Regular elements and monodromy of discriminants of finite reflection groups

by J. Denef and F. Loeser
University of Leuven, Department of Mathematics, Celestijnenlaan 200 B, B-300I Leuven, Belgium
Université Paris VI et Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau, France

Communicated by Prof. T.A. Springer at the meeting of September 26, 1994

1. INTRODUCTION

1.1. Let V be a vectorspace over \mathbb{C} of finite dimension n, and let G be a finite reflection group in V, i.e. a finite subgroup of $G L(V)$ which is generated by reflections, see e.g. [17], [21], [8]. For each reflection hyperplane H of G we choose a linear form $\ell_{H}: V \rightarrow \mathbb{C}$ defining H, and we denote by $e(H)$ the order of the group of elements of G which fix H pointwise. Put

$$
\delta=\prod_{H} \ell_{H}^{e(H)},
$$

where the product is over all reflection hyperplanes of G. Let $\Delta: V / G \rightarrow \mathbb{C}$ be the map induced by δ, thus Δ is the discriminant of G. A subgroup of G is called parabolic if it is generated by all reflections of G fixing elementwise a given subspace of V. The degrees of G are denoted by $d_{1}, d_{2}, \ldots, d_{n}$. We call a degree of G primitive if it is bigger than the degrees of all proper parabolic subgroups of G. When $V=\mathbb{C}^{n}$ and $G \subset G L_{n}(\mathbb{R})$ we call G a finite Coxeter group.
1.2. We denote by F_{0} the Milnor fiber of Δ at 0 , and by $Z(T, G)$ the zeta function of local monodromy of Δ at 0 , i.e.

$$
Z(T, G)=\prod_{i} \operatorname{det}\left(1-T M, H^{i}\left(F_{0}, \mathbb{C}\right)\right)^{(-1)^{i+1}}
$$

where M denotes the monodromy automorphism (see e.g. [2], [15]). Thus knowing $Z(T, G)$ is the same as knowing the alternating product of the characteristic
polynomials of the monodromy acting on $H\left(F_{0}, \mathbb{C}\right)$. In [7] we calculated $Z(T, G)$ for Coxeter groups by using the following recursion:

Theorem 1.3. If G is a finite Coxeter group then

$$
\prod_{\mathcal{E}} Z(-T, G(\mathcal{E}))^{(-1)^{\star \in}}=\prod_{i=1}^{n} \frac{1-T^{d_{i}}}{1-T}
$$

where the product at the left runs over all connected subgraphs \mathcal{E} of the Coxeter diagram of $G, G(\mathcal{E})$ denotes the Coxeter group with Coxeter diagram \mathcal{E} and $\forall \mathcal{E}$ the number of vertices of \mathcal{E}. (Each edge of a subgraph has to have the same weight as in the original graph.)
1.4. We gave a case-free proof of this theorem in [7], using Macdonald's formula [13] (proved by Opdam [16])

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \delta(x)^{s} e^{-\|x\|^{2}} d x=\pi^{n / 2} \prod_{i=1}^{n} \frac{\Gamma\left(d_{i} s+1\right)}{\Gamma(s+1)} \quad \text { (assuming }\left\|\ell_{i}\right\|=2 \text {), } \tag{1.4.1}
\end{equation*}
$$

and work of Anderson [1] and Loeser-Sabbah [12]. Indeed we showed in [7] that the precise form of the Γ factors in (1.4.1) is actually equivalent with Theorem 1.3.
1.5. In the present paper we calculate $Z(T, G)$ case by case for all irreducible finite reflection groups G. When G is not irreducible but essential $Z(T, G)$ equals 1 , see Corollary 3.3 below. Write

$$
\begin{equation*}
Z(-T, G)^{(-1)^{n}}=\prod_{i}\left(1-T^{\left|m_{i}\right|}\right)^{\operatorname{sign}\left(m_{i}\right)} \tag{1.5.1}
\end{equation*}
$$

with i running over a finite index set and $m_{i} \in \mathbb{Z} \backslash\{0\}, m_{i}+m_{j} \neq 0, \operatorname{sign}\left(m_{i}\right)=$ $m_{i} /\left|m_{i}\right|$. The m_{i} are tabulated in 4.1 and 4.2. This yields the following experimental

Theorem 1.6. Let G be an irreducible finite reflection group in \mathbb{C}^{n} which can be generated by n reflections of order 2 (for example a finite Coxeter group). Then the m_{i} in 1.5 .1 are given by $d,-(\operatorname{deg}(\delta)) / d$ where d runs over all primitive degrees of G which divide $\operatorname{deg}(\delta)$.

In the Coxeter case any primitive degree divides $\operatorname{deg}(\delta)$ (see [7]), but this is not true in general (e.g. $d=12$ in G_{27}). For the Coxeter groups of type A_{n} Theorem 1.6 follows also from [9].
1.7. The method in the present paper is based on some new properties of Springer's regular elements [21] in finite reflection groups. In § 2 we show that the coexponents of the centralizer of a regular element $g \in G$ of order d are the coexponents of G which are congruent to $1 \bmod d$ (Theorem 2.8). We also prove that the intersection of a reflection arrangement with a regular eigenspace is
again a reflection arrangement (Theorem 2.5). In § 3 we give an explicit formula (Theorem 3.2) for the Lefschetz numbers of the local monodromy of Δ, and express the orders of the regular elements in terms of the m_{i} (Corollary 3.4). We determine $Z(T, G)$ for all G and verify Theorem 1.6 in $\S 4$, by simple case by case calculations. Finally in the second part of $\S 4$ we determine the zeros of the Bernstein polynomial $b(s)$ of Δ. In the Coxeter group case a formula for $b(s)$ was conjectured by Yano and Sekiguchi [25] and proved by Opdam [16].

We are very gratefull to D. Siersma and T. Springer for conversations which were essential for the present paper. We also thank T. Yano for stimulating discussions and G. Michiels for computer assistance.

