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1. INTRODUCTION 

1.1. Let V be a vectorspace over @ of finite dimension n, and let G be a finite 

reflection group in V, i.e. a finite subgroup of GL( V) which is generated by re- 
flections, see e.g. [17], [21], [8]. For each reflection hyperplane H of G we choose 
a linear form eH : V -+ @ defining I-I, and we denote by e(H) the order of the 
group of elements of G which fix H pointwise. Put 

6 = n efjH), 
H 

where the product is over all reflection hyperplanes of G. Let A : V/G -+ @ be 
the map induced by 6, thus A is the discriminant of G. A subgroup of G is called 
parabolic if it is generated by all reflections of G fixing elementwise a given 
subspace of V. The degrees of G are denoted by dl , d2, . . . , d,,. We call a degree of 
G primitive if it is bigger than the degrees of all proper parabolic subgroups of 
G. When V = C” and G c GL,(lK!) we call G a finite Coxeter group. 

1.2. We denote by FO the MilnorJiber of A at 0, and by Z(T, G) the zeta func- 
tion of local monodromy of A at 0, i.e. 

Z(T, G) = n det(1 - TM, H’(Fo, C))(-‘)‘+I, 
i 

where M denotes the monodromy automorphism (see e.g. [2], [15]). Thus know- 
ing Z( T, G) is the same as knowing the alternating product of the characteristic 
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polynomials of the monodromy acting on H(Fs, C). In [7] we calculated 
Z( T, G) for Coxeter groups by using the following recursion: 

Theorem 1.3. Zf G is afinite Coxeter group then 

v Z(-T, G(E))(-')I' = fjl g, 

where the product at the left runs over all connected subgraphs & of the Coxeter 

diagram of G, G(E) denotes the Coxeter group with Coxeter diagram &and #E the 

number of vertices of E. (Each edge of a subgraph has to have the same weight as in 

the originalgraph.) 

1.4. We gave a case-free proof of this theorem in [7], using Macdonald’s for- 
mula [13] (proved by Opdam [16]) 

(1.4-l) J S(x)Se-IIXI12dx = xir”/2 fi r(dis ’ ‘) 
i=l r(s+l) 

(assuming lj!i\\ = 2); 
R” 

and work of Anderson [l] and Loeser-Sabbah [12]. Indeed we showed in [7] 
that the precise form of the r factors in (1.4.1) is actually equivalent with 
Theorem 1.3. 

1.5. In the present paper we calculate Z(T, G) case by case for all irreducible 
finite reflection groups G. When G is not irreducible but essential Z(T, G) 
equals 1, see Corollary 3.3 below. Write 

(1.5.1) Z(-T,G)(-I)’ = n (1 - 7+$Sisn(m,), 
i 

with i running over a finite index set and mi E Z \{O}, mi + mj # 0, sign(mi) = 
m;/imij. The mi are tabulated in 4.1 and 4.2. This yields the following experi- 
mental 

Theorem 1.6. Let G be an irreduciblefinite reflection group in @” which can be 
generated by n reifections of order 2 (for example afinite Coxeter group). Then the 
mi in 1.5.1 aregivenbyd, -(deg(@)/d h w ere d runs over allprimitive degrees of G 
which divide deg(S). 

In the Coxeter case any primitive degree divides deg(S) (see [7]), but this is 
not true in general (e.g. d = 12 in G27). For the Coxeter groups of type A,, 
Theorem 1.6 follows also from [9]. 

1.7. The method in the present paper is based on some new properties of 
Springer’s regular elements [21] in finite reflection groups. In 9 2 we show that 
the coexponents of the centralizer of a regular element g E G of order d are the 
coexponents of G which are congruent to 1 mod d (Theorem 2.8). We also prove 
that the intersection of a reflection arrangement with a regular eigenspace is 
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again a reflection arrangement (Theorem 2.5). In 0 3 we give an explicit formula 
(Theorem 3.2) for the Lefschetz numbers of the local monodromy of A, and 
express the orders of the regular elements in terms of the mi (Corollary 3.4). We 
determine Z( T, G) for all G and verify Theorem 1.6 in 6 4, by simple case by case 
calculations. Finally in the second part of $4 we determine the zeros of the 
Bernstein polynomial b(s) of A. In the Coxeter group case a formula for b(s) 
was conjectured by Yano and Sekiguchi [25] and proved by Opdam [16]. 

