wðgÞ mGorLðAn

k=GgÞ
ðLðAn

kÞ=GgÞ:

Proof. Let l be as in Section 2. Direct veri¢cation yields l�ðoX Þ ¼ twðgÞoAn
k=Gg . The

lemma follows now from 2.7 and Theorem 1.16 (with h replaced by l�). &
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A reason for considering the measure mGorLðX Þ instead of mLðX Þ is given by the next
lemma. It is also at that place that it seems necessary to work in the ring cMM= instead
of just cMM.
LEMMA 3.4. The image of mGor

LðX ÞðLðA
n
kÞ=GÞ in cMM= is equal to 1.

Proof. Let M be a large integer. For e in N, we consider the subset De;M of LðAn
kÞ

consisting of all points j in LðAn
kÞ such that ordtJ hðjÞ ¼ e and hðjÞ 2 LðMÞðX Þ. Note

that ðordtoX Þ  h ¼ �ordtJ h, because ordth�ðoX Þ ¼ ordtðdx1 ^ � � � ^ dxnÞ ¼ 0. Thus

mGorLðX ÞðLðA
n
kÞ=GÞ ¼

XM
e¼0

LemLðX ÞðhðDe;MÞÞ þ RM;

with limM!1 RM ¼ 0, since L�ordtoX is integrable on LðX Þ. By the ¢rst assertion of
Lemma 1.17 and by Lemma 3.5 below, for m in N large enough with respect to
M, we have for all eWM that hðDe;MÞ is stable at level m and that
½pmðhðDe;MÞÞ� ¼ L�e½pmðDe;MÞ=G�. Hence

mGorLðX ÞðLðA
n
kÞ=GÞ ¼

XM
e¼0

½pmðDe;MÞ=G�L�ðmþ1Þn þ RM

¼ ½pmð[e¼0;...;MDe;MÞ=G�L�ðmþ1Þn þ RM

¼ ½pmðLðAn
kÞÞ=G�L

�ðmþ1Þn þ R0M;

with limM!1 R0M ¼ 0 (because of Lemma 4.4 of [8]). The lemma follows now, since
pmðLðAn

kÞÞ=G is isomorphic to A
ðmþ1Þn
k =G, the G-action on Aðmþ1Þnk being the diagonal

one, and the image of Aðmþ1Þnk =G in cMM= is equal to Lðmþ1Þn (it is here that we use
the fact that we work in cMM= instead of cMM). &

LEMMA 3.5. Let Y ¼ Ad
k and X ¼ Ad

k=G, with G a ¢nite subgroup ofGLdðkÞ. Denote
by h: LðY Þ ! LðX Þ the natural projection. Let B � LðY Þ be cylindrical and stable
under the G-action. Set A ¼ hðBÞ. Assume that ordtJ hðjÞ has constant value
e <1 for all j 2 B, and that A � Lðe

0Þ
ðX Þ for some e0 in N. Then, for n 2 N large

enough, we have the following:

(a) If j 2 B, j0 2 LðY Þ and pnðhðjÞÞ ¼ pnðhðj0ÞÞ, then pn�eðjÞ and pn�eðj0Þ have the
same image in Ln�eðY Þ=G.

(b) The morphism hn�: pnðBÞ=G! pnðAÞ induced by h may be endowed with the struc-
ture of a piecewise vector bundle of rank e.

(c) ½pnðBÞ=G� ¼ Le ½pnðAÞ�.

Proof. Since assertion (a) is a direct consequence of assertion (a00) in the proof of
Lemma 1.17, taking x ¼ hðj0Þ, and assertion (c) follows from (b), it remains to prove
(b).
By the ¢rst assertion in the statement of Lemma 1.17, A is cylindrical at level n,

taking n large enough. In order to prove (b), we may assume that pnðAÞ is a locally
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closed subvariey of LnðX Þ. The inverse image of pnðAÞ under the natural map
LnðY Þ=G! LnðX Þ is locally closed in LnðY Þ=G and is equal to pnðBÞ=G by assertion
(a) and the fact that B is cylindrical at level n� e, for n large enough. Hence,
pnðBÞ=G is a locally closed subvariety of LnðY Þ=G, and pnðBÞ is a locally closed
subvariety of LnðY Þ.
Next we prove the following assertion:

(d) The stabilizer of G acting on pn�eðBÞ is trivial at every point of pn�eðBÞ.