2. THE COEXPONENTS OF THE CENTRALIZER OF A REGULAR ELEMENT

2.1. Assume the notation of (1.1), in particular V is an n-dimensional vector space over \mathbb{C} and $G \subset G L(V)$ is a finite reflection group with degrees d_{1}, \ldots, d_{n}. A vector $v \in V$ is called regular if it is not contained in a reflection hyperplane of G. An element $g \in G$ is called regular if it has a regular eigenvector. Let $g \in G$ be regular, with order d. Choose any eigenspace V_{g} of g which contains a regular vector and let ξ be the corresponding eigenvalue. With these notations we have:

Theorem 2.2 (Springer [21])
(i) The root of unity ξ has order d.
(ii) $\operatorname{dim} V_{g}=\sharp\left\{i \mid d\right.$ divides $\left.d_{i}\right\}$,
(iii) the centralizer C_{g} of g in G is a reflection group in V_{g} whose degrees are the d_{i} divisible by d and whose order is $\prod_{d \mid d_{i}} d_{i}$,
(iv) the conjugacy class of g consists of all elements of G having $\operatorname{dim} V_{g}$ eigenvalues equal to ξ,
(v) the eigenvalues of g are $\xi^{1-d_{1}}, \ldots, \xi^{1-d_{n}}$.
2.3. The orders >1 of the regular elements of G are called the regular numbers of G. Note that any divisor >1 of a regular number is again a regular number. The reflection arrangement \mathcal{A}_{G} of G is the union of the reflection hyperplanes of G. It is the set of elements of V which are fixed by a nonidentity element of G. Our next goal is to prove Theorem 2.5 that $\mathcal{A}_{C_{g}}=V_{g} \cap \mathcal{A}_{G}$.
2.4. For any $a \in V$ we denote by D_{a} the derivation with

$$
\left(D_{a} h\right)(v)=\lim _{t \rightarrow 0}(h(v+t a)-h(v)) / t
$$

for any polynomial function h on V and $v \in V$. We learned the following lemma from Springer. It streamlined our original proof of Theorem 2.5 below.

Lemma 2.4. Let f be a homogeneous G-invariant polynomial function on V of degree e. Let $\sigma \in G$ and $a, b \in V$ eigenvectors of σ with eigenvalues α, β. If $\alpha \beta^{e-1} \neq 1$ then $\left(D_{a} f\right)(b)=0$.

Proof. One verifies for any polynomial f and any $a \in V$ that

$$
D_{\sigma a}(\sigma f)=\sigma\left(D_{a} f\right)
$$

Hence

$$
\begin{aligned}
\alpha\left(D_{a} f\right)(b) & =\left(D_{\sigma a} \sigma f\right)(b)=\left(\sigma\left(D_{a} f\right)\right)(b)=\left(D_{a} f\right)\left(\beta^{-1} b\right) \\
& =\beta^{-(e-1)}\left(D_{a} f\right)(b),
\end{aligned}
$$

which yields the lemma.

Theorem 2.5. Let g be a regular element of the finite reflection group G and let V_{g} be an eigenspace of g containing a regular vector. If H is a reflection hyperplane of G then $H \cap V_{g}$ is a reflection hyperplane of the centralizer C_{g} of g considered as a reflection group in V_{g}. Hence the reflection arrangement of C_{g} equals $V_{g} \cap \mathcal{A}_{G}$.

Proof. Let d be the order of g. Let f_{1}, \ldots, f_{n}, with $n=\operatorname{dim} V$, be homogeneous generators for the \mathbb{C}-algebra of G-invariant polynomial functions on V, with degrees d_{1}, \ldots, d_{n}. Suppose

$$
\begin{equation*}
d \mid d_{1}, d_{2}, \ldots, d_{r} \quad \text { and } \quad d \nmid d_{r+1}, \ldots, d_{n} \tag{1}
\end{equation*}
$$

Note that $r=\operatorname{dim} V_{g}$, by Theorem 2.2. Choose an Hermitian scalar product on V which is preserved by G, and an orthonormal basis for V consisting of eigenvectors of g. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be the corresponding coordinate system with V_{g} the locus of $x_{r+1}=\cdots=x_{n}=0$. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in V \backslash\{0\}$ be orthogonal to the hyperplane H. Since V_{g} contains a regular vector, $V_{g} \not \subset H$ and not all a_{1}, \ldots, a_{r} are zero. From Lemma 2.4, with σ a reflection with respect to H, we obtain that

$$
\begin{equation*}
D_{a}\left(f_{i}\right)=\sum_{j=1}^{n} a_{j} \frac{\partial f_{i}}{\partial x_{j}} \text { is zero on } H, \quad \text { for } i=1, \ldots, n \tag{2}
\end{equation*}
$$

Moreover again from Lemma 2.4, with σ replaced by g, we deduce that

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial x_{j}} \text { is zero on } V_{g}, \quad \text { for } i=1, \ldots, r \text { and } j=r+1, \ldots, n \tag{3}
\end{equation*}
$$

because of (1) and 2.2(i). Now (2) and (3) yield

$$
\sum_{j=1}^{r} a_{j} \frac{\partial f_{i}}{\partial x_{j}} \text { is zero on } V_{g} \cap H, \quad \text { for } i=1, \ldots, r
$$

Since not all a_{1}, \ldots, a_{r} are zero, the determinant

$$
\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\substack{i=1, \ldots, r \\ j=1, \ldots, r}}
$$

[^0]is zero on $V_{g} \cap H$. But the restrictions of f_{1}, \ldots, f_{r} to V_{g} are algebraically independent generators for the \mathbb{C}-algebra of C_{g}-invariant polynomial functions on V_{g}, see [21]. Thus the locus in V_{g} of the above determinant is the union of the reflection hyperplanes of C_{g} in V_{g}. Thus $V_{g} \cap H$ is such a reflection hyperplane.
2.6. We denote the \mathbb{C}-algebra of polynomial functions on V by $\mathbb{C}[V]$. The group $G \subset G L(V)$ acts on $\mathbb{C}[V] \otimes V$ by $\sigma(h \otimes v)=\left(h \circ \sigma^{-1}\right) \otimes \sigma(v)$, for $\sigma \in G$, $h \in \mathbb{C}[V], v \in V$. Moreover $\mathbb{C}[V] \otimes V$ is graded by $\operatorname{deg}(h \otimes v)=\operatorname{deg} h$. Note that the $\mathbb{C}[G]$-algebra $\mathbb{C}[V] \otimes V$ is canonically isomorphic to the algebra of polynomial vector fields on V, by sending $h \otimes v$ to the derivation $h D_{v}$. The coexponents $c_{1}, c_{2}, \ldots, c_{n}$ of the finite reflection group G are the degrees of any homogeneous basis of the module $(\mathbb{C}[V] \otimes V)^{G}$ (or the module of G-invariant polynomial vector fields on V) over the ring $\mathbb{C}[V]^{G}$ of G-invariant polynomial functions on V. See [19, def. 6.50]; these are the numbers n_{1}, n_{2}, \ldots in [17].

