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Nearby Cycles and Composition with

a Nondegenerate Polynomial

Gil Guibert, François Loeser, and Michel Merle

1 Introduction

Let Xj be smooth varieties over a field k of characteristic zero, for 1 ≤ j ≤ p. Consider a

family f of p functions fj : Xj → A1
k. We will denote also by fj the function on the product

X =
∏

j Xj obtained by composition with the projection. We denote by X0(f) the set of

common zeroes in X of the functions fj. Let P ∈ k[y1, . . . , yp] be a polynomial, which we

assume to be nondegenerate with respect to its Newton polyhedron. In the present paper,

we will compute the motivic nearby cycles SP(f) on X0(f) of the composed function P(f) on

X as a sum over the set of compact faces δ of the Newton polyhedron of P. For every such

δ, we denote by Pδ the corresponding quasihomogeneous polynomial. We associate to

such a quasihomogeneous polynomial a convolution operator ΨPδ
, which in the special

case where Pδ is the polynomial Σ = y1 + y2 is nothing but the operator ΨΣ considered

in [9]. For such a compact face δ, one may also define generalized nearby cycles S
σ(δ)
f ,

constructed as the limit, as T �→ ∞, of certain truncated motivic zeta functions.

Our main result, Theorem 3.2, follows from additivity from the following state-

ment, Theorem 3.3:

i∗SP(f),U =
∑

δ∈Γ∅

ΨPδ

(
S

σ(δ)
f

)
. (1.1)

Here U denotes the complement of the locus where at least one function fj vanishes, Γ∅

denotes the set of compact faces of the Newton polyhedron of P not contained in any
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coordinate hyperplane, SP(f),U refers to the extension of SP(f) constructed in [1, 9], and i∗

denotes restriction to X0(f).

When p = 2 and P = Σ, one recovers the motivic Thom-Sebastiani formula (cf.

[5, 6, 10]) in the way stated in [9]. When f is the set of coordinate functions on the affine

space A
p
k, our result is equivalent to a result obtained by Guibert in [8].

This paper is a natural continuation of [9], from which part of the notation and

several results are borrowed.

2 Preliminaries

2.1 Grothendieck rings

Throughout the paper, k will be a field of characteristic zero. By a variety over k, we mean

a separated and reduced scheme of finite type over k. If a linear algebraic group G acts on

a variety X, we say the action is good if every G-orbit is contained in an affine open subset

of X. We denote by VarG,eq the category of varieties with good G-action, morphisms being

G-equivariant morphisms. If S is a variety with good G-action, we denote by VarG,eq
S the

category of objects over S, that is, the category whose objects are morphisms Y → S in

VarG,eq, morphisms in VarG,eq being defined in the standard way. Let Y be a variety over

k and let p : A → Y be an affine bundle for the Zariski topology (the fibers of p are affine

spaces and the transition morphisms between trivializing charts are affine). In particu-

lar, the fibers of p have the structure of affine spaces. Let G be a linear algebraic group.

A good action of G on A is said to be affine if it is a lifting of a good action on Y and its

restriction to all fibers is affine.

One defines K0(VarG,eq
S ) as the free abelian group on isomorphism classes of ob-

jects Y → S in VarG,eq
S , modulo the relations

[Y −→ S] = [Y ′ −→ S] + [Y \ Y ′ −→ S] (2.1)

for Y ′ closed G-invariant in Y and, for f : Y → S in VarG,eq
S ,

[
Y × An

k −→ S, σ
]

=
[
Y × An

k −→ S, σ ′] (2.2)

if σ and σ ′ are two liftings of the same G-action on Y to an affine action, the morphism

Y × An
k → S being composition of f with projection on the first factor. Fiber product over

S induces a product in the category VarG,eq
S , which allows to endow K0(VarG,eq

S ) with a

natural ring structure. Note that the unit 1S for the product is the class of the identity

morphism S → S.
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2.2 Gs
m-actions

Let s denote a positive integer and let S be a k-variety. From now on, we will consider only

Gs
m-actions on S × Gr

m which are trivial on the first factor.

We consider the category C whose objects are finite morphisms of group schemes

ϕ : Gs
m → Gs ′

m, a morphism between ϕ : Gs
m → Gs ′

m and ϕ ′ : Gs
m → Gs ′′

m being a finite

morphism ϑ : Gs ′
m → Gs ′′

m such that ϑ ◦ ϕ = ϕ ′.