We are very grateful1 to D. Siersma and T. Springer for conversations which 
were essential for the present paper. We also thank T. Yano for stimulating 
discussions and G. Michiels for computer assistance. 

2. THE COEXPONENTS OF THE CENTRALIZER OF A REGULAR ELEMENT 

2.1. Assume the notation of (l.l), in particular I’ is an n-dimensional vector 
space over @ and G c GL( I’) is a finite reflection group with degrees di , . , d,. 

A vector u E V is called regular if it is not contained in a reflection hyperplane 
of G. An element g E G is called regular if it has a regular eigenvector. Let 
g E G be regular, with order d. Choose any eigenspace V, of g which contains a 
regular vector and let < be the corresponding eigenvalue. With these notations 
we have: 

Theorem 2.2 (Springer [21]) 
(i) The root of unity c has order d. 

(ii) dim V, = #{i ( d divides dt}, 
(iii) the centralizer C, of g in G is a reflection group in V, whose degrees are the 

di divisible by d and whose order is nd 1 d, dt, 
(iv) the conjugacy class of g consists of all elements of G having dim Vg eigen- 

values equal to E, 
(v) the eigenvalues ofgare <‘-dl,. . . , <‘-‘n. 

2.3. The orders > 1 of the regular elements of G are called the regular numbers 
of G. Note that any divisor > 1 of a regular number is again a regular number. 
The reflection arrangement dc of G is the union of the reflection hyperplanes of 
G. It is the set of elements of V which are fixed by a nonidentity element of G. 
Our next goal is to prove Theorem 2.5 that -AC, = V, fl do. 

2.4. For any a E V we denote by D, the derivation with 

(D,h)(v) = ,‘s(h(w + ta) - h(u))/t 

for any polynomial function h on V and w E V. We learned the following 
lemma from Springer. It streamlined our original proof of Theorem 2.5 below. 

Lemma 2.4. Let f be a homogeneous G-invariant polynomial function on V of 
degree e. Let o E G and a, b E V eigenvectors of u with eigenvalues (.y, p. If 

oup e-1 # 1 then (Daf )(b) = 0. 
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Proof. One verifies for any polynomial f and any a E V that 

&z(af 1 = mlf 1. 
Hence 

which yields the lemma. q 

Theorem 2.5. Let g be a regular element of the$nite rejection group G and let 
Vs be an eigenspace of g containing a regular vector. If H is a reflection hyper- 

plane of G then H n V’s is a reflection hyperplane of the centralizer C, of g con- 
sidered as a reflection group in Vs. Hence the reflection arrangement of C, equals 
VgndG. 

Proof. Let d be the order of g. Let fl , . . . ,fn, with n = dim V, be homogeneous 

generators for the C-algebra of G-invariant polynomial functions on V, with 
degrees dl , . . . , d,. Suppose 

(1) dldl,dZ ,..., d, and dld,+l,..., d,,. 

Note that r = dim Vs, by Theorem 2.2. Choose an Hermitian scalar product on 
V which is preserved by G, and an orthonormal basis for V consisting of 
eigenvectors of g. Let x = (XI, . . , xn) be the corresponding coordinate system 
withV~thelocusofx,+~=~~~=x,=O.Leta=(a~,...,a,)~V\{O}beor- 
thogonal to the hyperplane H. Since V, contains a regular vector, V, $?J H and 
not all al,. . . , a, are zero. From Lemma 2.4, with u a reflection with respect to 
H, we obtain that 

(4 Da(J) = 2 a. af; 
j=, JdXj 

iszeroonH, fori=l,..., n. 

Moreover again from Lemma 2.4, with (T replaced by g, we deduce that 

is zero on V,, fori=l,..., randj=r+l,..., n, 

because of (1) and 2.2(i). Now (2) and (3) yield 

. tszeroon VsnH, fori= l,..., r. 

