Caracteristiques D'Euler-Poincare, Fonctions Zeta Locales et Modifications Analytiques Author(s): J. Denef and F. Loeser
Source: Journal of the American Mathematical Society, Vol. 5, No. 4 (Oct., 1992), pp. 705-720 Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2152708
Accessed: 12/02/2010 08:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0]
CARACTÉRISTIQUES D'EULER-POINCARÉ, FONCTIONS ZÊTA LOCALES ET MODIFICATIONS ANALYTIQUES

J. DENEF ET F. LOESER

Introduction

Dans cet article nous définissons de nouveaux invariants pour les germes de fonctions analytiques complexes f et les polynômes complexes f, que nous appelons fonctions zêta topologiques $Z_{f \text {, top }}$ locales et globales. Nous conjecturons (3.3.2) ques les pôles de $Z_{f \text {, top }}$ sont liés à la monodromie locale de f. Les fonctions $Z_{f \text {, top }}$ sont des fonctions rationnelles définies à l'aide de résolutions plongées π de l'hypersurface $f=0$, en fonction de caractéristiques d'Euler-Poincaré de strates de $\pi^{-1}\left(f^{-1}(0)\right)$ et de multiplicités de composantes irréductibles de $\pi^{-1}\left(f^{-1}(0)\right)$ (3.2). Un des résultats principaux de l'article est qu'elles ne dépendent pas du choix de π (Théorème (3.2)). Nous ne connaissons pas de preuve géométrique directe de ce fait, et nous sommes obligés d'utiliser des résultats arithmétiques concernant les fonctions zêta locales d'Igusa p-adiques qui sont les analogues p-adiques de la distribution $|f|^{s}: \varphi \mapsto \int|f|^{s} \varphi d x$. Heuristiquement les fonctions $Z_{f, \text { top }}$ sont obtenues comme limites quand q tend vers 1 de fonctions zêta locales d'Igusa p-adiques, q étant le cardinal du corps résiduel. Pour donner un sens à cela on se ramène (grâce à la théorie de l'approximation de M . Artin) au cas où f est algébrique, défini sur un corps p-adique K et π a bonne réduction. A l'aide d'une interpolation l-adique on peut alors interpréter $Z_{f \text {, top }}$ comme limite de fonctions zêta locales d'Igusa p-adiques associées à f et à l'extension non ramifiée de degré e de K quand e tend vers zéro. Si f est un polynôme défini sur un corps de nombres, les pôles de $Z_{f \text {, top }}$ sont pôles d'une infinité de fonctions zêta locales d'Igusa p-adiques (voir le théorème (2.2) pour un énoncé précis).

Nous ne savons pas interpréter directement les pôles de $Z_{f \text {, top }}$. Dans les cas étudiés en détail ce sont des racines du polynôme de Bernstein de f et on peut conjecturer qu'il en est de même en général.

Dans le même esprit nous établissons une formule (Théorème (6.1)) pour les modifications analytiques complexes $\pi: X \rightarrow Y$, avec X et Y des espaces analytiques lisses, dont le lieu exceptionnel dans X est un diviseur à croisements normaux $E(X)$. On exprime la caractéristique d'Euler-Poincaré de $\pi(E(X)), \chi\left(\pi(E(X))\right.$, comme somme de quotients $\chi\left(\stackrel{\circ}{E}_{I}\right) / n_{I}$, avec $\stackrel{\circ}{E}_{I}$ des strates de $E(X)$ et n_{I} des produits de multiplicités de formes différentielles.

[^1]Pour démontrer cette formule, nous suivons un chemin analogue à celui suivi pour définir $Z_{f, \text { top }}$: après algébrisation on se ramène au cas p-adique avec bonne réduction. On conclut en calculant une intégrale et en "faisant tendre e vers zéro". Nous ne connaissons pas de preuve géométrique directe pour cette formule.

Le plan de l'article est le suivant. Après des préliminaires ($\S 0-1$), on montre que $Z_{f, \text { top }}$ est bien définie quand f est un polynôme sur un corps de nombres (Théorème (2.1.2)) et on relie les pôles de $Z_{f \text {, top }}$ aux pôles des fonctions zêta d'Igusa (Théorème (2.2)). Dans le $\S 3$ on énonce l'existence de $Z_{f \text {,top }}$ (Théorème (3.2)) dans le cas analytique complexe ainsi que des conjectures sur les pôles de $Z_{f, \text { top }}$. Le $\S 4$ est consacré à la démonstration du Théorème (3.2). Le paragraphe suivant est consacré au calcul explicite de $Z_{f \text {,top }}$ quand f est non dégénéré pour son polyèdre de Newton. Enfin, au $\S 6$, on démontre la formule pour les modifications analytiques (Théorème (6.1)).

Note: Cet article reprend et complète des résultats non publiés de preprints antérieurs des deux auteurs: les $\S 5-6$ de la première version du preprint du premier auteur Local zeta functions and Euler characteristics et le preprint du second auteur Caractéristiques d'Euler-Poincaré et modifications analytiques.