Theorem 2.6.1 (Orlik and Solomon [17]). With the above notation we have

$$
\sum_{i} \operatorname{dim} H^{i}\left(V \backslash \mathcal{A}_{G}, \mathbb{C}\right) t^{i}=\left(1+c_{1} t\right) \ldots\left(1+c_{n} t\right)
$$

where \mathcal{A}_{G} is the reflection arrangement of G and $t a$ variable.
In particular the coexponents are completely determined by \mathcal{A}_{G}. The numbers $d_{i}-1$ for $i=1, \ldots, n$, are called the exponents of G. It is well known that if G is a finite Coxeter group then the coexponents are equal to the exponents.
2.7. As above c_{1}, \ldots, c_{n} denote the coexponents of G. Let $g \in G$ be a regular element of order $d>1$ and V_{g} an eigenspace of g containing a regular vector with eigenvalue ξ (which has order d by 2.2). Put $r=\operatorname{dim} V_{g}$ and let $b_{1} \leq$ $b_{2} \leq \cdots \leq b_{r}$ be the coexponents of the centralizer C_{g} of g considered as a reflection group in V_{g}. Our next goal is to show Theorem 2.8 that the b_{i} are exactly the c_{j} which are $\equiv 1 \bmod d$.

Lemma 2.7.1. With the above notation we have:
(i) The eigenvalues of g are the $\xi^{c_{i}}, i=1, \ldots, n$.
(ii) There are exactly r values of i with $c_{i} \equiv 1 \bmod d$.
(iii) $b_{i} \equiv 1 \bmod d$, for $i=1, \ldots, r$.

Proof. (i) Apply Proposition 4.5 of [21] with ρ the irreducible components of the action of G on V^{*} (= the dual of V).
(ii) Follows directly from (i) because there are exactly r eigenvalues of g which equal ξ.
(iii) By (i) with G replaced by C_{g} and V by V_{g}, we have $\xi^{b_{i}}=\xi$ for $i=$ $1, \ldots, r$.

The above lemma implies that we may assume that $c_{1} \leq c_{2} \leq \ldots \leq c_{r}$ are the coexponents of G which are $\equiv 1 \bmod d$.

Lemma 2.7.2. With the above notation we have:
(i) The coexponents of C_{g} only depend on the degree d of g but not ong.
(ii) $b_{i} \leq c_{i}$ for $i=1, \ldots, r$.
(iii) Let e be a regular number which is divisible by d. Then the sequence $\left(b_{i} \bmod e\right)_{i=1, \ldots, r}$ coincides with the sequence $\left(c_{i} \bmod e\right)_{i=1, \ldots, r}$ up to a permutation. In particular if $e \geq c_{r}$ then $b_{i}=c_{i}$ for $i=1, \ldots, r$.
(iv) Let γ be the least common multiple of the regular numbers which are divisible by d.
Then

$$
\sum_{i=1}^{r} b_{i} \equiv \sum_{i=1}^{r} c_{i} \bmod \gamma
$$

In particular if $\gamma \geq \sum_{i=1}^{r} c_{i}$ then $b_{i}=c_{i}$ for $i=1, \ldots, r$.
Proof. (i) Let $g^{\prime} \in G$ be another regular element of order d and $V_{g^{\prime}}$ an eigenspace of g^{\prime} containing a regular vector with eigenvalue ξ^{\prime}. From Proposition 3.2 of [21] it follows that

$$
\bigcup_{h \in G} V(h, \xi)=\bigcup_{h \in G} V\left(h, \xi^{\prime}\right)
$$

where $V(h, \xi)$ denotes the eigenspace of h with eigenvalue ξ. Hence there exists $h \in G$ such that

$$
V_{g^{\prime}}=V\left(g^{\prime}, \xi^{\prime}\right)=V(h, \xi)
$$

because $\operatorname{dim} V_{g^{\prime}}=r \geq \operatorname{dim} V(h, \xi)$ by 2.2.(ii) and [21, Theorem 3.4]. Then h is conjugate to g, by Theorem 2.2.(iv). Thus it suffices to show that $C_{g^{\prime}}$ in $V_{g^{\prime}}$ and C_{h} in $V(h, \xi)$ have the same coexponents. But this is clear because their reflection arrangements coincide, both being equal to the intersection of $V_{g^{\prime}}=$ $V(h, \xi)$ with \mathcal{A}_{G}, by Theorem 2.5.
(ii) Choose an Hermitian scalar product on V which is preserved by G and an orthonormal basis for V consisting of eigenvectors of g. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be the corresponding coordinate system with V_{g} the locus of $x_{r+1}=\cdots=$ $x_{n}=0$. Let R_{g} be the \mathbb{C}-algebra of C_{g}-invariant polynomial functions on V_{g}. By definition of the coexponents c_{i}, there exists a basis

$$
\sum_{j=1}^{n} f_{i j} \frac{\partial}{\partial x_{j}}, \quad i=1, \ldots, n
$$

for the $\mathbb{C}[V]^{G}$ module of G-invariant polynomial vector fields on V, with $f_{i j}$ homogeneous of degree c_{i}.

Claim. The $f_{i j}$ are zero on V_{g} for $i=1, \ldots, r$ and $j=r+1, \ldots, n$.