Since not all al, . . , a, are zero, the determinant 

i= I,...,r 
j= l,...,r 

Theorem 2.5 was recently obtained independently by G.I. LRhrer, using a different method. See 

corollary 5.8 in his paper ‘Poincark polynomials for unitary reflection groups’, to appear in In- 

ventiones Math. 
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is zero on V, fl H. But the restrictions of fi, . . . ,fr to V, are algebraically in- 
dependent generators for the C-algebra of C,-invariant polynomial functions 
on Vg, see [21]. Thus the locus in Vg of the above determinant is the union of the 
reflection hyperplanes of C, in V,. Thus V, n H is such a reflection hyper- 
plane. 0 

2.6. We denote the @-algebra of polynomial functions on V by C[V]. The 
groupGcGL(V)actson@[V]~~bya(h~w)=(hoa-’)~,a(v),foraEG, 
h E C[V], w E V. Moreover C[ V] @ V is graded by deg(h @ u) = deg h. Note 
that the Q=[G]-algebra C[V] @ V is canonically isomorphic to the algebra of 
polynomial vector fields on V, by sending h @ u to the derivation hD,. The co- 
exponents cl, ~2,. . . , c, of the finite reflection group G are the degrees of any 
homogeneous basis of the module (@[VI @ V)’ (or the module of G-invariant 
polynomial vector fields on V) over the ring @[VI’ of G-invariant polynomial 
functions on V. See [19, def. 6.501; these are the numbers nl, n2,. . . in [17]. 

Theorem 2.6.1 (Orlik and Solomon [17]). With the above notation we have 

c dimH’(V\dG,@)t’=(l+clt)...(l+c,t), 
I 

where dG is the reflection arrangement of G and t a variable. 

In particular the coexponents are completely determined by dc. The num- 
bersdi-lfori= l,... , n, are called the exponents of G. It is well known that if 
G is a finite Coxeter group then the coexponents are equal to the exponents. 

2.7. As above cl, . . . , c, denote the coexponents of G. Let g E G be a regular 
element of order d > 1 and V, an eigenspace of g containing a regular vector 
with eigenvalue < (which has order d by 2.2). Put r = dim V, and let bl < 
b2 5 . . < b, be the coexponents of the centralizer C, of g considered as a re- 
flection group in V,. Our next goal is to show Theorem 2.8 that the bi are 
exactly the cj which are E 1 mod d. 

Lemma 2.7.1. With the above notation we have: 
(i) The eigenvalues of g are the <‘I, i = 1, . . . , n. 

(ii) There are exactly r values of i with ci z 1 mod d. 
(iii) bi G lmodd,fori= I,..., r. 

Proof. (i) Apply Proposition 4.5 of [21] with p the irreducible components of 
the action of G on I/* (= the dual of V). 

(ii) Follows directly from (i) because there are exactly r eigenvalues of g 
which equal 6. 

(iii) By (i) with G replaced by C, and V by V,, we have tbZ = [ for i = 
l,...,r. 0 
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The above lemma implies that we may assume that cl 5 c2 5 . . . 5 c, are the 
coexponents of G which are E 1 mod d. 

Lemma 2.7.2. With the above notation we have: 
(i) The coexponents of C, only depend on the degree d ofg but not on g. 

(ii) bi < ci for i = 1, . . . , r. 
(iii) Let e be a regular number which is divisible by d. Then the sequence 

(bimode)i=,,...,, coincides with the sequence (ci mod e)iz ,, ,,,,r up to a permuta- 
tion. In particular ife 2 C, then bi = ci for i = 1, . . , r. 

(iv) Let y be the least common multiple of the regular numbers which are di- 
visible by d. 
Then 

& bi E i$, ci mod 7. 
i=l 

In particular if7 > Cl=, ci then bi = ci for i = 1, . . . , r. 

Proof. (i) Let g’ E G be another regular element of order d and V,J an eigen- 
space of g’ containing a regular vector with eigenvalue <‘. From Proposition 3.2 
of [21] it follows that 

u f’(h, E) = u W,t’), 

where V(h, 5) denotes the eigenspace of h with eigenvalue 5. Hence there exists 
h E G such that 

because dim Vst = r 2 dim V(h, 6) by 2.2.(ii) and 121, Theorem 3.41. Then h is 
conjugate to g, by Theorem 2.2.(iv). Thus it suffices to show that C,! in Vsl and 
Ch in V(h, F,) have the same coexponents. But this is clear because their reflec- 
tion arrangements coincide, both being equal to the intersection of Vg/ = 
V(h, c) with AC, by Theorem 2.5. 