Let s 2 G n f1g and set Ds ¼ fy 2 Y jsðyÞ ¼ yg. Since ordtJ h 6¼ 1 on B, we have
B \ LðDsÞ ¼ ;. Hence, B is contained in [m2NðLðY Þ n p�1m ðLmðDsÞÞÞ. Thus, since B
is cylindrical, Lemma A.3 implies that B is contained in LðY Þ n p�1m ðLmðDsÞÞ when
m is large enough. This concludes the proof of assertion (d).
Our next step is to construct a section of the morphism hn�: pnðBÞ=G! pnðAÞ. Let

s: LnðX Þ ! LðX Þ be a section of the projection pn: LðX Þ ! LnðX Þ such that the
restriction of pnþe  s to pnðAÞ is a piecewise morphism. The existence of such a
section s has been shown in the proof of Lemma 1.17. Note that sðpnðAÞÞ is contained
in A, since pnðAÞ is cylindrical at level n. Denote by y the map

y: pnðAÞ�!B=G : x 7 �! h�1ðsðxÞÞ mod G;

and set

y ¼ ~ppn  y: pnðAÞ�!pnðBÞ=G : x 7 �! yðxÞ mod tnþ1;

where ~ppn: B=G! pnðBÞ=G is the projection. Clearly y is a section of hn�. One proves
that y is a piecewise morphism by exactly the same argument as for assertion
(c) in the proof of Lemma 1.17, replacing B, pnðBÞ, and pnþeðBÞ by their quotient
under the action of G.
By (d), the natural morphism p: pnðBÞ ! pnðBÞ=G is e¤ tale. We consider the ¢ber

product

:¼ pnðAÞ �pnðBÞ=G pnðBÞ:

The strategy of proof is to construct a G-equivariant morphism g: pnðBÞ ! ,
such that the following diagram is commutative,

ð3:5:5Þ

then to show it may be endowed with the structure of a piecewise vector bundle of
rank e, and ¢nally to conclude by e¤ tale descent.
We ¢rst construct the mapping g. Let j be a point in pnðBÞ. It follows from (a) that

there exists a lifting ~jj in pnðBÞ of yðhn�ðpðjÞÞÞ such that j � ~jj mod tnþ1�e.
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Furthermore, by (d), the lifting ~jj is uniquely determined by j. We set

gðjÞ :¼ ðhn�ðpðjÞÞ; ~jjÞ:

Clearly, the graph of g is constructible, hence, by Lemma 1.18, g is a piecewise
morphism. We shall show later that, as soon as y is a morphism and pnðBÞ is smooth,
g is an actual morphism. Now take a point ða; ~jjÞ in . We have a ¼ hn�ðpð ~jjÞÞ and
~jj is a lifting of yðaÞ. Hence, the conditions for a point j to be in the ¢ber g�1ða; ~jjÞ are
that j � ~jj mod tnþ1�e and hðjÞ � hð ~jjÞ mod tnþ1. Rewriting the ¢rst condition as
j ¼ ~jjþ tnþ1�eu, with a unique u in Le�1ðAd

kÞ, the ¢ber g
�1ða; ~jjÞ can be determined

by rewriting the condition

hð ~jjþ tnþ1�euÞ � hð ~jjÞ mod tnþ1

using the Taylor expansion of h at ~jj. In this way, using again that n is large enough
and that B is cylindrical at level n� e, we ¢nd that

g�1ða; ~jjÞ ¼
n
~jjþ tnþ1�eðu0 þ u1tþ � � � þ ue�1te�1Þ

��� L ~jjðu0; . . . ; ue�1Þ ¼ 0
o
;