It is well known that $\operatorname{det}\left(f_{i j}\right)_{i, j=1, \ldots, n}$ equals the product of the linear forms defining the reflection hyperplanes of G up to a factor in \mathbb{C}, see [19, p. 238] or [17, (2.11)]. Since V_{g} contains a regular vector we see that the above determinant is not identically zero on V_{g}. Hence the claim implies that $\operatorname{det}\left(f_{i j}\right)_{i, j=1, \ldots, r}$ is not identically zero on V_{g}. Thus the

$$
\Gamma_{i}:=\sum_{j=1}^{r} f_{i j} \left\lvert\, \nu_{g} \frac{\partial}{\partial x_{j}}\right., \quad \text { for } i=1, \ldots, r
$$

are C_{g}-invariant polynomial vector fields on V_{g} which are linearly independent over R_{g}. By definition of the b_{i}, there exists a basis

$$
\theta_{i}=\sum_{j=1}^{r} g_{i j} \frac{\partial}{\partial x_{j}}, \quad i=1, \ldots, r
$$

for the R_{g}-module of C_{g}-invariant polynomial vector fields on V_{g}, with $g_{i j}$ homogeneous of degree b_{i}. Suppose now that $b_{\ell}>c_{\ell}$ for some $\ell \leq r$. Since

$$
\operatorname{deg} \theta_{r} \geq \cdots \geq \operatorname{deg} \theta_{\ell}=b_{\ell}>c_{\ell}=\operatorname{deg} \Gamma_{\ell} \geq \cdots \geq \operatorname{deg} \Gamma_{1}
$$

we see that $\Gamma_{1}, \ldots, \Gamma_{\ell}$ are R_{g}-linear combinations of $\theta_{1}, \ldots, \theta_{\ell-1}$. But this is impossible because the $\Gamma_{1}, \ldots, \Gamma_{\ell}$ are linearly independent over R_{g}. Thus $b_{i} \leq c_{i}$ for $i=1, \ldots, r$. To finish the proof of (ii) we still have to give the

Proof of the claim. Note that g is given by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\eta_{1} x_{1}, \ldots, \eta_{n} x_{n}\right)
$$

with $\eta_{1}=\eta_{2}=\cdots=\eta_{r}=\xi$ and $\xi \neq \eta_{j} \in \mathbb{C}$ for all $j>r$. The G-invariance implies that

$$
\begin{equation*}
f_{i j}\left(\eta_{1}^{-1} x_{1}, \ldots, \eta_{n}^{-1} x_{n}\right) \eta_{j}=f_{i j}\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

Suppose that $f_{i j}$ is not identically zero on V_{g}, for some $i, j \leq n$. Then $f_{i j}$ contains a monomial in x_{1}, \ldots, x_{r} of degree c_{i}. Hence (1) yields that $\xi^{-c_{i}} \eta_{j}=1$. If $1 \leq i \leq r$ then $c_{i} \equiv 1 \bmod d$ (by definition) and thus $\xi=\eta_{j}$ which implies $j \leq r$. This proves the claim. Note that the above also shows that $f_{i j}$ is zero on V_{g} for $i=r+1, \ldots, n$ and $j=1,2, \ldots, r$.
(iii) Let $h \in G$ be a regular element of order e and V_{h} an eigenspace of h containing a regular vector with eigenvalue say η. Put $\xi^{\prime}=\eta^{e / d}, g^{\prime}=h^{e / d}$ and let $V_{g^{\prime}}$ be the eigenspace of g^{\prime} with eigenvalue ξ^{\prime}. Since $V_{h} \subset V_{g^{\prime}}$, the element g^{\prime} is regular of order d. Because of (i) we may suppose that $g=g^{\prime}, \xi=\xi^{\prime}$, and $V_{g}=V_{g^{\prime}}$. Note that $h \in C_{g}$. By Lemma 2.7.1(i) with g replaced by h we see that the eigenvalues of h on V are the $\eta^{c_{i}}$ for $i=1, \ldots, n$. At the other hand, by the same lemma with G replaced by C_{g}, V by V_{g}, and g by h, we obtain that the eigenvalues of h on V_{g} are the $\eta^{b_{i}}$ for $i=1, \ldots, r$. Thus the sequence $\left(b_{i} \bmod e\right)_{i=1, \ldots, r}$ is a subsequence of $\left(c_{i} \bmod e\right)_{i=1, \ldots, n}$ up to permutation. Apply now Lemma 2.7.1(ii), and (iii) to obtain the first assertion of (iii). The second assertion follows directly from the first by (ii).
(iv) Follows directly from (iii) and (ii).

Theorem 2.8. Let G be a finite reflection group and $g \in G$ a regular element of order d. The coexponents of the centralizer C_{g} of g are the coexponents of G which are $\equiv 1 \bmod d$.

Proof. It suffices to prove the theorem when G is irreducible. We do this case by case using the tables giving the regular numbers [21, p. 175, 177-178], [5, p. 391, 395, and 412] (take all the divisors >1 of the regular degrees in [5]) and the coexponents [17, p. 92], [19, p. 287] of each irreducible G. For example the coexponents of E_{8} are $1,7,11,13,17,19,23,29$ and the regular numbers are the divisors >1 of 30,24 or 20 . We may suppose that $n \geq 3$ and $d>2$. Looking through these tables one verifies immediately that the largest regular number which is divisible by d is larger than the largest coexponent of G which is $\equiv 1 \bmod d$, except in the following 'bad' cases:
(1) $d=4$ in E_{8},
(2) $d=4$ in H_{4},
(3) the monomial groups $G(m, p, n)$ with $m \geq 2,1<p<m, n \geq 3$,
(4) the monomial groups $G(m, m, n)$ with $m \geq 2, n \geq 3, d \mid n, d \nmid m$.

Thus Lemma 2.7.2(iii) yields the theorem except in the 'bad' cases (1), (2), (3) and (4). Case (1) and (2) follow directly from Lemma 2.7.2(iv). Case (3) follows from the theorem for $G(m, 1, n)$ (which is not a 'bad' case!) because $G(m, 1, n)$ and $G(m, p, n)$ have the same reflection arrangement when $p<m$ and because of Theorem 2.5. Indeed the reflection arrangement determines the coexponents, see 2.6. Finally case (4) follows by an explicit calculation which shows that the arrangement of V_{g} equals the arrangement of $G(m d / e, 1, n e / d)$, where $e=\operatorname{gcd}(d, m)$.

Corollary 2.9. If G is irreducible then C_{g} is also irreducible.

Provf. By Schur's lemma $\left(V^{*} \otimes V\right)^{G}=\operatorname{Hom}_{G}\left(V^{*}, V^{*}\right)$ has dimension 1 over \mathbb{C}. Hence, since G does not act trivially on V, exactly one coexponent of G equals 1 . Thus by Theorem 2.8 exactly one coexponent of C_{g} equals 1 . This implies that C_{g} is irreducible because each irreducible component of C_{g} would contribute a coexponent 1 .