(ii) Choose an Hermitian scalar product on V which is preserved by G and 
an orthonormal basis for V consisting of eigenvectors of g. Let x = (x1, . . , xn) 

be the corresponding coordinate system with Vg the locus of x,+ 1 = . . = 
x, = 0. Let Rg be the @-algebra of C,-invariant polynomial functions on V,. By 
definition of the coexponents ci, there exists a basis 

L%$l i= l,...,rz, 
j=l .I 

for the CIVIG module of G-invariant polynomial vector fields on V, with Aj 
homogeneous of degree ci. 

Claim. TheJyarezeroon V,fori= l,..., randj=r+l,..., n. 
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It is well known that det(Jj)j,i=i,,.,,, q e uals the product of the linear forms 
defining the reflection hyperplanes of G up to a factor in @, see [19, p. 2381 or [ 17, 
(2.1 l)]. Since Vg contains a regular vector we see that the above determinant is 
not identically zero on V,. Hence the claim implies that det(Jj)i,i= ,,,,,,r is not 
identically zero on V,. Thus the 

are C,-invariant polynomial vector fields on Vs which are linearly independent 
over Rg. By definition of the bi, there exists a basis 

ei= 2 gij$,, i= l,...,~, 
j=l J 

for the R,-module of C,-invariant polynomial vector fields on V,, with gv 
homogeneous of degree bi. Suppose now that be > ce for some e < r. Since 

we see that ri, . . . , re are %-linear combinations of 131,. . . , de_ 1. But this is 
impossible because the ri, . . . , re are linearly independent over Rg. Thus 
bi < qfori= l,... , r. To finish the proof of (ii) we still have to give the 

Proof of the claim. Note that g is given by 

(Xl,... ,xn) H (771 Xl,. . . , %%I) 

with ni = 772 = . = qr = < and < # nj E C for all j > r. The G-invariance im- 
plies that 

(1) ~j(77~-‘X1,...,~~‘Xn)~j’Jii(Xl,...,X~). 

Suppose that fij is not identically zero on V,, for some i, j 5 n. Then kj contains 
a monomial in xi,. . . , xv of degree ci. Hence (1) yields that <-“nj = 1. If 
1 5 i < r then ci z 1 mod d (by definition) and thus < = nj which impliesj 5 r. 
This proves the claim. Note that the above also shows that hj is zero on Vs for 
i=r+l,... ,nandj= 1,2 ,..., r. 

(iii) Let h E G be a regular element of order e and Vh an eigenspace of h 
containing a regular vector with eigenvalue say n. Put <’ = neid, g’ = heid and 
let V,, be the eigenspace of g’ with eigenvalue <‘. Since Vh c Q, the element g’ 
is regular of order d. Because of (i) we may suppose that g = g’, < = <‘, and 
V, = V,,. Note that h E C,. By Lemma 2.7.1(i) with g replaced by h we see that 
the eigenvalues of h on V are the ncl for i = 1, . . . , n. At the other hand, by the 
same lemma with G replaced by C,, V by V,, and g by h, we obtain that the ei- 
genvalues of h on V, are the nbi for i = 1,. . . , r. Thus the sequence 

cbimod e)i=i,...,r is a subsequence of (ci mod e),= i, ,,.,n up to permutation. Ap- 
ply now Lemma 2.7.l(ii), and (iii) to obtain the first assertion of (iii). The sec- 
ond assertion follows directly from the first by (ii). 

(iv) Follows directly from (iii) and (ii). 0 
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Theorem 2.8. Let G be a$nite reflection group and g E G a regular element of 
order d. The coexponents of the centralizer C, of g are the coexponents of G which 
are E 1 mod d. 

Proof. It suffices to prove the theorem when G is irreducible. We do this case by 
case using the tables giving the regular numbers [21, p. 175, 177-1781, [5, p. 391, 
395, and 4121 (take all the divisors > 1 of the regular degrees in [5]) and the co- 
exponents [17, p. 921, [19, p. 2871 of each irreducible G. For example the coex- 
ponents of Es are 1,7,11,13,17,19,23,29 and the regular numbers are the 
divisors > 1 of 30, 24 or 20. We may suppose that n > 3 and d > 2. Looking 
through these tables one verifies immediately that the largest regular number 
which is divisible by d is larger than the largest coexponent of G which is 
E 1 mod d, except in the following ‘bad’ cases: 

(1) d=4inEs, 
(2) d = 4 in H4, 
(3) the monomial groups G(m,p,n) with m 2 2,1 < p < m, n 2 3, 
(4) the monomial groups G(m, m, n) with m > 2, n 2 3, d 1 n, d )i m. 