We consider also the full subcategory C ′ of C, the objects of which are finite mor-

phisms ϕ : Gs
m → Gs

m. The subcategory C ′ is final in C in the language of [11].

A morphism ϕ : Gs
m → Gs ′

m induces a natural functor

Φ : VarGs ′
m ,eq

S×Gr
m

−→ VarGs
m,eq

S×Gr
m

, (2.3)

where an object Y → S × Gr
m with a good Gs ′

m-action is sent on the same underlying object

of VarS×Gr
m

with the Gs
m-action induced via ϕ.

The functor Φ induces a morphism

K0(ϕ) : K0

(
VarGs ′

m ,eq
S×Gr

m

)
−→ K0

(
VarGs

m,eq
S×Gr

m

)
. (2.4)

We will denote by K0(Varϕ,eq
S×Gr

m
) the image of the morphism K0(ϕ).

For every morphism ϑ between ϕ and ϕ ′ in C, we get a morphism

K0(ϑ) : K0

(
Varϕ ′,eq

S×Gr
m

)
−→ K0

(
Varϕ,eq

S×Gr
m

)
, (2.5)

where a class of a good Gs
m-action induced by a Gs ′′

m -action via ϕ ′ on an object of VarS×Gr
m

is sent on the class of the same Gs
m-action as induced by a Gs ′

m-action via ϕ. As a partic-

ular case, taking ϕ = Id, we get the natural inclusion of K0(Varϕ,eq
S×Gr

m
) into K0(VarGs

m,eq
S×Gr

m
).

We define the Grothendieck ring K0(VarGs
m

S×Gr
m

) as the colimit along C (or along C ′,

which amounts to the same) of the rings K0(Varϕ,eq
S×Gr

m
).

Note that we could have also defined the rings K0(Varϕ,eq
S×Gr

m
) and K0(VarGs

m

S×Gr
m

)

as suitable Grothendieck rings of the essential image Varϕ,eq
S×Gr

m
of Φ and of the colimit

VarGs
m

S×Gr
m

along C (or C ′) of the categories Varϕ,eq
S×Gr

m
, respectively.



1876 Gil Guibert et al.

There is a natural structure of K0(Vark)-module on K0(VarGs
m

S×Gr
m

). We denote by

LS×Gr
m

= L the element L · 1S×Gr
m

in this module, and we set

M
Gs

m

S×Gr
m

:= K0

(
VarGs

m

S×Gr
m

)[
L−1

]
. (2.6)

Note that when s = r the above definitions of K0(VarGs
m

S×Gr
m

) and M
Gs

m

S×Gr
m

coincide

with that of [9] by [9, Section 2.7].

A morphism ϑ : Gs
m → Gs ′

m induces a morphism from M
Gs ′

m

S×Gr
m

to M
Gs

m

S×Gr
m

. For ex-

ample, the diagonal morphism Gm → Gr
m yields a canonical morphism

∆ : M
Gr

m

S×Gr
m

−→ MGm

S×Gr
m

. (2.7)

Through this morphism, the class of a Gr
m-action α on an object of VarS×Gr

m
is sent on the

class of Gm-actions induced by α via a finite group morphism from Gm to Gr
m.

If f : S → S ′ is a morphism of varieties, composition with f leads to a pushforward

morphism f! : M
Gs

m

S×Gr
m

→ M
Gs

m

S ′×Gr
m
, while fiber product leads to a pullback morphism

f∗ : M
Gs

m

S ′×Gr
m

→ M
Gs

m

S×Gr
m

.

2.3 Limits of rational series

Let A be one of the rings Z[L,L−1], Z[L,L−1, (1/(1 − L−i))i>0], MGm

S×Gr
m
, and so forth. We

denote by A[[T ]]sr the A-submodule of A[[T ]] generated by 1 and by finite sums of products

of terms pe,i(T) = (LeT i)/(1 − LeT i), with e in Z and i in N>0. There is a unique A-linear

morphism

lim
T �→∞ : A

[
[T ]
]

sr
−→ A (2.8)

such that

lim
T �→∞

(∏
i∈I

pei,ji
(T)

)
= (−1)|I|, (2.9)

for every family ((ei, ji))i∈I in Z × N>0, with I finite, may be empty.
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2.4 Motivic zeta functions

We denote as usual by Ln(X) the space of arcs of order n, also known as the nth jet

space on X. It is a k-scheme whose set of K-points, for K a field containing k, is the set

of morphisms ϕ : Spec K[t]/tn+1 → X. There are canonical morphisms Ln+1(X) → L(X)

and the arc space L(X) is defined as the projective limit of this system. We denote by

πn : L(X) → Ln(X) the canonical morphism. There is a canonical Gm-action on Ln(X)

and on L(X) given by a · ϕ(t) = ϕ(at).