3. THE LEFSCHETZ NUMBERS OF LOCAL MONODROMY

3.1. Let $G \subset G L\left(\mathbb{C}^{n}\right)$ be a finite reflection group and let δ, Δ be as in 1.1. The zeta function $Z(T, G)$ of local monodromy of Δ at 0 can be written as

$$
\begin{equation*}
Z(T, G)=\prod_{i}\left(1-T^{\left|n_{i}\right|}\right)^{-\operatorname{sign}\left(n_{i}\right)} \tag{3.1.1}
\end{equation*}
$$

with i running over a finite index set, and $n_{i} \in \mathbb{Z} \backslash\{0\}, n_{i}+n_{j} \neq 0$. (Thus the n_{i} are unique up to order.) The sequence of numbers m_{i} in 1.5.1 is obtained from the n_{i} by the following rule: Replace each odd n_{i} by $2 n_{i}$ and $-n_{i}$, delete any pair of opposite numbers, and finally multiply all numbers with $(-1)^{n-1}$. Conversely the n_{i} are obtained from the m_{i} by the same rule. Since δ is homo-
geneous, n_{i} divides $\operatorname{deg}(\delta)$. Hence when $\operatorname{deg}(\delta)$ is even, also m_{i} divides $\operatorname{deg}(\delta)$. It is well known [19, p. 231 and p. 238] that

$$
\begin{equation*}
\operatorname{deg}(\delta)=\sum_{i}\left(d_{i}-1\right)+\sum_{i} c_{i} \tag{3.1.2}
\end{equation*}
$$

where the d_{i} are the degrees and the c_{i} the coexponents of G. For any $a \in \mathbb{N}$, the Lefschetz number $\Lambda(a)$ of the local monodromy to the power a of Δ at 0 is defined by

$$
\Lambda(a)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(M^{a}, H^{i}\left(F_{0}, \mathbb{C}\right)\right) \in \mathbb{Z}
$$

where M is the monodromy automorphism and F_{0} the Milnor fiber of Δ at 0 . It is well known (see e.g. [15, p. 77]) that the $\Lambda(a)$ completely determine $Z(T, G)$. Indeed the n_{i} are uniquely determined by $n_{i} \mid \operatorname{deg}(\delta)$ and

$$
\begin{equation*}
\Lambda(a)=\sum_{n_{i} \backslash a} n_{i}, \quad \text { for all } a \text { dividing } \operatorname{deg}(\delta) \tag{3.1.3}
\end{equation*}
$$

By Möbius inversion one gets

$$
\begin{equation*}
Z(T, G)=\prod_{d \mid \operatorname{deg}(\delta)}\left(1-T^{d}\right)^{\alpha(d)} \tag{3.1.4}
\end{equation*}
$$

where $\alpha(d)=d^{-1} \sum_{a \mid d} \mu(d / a) \Lambda(a)$ and μ denotes the Möbius function. The proof of the following theorem is based on Theorems 2.5 and 2.6.1.

Theorem 3.2. Let $G \subset G L\left(\mathbb{C}^{n}\right)$ be a finite reflection group and $d \in \mathbb{N}$ with $d \mid \operatorname{deg}(\delta)$. If G has a regular element g with order d, then

$$
\Lambda\left(\frac{\operatorname{deg}(\delta)}{d}\right)=\frac{\operatorname{deg}(\delta)}{\prod_{i} d_{i}(g)} \prod_{i \neq 1}\left(1-c_{i}(g)\right)
$$

where $d_{1}(g) \leq d_{2}(g) \leq \cdots$, resp. $c_{1}(g) \leq c_{2}(g) \leq \cdots$, are the degrees, resp. coexponents, of the centralizer C_{g} of g. If G has no regular element with order d, then

$$
\Lambda\left(\frac{\operatorname{deg}(\delta)}{d}\right)=0
$$

Proof. Put $d^{\prime}=(\operatorname{deg} \delta) / d$. Because δ is homogeneous the map

$$
h: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}: x \mapsto e^{2 \pi i / \operatorname{deg} \delta} x
$$

induces the local monodromy M. Hence by [15, Lemma 9.5] we have

$$
\begin{align*}
\Lambda\left(d^{\prime}\right) & =\chi\left(\left\{x \in \mathbb{C}^{n} / G \mid \delta(x)=1, h^{d^{\prime}}(x)=x \bmod G\right\}\right) \\
& =\frac{1}{\sharp G} \chi\left(\left\{x \in \mathbb{C}^{n} \mid \delta(x)=1, \exists w \in G: w(x)=e^{2 \pi i / d} x\right\}\right) \tag{3.2.1}\\
& =\frac{\operatorname{deg}(\delta)}{\sharp G} \chi\left(\left\{x \in \mathbb{P}^{n-1} \mid \delta(x) \neq 0, x \in \bigcup_{w \in G} \mathbb{P}\left(V\left(w, e^{2 \pi i / d}\right)\right)\right\}\right) \tag{3.2.2}
\end{align*}
$$

where for any $w \in G$ and $\xi \in \mathbb{C}$ we denote by $\mathbb{P}(V(w, \xi))$ the projectivization of
the affine space $V(w, \xi):=\left\{x \in \mathbb{C}^{n} \mid w(x)=\xi x\right\}$. Note that $x \in \mathbb{C}^{n}$ is regular if and only if $\delta(x) \neq 0$. Hence $\Lambda\left(d^{\prime}\right)=0$ when G has no regular element with order d, because of (3.2.2) and 2.2(i). Suppose now that G has a regular element g with order d. Then g has a regular eigenvector with eigenvalue a primitive d th root of unity ξ. By [21, Proposition 3.2] we have

$$
\bigcup_{w \in G} V\left(w, e^{2 \pi i / d}\right)=\bigcup_{w \in G} V(w, \xi) .
$$

Hence

$$
\Lambda\left(d^{\prime}\right)=\frac{\operatorname{deg}(\delta)}{\sharp G} \chi\left(\left\{x \in \mathbb{P}^{n-1} \mid \delta(x) \neq 0, x \in \bigcup_{w \in G} \mathbb{P}(V(w, \xi))\right\}\right) .
$$

By Theorem 2.2, the set of $w \in G$, for which $V(w, \xi)$ contains a regular vector, equals the conjugacy class of g and so has $\sharp G / \sharp C_{g}$ elements. Thus

$$
\Lambda\left(d^{\prime}\right)=\frac{\operatorname{deg}(\delta)}{\sharp G} \chi\left(\left\{x \in \mathbb{P}^{n-1} \mid \delta(x) \neq 0, x \in \mathbb{P}(V(g, \xi))\right\}\right),
$$

because $V(w, \xi) \cap V\left(w^{\prime}, \xi\right)$ does not contain any regular vector whenever $w \neq w^{\prime}$. Theorem 3.2 follows now directly from Theorems 2.5 , and 2.6 .1 , and Proposition 5.1 of [19].