0. Conventions

(0.1) Si k est un corps, on note \bar{k} une clôture algébrique de k. Si X est un schéma (ou un espace algébrique) défini sur k, on note $X_{\bar{k}}$ le schéma (ou l'espace algébrique) obtenu après le changement de base $\operatorname{Spec} \bar{k} \rightarrow \operatorname{Spec} k$. Plus généralement si X est défini sur un anneau R et $\varphi: R \rightarrow R^{\prime}$ est un morphisme d'anneaux, on note $X_{R^{\prime}}$ l'espace obtenu après le changement de base $\operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R$. De même si π est un morphisme défini sur R on note $\pi_{R^{\prime}}$ le morphisme obtenu après changement de base.
(0.2) On note $\chi(\cdot)$ la caractéristique d'Euler-Poincaré usuelle quand elle est définie. On convient que $\chi(\varnothing)=0$. Si \mathfrak{F} est un \mathbb{Q}_{l}-faisceau sur un espace algébrique X, on note $\chi(X, \mathfrak{F})$ la caractéristique d'Euler-Poincaré de \mathfrak{F} quand elle est définie.

1. Modifications

(1.1.1) Soient X et Y des espaces algébriques sur un corps k, lisses et irréductibles de dimension n. Un morphisme $\pi: X \rightarrow Y$ est une modification si π vérifie les conditions (1) et (2) suivantes:
(1) π est propre et surjectif;
(2) il existe un fermé strict E de X (resp. F de Y) tel que $\pi(E)=F$ et la restriction de π est un isomorphisme entre $X \backslash E$ et $Y \backslash F$.

On note $E(X)$ le lieu des points critiques de π, et $E(Y)=\pi(E(X))$. Si π est une modification, sa restriction est un isomorphisme entre $X \backslash E(X)$ et $Y \backslash E(Y)$.

On dit que π est une modification à croisements normaux si π vérifie de plus la condition:
(3) $E(X)$ est un diviseur à croisements normaux (globalement, c'est-à-dire les composantes irréductibles de $E(X)$ sont lisses).
(1.1.2) Soient X et Y des espaces algébriques sur un corps k, lisses et irréductibles de dimension n, et $\pi: X \rightarrow Y$ une modification à croisements normaux. Soit $R \subset k$ un sous-anneau de k, x un point fermé de $\operatorname{Spec} R$, et $k(x)$ le corps résiduel en x. Soit $\pi_{R}: X_{R} \rightarrow Y_{R}$ un modèle de $\pi: X \rightarrow Y \operatorname{sur} \operatorname{Spec} R$ (en particulier X_{R} et Y_{R} sont plats sur $\operatorname{Spec} R$). On dit que π_{R} a bonne réduction en x si les deux conditions suivantes sont vérifiées:
(1) Le morphisme obtenu après le changement de base $R \rightarrow k(x), \pi_{k(x)}$: $X_{k(x)} \rightarrow Y_{k(x)}$ est une modification à croisements normaux (en particulier $X_{k(x)}$ et $Y_{k(x)}$ sont lisses et irréductibles de dimension n).
(2) Notons $\left(E_{i}\right)_{i \in J}$ les composantes irréductibles de $E(X),\left(\left(E_{i}\right)_{R}\right)_{i \in J}$ l'adhérence des E_{i} dans X_{R}, et $\left(\left(E_{i}\right)_{k(x)}\right)_{i \in J}$ les diviseurs obtenus après le changement de base $R \rightarrow k(x)$. Les $\left(\left(E_{i}\right)_{k(x)}\right)_{i \in J}$ sont lisses. Leurs composantes irréductibles sont distinctes et sont exactement les composantes irréductibles de $E\left(X_{k(x)}\right)$.
(1.2) Soit Y un espace algébrique sur un corps k, lisse et irréductible de dimension n, et soit $f: Y \rightarrow A_{k}^{1}$ un morphisme non nul.
(1.2.1) Une modification $\pi: X \rightarrow Y$ avec X un espace algébrique sur k, lisse et irréductible de dimension n, est une résolution de f, si $E(Y)$ est contenu dans le lieu des zéros de f et si $\left(\pi^{-1}\left(f^{-1}(0)\right)\right)_{\text {red }}$ est un diviseur à croisements normaux.
(1.2.2) Soit $R \subset k$ un sous anneau de k, et $f_{R}: Y_{R} \rightarrow A_{R}^{1}$ un modèle de f sur Spec R. Soit $\pi: X \rightarrow Y$ une résolution de f. Soit $\pi_{R}: X_{R} \rightarrow Y_{R}$ un modèle de $\pi \operatorname{sur} \operatorname{Spec} R$ (en particulier X_{R} et Y_{R} sont plats sur $\operatorname{Spec} R$). On dit que π_{R} a bonne réduction en un point fermé x de $\operatorname{Spec} R$, de corps résiduel $k(x)$, si:
(1) Le morphisme $f_{k(x)}: Y_{k(x)} \rightarrow A_{k(x)}^{1}$ n'est pas nul et $\pi_{k(x)}: X_{k(x)} \rightarrow Y_{k(x)}$ est une résolution de $f_{k(x)}$.
(2) Notons $\left(E_{i}\right)_{i \in J}$ les composantes irréductibles de $\left(\pi^{-1}\left(f^{-1}(0)\right)\right)_{\text {red }}$, $\left(\left(E_{i}\right)_{R}\right)_{i \in J}$ l'adhérence des E_{i} dans X_{R}, et $\left(\left(E_{i}\right)_{k(x)}\right)_{i \in J}$ les diviseurs obtenus après le changement de base $R \rightarrow k(x)$. Les $\left(\left(E_{i}\right)_{k(x)}\right)_{i \in J}$ sont lisses. Leurs composantes irréductibles sont distinctes et sont exactement les composantes irréductibles de $\left(\pi_{k(x)}^{-1}\left(f_{k(x)}^{-1}(0)\right)\right)_{\text {red }}$.
(1.3) Si $k=\mathbb{C}$, on définit de manière analogue à (1.1) les modifications analytiques à croisements normaux. Si f est un germe de fonction analytique à l'origine de $\mathbb{C}^{n}, f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$, non nul et vérifiant $f(0)=0$, on définit de manière analogue à (1.2) les résolutions (analytiques) de f.
(1.4.1) En général, si $\pi: X \rightarrow Y$ est une modification à croisements normaux (dans le cas algébrique ou analytique), on note $E_{i}, i \in J$, les composantes irréductibles de $E(X), \stackrel{\circ}{E}_{i}=E_{i} \backslash \bigcup_{j \neq i} E_{j}$, pour $i \in J, E_{I}=\bigcap_{i \in I} E_{i}, \stackrel{\circ}{E}{ }_{I}=$ $E_{I} \backslash \bigcup_{j \notin I} E_{j}$, pour $I \subset J$. On convient que $E_{I}=X$ si $I=\varnothing$.