where L ~jjðu0; . . . ; ue�1Þ ¼ 0 is a system of linear homogeneous equations whose
coef¢cients are regular functions of ~jj 2 LnðY Þ.
We refer to [8] 3.4 (3) for more details. Moreover, the solution space of this linear

system has dimension e, since the Jacobian matrix of h at any point in p�1n ð ~jjÞ is
equivalent over �kk½½t�� to a diagonal matrix with diagonal elements te1 , te2 , . . .,
satisfying e ¼ e1 þ e2 þ � � �, cf. [8] 3.4 (4).
In order to prove (b), we may assume that pnðAÞ is a locally closed smooth

subvariety of LnðX Þ and that y is a morphism, provided that from now on we only
assume B is cylindrical at level n and that we do not anymore increase n, which
could destroy the property of y to be a morphism. When k ¼ C, we see from
our previous discussion about g�1ða; ~jjÞ, that pnðBÞ is locally bianalytically
isomorphic to pnðAÞ � Ce. Hence, pnðBÞ is smooth for any k. Now let us prove that
g is a morphism. When k ¼ C, it is easy to see that g is continuous, hence is a
morphism, since its domain is smooth and it is a piecewise morphism. Thus, by
the Lefschetz principle, it follows that g is a morphism, for any k. The fact that
it may be endowed with the structure of a vector bundle of rank e follows from
the above description of the ¢bers. Now by e¤ tale descent (Hilbert’s Theorem 90,
see, e.g., [14] p. 124), we deduce that hn� may be endowed with the structure of
a vector bundle of rank e. &

We can now prove the main result.

THEOREM 3.6. Let d X 1 be an integer and let k be ¢eld of characteristic 0 con-
taining all dth roots of unity. Let G be a ¢nite subgroup of SLnðkÞ of order d, so
G acts on An

k. Consider the quotient X :¼ An
k=G.

MOTIVIC INTEGRATION AND QUOTIENT SINGULARITIES 281



(1) For any g in G, we have

mGorðLðX Þg0;gÞ ¼ L
�wðgÞ

in cMM=.
(2) The relation

mGorðLðX Þ0Þ ¼
X

½g�2ConjðGÞ

L�wðgÞ

holds in the ring cMM=, where ConjðGÞ denotes the set of conjugacy classes in G.

Proof.The ¢rst statement is a direct consequence of Lemmas 3.3 and 3.4 with G, X
replaced by Gg, An

k=Gg. The second follows then, using the decomposition

LðX Þg0 ¼
a
LðX Þg0;g

and the fact that mGorðLðX Þ0 n LðX Þ
g
0Þ ¼ 0. &

3.7. Keeping the above notations, we now assume that G is a ¢nite subgroup of
GLnðkÞ, instead of SLnðkÞ. Notice that now the weight wðgÞ 2 Q of an element g
in G might not be integral and that oX might not exist. To remedy this we consider
the function aX : LðX Þ ! Q [ f1g which is de¢ned by aX ðjÞ ¼ �ordtJ hð ~jjÞ for
any ~jj in L1=dðAn

kÞ with hð ~jjÞ ¼ j. Clearly aX ¼ ordtoX when G � SLnðkÞ. We de¢ne
the motivic orbifold measure morbðAÞ of a k½t�-semi-algebraic subset A of LðX Þ as

morbðAÞ :¼
Z

A
L�aX dmLðX Þ 2 cMM½L1=d �:

Theorem 3.6 remains true for G � GLnðkÞ if we replace mGor by morb and cMM= bycMM= ½L1=d �. Indeed the proofs remain basically the same, replacing ordtoX by aX .
At the same time one veri¢es that the integrals morbðAÞ converge. At the level of
Hodge realization a similar result is contained in Section 7 of [6]. Indeed, with
the notation of loc. cit., HðmorbðLðX ÞÞÞ ¼ EstðX ;DX ; u; vÞ.