Let X be a smooth variety over k of pure dimension d and g : X → A1
k. Set X0(g) for

the zero locus of g, and define, for n ≥ 1, the variety

Xn(g) :=
{
ϕ ∈ Ln(X) | ordt g(ϕ) = n

}
. (2.10)

Note that Xn(g) is invariant by the Gm-action on Ln(X) and that furthermore g induces

a morphism gn : Xn(g) → Gm, assigning to a point ϕ in Ln(X) the coefficient of tn in

g(ϕ), which we will denote by ac(g)(ϕ). We have gn(a · ϕ) = angn(ϕ), hence with the

terminology of [9] gn is diagonally monomial of weight n with respect to the Gm-action

on Xn(g). In particular, we may consider the class [Xn(g)] of Xn(g) in MGm

X0(g)×Gm
and the

motivic zeta function

Zg(T) :=
∑
n≥1

[
Xn(g)

]
L−ndTn (2.11)

in MGm

X0(g)×Gm
[[T ]].

Denef and Loeser showed in [3, 6], see also [9, 10], that Zg(T) is a rational series

in MGm

S×Gm
[[T ]]sr by giving a formula for Zg(T) in terms of a resolution of f we will recall in

Section 2.5.

2.5 Resolutions

Let us introduce some notation and terminology. Let X be a smooth variety of pure di-

mension d and let F be a closed subset of X of codimension everywhere ≥ 1. By a log-

resolution h : Y → X of (X, F), we mean a proper morphism h : Y → X with Y smooth such

that the restriction of h : Y \ h−1(F) → X \ F is an isomorphism, and h−1(F) is a divisor

with simple normal crossings. We denote by Ei, i in A, the set of irreducible components
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of the divisor h−1(F). For I ⊂ A, we set

EI :=
⋂
i∈I

Ei,

E◦
I := EI \

⋃
j/∈I

Ej.
(2.12)

We denote by νEi
the normal bundle of Ei in Y and by νEI

the fiber product of the re-

strictions to EI of the bundles νEi
, i in I. We will denote by UEi

the complement of the

zero section in νEi
and by UI the fiber product of the restrictions of the spaces UEi

, i in I,

to E◦
I .

If I is an ideal sheaf defining a closed subscheme Z of X and h−1(I)OY is locally

principal, we define Ni(I), the multiplicity of I along Ei, by the equality of divisors

h−1(Z) =
∑
i∈A

Ni(I)Ei. (2.13)

If I is principal generated by a function g we write Ni(g) for Ni(I). Similarly, we define

integers νi by the equality of divisors

KY = h∗KX +
∑
i∈A

(
νi − 1

)
Ei. (2.14)

2.6 The class [UI]

Assume again g is a function on a smooth variety X of pure dimension d. Let F be a re-

duced divisor containing X0(g) and let h : Y → X be a log-resolution of (X, F). We explain

how g induces a morphism gI : UI → Gm. Note that the function g ◦ h induces a function

⊗
i∈I

ν
⊗

Ni(g)
Ei |EI

−→ A1
k, (2.15)

vanishing only on the zero section. We define gI : νEI
→ A1

k as the composition of this last

function with the natural morphism νEI
→ ⊗

i∈I ν
⊗

Ni(g)
Ei |EI

, sending (ui) to
⊗

u
⊗

Ni(g)
i .

We still denote by gI the induced morphism from UI to Gm.

We view UI as a variety over X0(g) × Gm via the morphism (h ◦ πI, gI). The group

Gm has a natural action on each UEi
, so the diagonal action induces a Gm-action on UI.

Furthermore, the morphism gI is monomial, in the terminology of [9], hence UI → X0(g)×
Gm has a class in MGm

X0(g)×Gm
which we will denote by [UI].
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2.7 Motivic Milnor fiber

We now assume that F = X0(g), that is, h : Y → X is a log-resolution of (X,X0(g)). In this

case, h induces a bijection between L(Y) \ L(|h−1(X0(g))|) and L(X) \ L(X0(g)).