Thus Lemma 2.7.2(iii) yields the theorem except in the ‘bad’ cases (l), (2), (3) 
and (4). Case (1) and (2) follow directly from Lemma 2.7.2(iv). Case (3) follows 
from the theorem for G(m, 1, n) (which is not a ‘bad’ case!) because G(m, 1, n) 
and G(m,p, n) have the same reflection arrangement when p < m and because 
of Theorem 2.5. Indeed the reflection arrangement determines the coex- 
ponents, see 2.6. Finally case (4) follows by an explicit calculation which shows 
that the arrangement of V, equals the arrangement of G(md/e, 1, ne/d ), where 
e = gcd(d, m). q 

Corollary 2.9. If G is irreducible then C, is also irreducible. 

Proof. By Schur’s lemma (V * @ V jG = HomG( V*, Y *) has dimension 1 over 
C. Hence, since G does not act trivially on V, exactly one coexponent of G 
equals 1. Thus by Theorem 2.8 exactly one coexponent of C, equals 1. This im- 
plies that C, is irreducible because each irreducible component of C, would 
contribute a coexponent 1. 5 

3. THE LEFSCHETZ NUMBERS OF LOCAL MONODROMY 

3.1. Let G c GL(Q=“) be a finite reflection group and let 6, A be as in 1.1. The 
zeta function Z( T, G) of local monodromy of A at 0 can be written as 

(3.1.1) Z(T, G) = n (1 - TInil)-sig”(“‘), 
i 

with i running over a finite index set, and ni E Z \{O}, ni + nj # 0. (Thus the ni 
are unique up to order.) The sequence of numbers mi in 1.5.1 is obtained from 
the ni by the following rule: Replace each odd ni by 2ni and -ni, delete any pair 
of opposite numbers, and finally multiply all numbers with (-l)“- ‘. Con- 
versely the ni are obtained from the mi by the same rule. Since S is homo- 
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geneous, ni divides deg(S). Hence when deg(S) is even, also mi divides deg(S). It 
is well known [19, p. 231 and p. 2381 that 

(3.1.2) deg(6) = C (dj - 1) + C c; 
i i 

where the di are the degrees and the ci the coexponents of G. For any a E N, the 
Lejkhetz number A(a) of the local monodromy to the power a of A at 0 is de- 
fined by 

A(a) = C (-l)‘Tr(Ma, H’(Fo, C)) E Z, 
i 

where A4 is the monodromy automorphism and Fs the Milnor fiber of A at 0. It 
is well known (see e.g. [15, p. 771) that the A(a) completely determine Z(T, G). 
Indeed the ni are uniquely determined by ni 1 deg(S) and 

(3.1.3) A(a) = nTa ni, for all u dividing deg(S). 

By Mobius inversion one gets 

(3.1.4) Z(T, G) = d, I& (1 - Td)“? 

where a(d) = d-i CaId ,u(d/a)A(a) and I_L denotes the Mobius function. The 
proof of the following theorem is based on Theorems 2.5 and 2.6.1. 

Theorem 3.2. Let G c GL(@“) b e a jinite rejlection group and d E N with 
d 1 deg(S). Zf G has a regular element g with order d, then 

where 4 (g) 5 h(g) i . . . , resp. cl(g) < c2(g) < . , are the degrees, resp. coex- 
ponents, of the centralizer C, of g. Zf G has no regular element with order d, then 

Proof. Put d’ = (deg 6)/d. Because 6 is homogeneous the map 

h : @” 4 @” : x+._+ eWdeg6X 

induces the local monodromy M. Hence by [15, Lemma 9.51 we have 

A(d’) = x({x E d=“/G ( 6(x) = 1, hd’(x) = x mod G}) 

(3.2.1) = h x({x E C” 16(x) = 1, 3w E G: w(x) = e2?ri’dx}) 

(3.2.2) = deg(S) x 

#G ({ X E P”-’ ) S(x) # 0, x E wvG P(V(w,e2”‘ld 4) 
where for any w E G and < E @ we denote by lp( V(w, 6)) the projectivization of 
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the affine space V(w, <) := {x E C” 1 w(x) = <x}. Note that x E C” is regular if 
and only if 6(x) # 0. Hence A(d’) = 0 when G has no regular element with or- 
der d, because of (3.2.2) and 2.2(i). Suppose now that G has a regular element g 
with order d. Then g has a regular eigenvector with eigenvalue a primitive dth 
root of unity <. By [21, Proposition 3.21 we have 

U V(w,e 
WEG 

2?n’d) = u, V(w, E). 