3.8. More generally we may consider a smooth irreducible algebraic variety ~XX
endowed with an effective action of a ¢nite group G of order d. We assume the ¢eld
k contains all dth roots of unity. We shall also assume that everyG-orbit is contained
in an af¢ne open subset of ~XX and we denote byX the quotient variety ~XX=G. Using the
previous methods, it is possible to express morbðLðX ÞÞ in terms of weights associated
to the group action along the orbifold strata, similarly as in Section 7 of [6], cf. [13].

4. Chow Motives and Realizations

4.1. We denote by Vk the category of smooth and projective k-schemes. For an
object X in Vk and an integer d, we denote by AdðX Þ the Chow group of codimension
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d cycles with rational coef¢cients modulo rational equivalence. Objects of the
category CHMk of (rational) k-motives are triples ðX ; p; nÞ where X is in Vk, p
is an idempotent (i.e. p2 ¼ p) in the ring of correspondences Corr0ðX ;X Þ
(¼ AdðX � X Þ when X is of pure dimension d), and n is an integer. If ðX ; p; nÞ
and ðY ; q;mÞ are motives, then

HomCHMkððX ; p; nÞ; ðY ; q;mÞÞ ¼ qCorrm�n
ðX ;Y Þ p:

Here CorrrðX ;Y Þ is the group of correspondences of degree r from X to Y (which is
AdþrðX � Y Þ when X is of pure dimension d). Composition of morphisms is given
by composition of correspondences. The category CHMk is additive, Q-linear,
and pseudo-Abelian, and there is a natural tensor product on CHMk. We denote
by h the functor h: V k ! CHMk which sends an object X to hðX Þ ¼ ðX ; id; 0Þ
and a morphism f : Y ! X to its graph in Corr0ðX ;Y Þ. We denote by L the
Lefschetz motive L ¼ ðSpec k; id;�1Þ. There is a canonical isomorphism
hðP1kÞ ’ 1$ L.
Let K0ðCHMkÞ be the Grothendieck group of the pseudo-Abelian category

CHMk. It is also the Abelian group associated to the monoid of isomorphism classes
of k-motives with respect to the addition $. The tensor product on CHMk induces a
natural ring structure on K0ðCHMkÞ. For m in Z, let FmK0ðCHMkÞ denote the
subgroup of K0ðCHMkÞ generated by hðS; f ; iÞ, with i � dimS Xm. This gives a
¢ltration of the ring K0ðCHMkÞ and we denote by bKK0ðCHMkÞ the completion of
K0ðCHMkÞ with respect to this ¢ltration.
Gillet and Soule¤ [10] and Guille¤ n and Navarro Aznar [11] proved the following

result.

THEOREM 4.2. Let k be a ¢eld of characteristic 0. There exists a unique map wc

which to any variety X over k associates wcðX Þ in K0ðCHMkÞ such that

(1) If X is smooth and projective, wcðX Þ ¼ ½hðX Þ�.
(2) If Y is a closed reduced subscheme in a variety X

wcðX n Y Þ ¼ wcðX Þ � wcðY Þ:

(3) If X is a variety, U and V are open reduced subschemes of X,

wcðU [ V Þ ¼ wcðUÞ þ wcðV Þ � wcðU \ V Þ:

(4) If X and Y are varieties

wcðX � Y Þ ¼ wcðX Þ wcðY Þ:

Furthermore, wc is determined by conditions (1)^(2).

Hence, wc induces a morphism of rings wc:M! K0ðCHMkÞ with wcðLÞ ¼ L and
extends to a morphism bwwc: cMM! bKK0ðCHMkÞ.
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4.3. Recall that the Hodge polynomial of an algebraic variety S de¢ned over a
sub¢eld of C is the polynomial

HðS; u; vÞ :¼
X
p;q

ep;qðSÞ upvq

with

ep;qðSÞ :¼
X
iX 0

ð�1Þihp;qðHi
cðS;CÞÞ;

where hp;qðHi
cðS;CÞÞ denotes the rank of the ðp; qÞ-Hodge component of the ith

cohomology group with compact supports. One de¢nes similarly the Hodge poly-
nomial of Chow motives. It follows from a weight argument, cf. [8] and [9], that
the Hodge polynomialH factorizes (hence also the Euler Characteristic Eu) through
the image of K0ðCHMkÞ in bKK0ðCHMkÞ.