One deduces from [4, Lemma 3.4], in a way completely similar to [3, 6], the equal-

ity

Zg(T) =
∑

∅ �=I⊂A

[UI]
∏
i∈I

1

T−Ni(g)Lνi − 1
(2.16)

in MGm

X0(g)×Gm
[[T ]].

In particular, the function Zg(T) is rational and belongs to MGm

X0(g)×Gm
[[T ]]sr, with

the notation of Section 2.3, hence we can consider limT �→∞ Zg(T) in MGm

X0(g)×Gm
and set

Sg := − lim
T �→∞ Zg(T), (2.17)

which by (2.16) may be expressed on a resolution h as

Sg = −
∑

∅ �=I⊂A

(−1)|I|[UI] (2.18)

in MGm

X0(g)×Gm
. The element Sg is called the motivic Milnor fiber or the motivic nearby

fiber of f. It was first considered by Denef and Loeser (cf. [3, 6, 7]). For recent results

concerning Sg, we refer the reader to [1, 8, 9].

2.8 The zeta function ZC,�
f (T)

Consider a family f of p functions fj : X → A1
k, 1 ≤ j ≤ p. We denote by X0(f) the set of

common zeroes of the functions fj, 1 ≤ j ≤ p, and by F the product function f1 · · · fp.

We fix a rational polyhedral convex cone C in R
p
>0 and an integral linear form  on

Z
p which is positive on C̄ \ {0}, where C̄ denotes the closure of C in R

p.

We will consider the modified zeta function ZC,�
f defined as follows: for a vector

n in N
p
>0, we denote by s(n) the sum of its components and we consider, similarly as in

(2.10), the variety

Xn(f) :=
{
ϕ ∈ Ls(n)(X) | ord fj(ϕ) = nj, 1 ≤ j ≤ p

}
. (2.19)

Note that Xn(f) is stable under the Gm-action on Ln(X) and that f induces a morphism

fn : Xn(f) −→ Gp
m, (2.20)
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whose components are ac(fj), 1 ≤ j ≤ p, defined similarly as in Section 2.4. Since

fn(a ·ϕ) = anfn(ϕ), we may consider the class [Xn(f)] of Xn(f) → X0(f)×G
p
m in MGm

X0(f)×G
p
m

.

We set

ZC,�
f (T) :=

∑
n∈C

[
Xn(f)

]
L−s(n)d T �(n) (2.21)

in MGm

X0(f)×G
p
m

[[T ]].

2.9 The class SC,�
f

Let h : Y → X be a log-resolution of the set X0(F). We keep the notations of Section 2.5. In

particular, we denote by A the set of irreducible components of h−1(X0(F)). For i in A, we

will denote by Ni the integral vector of the orders Ni(fj) of the functions fj, 1≤ j≤p, along

the divisor Ei. We denote by B the set of all subsets I of A such that h(E◦
I) is contained

in X0(f). For I in B, we denote by NI the linear map

NI :




R
I
>0 −→ R

p
>0,

k �−→ ∑
i∈I kiNi.

(2.22)

Similarly, the set of integers νi defines a linear integral form νI : k �→ ∑
i∈I kiνi on R

I
>0.

Using [4, Lemma 3.4] similarly as for the proof of (2.16) (see, e.g., [6, 10]), one gets

the following formula for the zeta function ZC,�
f (T) in terms of the resolution:

ZC,�
f (T) =

∑
I∈B

[
UI

] ∑
{k∈N

p
>0|NI(k)∈C}

∏
i∈I

(
T �(Ni)L−νi

)ki
. (2.23)

Here, for I in B, [UI] stands for the class in MGm

X0(f)×G
p
m

of the morphism (h, fI) : UI →
X0(f) × G

p
m.

It follows that ZC,�
f (T) belongs to MGm

X0(f)×G
p
m

[[T ]]sr, hence we may set

SC,�
f := lim

T �→∞ ZC,�
f (T) (2.24)

in MGm

X0(f)×G
p
m

. By [9, section 2.9], we have

SC,�
f =

∑
I∈B

χ
(
N−1

I (C)
)[

UI

]
, (2.25)

where χ denotes Euler characteristic with compact supports. Note that this is indepen-

dent of , so we may write SC
f instead of SC,�

f .
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3 Composition with a nondegenerate polynomial

3.1 The generalized convolution ΨP

Let P be a quasihomogeneous polynomial function on G
p
m, that is, P is homogeneous for

a Gm-action α on G
p
m monomial of weight w = (w1, . . . , wp).