Pour $i \in I$ fixé, choisissons une forme différentielle ω algébrique ou analytique de degré n, définie sur un voisinage (étale ou analytique) du point
générique de $\pi\left(E_{i}\right)$ dans Y qui ne s'annule pas au point générique de $\pi\left(E_{i}\right)$. Notons $\alpha(\omega)$ la multiplicité avec laquelle $\pi^{*}(\omega)$ s'annule au point générique de E_{i}. On vérifie facilement que $\alpha(\omega)$ ne dépend que de i, et on pose $n_{i}=$ $1+\alpha(\omega)$, ainsi que $n_{I}=\prod_{i \in I} n_{i}$ pour $I \subset J$.
(1.4.2) Soit f un morphisme $Y \rightarrow A_{k}^{1}$ comme dans (1.2) (resp. un germe de fonction analytique $\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ non nul). Soit $\pi: X \rightarrow Y$ (resp. π : $X \rightarrow\left(\mathbb{C}^{n}, 0\right)$) une résolution de f. Soient $\left(E_{i}\right)_{i \in J}$ les composantes irréductibles de $\left(\pi^{-1}\left(f^{-1}(0)\right)\right)_{\text {red }}$. On définit $\stackrel{\circ}{E}_{i}, E_{I}, \stackrel{\circ}{E}_{I}, n_{i}, n_{I}$ comme en (1.4.1). Pour $i \in J$, on note N_{i} la multiplicité de $f \circ \pi$ au point générique de E_{i}.

2. Fonctions Zêta topologiques (CORPS DE NOMBRES)

(2.1) Soient $K \subset \mathbb{C}$ un corps de nombres, $f \in K\left[x_{1}, \ldots, x_{n}\right]$ un polynôme non nul. Soit $\pi: X \rightarrow A_{K}^{n}$ une résolution de f. On reprend les notations de (1.4.2), en particulier on note $E_{i}, i \in J$, les composantes irreductibles de $\left(\pi^{-1}\left(f^{-1}(0)\right)\right)_{\text {red }}$. Pour d un entier ≥ 1, on pose $S^{(d)}=\{I \subset J: \forall i \in$ $\left.I, d \mid N_{i}\right\}$, en particulier $S^{(1)}=\mathscr{P}(J)$.
Définition (2.1.1). Soit d un entier ≥ 1. Si π est une résolution de f on pose

$$
Z_{\mathrm{top}, f, \pi}^{(d)}(s)=\sum_{I \in S^{(d)}} \chi\left(\stackrel{\circ}{E}_{I}\right) \prod_{i \in I} \frac{1}{N_{i} s+n_{i}}
$$

et

$$
Z_{\mathrm{top}, f, \pi, 0}^{(d)}(s)=\sum_{I \in S^{(d)}} \chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right) \prod_{i \in I} \frac{1}{N_{i} s+n_{i}} .
$$

Théorème (2.1.2). Les fonctions $Z_{\text {top, } f, \pi}^{(d)}$ et $Z_{\text {top }, f, \pi, 0}^{(d)}$ sont indépendantes du choix de la résolution π. On les note $Z_{\mathrm{top}, f}^{(d)}$ et $Z_{\mathrm{top}, f, 0}^{(d)}$
(2.2) On note \mathscr{O}_{K} l'anneau des entiers de K. Soit \mathfrak{p} un idéal maximal de \mathscr{O}_{K}. On note $K_{\mathfrak{p}}$ (resp. $R_{\mathfrak{p}}$) le complété de K (resp. \mathscr{O}_{K}) en \mathfrak{p}. On note k le corps résiduel de $R_{\mathfrak{p}}, q$ le cardinal de k. On a donc $k=\mathbb{F}_{q}$. Pour $x \in K_{\mathfrak{p}}$, on note $\operatorname{ord}(x) \in \mathbb{Z} \cup\{+\infty\}$ la valuation \mathfrak{p}-adique de x et $|x|=q^{-\operatorname{ord}(x)}$. On fixe une uniformisante $t \in \mathscr{O}_{K}$ de $R_{\mathfrak{p}}$ et on note $\operatorname{ac}(x)=x t^{-\operatorname{ord}(x)}$, pour $x \in K_{\mathfrak{p}}$. On note $|d x|$ la mesure de Haar sur $K_{\mathfrak{p}}^{n}$ normalisée de telle sorte que $R_{\mathfrak{p}}^{n}$ soit de volume 1.