4.4. The following proposition shows that the morphisms wc and bwwc factorize
through M= and cMM= respectively.

PROPOSITION 4.5. Let V be a ¢nite dimensional vector space over k and let G be a
¢nite subgroup of GLðV Þ. Then the following equality holds: wcðV=GÞ ¼ wcðV Þ.

Proof.We will use the functor hc of [11] which to a variety X over k associates an
object hcðX Þ of the homotopy category HoðCbðCHMkÞÞ of bounded complexes of
objects in CHMk, such that wcðX Þ is the Euler characteristic of hcðX Þ. Consider
the functor t: CHMk ! HoðCbðCHMkÞÞ which to an object M associates the
complex in HoðCbðCHMkÞÞ which is zero in nonzero degree and is equal to M
in degree 0. It follows from the identity hðP1kÞ ’ 1$ L in CHMk and the de¢nitions
that hcðV Þ is isomorphic to tðLdimV Þ in HoðCbðCHMkÞÞ. By Corollary 5.3 of [1],
hcðV=GÞ is a direct factor of hcðV Þ in HoðCbðCHMkÞÞ. The functor t being fully
faithful and Lr being indecomposable, it follows that hcðV=GÞ is zero or equal to
tðLdimV Þ. Using a realization, for instance the Betti realization, one obtains that
hcðV=GÞ ¼ tðLdimV Þ, and the result follows. &

5. Relation with Resolution of Singularities and the McKay Correspondence

Let X be an algebraic variety over k of pure dimension d, and let h: Y ! X be a
resolution of singularities of X . By this we mean Y is a smooth algebraic variety
over k, h is birational, proper and de¢ned over k, and the exceptional locus E
of h has normal crossings, meaning that the k-irreducible components of E are
smooth and intersect transversally. Let us denote the k-irreducible components
of E by Ei, i 2 J. For I � J, set EI ¼

T
i2I Ei and E I ¼ EI n

S
j 62I Ej. Assume

now X is Gorenstein with at most canonical singularities at each point and consider
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oX in Od
X �k kðX Þ generating Od

X at each smooth point of X . For i in I , we denote by
ni � 1 the length of Od

Y=h
�oXOY at the generic point of Ei.

Let W be a closed subvariety of X . By Lemma 3.3 of [8] (cf. Proposition 6.3.2 of
[8]), the following formula holds in cMM:

mGorðp�10 ðW ÞÞ ¼ L
�d

X
I�J

½E I \ h�1ðW Þ�
Y
i2I

L� 1
Lni � 1

: ð�Þ

Nowwe can specialize to the case whereX ¼ An
k=GwithG a ¢nite subgroup of SLnðkÞ

and W ¼ f0g. Theorem 3.6 may now be rephrased as follows:

THEOREM 5.1. Let d X 1 be an integer and let k be ¢eld of characteristic 0 con-
taining all dth roots of unity. Let G be a ¢nite subgroup of SLnðkÞ of order d. Let
h: Y ! X be a resolution of X ¼ An

k=G. Then the following relation holds in cMM=:

L�n
X
I�J

½E I \ h�1ð0Þ�
Y
i2I

L� 1
Lni � 1

¼
X

½g�2ConjðGÞ

L�wðgÞ: &

In particular, if the resolution h is crepant, i.e. all the ni’s are equal to 1, we get as a
corollary the following form of the McKay correspondence (cf. [16]).