Let X be a smooth variety. We will denote by pr1 the projection of X×G
p
m×Gm on

X×Gm (forgetting the G
p
m factor) and by i the inclusion of the complement of X× P−1(0)

into X × G
p
m.

For a variety A of dimension e in VarX×G
p
m
, the function P induces by composition

with the second projection a function on A we still denote by P:

P : A −→ A1
k. (3.1)

We now define the (augmented) zeta function Z0
P(T) as

Z0
P(T) =

∑
n≥0

[
Xn(P)

]
L−neTn =

[
X0(P)

]
+ ZP(T), (3.2)

where Xn(P) is

Xn(P) :=
{
ϕ ∈ Ln(A) | ordt P(ϕ) = n

}
, (3.3)

for n ≥ 0. It belongs to MGm

X×G
p
m×Gm

[[T ]]sr. We define Ψ0
P(A) as the limit, as T �→ ∞, of the

opposite −Z0
P(T). Thus, with the notations of [9], it is nothing but

− lim
T→∞ Z0

P(T) = −
[
A \ P−1(0)

]
+ SP

(
[A]
)
. (3.4)

It is an object in MGm

X×G
p
m×Gm

, the Gm-action and the morphism to Gm being the usual

ones. On A \P−1(0), the Gm-action is trivial and the morphism to Gm is the restriction of

P to A \ P−1(0). Taking the direct image by the projection pr1, we get the following object

in MGm

X×Gm
:

Ψ0
P(A) := pr1!

(
−
[
A \ P−1(0)

]
+ SP(A)

)
. (3.5)

One may then extend uniquely this construction to an Mk-linear group morphism

Ψ0
P : MX×G

p
m

−→ MGm

X×Gm
. (3.6)

If A is endowed with a Gm-action α for which the morphism to G
p
m is monomial

of weight w, A \P−1(0) is endowed with an additional action which is homogeneous with
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respect to the composed morphism to Gm. Hence, we may attach to A \ P−1(0) a class

[A \ P−1(0)] in M
G2

m

X×G
p
m×Gm

. In [9, Section 3.10], we attached to such an A with the action

α an element SP(A) in M
G2

m

X×G
p
m×Gm

. Hence, we can consider pr1! (−[A \ P−1(0)] + SP(A))

as an element of M
G2

m

X×Gm
. Composing with the canonical morphism M

G2
m

X×Gm
→ MGm

X×Gm

induced by the diagonal action, we get an element of MGm

X×Gm
we will denote by ΨP(A).

This construction extends uniquely to an Mk-linear group morphism

ΨP : MGm

X×G
p
m

−→ MGm

X×Gm
. (3.7)

Remark 3.1. When P is the sum of coordinates Σ on G2
m, then ΨΣ is nothing but the con-

volution product from [9]. More precisely, the convolution product ΨΣ defined in [9] is

equal to the composition of the morphism ΨΣ defined in this paper with the morphism ∆

defined in (2.7).

3.2 Composed maps

For 1 ≤ j ≤ p, let fj : Xj → A1
k be a function on a smooth k-variety Xj. By composition

with the projection, fj becomes a function on the product X =
∏

j Xj. We write d for the

dimension of X. Define f as the family of the fj on X, 1 ≤ j ≤ p. The product of the log-

resolutions of the Xj,0(fj) is a log-resolution h : Y → X of X0(F) (recall that F = f1 · · · fp).

Let P =
∑

α∈Np aαyα be a polynomial in k[y1, . . . , yp]. We denote by supp(P) the

set of exponents α in N
p with aα �= 0. The Newton polyhedron Γ of P is the convex hull of

supp(P) + R
p
+. For a compact face δ of Γ , we denote by Pδ the sum of the monomials of P

supported in δ:

Pδ =
∑
α∈δ

aαyα. (3.8)

We say P is nondegenerate with respect to its Newton polyhedron Γ , if, for every compact

face δ of Γ , the function Pδ is smooth on G
p
m.