Corollary 3.3. If G is not irreducible but essential (i.e. 0 is the only G-invariant vector), then $Z(T, G)=1$.

Proof. In this case there are at least two codegrees equal to 1 . Hence by Theorem 3.2 all Lefschetz numbers are zero.

We also give a more direct argument. Write $G=G_{1} \oplus G_{2}$, with G_{1} and G_{2} essential and denote the δ of G_{1}, resp. G_{2}, by δ_{1}, resp. δ_{2}. Thus $\delta=\delta_{1} \delta_{2}$. Exploiting the homogeneity of δ_{1} and δ_{2} one verifies that the map $x \mapsto \delta_{1}(x)$ induces a locally trivial fibration of the space appearing in (3.2.1) onto $\mathbb{C} \backslash\{0\}$. Hence the Euler characteristic of that space is zero and $\Lambda\left(d^{\prime}\right)=0$. This second proof of the corollary does not depend on Theorems 2.5 and 2.6.1.

Corollary 3.4. Let G be an irreducible finite reflection group and $d \in \mathbb{N}, d>1$. Then the following assertions are equivalent
(i) d is a regular number for G,
(ii) $d \mid \operatorname{deg}(\delta)$ and $\Lambda((\operatorname{deg} \delta) / d) \neq 0$,
(iii) d divides some $(\operatorname{deg} \delta) / n_{i}$.

Moreover when $\operatorname{deg}(\delta)$ is even these assertions are also equivalent with
(iv) d divides some $(\operatorname{deg} \delta) / m_{i}$.

Proof. Suppose d is a regular number. Then there is a regular element $g \in G$ with order d and a regular vector v such that $g(v)=\xi v$, with ξ a primitive d th root of unity. Hence $\delta(v)=\delta(\xi v)=\xi^{\operatorname{deg} \delta} \delta(v)$. Since $\delta(v) \neq 0$ we have $\xi^{\operatorname{deg} \delta}=1$ and $d \mid \operatorname{deg} \delta$. The equivalence of (i) and (ii), follows now from Theorem 3.2, Corollary 2.9, and the fact that an irreducible nontrivial finite reflection group has only one coexponent equal to 1 (cf. the proof of 2.9). The implication
(ii) \Rightarrow (iii) follows directly from (3.1.2). Next assume (iii). We want to show that d is a regular number. Take an n_{j} with minimal absolute value such that $n_{j} \mid n_{i}$. Then $\Lambda\left(\left|n_{j}\right|\right) \neq 0$ by (3.1.3). Hence $(\operatorname{deg} \delta) /\left|n_{j}\right|$ is a regular number (or 1) by the equivalence of (i) with (ii). But $d\left|(\operatorname{deg} \delta) / n_{i}\right|(\operatorname{deg} \delta) / n_{j}$. Thus d is regular because it divides a regular number. Finally (iii) \Leftrightarrow (iv) because of the rule to obtain the m_{i} from the n_{i}. Indeed we have only to consider the n_{i} which are minimal with respect to divisibility.

Remark. For the groups G satisfying Theorem 1.6 the regular numbers are thus the divisors >1 of the m_{i}. Note however that it is not always sufficient to only take the divisors of the primitive degrees, e.g. E_{6} has primitive degrees 12,9 but 8 is a regular number.
3.5. Let G be a Shephard group, i.e. the symmetry group of a regular complex polytope, and W the associated finite Coxeter group, see [18], [19, p. 265-268]. Denote by κ half the smallest degree of G. It is known [18] that the d_{i}, resp. $\operatorname{deg}(\delta)$, of G are obtained from the ones of W by multiplying with κ. Moreover the discriminant Δ of G equals the discriminant of W. Hence G and W have the same n_{i} and m_{i}. Since G is irreducible, Corollary 3.4 directly implies

Corollary 3.5.1. In the above situation the regular numbers of G which are maximal with respect to divisibility are the ones of W multiplied with κ.

Corollary 3.6. Let $G \subset G L\left(\mathbb{C}^{n}\right)$ be an irreducible finite reflection group which can be generated by n reflections (i.e. a duality group [17]). Then $-n$ is the m_{i} with smallest absolute value and appears only once among the m_{i}.

Proof. Let h be the largest degree of G. Then $\operatorname{deg}(\delta)=n h$ and h divides only one d_{i}, see [17, Theorem 5.5]. Moreover one verifies in the tables that h is a regular number. The corollary follows now directly from 3.1.3 and Theorem 3.2 for $d=h$ and for d a multiple of h.

4. CALCULATION OF THE LOCAL MONODROMY

Theorem 4.1. For the Coxeter groups A_{n} the m_{i} in 1.5 .1 are $n+1,-n$. For the monomial groups $G(m, p, n)$ the m_{i} are $2(1+p(n-1)),-(1+p(n-1))$ when $p<m$, and are $m(n-1),-n$ when $p=m$.

Proof. We only treat the monomial groups:
Case $p<m$: The degrees are $m, 2 m, \ldots,(n-1) m, n m / p$, the coexponents 1 , $m+1, \ldots,(n-1) m+1$ and the regular numbers are the divisors >1 of $m n / p$. Hence $\operatorname{deg} \delta=n m(1+p(n-1)) / p$. Using Theorem 3.2 one verifies that

$$
\Lambda\left(\frac{\operatorname{deg} \delta}{d}\right)=-(1+p(n-1))(-1)^{n \operatorname{gcd}(d, m) / d}
$$

when $d \mid n m / p$, and zero otherwise. If $d \mid n m$, then $n \operatorname{gcd}(d, m) / d$ is odd when n is odd, and has the same parity as $n m / d$ when n is even. Using 3.1.3 it is easy to see that the n_{i} are $1+p(n-1)$ if n is odd, $-(1+p(n-1))$ if both n and p are even, and $-2(1+p(n-1)), 1+p(n-1)$ if n is even and p odd.