COROLLARY 5.2. Let h: Y ! X be a crepant resolution of X ¼ An
k=G. Then the

following relation holds in cMM=:

½h�1ð0Þ� ¼
X

½g�2ConjðGÞ

Ln�wðgÞ: &

By passing to the Hodge realization, cf. 4.3, one obtains in particular the following
form of the McKay correspondence, which was conjectured by Reid in [16] and
proved by Batyrev in [6], see also [4,17].

COROLLARY 5.3. Let h: Y ! X be a crepant resolution of X ¼ An
k=G. Then

Hðh�1ð0ÞÞ ¼
X

½g�2ConjðGÞ

ðuvÞn�wðgÞ and Euðh�1ð0ÞÞÞ ¼ cardConjðGÞ: &

Remark 5.4. Within the framework of 3.7, when A is of the form p�10 ðW Þ, one may
express morbðAÞ in terms of a resolution of X in a way completely similar to ð�Þ,
replacing the integers ni by rational numbers n�i similarly de¢ned with the help
of aX , cf. [13].

Appendix: Measurable Subsets of LðXÞ

LetX be an algebraic variety of pure dimension d over a ¢eld k of characteristic zero.
We develop here the theory of measurable subsets of LðX Þ. When X is smooth, a
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measure theory for LðX Þ in the case of the Hodge realization has been considered by
Batyrev in [5].

A.1. We call a cylindrical subset A of LðX Þ stable at level n 2 N if A is cylindrical at
level n and pmþ1ðLðX ÞÞ ! pmðLðX ÞÞ is a piecewise trivial ¢bration over pmðAÞ with
¢ber Ad

k for all mX n. We call A stable if it is stable at some level n.
Denote by C0 the family of stable cylindrical subsets of LðX Þ and by C the Boolean

algebra of cylindrical subsets of LðX Þ. Since there might exist cylindrical subsets of
LðX Þwhich are not semi-algebraic, we cannot apply the motivic measure m of Section
1 to elements of C or C0. Some precautions are necessary.

A.2. Clearly there exists a unique additive measure ~mm : C0�!Mloc satisfying

~mmðAÞ ¼ ½pðAÞ�L�ðnþ1Þd

when A 2 C0 is stable at level n. For A in C, we de¢ne

mðAÞ ¼ lim
e!1

~mmðA \ LðeÞðX ÞÞ 2 cMM:

Indeed,A \ LðeÞðX Þ is stable by Lemma 4.1 of [8], and the limit exists incMM by Lemma
4.4 of loc. cit. Moreover if A 2 C0 then mðAÞ is the image in cMM of ~mmðAÞ. Clearly m is
additive on C, and even s-additive because of the following lemma, which ¢rst
appeared in [8] Lemma 2.4 for weakly stable semi-algebraic subsets, with a proof
which actually holds also for cylindrical subsets. A different proof is given in
Theorem 6.6 of [5].

LEMMA A.3. Let Ai, i 2 N, be a family of cylindrical subsets of LðX Þ. Suppose that
A :¼ [i2NAi is cylindrical. Then A equals the union of a ¢nite number of the Ai’s.

A.4. We consider on cMM the norm jj � jj de¢ned by

jj � jj : cMM�!RX 0: a 7 �!jjajj :¼ 2�n;

where n is the largest n such that a 2 FncMM.
For all a, b in cMM, we have jjabjjW jjajj jjbjj and jjaþ bjjW max ðjjajj; jjbjjÞ.
Note also that, for all A, B in C, we have

jjmðA [ BÞjjW max ðjjmðAÞjj; jjmðBÞjjÞ

and jjmðAÞjjW jjmðBÞjj when A � B.
For A and B subsets of the same set, we use the notation A4B for A [ B n A \ B.

DEFINITION A.5. We say that a subset A of LðX Þ is measurable if, for every
positive real number e, there exists a sequence of cylindrical subsets AiðeÞ, i 2 N,
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such that�
A4A0ðeÞ

�
�

[
iX 1

AiðeÞ;

and jjmðAiðeÞÞjjW e for all iX 1. We say that A is strongly measurable if moreover we
can take A0ðeÞ � A.