To the Newton polyhedron Γ one may associate a fan of rational polyhedral cones

subdividing R
p
+ as follows. We consider the function Γ assigning to a vector a in R

p
+ the

value infb∈Γ 〈a, b〉, with 〈, 〉 the standard inner product. For any a in R
p
+, we may consider

the compact face

δa =
{
b ∈ Γ ′ | 〈a, b〉 = Γ (b)

}
, (3.9)

with Γ ′ the union of all compact faces of Γ .
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For a compact face δ of the Newton polyhedron Γ , we denote by σ(δ) its dual cone

{a ∈ R
p
+ | δa = δ}. The cones σ(δ), for δ running over the compact faces of Γ , form a fan par-

titioning R
p
+ into rational polyhedral cones. The function Γ is linear on each cone σ(δ).

We write Γc for the set of compact faces of Γ . For J a subset of {1, . . . , p}, we denote

by Γ J the set of compact faces of Γ contained in the coordinate hyperplanes xi = 0 for i in

J, and in no other coordinate hyperplane, so that Γc is the disjoint union of the subsets Γ J.

Note that Γ is positive on σ(δ) \ {0} if and only if δ is in Γ∅. We denote by XJ the closed

subset of X defined by the vanishing of the functions fi, i ∈ J, and by fJ : XJ → A{1,...,p}\J

the morphism induced by the functions fj, j /∈ J.

For every variety Z containing X0(f), we denote by i∗ the restriction morphisms

MGm

Z×Gm
−→ MGm

X0(f)×Gm
,

MGm

Z×Gm
[[T ]] −→ MGm

X0(f)×Gm
[[T ]].

(3.10)

Theorem 3.2. With the previous notations and hypotheses, the following formula holds

for i∗SP(f) in MGm

X0(f)×Gm
:

i∗SP(f) =
∑

J⊂{1,...,p}

∑
δ∈ΓJ

ΨPδ

(
S

σ(δ),�Γ

fJ

)
. (3.11)

�

Proof. Following [9], for γ in N>0, we consider the constructible set

Xγn
n :=

{
ϕ ∈ Lγn(X) | ordt P(f)(ϕ) = n, ordt F(ϕ) ≤ γn

}
(3.12)

together with the morphism ac(P(f)) : X
γn
n →Gm, giving rise to a class [Xγn

n ] in MGm

X0(F)×Gm
.

By [9, Proposition 3.8], for γ 
 0, the corresponding zeta function

Z
γ

P(f),X\X0(F)(T) :=
∑
n>0

[
Xγn

n

]
L−γndTn (3.13)

lies in MGm

X0(F)×Gm
[[T ]]sr and its limit as T �→ ∞ is independent of γ, so we may set

SP(f),X\X0(F) := − lim
T �→∞ Z

γ

P(f),X\X0(F)(T). (3.14)

Furthermore, by additivity of SP(f) (cf. [9, Theorem 3.12]), we have

SP(f) =
∑

J⊂{1,...,p}

SP(f)|XJ
,X◦

J
, (3.15)

with X◦
J the largest open subset in XJ, where no fj, j /∈ J, vanishes. Theorem 3.2 now fol-

lows directly from Theorem 3.3. �



1884 Gil Guibert et al.

Theorem 3.3. With the previous notation, the following holds:

i∗SP(f),X\X0(F) =
∑
δ∈ΓJ

ΨPδ

(
S

σ(δ)
f

)
. (3.16)

�

Proof. We fix a log-resolution h : Y → X of X0(F). We will keep the notations of Section 2.5.

Fix a subset of I of A and k = (ki)i∈I in N
I
>0. For ϕ in Lγn(Y) with ϕ(0) in Ei, we

set ordEi
ϕ := ordt zi(ϕ), for zi any local equation of Ei at ϕ(0). We denote by Xn,k the set

of arcs ϕ in Lγn(Y) such that ϕ(0) is in E◦
I and ordEi

ϕ = ki for i ∈ I. We also consider the

subset Yn,k of Xn,k consisting of arcs ϕ such that ordt(P(f) ◦ h)(ϕ) = n. The variety Yn,k

is stable by the usual Gm-action on Lγn(Y) and the morphism ac(P(f) ◦ h) defines a class

[Yn,k] in MGm

X0(F)×Gm
. Note that Yn,k = ∅ if n < Γ (NI(k)).