Hence 

deg@) 
- 44 = tlG x XE lP”-’ 16(x) #O, XE u P(V(w,()) . 

WEG I) 
By Theorem 2.2, the set of w E G, for which V(w, <) contains a regular vector, 
equals the conjugacy class of g and so has #G/NC, elements. Thus 

deg@) 40 = #G - x(-fx E p”-’ I64 # 0, x E Y Vk,5)))), 

because V(w, [) fl V(w’, <) d oes not contain any regular vector whenever 
w # w’. Theorem 3.2 follows now directly from Theorems 2.5, and 2.6.1, and 
Proposition 5.1 of [19]. 0 

Corollary 3.3. If G is not irreducible but essential (i.e. 0 is the only G-invariant 
vector), then Z( T, G) = 1. 

Proof. In this case there are at least two codegrees equal to 1. Hence by 
Theorem 3.2 all Lefschetz numbers are zero. 

We also give a more direct argument. Write G = Gi $ G2, with Gi and G2 
essential and denote the 6 of Gi, resp. G2, by 61, resp. 62. Thus 6 = Si 62. Ex- 
ploiting the homogeneity of 61 and 62 one verifies that the map x H 61 (x) in- 
duces a locally trivial fibration of the space appearing in (3.2.1) onto C\(O). 
Hence the Euler characteristic of that space is zero and A(d’) = 0. This second 
proof of the corollary does not depend on Theorems 2.5 and 2.6.1. 0 

Corollary 3.4. Let G be an irreducible finite reflection group and d E N, d > 1. 
Then the following assertions are equivalent 

(i) d is a regular number for G, 
(ii) d ) deg(6) and A((deg@/d) # 0, 

(iii) d divides some (deg s)/ni. 
Moreover when deg(6) is even these assertions are also equivalent with 

(iv) d divides some (deg s)/mi. 

Proof. Suppose d is a regular number. Then there is a regular element g E G 
with order d and a regular vector ‘u such that g(w) = @J, with 6 a primitive dth 
root of unity. Hence S(V) = 6(&) = 6 des6S(~). Since 6(w) # 0 we have tdesd = 1 
and d 1 deg6. The equivalence of (i) and (ii), follows now from Theorem 3.2, 
Corollary 2.9, and the fact that an irreducible nontrivial finite reflection group 
has only one coexponent equal to 1 (cf. the proof of 2.9). The implication 
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(ii) + (iii) follows directly from (3.1.2). Next assume (iii). We want to show that 
d is a regular number. Take an nj with minimal absolute value such that nj 1 ni. 

Then A(lnjj) # 0 by (3.1.3). Hence (deg6)// jl n is a regular number (or 1) by the 
equivalence of(i) with (ii). But d 1 (degb)/ni 1 (degti)/nj. Thus d is regular be- 
cause it divides a regular number. Finally (iii) * (iv) because of the rule to ob- 
tain the mi from the ni. Indeed we have only to consider the ni which are mini- 
mal with respect to divisibility. q 

Remark. For the groups G satisfying Theorem 1.6 the regular numbers are thus 
the divisors > 1 of the mi. Note however that it is not always sufficient to only 
take the divisors of the primitive degrees, e.g. E6 has primitive degrees 12,9 but 
8 is a regular number. 

3.5. Let G be a Shephard group, i.e. the symmetry group of a regular complex 
polytope, and W the associated finite Coxeter group, see [18], [19, p. 26552681. 
Denote by I(. half the smallest degree of G. It is known [18] that the di, resp. 
deg(6), of G are obtained from the ones of W by multiplying with K. Moreover 
the discriminant A of G equals the discriminant of W. Hence G and W have the 
same ni and mi. Since G is irreducible, Corollary 3.4 directly implies 

Corollary 3.5.1. In the above situation the regular numbers of G which are max- 
imal with respect to divisibility are the ones of Wmultiplied with n. 