THEOREM A.6. If A is a measurable subset of LðX Þ, then

mðAÞ :¼ lim
e!0

mðA0ðeÞÞ

exists in cMM and is independent of the choice of the sequences AiðeÞ, i 2 N.
Proof. This is proved in exactly the same way as Theorem 6.18 of [5] using Lemma

A.3. &

For A a measurable subset of LðX Þ, we shall call mðAÞ the motivic measure of A.
One should remark that obviously any cylindrical subset of LðX Þ is strongly

measurable and that the measurable subsets of LðX Þ form a Boolean algebra. Note
also that if Ai, i 2 N, is a sequence of measurable subsets of LðX Þ with
limi!1 jjmðAiÞjj ¼ 0, then [i2NAi is measurable.
Since Lemma 4.4 of [8] also holds for a closed subscheme S of X � k½t� with

dimk½t�S < d, we see that, for such an S, the subset LðSÞ of LðX Þ is a measurable
subset of LðX Þ of measure 0. Using Lemma 1.12, it follows that any
k½t�-semi-algebraic subset of LðX Þ is strongly measurable, with the same measure
as in Section 1.
For a measurable subset A of LðX Þ and a function a: A! Z [ f1g, we say that

L�a is integrable ot that a is exponentially integrable if the ¢bers of a are measurable
and if the motivic integralZ

A
L�adm :¼

X
n2Z

mðA \ a�1ðnÞÞL�n

converges in cMM.
PROPOSITION A.7. (i) Let Ai, i 2 N, be a family of measurable subsets of LðX Þ.
Assume the sets Ai are mutually disjoint and that A :¼ [i2NAi is measurable. ThenP

i2N mðAiÞ converges in cMM to mðAÞ.
(ii) If A and B are measurable subsets of LðX Þ and if A � B, then jjmðAÞjjW jjmðBÞjj.
Proof. Straightforward exercise, using Lemma A.3. &

THEOREM A.8. Let X and Y be algebraic varieties over k of pure dimension d, and
let h: LðY Þ ! LðX Þ be a k½t�-morphism. If B � LðY Þ is measurable, resp. strongly
measurable, then hðBÞ � LðX Þ is also measurable, resp. strongly measurable.

MOTIVIC INTEGRATION AND QUOTIENT SINGULARITIES 287



Proof. We may assume that Y is irreducible. Set

D :¼ LðYsingÞ [ h�1ðLðXsingÞÞ [
n
y 2 LðY Þ

��� ordtJ hðyÞ ¼ 1
o
:

We may assume there exists a closed subscheme S of Y � k½t� with dimk½t�S < d such
that D is contained in LðSÞ, because otherwise hðLðY ÞÞ and hðBÞ have measure zero.
Since B is measurable and D is contained in cylindrical subsets C of LðY Þ with
jjmðCÞjj arbitrary small, we see that, for every e > 0, there exists cylindrical subsets
BiðeÞ, i 2 N, of LðY Þ, such that B0ðeÞ \ D ¼ ;, B4B0ðeÞ � [iX 1BiðeÞ, and
jjmðBiðeÞÞjj < e for all iX 1. Moreover, when B is strongly measurable we can take
B0ðeÞ � B. Hence, hðBÞ4hðB0ðeÞÞ � [iX 1hðBiðeÞÞ. This implies the theorem, since
by Lemma A.9 below, hðB0ðeÞÞ is cylindrical and, for iX 1, hðBiðeÞÞ is contained
in a cylindrical subset AiðeÞ of LðX Þ with jjmðAiðeÞÞjjW max ðjjmðBiðeÞÞjj; eÞW e.

LEMMA A.9. Let X and Y be algebraic varieties over k, of pure dimension d, and let
h: LðY Þ ! LðX Þ be a k½t�-morphism. Let B be a cylindrical subset of LðY Þ. Then the
following holds:

(a) For every e > 0, hðBÞ is contained in a cylindrical subset A of LðX Þ with
jjmðAÞjjW max ðjjmðBÞjj; eÞ.