Case $p=m$: The degrees are $m, 2 m, \ldots,(n-1) m, n$, the coexponents 1 , $m+1, \ldots,(n-2) m+1,(n-1)(m-1)$ and the regular numbers are the divisors of $(n-1) m$ or n. Hence deg $\delta=m n(n-1)$. Using Theorem 3.2 one verifies that $\Lambda((\operatorname{deg} \delta) / d)=\Lambda_{1}+\Lambda_{2}$ with $\Lambda_{1}=-n(-1)^{(n-1) \operatorname{gcd}(d, m) / d}$ if $d \mid(n-1) m$, and 0 otherwise, $\Lambda_{2}=-m(n-1)(-1)^{n g c d(d, m) / d}$ if $d \mid n$, and 0 otherwise. One proceeds now as in the previous case.

Note that the Coxeter groups B_{n}, D_{n}, G_{2} and $I_{2}(n)$ equal respectively $G(2,1, n), G(2,2, n), G(6,6,2)$, and $G(n, n, 2)$.
4.2. It remains to determine the m_{i} in 1.5 .1 for the exceptional irreducible finite reflection groups in \mathbb{C}^{n}. In view of 3.5 we have only to care about Coxeter groups and non-Shephard groups. All these are listed in table 4.2.1 below. Here G_{j} denotes the reflection group with Shephard-Todd number j, see [20, table VII]. The groups in the table who satisfy the hypothesis of Theorem 1.6 are indicated by $\mathrm{a} *$ in the last column. The m_{i} are calculated case by case using Theorems 3.2, 2.2, 2.8 and the tables (mentioned in the proof of 2.8) giving the regular numbers, degrees and coexponents.

Table 4.2.1. Exceptional Coxeter groups and exceptional non-Shephard groups

Group	n	m_{i}	
G_{7}	2	$6,-3$	
G_{11}	2	$6,-3$	
G_{12}	2	$12,3,-6,-4$	
G_{13}	2	$18,3,-9,-6$	
G_{15}	2	$10,-5$	
G_{19}	2	$6,-3$	
G_{22}	2	$30,5,3,-15,-10,-6$	$*$
$G_{23}=H_{3}$	3	$10,6,-5,-3$	$*$
G_{24}	3	$14,6,-7,-3$	$*$
G_{27}	3	$30,6,-15,-3$	$*$
$G_{28}=F_{4}$	4	$12,8,-6,-4$	
G_{29}	4	$20,-4$	$*$
$G_{30}=H_{4}$	4	$30,20,12,-10,-6,-4$	$*$
G_{31}	4	$30,5,-15,-6$	$*$
G_{33}	5	$18,10,-9,-5$	$*$
G_{34}	6	$42,-6$	$*$
$G_{35}=E_{6}$	6	$12,9,-8,-6$	
$G_{36}=E_{7}$	7	$18,14,-9,-7$	
$G_{37}=E_{8}$	8	$30,24,20,-12,-10,-8$	

Remark 4.3. We sec there are as many positive as negative \boldsymbol{m}_{i}. This holds be-
cause -1 is no eigenvalue of monodromy since the Bernstein polynomial of Δ has no root $\equiv \frac{1}{2} \bmod \mathbb{Z}$ by 4.9.2, cf. 4.6.
4.4. The only groups satisfying the hypothesis of Theorem 1.6 are the finite Coxeter groups, the monomial groups $G(m, m, n)$ and $G_{24}, G_{27}, G_{29}, G_{33}, G_{34}$. Theorem 1.6 follows from 4.1 and table 4.2 .1 by using the tables for the parabolic subgroups [19, p. 189-300]. In the Coxeter case the parabolic subgroups of G correspond (up to conjugation) with full subgraphs of the Coxeter diagram of G.

Finally we mention that the recursion 1.3 does not generalize to all groups in 1.6 .
4.5. We denote by $b_{G}(s)$ the Bernstein polynomial of the discriminant Δ of G. When G is a Coxeter group, Opdam [16] proved

$$
b_{G}(s)=\prod_{i=1}^{n} \prod_{1 \leq \ell<d_{i}}\left(s+\frac{1}{2}+\frac{\ell}{d_{i}}\right) .
$$

This was conjectured by Yano and Sekiguchi [25]. We will determine the roots of $b_{G}(s)$ for any G in 4.10.
4.6. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a polynomial map. It is known [6, Lemma 4.6] that ξ is an eigenvalue of the local monodromy of f at some point of $f^{-1}(0)$ if and only if ξ is a zero or pole of the zeta function of local monodromy of f at some (possibly different) point of $f^{-1}(0)$. Thus ξ is an eigenvalue of the local monodromy of the discriminant Δ of G at some point of $\Delta^{-1}(0)$ if and only if ξ is a zero or pole of $Z(P, T)$ for some parabolic subgroup P of G. Using the tables in [19, p. 189-300] and 4.2.1 we can easily determine these ξ. By [14] these eigenvalues ξ are precisely the numbers $e^{2 \pi i s}$ with $b_{G}(s)=0$.
4.7. Let G be irreducible. The Yano number $H(G)$ of G is defined in [22] by

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{H(G)}=\frac{\sum_{i=1}^{n} d_{i}}{\operatorname{deg}(\delta)} \tag{4.7.1}
\end{equation*}
$$

Since $\sum_{i}\left(d_{i}-1\right)$ equals the number of reflections in G, we have $H(G) \geq 2$ with equality only if $n=1$. Using the tables one verifies that

$$
\begin{equation*}
H(P)<H(G) \tag{4.7.2}
\end{equation*}
$$

for any proper irreducible parabolic subgroup P of G, considering P as a reflection group in $\mathbb{C}^{n} /\left(\mathbb{C}^{n}\right)^{G}$. In 4.11 below we explain why $H(G)$ is integral and equal to the m_{i} with largest absolute value. The following theorem was conjectured by Yano in [22].

Theorem 4.8. Let G be an irreducible finite reflection group. Then the largest zero of the Bernstein polynomial $b_{G}(s)$ equals $-1 / 2-1 / H(G)$.