Corollary 3.6. Let G c GL(@“) b e an irreducible finite reflection group which 
can be generated by n reflections (i.e. a duality group [17]). Then -n is the mi with 
smallest absolute value and appears only once among the mi. 

Proof. Let h be the largest degree of G. Then deg(6) = nh and h divides only 
one di, see [17, Theorem 5.51. Moreover one verifies in the tables that h is a reg- 
ular number. The corollary follows now directly from 3.1.3 and Theorem 3.2 for 
d = h and for da multiple of h. q 

4. CALCULATION OF THE LOCAL MONODROMY 

Theorem 4.1. For the Coxeter groups A,, the mi in 1.5.1 are n + 1, -n. For the 
monomial groups G(m,p,n) the mi are 2(1 +p(n - l)), -(l +p(n - 1)) when 
p<m,andarem(n-l),-nwhenp=m. 

Proof. We only treat the monomial groups: 

Case p < m: The degrees are m, 2m,. . . , (n - l)m, rim/p,, the coexponents 1, 
m + 1,. . , (n - 1)m + 1 and the regular numbers are the divisors > 1 of mn/p. 
Hence deg6 = nm(1 +p(n - l))/p. Using Theorem 3.2 one verifies that 

= -(I +p(n - l))(-l)“gcd(d’“)ld, 
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when d ( rim/p,, and zero otherwise. If d 1 nm, then n gcd(d, m)/d is odd when n is 
odd, and has the same parity as rim/d when n is even. Using 3.1.3 it is easy to see 
that the ni are 1 +p(n - 1) if n is odd, -( 1 +p(n - 1)) if both n andp are even, 
and -2(1 +p(n - l)), 1 +p(n - 1) if n is even andp odd. 

Case p = m: The degrees are m,2m,. . . , (n - l)m,n, the coexponents 1, 
mfl,... , (n - 2)m + 1, (n - l)(m - 1) and the regular numbers are the divi- 
sors of (n - 1)m or n. Hence deg S = mn(n - 1). Using Theorem 3.2 one verifies 
that A((degb)/d) = Ai + A2 with ni = -n(-l)(“-‘)gcd(d,m)‘d if d ( (n - l)m, 
and 0 otherwise, A2 = -m(n - l)(-l)“gcd(d,m)‘d if d 1 n, and 0 otherwise. One 
proceeds now as in the previous case. q 

Note that the Coxeter groups B,, D,, GZ and Zz(n) equal respectively 

G(2,l,n), G(2,2,n), G(6,6,2), and G(n,n,2). 

4.2. It remains to determine the mi in 1.5.1 for the exceptional irreducible finite 
reflection groups in @“. In view of 3.5 we have only to care about Coxeter 
groups and non-Shephard groups. All these are listed in table 4.2.1 below. Here 
Gj denotes the reflection group with Shephard-Todd number j, see [20, table 
VII]. The groups in the table who satisfy the hypothesis of Theorem 1.6 are in- 
dicated by a * in the last column. The mi are calculated case by case using 
Theorems 3.2,2.2, 2.8 and the tables (mentioned in the proof of 2.8) giving the 
regular numbers, degrees and coexponents. 

Table 4.2.1. Exceptional Coxeter groups and exceptional non-Shephard groups 

Group ” m 

G 2 6, -3 

GII 2 6, -3 

G2 2 12,3, -6, -4 

(713 2 18,3, -9, -6 

Gl5 2 10, -5 

G9 2 6, -3 

G22 2 30,5,3,-15,-lo,-6 

G23 = H3 3 10,6, -5, -3 * 

G24 3 14,6, -7, -3 * 

G27 3 30,6, -15, -3 * 

G2a = F4 4 12,8, -6, -4 * 

G29 4 20, -4 * 

Gm = H4 4 30,20, 12, -10, -6, -4 * 

G3, 4 30,5,-15,-6 

G33 5 18,10, -9, -5 * 

G34 6 42, -6 * 

G35 = Es 6 12,9, -8, -6 * 

G36 =E7 7 18,14, -9, -7 * 

G37 = .% 8 30,24,20,-12,-10,-g * 

Remark 4.3. We see there are as many positive as negative mi. This holds be- 
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cause -1 is no eigenvalue of monodromy since the Bernstein polynomial of A 
has no root = i mod Z by 49.2, cf. 4.6. 