Soit ψ un caractère de $R_{\mathfrak{p}}^{\times}$, le groupe des unités de $R_{\mathfrak{p}}$, à valeurs dans \mathbb{C}. On convient que $\psi(0)=0$.

On note

$$
Z\left(K_{\mathfrak{p}}, \psi, s\right)=\int_{R_{\mathfrak{p}}^{n}} \psi(\operatorname{ac}(f(x)))|f(x)|^{s}|d x|
$$

et

$$
Z_{0}\left(K_{\mathfrak{p}}, \psi, s\right)=\int_{\mathfrak{p} R_{\mathfrak{p}}^{n}} \psi(\operatorname{ac}(f(x)))|f(x)|^{s}|d x|
$$

Théorème (2.2). Si ρ est un pôle de $Z_{\mathrm{top}, f}^{(d)}\left(\right.$ resp. $\left.Z_{\mathrm{top}, f, 0}^{(d)}\right)$ alors pour presque tout idéal maximal \mathfrak{p} de \mathscr{O}_{K}, et pour tous les caractères ψ de $R_{\mathfrak{p}}^{\times}$, d'ordre d et triviaux sur $1+\mathfrak{p} R_{\mathfrak{p}}$, il existe une infinité d'extensions non ramifiées $L_{\mathfrak{p}}$ de $K_{\mathfrak{p}}$ telles que ρ soit un pôle de $Z\left(L_{\mathfrak{p}}, \psi \circ N_{L_{\mathfrak{p}} \mid K_{\mathfrak{p}}}, s\right)\left(\right.$ resp. $\left.Z_{0}\left(L_{\mathfrak{p}}, \psi \circ N_{L_{\mathfrak{p}} \mid K_{\mathfrak{p}}}, s\right)\right)$, $N_{L_{\mathrm{p}} \mid K_{\mathrm{p}}}$ désignant la norme.
(2.3.1) Soit $\pi: X \rightarrow A_{K}^{n}$ une résolution de f. Il existe un ouvert dense affine $\operatorname{Spec} R \rightarrow \operatorname{Spec} \mathscr{O}_{K} \quad\left(\mathscr{O}_{K} \subset R \subset K\right)$ tel que π admette un modèle $\pi_{R}: X_{R} \rightarrow A_{R}^{n}$ sur $\operatorname{Spec} R$ ayant bonne réduction (comme résolution de f) en tout point fermé de $\operatorname{Spec} R$. On note S l'ensemble fini d'idéaux maximaux de \mathscr{O}_{K} correspondant aux points fermés de $\operatorname{Spec} \mathscr{O}_{K} \backslash \operatorname{Spec} R$.

(2.3.2) On a le resultat suivant:

Théorème (2.3.2) [D2]. Soit $\pi: X \rightarrow A_{k}^{n}$ une résolution de f. Si p $\notin S$, pour tout caractère ψ de $R_{\mathfrak{p}}^{\times}$d'ordre d, trivial sur $1+\mathfrak{p} R_{\mathfrak{p}}$, on a

$$
Z\left(K_{\mathfrak{p}}^{(e)}, \psi^{(e)}, s\right)=q^{-n e} \sum_{I \in S^{(d)}} c_{I, \psi}^{(e)} \prod_{i \in I} \frac{\left(q^{e}-1\right) q^{-e\left(N_{i} s+n_{i}\right)}}{1-q^{-e\left(N_{i} s+n_{i}\right)}}
$$

avec $c_{I, \psi}^{(e)}=\sum_{i}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}^{e}, H_{c}^{i}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\bar{k}}, \mathfrak{F}_{\psi}\right)\right)$ si $I \in S^{(d)}$. Ici $K_{\mathfrak{p}}^{(e)}$ est l'extension non ramifiée de degré e de $K_{p}, \psi^{(e)}=\psi \circ N_{K_{p}^{(e)} \mid K_{p}}$; on a choisi un nombre premier l ne divisant pas q tel que ψ soit à valeurs dans \mathbb{Q}_{l} vu comme sous corps de $\mathbb{C}, \mathfrak{F}_{\psi}$ est la restriction d'un certain \mathbb{Q}_{l}-faisceau de Kummer associé à ψ [D2], et Frob est le Frobenius géométrique de $k=\mathbb{F}_{q}$. De plus on a une formule analogue pour $Z_{0}\left(K_{\mathfrak{p}}^{(e)}, \psi^{(e)}, s\right)$ en remplaçant $c_{I, \psi}^{(e)}$ par $c_{I, \psi, 0}^{(e)}=$ $\sum_{i}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}^{e}, H_{c}^{i}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\bar{k}} \cap \pi_{\bar{k}}^{-1}(0), \mathfrak{F}_{\psi}\right)\right)$.
Remarque. Dans [D2] le théorème (2.3.2) est démontré sous l'hypothèse que π soit projectif. La démonstration sans cette hypothèse est similaire.
(2.4) Démonstration des théorèmes (2.1.2) et (2.2). On va faire la démonstration uniquement pour $Z_{\text {top }, f, \pi}^{(d)}$, la démonstration étant similaire pour $Z_{\text {top }}^{(d)}$