Proof. We may suppose $n>1$, hence $-1 / 2-1 / H(G)>-1$. Consider the embedded resolution of singularities of the reflection arrangement of G obtained by blowing up first the origin, secondly all 1-dimensional intersections of reflection hyperplanes, next all 2-dimensional intersections, and so on (see $[11, \S 7]$). Use this resolution to find the candidate poles (see [3]) of the integral

$$
\int_{\mathbb{C}^{n} / G} \varphi|\Delta|^{2 s}|d y \wedge d \bar{y}|=\frac{1}{\# G} \int_{\mathbb{C}^{n}} \varphi \prod_{H}\left|\ell_{H}\right|^{2(e(H) s+e(H)-1)}|d x \wedge d \bar{x}|,
$$

where φ is a nonnegative real valued C^{∞} function on $\mathbb{C}^{n} / G=\mathbb{C}^{n}$ with $\varphi(0)>0$ and compact support, and where the product is over all reflection hyperplanes H, see 1.1. Because of 4.7 .2 , the largest candiate pole equals $-1 / 2-1 / H(G)$ and is really a pole since it is >-1 (compare with [2, §7.3 Theorem 5]). Apply now 3.11 of [23].

Prof. Yano has announced the following result:

Theorem 4.9 (Yano [24]). Let G be any finite reflection group. Then
(4.9.1) $\quad b_{G}(-2-s)= \pm b_{G}(s)$.

Combining Theorems 4.8 and 4.9 we obtain

$$
\begin{equation*}
-\frac{3}{2}<s<-\frac{1}{2} \quad \text { if } b_{G}(s)=0 \tag{4.9.2}
\end{equation*}
$$

This inequality together with 4.6 implies:
Corollary 4.10. The zeros of the Bernstein polynomial $b_{G}(s)$ are $-1 / 2-\ell / k$ where $1 \leq \ell<k, \operatorname{gcd}(\ell, k)=1$, and k is the order (as root of unity) of a zero or pole of $Z(-T, P)$ with P a parabolic subgroup of G.

Using the tables for the parabolic subgroups and the values of the m_{i} one determines very easily the values of k :
Example. For G_{27} the k are $30,10,6,5,4,3,2$, the degrees are $30,12,6$ and the coexponents 25, 19, 1 .

Remark 4.11. Let G be irreducible. Clearly 4.8 and 4.10 imply that $H(G)$ is the largest k. Hence $H(G)$ is integral and equal to the largest $\left|m_{i}\right|$ of G, because of 4.7.2. Moreover using the perversity of the complex of nearby cycles one deduces (as in the proof of Lemma 4.6 in [6]) that $H(G)$ equals the m_{i} of G with largest absolute value.

REFERENCES

[1] Anderson, G.W. - Local factorization of determinants of twisted DR cohomology groups. Compos. Math. 83, 69-105 (1992).
[2] Arnold, V., A. Varchenko and S. Goussein-Zadé - Singularités des applications différentiables. Vol. 2 (Monodromie et comportement asymptotique des intégrales). Editions Mir, Moscou, 1986.
[3] Atiyah, M.F. - Resolution of singularities and division of distributions. Comm. Pure Appl. Math. 23, 145-150 (1970).
[4] Bourbaki, N. - Groupes et Algèbres de Lie, Chapitres 4, 5, 6. Hermann, Paris, 1968.
[5] Cohen, A. - Finite complex reflection groups. Ann. Scientif. Ecole Norm. Sup. 9, 379-436 (1976).
[6] Denef, J. - Degree of local zeta functions and monodromy. Compositio Math. 89, 207-216 (1993).
[7] Denef, J. and F. Loeser - Macdonald integrals and monodromy. In preparation.
[8] Flatto, L. -- Invariants of finite reflection groups. Enseign. Math. 24, 237-292 (1978).
[9] Frenkel, E.V. - Cohomology of the commutator subgroup of the braid group. Functional Analysis and its Applications 22, 248-250 (1988).
[10] Humphreys, J.E. - Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.
[11] Loeser, F. - Arrangements d'hyperplans et sommes de Gauss. Ann. Sci. Ecole Norm. Sup. 24, 379-400 (1991).
[12] Loeser, F. and C. Sabbah - Equations aux différences finies et déterminants d'intégrales de fonctions multiformes. Comment. Math. Helvetici 66, 458-503 (1991).
[13] Macdonald, I.G. - Some conjectures for root systems. SIAM J. Math. An. 13, 988-1007 (1982).
[14] Malgrange, B. - Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque 101/ 102, 243-267 (1983).
[15] Milnor, J. - Singular Points of Complex Hypersurfaces. Annals of Math. Studies 61. Princeton University Press, 1968.
[16] Opdam, E.M. - Some applications of hypergeometric shift operators. Inventiones Math. 98, 1-18 (1989).
[17] Orlik, P. and L. Solomon - Unitary reflection groups and cohomology. Inventiones Math. 59, 77-94 (1980).
[18] Orlik, P. and L. Solomon - Discriminants in the invariant theory of reflection groups. Nagoya Math. J. 109, 23-45 (1988).
[19] Orlik, P. and H. Terao - Arrangements of Hyperplanes. Springer-Verlag, Rerlin and Heidelberg, 1992.
[20] Shephard, G.C. and J.A. Todd - Finite unitary reflection groups. Canad. J. Math. 6, 274-304 (1954).
[21] Springer, T.A. - Regular elements of finite reflections groups. Inventiones Math. 25, 159-198 (1974).
[22] Yano, T. - Open problems in Theory of Singularities. Proc. Seventh Internat. Sympos. Taniguchi Foundation, held at Katata, 22-25 (1980).
[23] Yano, T. - b-functions and exponents of hypersurface isolated singularities. Proceedings of Symposia in Pure Mathematics 40 (part II), 641-652 (1983).
[24] Yano, T. A duality of b-function for certain logarithmically free divisors. In preparation.
[25] Yano, T. and J. Sekiguchi - The microlocal structure of weighted homogeneous polynomials associated with Coxeter Systems I, II. Tokyo Journal of Math. 2, 193-219 (1979) and 4, 1-34 (1981).

[^0]: Theorem 2.5 was recently obtained independently by G.I. Lehrer, using a different method. See corollary 5.8 in his paper 'Poincaré polynomials for unitary reflection groups', to appear in Inventiones Math.