By a now standard calculation, using [4, Lemma 3.6],Zγ

P(f),X\X0(F) may be express-

ed on the log-resolution Y as

Z
γ

P(f),X\X0(F) =
∑

∅ �=I⊂A

∑
NI(k)∈σ(δ)

n=�Γ (NI(k))
〈NI(k),1〉≤γn

[
Yn,k

]
L−

∑
i∈I(νi−1)kiL−γndTn. (3.17)

As in Section 2.9, we denote by B the set of all subsets I of A such that h(E◦
I) is

contained in X0(f). We fix I in B and k = (ki)i∈I in N
I
>0. Note that there is a unique compact

face δ of Γ such that NI(k) lies in σ(δ).

To go further on, we will use the following variant of the classical deformation to

the normal cone already considered in [9]. We consider the affine line A1
k = Spec k[u] and

the subsheaf

Ak :=
∑
n∈NI

OY×A1
k

(
−

∑
i∈I

ni

(
Ei × A1

k

))
u−

∑
i∈I kini (3.18)

of OY×A1
k
[u−1]. It is a sheaf of rings and we set

CYk := Spec Ak. (3.19)

The natural inclusion OY×A1
k

→ Ak induces a morphism π : CYk → Y × A1
k, hence a mor-

phism p : CYk → A1
k. Via the same inclusion, the functions P(f) ◦ h and F ◦ h are, in Ak,

divisible by u�Γ (NI(k)) and by u〈NI(k),1〉, where 1 denotes the vector with all coordinates

equal to 1, and we denote the corresponding quotients by P̃(f)k and F̃k, respectively.

We denote by Ẽi the pullback of the divisor Ei ×A1
k by π, by D the divisor globally

defined on CYk by u = 0, and by CEi the divisors Ẽi − kiD, i in I (resp., Ẽi, i not in I).
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We denote by CY◦
k the complement in CYk of the union of the CEi, i in A, and by Y◦ the

complement in Y of the union of the Ei, i in A.

As proved in [9, Lemma 5.12], the scheme CYk is smooth, the morphism π induces

an isomorphism above A1
k\{0}, the morphism p is a smooth morphism and its fiber p−1(0)

may be naturally identified with the bundle νEI
. Furthermore, when restricted to CY◦

k, the

fiber of p above 0 is naturally identified with UI and π induces an isomorphism between

CY◦
k \p−1(0) and Y◦ ×A1

k \ {0}. The restrictions of P̃(f)k and F̃k to the fiber UI ⊂ p−1(0) are,

respectively, equal to Pδ(fI) and FI.

The ring Ak being a graded subring of the ring OY [u, u−1], we may consider the

Gm-action σ on CYk, leaving sections of OY invariant and acting on u by σ(λ) : u �→ λ−1u.

It restricts on UI to the diagonal action induced by the canonical GI
m-action on UI via

the finite morphism λ �→ λk. We have now two different Gm-actions on Ln(CY◦
k): the one

induced by the standard Gm-action on arc spaces and the one induced by σ. We denote

by σ̃ the action given by the composition of these two (commuting) actions.

We denote by L̃γn(CY◦
k) the set of arcs ϕ in Lγn(CY◦

k) such that p(ϕ(t)) = t (in

particular, ϕ(0) is in UI). For such an arc ϕ, composition with π sends ϕ to an arc in

Lγn(Y × A1
k) which is the graph of an arc in Lγn(Y) not contained in the union of the

divisors Ei, i in I. Note that L̃n(CY◦
k) is stable by σ̃.

Lemma 3.4. Let I be in B and k in N
I
>0. Assume n ≥ ki for i in I. The morphism π̃ :

L̃n(CY◦
k) → Xn,k induced by the projection CY◦

k → Y is an affine bundle with fiber A
∑

I ki

k .

Furthermore, if L̃n(CY◦
k) is endowed with the Gm-action induced by σ̃ and Xn,k with the

standard Gm-action, π̃ is Gm-equivariant and the action of Gm on the affine bundle is

affine. Furthermore, if n ≥ Γ (NI(k)), then for every ϕ in L̃γn(CY◦
k)

ac
(
P(f) ◦ h

)(
π̃(ϕ)

)
= ac

(
P̃(f)k(ϕ)

)
. (3.20)

When Pδ(fI)(ϕ(0)) �= 0, hence (ordt(P(f)) ◦ h)(π̃(ϕ)) = Γ (NI(k)), it holds that

ac
(
P(f) ◦ h

)(
π̃(ϕ)