Fixons un idéal $\mathfrak{p} \notin S$. Comme toutes les valeurs propres du Frobenius sur $H_{c}^{m}\left(\left(\dot{E}_{I}\right)_{\bar{k}}, \mathfrak{F}_{\psi}\right)$ sont des unités dans l'anneau de valuation de \mathbb{C}_{l} [SGA $4 \frac{1}{2}$, p. 183], on a l'énoncé suivant: il existe $\kappa \in \mathbb{N}_{0}=\mathbb{N} \backslash\{0\}$ et une fonction méromorphe en les variables s et $n, Z_{l}\left(K_{\mathfrak{p}}, \psi, s, n\right)$, sur $\mathbb{Z}_{l} \times\left(\kappa \mathbb{Z}_{l}\right)$, telle que pour tout $s \in \mathbb{N}$ et tout $e \in \kappa \mathbb{N}_{0}$ on ait

$$
Z_{l}\left(K_{\mathfrak{p}}, \psi, s, e\right)=Z\left(K_{\mathfrak{p}}^{(e)}, \psi^{(e)}, s\right)
$$

En effet, soient exp et log les fonctions exponentielle et logarithme l adiques. Si α est une unité dans \mathbb{C}_{l}, il existe $\kappa \in \mathbb{N}_{0}$ tel que $\alpha^{e}=\exp (e \log \alpha)$ pour tout multiple e non nul de κ. Choisissons $\kappa \in \mathbb{N}_{0}$ tel que ceci ait lieu
pour $\alpha=q$ et pour toutes les valeurs propres du Frobenius mentionnées plus haut. Si on développe

$$
\begin{aligned}
& \frac{\exp (e \log q)-1}{\exp \left(e\left(N_{i} s+n_{i}\right) \log q\right)-1} \\
& \quad=\frac{1+\frac{1}{2}\left(1-N_{i} s-n_{i}\right)(\log q) e+(\cdots) e^{2}+\cdots}{N_{i} s+n_{i}}
\end{aligned}
$$

on observe qu'il est possible de choisir κ tel que l'on ait de plus

$$
\begin{equation*}
Z_{l}\left(K_{\mathfrak{p}}, \psi, s, e\right) \prod_{i \in J}\left(N_{i} s+n_{i}\right)^{n} \tag{1}
\end{equation*}
$$

est donné par une série convergente sur $\mathbb{Z}_{l} \times \kappa \mathbb{Z}_{l}$. Il est bien connu qu'il existe un ensemble fini d'idéaux maximaux de $\mathscr{O}_{K}, S^{\prime} \supset S$, tel que

$$
\chi_{c}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\bar{k}}, \mathfrak{F}_{\psi}\right)=\chi_{c}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\bar{k}}, \mathbb{Q}_{l}\right)=\chi\left(\stackrel{\circ}{E}_{I}\right)
$$

si $\mathfrak{p} \notin S^{\prime}$, pour $I \in S^{(d)}$ (voir [Il, corollaire 2.7]). On en déduit que

$$
\begin{equation*}
\lim _{e \rightarrow 0} Z_{l}\left(K_{\mathfrak{p}}, \psi, s, e\right)=Z_{\mathrm{top}, f, \pi}^{(d)}(s) \quad \text { sip } \notin S^{\prime} \tag{2}
\end{equation*}
$$

Le théorème (2.1.2) est une conséquence directe de (2) car la fonction $Z_{l}\left(K_{\mathfrak{p}}, \psi, s, e\right)$ est unique, \mathbb{N}_{0} étant dense dans \mathbb{Z}_{l}. Pour démontrer le théorème (2.2), on fixe $\mathfrak{p} \notin S^{\prime}, i_{0} \in J, \rho=-n_{i_{0}} / N_{i_{0}}$ et on suppose que ρ est un pôle de $Z_{\text {top, }}^{(d)}(s)$. On peut choisir l tel que, de plus, ρ appartienne à \mathbb{Z}_{l}. Choisissons $n_{0} \in \mathbb{N}_{0}$ divisible par $\kappa N_{i_{0}}$ et par une puissance de l assez grande. On déduit de (1) et de (2) que ρ est un pôle de la fonction $Z_{l}\left(K_{\mathfrak{p}}, \psi, s, n_{0}\right)$ sur \mathbb{Z}_{l}. Et donc, comme $\exp \left(n_{0} \rho \log q\right)=q^{n_{0} \rho} \in \mathbb{Q}$, on en tire facilement que ρ est un pôle de la fonction méromorphe $Z\left(K_{\mathfrak{p}}^{\left(n_{0}\right)}, \psi^{\left(n_{0}\right)}, s\right)$ sur \mathbb{C}. Ceci conclut la démonstration des théorèmes (2.1.2) et (2.2).