4.4. The only groups satisfying the hypothesis of Theorem 1.6 are the finite 
Coxeter groups, the monomial groups G(m, m, n) and G24, G27, G29, G33, G34. 
Theorem 1.6 follows from 4.1 and table 4.2.1 by using the tables for the para- 
bolic subgroups [19, p. 189-3001. In the Coxeter case the parabolic subgroups 
of G correspond (up to conjugation) with full subgraphs of the Coxeter diagram 
of G. 

Finally we mention that the recursion 1.3 does not generalize to all groups 
in 1.6. 

4.5. We denote by ho(s) the Bernstein polynomial of the discriminant A of G. 
When G is a Coxeter group, Opdam [16] proved 

This was conjectured by Yano and Sekiguchi [25]. We will determine the roots 
of bG(S) for any G in 4.10. 

4.6. Let f : C" + @ be a polynomial map. It is known [6, Lemma 4.61 that 5 is 
an eigenvalue of the local monodromy off at some point off -' (0) if and only 
if c is a zero or pole of the zeta function of local monodromy of f at some 
(possibly different) point off -l(O). Thus [ is an eigenvalue of the local mono- 
dromy of the discriminant A of G at some point of A-‘(O) if and only if 5 is a 
zero or pole of Z(P, T) for some parabolic subgroup P of G. Using the tables in 
[19, p. 189-3001 and 4.2.1 we can easily determine these <. By [14] these eigen- 
values [ are precisely the numbers e2?ris with b&) = 0. 

4.7. Let G be irreducible. The Yuno number H(G) of G is defined in [22] by 

1 1 
(4.7.1) 2+H(G)= 

EYE 1 4. 

deg@) 

Since xi (di - 1) equals the number of reflections in G, we have H(G) 2 2 with 
equality only if n = 1. Using the tables one verifies that 

(4.7.2) H(P) < H(G) 

for any proper irreducible parabolic subgroup P of G, considering P as a re- 
flection group in @“/(C”)G. In 4.11 below we explain why H(G) is integral and 
equal to the mi with largest absolute value. The following theorem was con- 
jectured by Yano in [22]. 

Theorem 4.8. Let G be an irreduciblefinite reflection group. Then the largest zero 
of the Bernstein polynomial bG(s) equals -l/2 - 1 /H(G). 
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Proof. We may suppose n > 1, hence - l/2 - 1 /H(G) > - 1. Consider the em- 
bedded resolution of singularities of the reflection arrangement of G obtained 
by blowing up first the origin, secondly all l-dimensional intersections of 
reflection hyperplanes, next all 2-dimensional intersections, and so on (see 
[ 11, $71). Use this resolution to find the candidate poles (see [3]) of the integral 

where cp is a nonnegative real valued C * function on @“/G = @” with ~(0) > 0 
and compact support, and where the product is over all reflection hyperplanes 
H, see 1.1. Because of 4.7.2, the largest candiate pole equals - l/2 - l/H(G) 
and is really a pole since it is > -1 (compare with [2, $7.3 Theorem 51). Apply 
now 3.11 of [23]. 0 

Prof. Yano has announced the following result: 

Theorem 4.9 (Yano [24]). Let G be any-finite reflection group. Then 

(4.9.1) bo(-2 -S) = fb&). 

Combining Theorems 4.8 and 4.9 we obtain 

(4.9.2) - 2 < s < -i if b&) = 0. 

This inequality together with 4.6 implies: 

Corollary 4.10. The zeros of the Bernstein polynomial bG(s) are -l/2 - e/k 
where 1 < C < k, gcd(C, k) = 1, and k is the order (as root of unity) of a zero or 
pole of Z( - T, P) with P a parabolic subgroup of G. 

Using the tables for the parabolic subgroups and the values of the mi one 
determines very easily the values of k: 
Example. For G27 the k are 30,10,6,5,4,3,2, the degrees are 30,12,6 and the 
coexponents 25,19,1. 

Remark 4.11. Let G be irreducible. Clearly 4.8 and 4.10 imply that H(G) is the 
largest k. Hence H(G) is integral and equal to the largest Jrnil of G, because of 
4.7.2. Moreover using the perversity of the complex of nearby cycles one de- 
duces (as in the proof of Lemma 4.6 in [6]) that H(G) equals the mi of G with 
largest absolute value. 
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