(b) Assume B \ LðYsingÞ ¼ ;, hðBÞ \ LðXsingÞ ¼ ;, and ordtJ hðyÞ is nowhere equal to
1 on B. Then hðBÞ is cylindrical.

Proof. (a) First assume that jjmðBÞjj ¼ 0. Then, since B is cylindrical, we have
B � LðYsingÞ and hðBÞ is contained in some LðSÞ, with S a closed subscheme of
X � k½t�, with dimk½t�S < d. This yields assertion (a) when jjmðBÞjj ¼ 0. Now
suppose that jjmðBÞjj 6¼ 0. Take e in N large enough to insure that
jjmLðX ÞðLðX Þ n L

ðeÞ
ðX ÞÞjjW jjmLðY ÞðBÞjj. We may assume that hðBÞ is contained in

L
ðeÞ
ðX Þ. Now we choose nX e large enough with respect to e to insure that B is

cylindrical at level n and that LðeÞðY Þ and LðeÞðX Þ are cylindrically stable at level
n. Set A :¼ p�1n ðpnðhðBÞÞÞ and note that A is cylindrical at level n, since pnðhðBÞÞ
is constructible. Moreover, A is contained in LðeÞðX Þ, since hðBÞ is contained in
L
ðeÞ
ðX Þ and nX e. Hence, A is cylindrically stable at level n. Thus

mðAÞ ¼ ½pnðhðBÞÞ�L�ðnþ1Þd and jjmðAÞjjW 2�ðnþ1ÞdþdimpnðBÞ: ðA:9:1Þ

Since jjmðBÞjj 6¼ 0, we have, for e large enough and for n large enough with respect to
e, that

dim
�
pnðB \ LðeÞðY ÞÞ

�
> dim

�
pnðLðY Þ n LðeÞðY ÞÞ

�
;

and hence jjmðBÞjj ¼ 2�ðnþ1ÞdþdimpnðBÞ. Together with (A.9.1), this yields assertion (a).
(b) Using resolution of singularities, we may assume that Y is smooth. By Lemma

A.3, there exists e0 in N such that B is contained in h�1ðLðe
0Þ
ðX ÞÞ and ordtJ h is

bounded on B. Assertion (b) follows now from the ¢rst part of Lemma 1.17. &
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THEOREMA.10 (Change of variables formula). Let X and Y be algebraic varieties
over k, of pure dimension d. Let h: LðY Þ ! LðX Þ be a k½t�-morphism and let A and B be
strongly measurable subsets of LðX Þ and LðY Þ, respectively. Assume that h induces a
bijection between B and A. Then, for any exponentially integrable function
a: A! Z [ f1g, the function B! Z [ f1g: y 7! aðhðyÞÞ þ ordtJ hðyÞ is
exponentially integrable andZ

A
L�adm ¼

Z
B
L�a h�ordtJ hðyÞdm:

Proof.Reasoning as in the proof of Theorem A.8, we reduce to the case where B is
cylindrical and satis¢es B \ D ¼ ;, with

D :¼ LðYsingÞ [ h�1ðLðXsingÞÞ [
n
y 2 LðY Þ

��� ordtJ hðyÞ ¼ 1
o
:

For this reduction we use the assumption that B is strongly measurable to insure that
the cylinder B0ðeÞ in A.8 is contained in B, so that the restriction of h to B0ðeÞ is
injective. Next we can reduce to the case where Y is smooth, using resolution of
singularities. Since B \ D ¼ ;, it follows from Lemma A.3 that there exists e0 in
N such that B is contained in h�1ðLðe

0Þ
ðX ÞÞ and that ordtJ h is bounded on B. Thus

we may as well assume that ordtJ h has constant value e on B and the theorem follows
now from Lemma 1.17 (b). &
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