3. Fonctions zêta topologiques (sur \mathbb{C})

(3.1) Soit $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ un germe de fonction analytique non nul. On note également, abusivement, $f: B \rightarrow \mathbb{C}$ un représentant de f avec B une boule ouverte centrée à l'origine. Par définition une résolution du germe f est une résolution d'un représentant $f: B \rightarrow \mathbb{C}$.
(3.2) Soit $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ un germe de fonction analytique non nul (resp. $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ non nul). Soit $\pi: X \rightarrow B$ (resp. $\pi: X \rightarrow \mathbb{C}^{n}$) une résolution de f. Soit d un entier ≥ 1. On pose

$$
\begin{aligned}
& Z_{\text {top }, f, \pi, 0}^{(d)}(s)=\sum_{I \in S^{(d)}} \chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right) \prod_{i \in I} \frac{1}{N_{i} s+n_{i}} \\
& \left(\text { resp. } Z_{\text {top }, f, \pi}^{(d)}(s)=\sum_{I \in S^{(d)}} \chi\left(\stackrel{\circ}{E}_{I}\right) \prod_{i \in I} \frac{1}{N_{i} s+n_{i}}\right)
\end{aligned}
$$

Théorème (3.2). Les fonctions $Z_{\text {top }, f, \pi, 0}^{(d)}$ et $Z_{\text {top }, f, \pi}^{(d)}$ sont indépendantes de π. On les note $Z_{\text {top }, f, 0}^{(d)}$ et $Z_{\text {top }, f}^{(d)}$ respectivement.

(3.3) Conjectures.

Soit $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ un germe de fonction analytique non nul. Soit b_{f} le polynôme de Bernstein local de f.

Conjecture (3.3.1). Les pôles de $Z_{\text {top }, f, 0}^{(d)}$ sont des racines de b_{f}.
On peut renforcer cet énoncé en
Conjecture (3.3.1 ${ }^{\prime}$). La fonction $b_{f} Z_{\text {top }, f, 0}^{(d)}$ est un polynôme.
On ne sait même pas si l'énoncé suivant est vrai en général.
Conjecture (3.3.2). Si s est un pôle de $Z_{\text {top }, f, 0}^{(d)}, \exp (2 i \pi s)$ est une valeur propre de la monodromie locale autour de $f=0$, sur le complexe des cycles proches.

On peut bien sûr faire des conjectures analogues dans le cas global.

(3.3.3) Remarques.

(3.3.3.1) D'après un résultat classique de Malgrange [M], si s est un racine de b_{f}, $\exp (2 i \pi s)$ est une valeur propre de la monodromie locale, et donc la conjecture (3.3.1) entraîne la conjecture (3.3.2).
(3.3.3.2) Dans [L1] la conjecture (3.3.1) a été démontrée quand $n=2$, ainsi que la conjecture (3.3.1') quand $n=2$ et f est sans facteur multiple.
(3.3.3.3) Dans [L2] la conjecture (3.3.1) a été démontrée pour une large classe de fonctions non dégénérées pour leur polyèdre de Newton.
(3.3.3.4) Des résultats concernant la conjecture (3.3.2) pour $n=3$ sont obtenus dans [Ve].

4. Preuve du théorème (3.2)

(4.1) Soit $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ un germe de fonction analytique non nul. Soit $\pi: X \rightarrow B$ une résolution de f. Soit d un entier ≥ 1. On va montrer que $Z_{\text {top }, f, 0}^{(d)}(s)$ ne dépend pas de π.

Pour cela on commence par remarquer que d'après un théorème de V . Ancona [An], on peut supposer que $\pi: X \rightarrow B$ est relativement algébrique.
Théorème (4.1) [An]. Soit $f: A \rightarrow B$ une modification analytique entre espaces analytiques lisses irréductibles. Pour tout $x \in B$, il existe un voisinage de Stein V de x, un espace algébrique Z sur $S_{V}=\operatorname{Spec} \Gamma\left(V, \mathscr{O}_{V}\right)$, de type fini sur S_{V}, une modification de S_{V}-espaces algébriques $g: Z \rightarrow S_{V}$, telle que si Z^{an} (resp. g^{an}) est l'espace analytique (resp. la modification analytique) associé à Z (resp. g), il existe un isomorphisme analytique $h: A_{V}=A \cap f^{-1}(V) \rightarrow Z^{\text {an }}$ tel que le diagramme suivant soit commutatif

(4.2) On va maintenant se ramener au cas où X est algébrique et f est le germe d'une fonction algébrique en utilisant le théorème d'approximation de M. Artin:

Théorème (4.2.1) [A]. Soient R un corps (ou un anneau de valuation discrète excellent), \tilde{A} le hensélisé d'une R algè̀bre de type fini A en un idéal premier. Soit \mathfrak{M} un idéal premier propre de $\widetilde{A}, \widehat{A}$ le complété \mathfrak{M}-adique de A. Si F est un foncteur de la catégorie des R-algèbres noethériennes dans la catégorie des ensembles, qui est localement de présentation finie, alors pour tout $\bar{\xi}$ de $F(\widehat{A})$, pour tout $c \in \mathbb{N}$, il existe $\xi \in F(\widetilde{A})$ tel que $\xi \equiv \bar{\xi}$ modulo \mathfrak{M}^{c}.