)
= Pδ

(
fI

)(
ϕ(0)

)
. (3.21)

�

Proof. The first part of the statement is contained in [9, Lemma 5.13] and the rest follows

from its proof. �

We then define Ỹn,k as the inverse image of Yn,k by the fibration π̃. It is the subset

of arcs ϕ in Lγn(CY◦
k) such that ordt P̃(f)k(ϕ) = n−Γ (NI(f)). We denote by [Ỹn,k] the class

of Ỹn,k in MGm

X0(F)×Gm
, the morphism Ỹn,k → Gm being ac(P̃(f)k) and the Gm-action being

induced by σ̃. We denote by [UI \ (Pδ(fI)−1(0))] the class of UI \ (Pδ(fI)−1(0)) in MGm

X0(F)×Gm
,
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the Gm-action being the natural diagonal action of weight k on UI \ (Pδ(fI)−1(0)) and the

morphism to Gm being the restriction of Pδ(fI). We also consider the class [Gm × F−1
I (0)]

of Gm × Pδ(fI)−1(0) in MGm

X0(F)×Gm
, the Gm-action on the second factor being the diagonal

one and the morphism to Gm being the first projection.

Lemma 3.5. Let I be in B and k in N
I
>0. The following equalities hold in MGm

X0(F)×Gm
:

(1) [Ỹn,k] = Lγnd[UI \ (Pδ(fI)−1(0))], if n = Γ (NI(k)),

(2) [Ỹn,k] = Lγnd−m[Gm × Pδ(fI)−1(0)], if n − Γ (NI(k)) = m > 0. �

Proof. As we assume P is nondegenerate with respect to its Newton polyhedron, Pδ is

smooth on G
p
m and the composed map Pδ(fI) is smooth on UI. It follows that the mor-

phism (P̃(F)k, u) : CY◦
k → A2

k is smooth on a neighborhood of UI in CY◦
k, so one can argue

similarly as in the proof of [9, Lemma 5.14]. �

Using Lemmas 3.4 and 3.5, we may rewrite (3.17) as

i∗Zγ

P(f),X\X0(F) =
∑

δ∈F(Γ )
I∈B

Zδ,I(T), (3.22)

with

Zδ,I(T) =
[
UI \

(
Pδ

(
fI

)−1(0)
)]

Φδ,I(T) +
[
Gm × Pδ

(
fI

)−1(0)
]
Ψδ,I(T), (3.23)

where

Φδ,I(T) =
∑

NI(k)∈σ(δ)
〈NI(k),1〉≤γ�Γ (NI(k))

T �Γ (NI(k)) L−
∑

i νiki ,

Ψδ,I(T) =
∑

NI(k)∈σ(δ),n>0

〈NI(k),1〉≤γ�Γ (NI(k))+γn

T �Γ (NI(k))+n L−
∑

i νiki .
(3.24)

If δ is not contained in a coordinate hyperplane, for γ large enough, the inequality

〈
NI(k), 1

〉 ≤ γΓ

(
NI(k)

)
+ γn (3.25)

holds for every NI(k) in σ(δ) and every n ≥ 0. It follows that

lim
T �→∞ Φδ,I(T) = lim

T �→∞ Ψδ,I(T) = χ
(
N−1

I

(
σ(δ)

))
. (3.26)
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If δ is contained in some coordinate hyperplane, it follows from [9, Lemma 2.10]

that

lim
T �→∞ Φδ,I(T) = lim

T �→∞ Ψδ,I(T) = 0. (3.27)

The result follows now from the definition of ΨPδ
and (2.25). �

Example 3.6. When p = 2 and P = Σ, one recovers the motivic Thom-Sebastiani formula

(cf. [5, 6, 10]) in the way stated in [9]. When f is the family of coordinate functions on

the affine space A
p
k, formula (3.16) specializes to the one given by Guibert [8, Proposition

2.1.6].

Remark 3.7. Restricting to a given point x of X0(f) and applying the Hodge spectrum map

Sp of [9, Section 6] to (3.11), one gets a formula for the Hodge-Steenbrink spectrum (cf.

[12, 13, 15]) of P(f) at x. It is not immediately clear whether this formula coincides with

the one obtained by Terasoma (see [14, Theorem 3.6.1]).
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E-mail address: guibert9@wanadoo.fr
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