On prend ici $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], \tilde{A}$ le hensélisé de A à l'origine et \mathfrak{M} l'idéal maximal de \tilde{A}. Fixons des ensembles finis d'indices J et J^{\prime}. On prend pour F le foncteur qui associe à toute \mathbb{C}-algèbre noethérienne B l'ensemble des classes d'isomorphismes de t-uplets

$$
\left(g, U, \rho,\left(W_{i}\right)_{i \in J}, U^{\prime}, \rho^{\prime},\left(W_{i}^{\prime}\right)_{i \in J^{\prime}}\right)
$$

avec

$$
g \in B
$$

U et U^{\prime} des espaces algébriques;
$\rho: U \rightarrow \operatorname{Spec} B, \rho^{\prime}: U^{\prime} \rightarrow \operatorname{Spec} B$ des morphismes propres, tels que ρ et ρ^{\prime} soient des isomorphismes au dessus du complémentaire du lieu des zéros $V(g)$ de g;
les W_{i} (resp. W_{i}^{\prime}) des sous espaces fermés de U (resp. U^{\prime}) qui sont localement (pour la topologie étale) définis par une équation, et qui vérifient

$$
\left(\rho^{-1}(V(g))\right)_{\mathrm{red}}=\left(\bigcup_{i \in J} W_{i}\right)_{\mathrm{red}} \quad \text { et } \quad\left(\rho^{\prime-1}(V(g))\right)_{\mathrm{red}}=\left(\bigcup_{i \in J^{\prime}} W_{i}^{\prime}\right)_{\mathrm{red}}
$$

Lemme (4.2.2). Le foncteur F défini ci-dessus est localement de présentation finie.
Démonstration. C'est une vérification directe. (Pour la propriété de propreté de ρ, représenter U comme l'image d'un schéma projectif sur B par le lemme de Chow.)

Deux résolutions relativement algébriques $\pi: X \rightarrow \operatorname{Spec} \hat{A}$ et $\pi^{\prime}: X^{\prime} \rightarrow$ Spec \hat{A} de f déterminent un t-uplet

$$
\bar{\xi}=\left(f, X, \pi,\left(E_{i}\right)_{i \in J}, X^{\prime}, \pi^{\prime},\left(E_{i}^{\prime}\right)_{i \in J^{\prime}}\right) \in F(\widehat{A})
$$

les E_{i} (resp. les E_{i}^{\prime}) étant les composantes irréductibles de $\pi^{-1}(V(f)$) (resp. $\pi^{\prime-1}(V(f))$). En appliquant le théorème de M. Artin (4.2.1) on obtient, pour tout entier positif c, un t-uplet

$$
\xi=\left(f_{c}, X_{c}, \pi_{c},\left(E_{i, c}\right)_{i \in J}, X_{c}^{\prime}, \pi_{c}^{\prime},\left(E_{i, c}^{\prime}\right)_{j \in J^{\prime}}\right) \in F(\tilde{A})
$$

avec $f_{c} \in \tilde{A}, X_{c}$ et X_{c}^{\prime} des espaces algébriques sur $\operatorname{Spec} \tilde{A}$, etc., tels que $\xi \equiv \bar{\xi} \bmod \mathfrak{M}^{c}$, c'est à dire $f_{c} \equiv f \bmod \mathfrak{M}^{c}, X_{c}$ coïncide avec $X \bmod \mathfrak{M}^{c}$, etc. En particulier $\pi_{c}^{-1}(0)=\pi^{-1}(0)$ et $E_{i, c} \cap \pi_{c}^{-1}(0)=E_{i} \cap \pi^{-1}(0)$, etc. D'après
le théorème de changement de base pour les morphismes propres $\pi^{-1}(0)$ est connexe, et donc X_{c} est également connexe. Notons N_{i} (resp. $n_{i}-1$) la multiplicité de $f \circ \pi$ (resp. $\left.\pi^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)\right)$ le long de E_{i}.
Lemme (4.2.3). Si l'entier c est assez grand, alors
(i) X_{c} est lisse;
(ii) les $E_{i, c}$ sont lisses et s'intersectent transversalement;
(iii) $f_{c} \circ \pi_{c}$ est de multiplicité N_{i} le long de $E_{i, c}$;
(iv) $\pi_{c}^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)$ est de multiplicité $n_{i}-1$ le long de $E_{i, c}$;
et les énoncés similaires sont valables pour X_{c}^{\prime} et $E_{i, c}^{\prime}$.
Démonstration. (i) Si c est assez grand, on a $f_{c} \neq 0$. Soit C l'adhérence de

$$
X_{c} \backslash \pi_{c}^{-1}\left(f_{c}^{-1}(0)\right) \cong \operatorname{Spec} \tilde{A}_{f_{c}}
$$

dans X_{c}. C'est une composante irréductible de X_{c}. Soit P un point fermé de C. Comme π_{c} est propre et que 0 est le seul point fermé de $\operatorname{Spec} \tilde{A}$, on a $P \in \pi_{c}^{-1}(0)$. De la définition de C il suit que l'anneau local de X_{c} en P est de dimension n [Ma, (14.c)]. En considérant le quotient de l'idéal maximal par son carré, on obtient que cet anneau local est régulier (car $c \geq 2$). On a donc montré que X_{c} est lisse en tout point de C. Comme X_{c} est également connexe on a $X_{c}=C$.
(ii) Comme $E_{i, c}$ est défini localement par une équation, l'anneau local de tout point fermé de $E_{i, c}$ est de dimension au moins $n-1$, et est donc régulier (car $c \geq 2$). Un argument similaire s'applique aux intersections de $E_{i, c}$.
(iii) Fixons un point fermé $P \in E_{i} \cap \pi^{-1}(0)$, et posons $J_{P}=\left\{j \in J ; P \in E_{j}\right\}$. On a $J_{P}=\left\{j \in J ; P \in E_{j, c}\right\}$. Soit g_{j} un générateur de l'idéal de E_{j} dans l'anneau local $\mathscr{O}_{X, P}$ de X en P. Notons $N_{j, c}$ la multiplicité de $f_{c} \circ \pi_{c}$ le long de $E_{j, c}$. D'après l'avant-dernière condition dans la définition du foncteur F on a

$$
\prod_{j \in J_{p}} g_{j}^{N_{j}} \equiv u \prod_{j \in J_{p}} g_{j}^{N_{j, c}} \quad \bmod \mathfrak{M}^{c}
$$

dans $\mathscr{O}_{X, P}$, avec u une unité. Ceci a pour conséquence que les $N_{j, c}$ sont bornés indépendemment de c. D'après Artin-Rees l'idéal engendré par le terme de gauche de la congruence ci-dessus est donc égal à l'idéal engendré par le terme de droite pour c assez grand. On a donc $N_{j}=N_{j, c}$.

On démontre (iv) de façon tout à fait similaire à (iii).
Compte tenu des lemmes précédents, il nous reste à démontrer l'énoncé suivant.
Proposition (4.2.4). Soient Y un voisinage étale de l'origine dans $\mathbb{C}^{n}, f: Y \rightarrow \mathbb{C}$ une fonction algébrique non nulle vérifiant $f(0)=0$. Soient $\pi: X \rightarrow Y$ et $\pi^{\prime}: X^{\prime} \rightarrow Y$ des résolutions algébriques de f. Alors $Z_{f, \pi, d, 0}=Z_{f, \pi^{\prime}, d, 0}$.
(4.3) Soient $Y, f, \pi: X \rightarrow Y$ et $\pi^{\prime}: X^{\prime} \rightarrow Y$ comme dans la proposition (4.2.4). D'après [EGA IV, $\S \S 8,9]$ on a l'énoncé suivant. (Le fait que l'on
considère ici des espaces algébriques au lieu de schémas comme dans [EGA IV] n'est pas gênant car un espace algébrique admet un recouvrement étale par des schémas.)
Lemma (4.3.1). (i) Il existe un anneau $A \subset \mathbb{C}$ de type fini sur \mathbb{Z}, un espace algébrique X_{A} (resp. $\quad X_{A}^{\prime}$) défini et plat sur A, un schéma Y_{A} défini et plat sur A, un morphisme $\pi_{A}: X_{A} \rightarrow Y_{A}$ (resp. $\pi_{A}^{\prime}: X_{A}^{\prime} \rightarrow Y_{A}$), et un morphisme $f_{A}: Y_{A} \rightarrow A$ tels que $\pi: X \rightarrow Y\left(\right.$ resp $\left.. \pi^{\prime}: X^{\prime} \rightarrow Y\right)$ et $f: Y \rightarrow \mathbb{C}$ proviennent de $\pi_{A}\left(\right.$ resp. $\left.\pi_{A}^{\prime}\right)$ et f_{A} après extension des scalaires.
(ii) Il existe un ouvert dense U de $\operatorname{Spec} A$ tel que pour tout point fermé a de U, π_{A} et π_{A}^{\prime} ont bonne réduction en a (comme résolution de f).

L'énoncé suivant est sans doute bien connu (cf. [B-B-D, p. 156]). On en donne la démonstration en (4.6).
Lemme (4.3.2). Soit $A \subset \mathbb{C}$ un anneau de type fini sur \mathbb{Z}. Pour tout point fermé a de $\operatorname{Spec} A$, il existe un anneau V vérifiant $A \subset V \subset \mathbb{C}$ tel que
(i) V est l'anneau des entiers d'une extension finie de \mathbb{Q}_{p}, p désignant la caractéristique du corps résiduel du point a.
(ii) Le morphisme $\operatorname{Spec} V \rightarrow \operatorname{Spec} A$ envoie le point fermé de $\operatorname{Spec} V$ sur a. (4.4) Démonstration de la proposition (4.2.4). On choisit $A \subset \mathbb{C}$ de type fini sur \mathbb{Z} et un point fermé a de $U \subset \operatorname{Spec} A$ comme en (4.3.1), et un anneau V, $A \subset V \subset \mathbb{C}$ comme en (4.3.2).

On reprend les notations de (2.2) avec $V=R_{\mathfrak{p}}$. En particulier, on note t une uniformisante fixée de R_{p}. On note $X_{V}, X_{V}^{\prime}, \ldots$ les objets obtenus par changement de base de A à V.

Comme Y_{V} est régulier à l'origine, il existe des coordonnées locales x_{1}, \ldots, x_{n} telles que $\left(x_{1}, \ldots, x_{n}, t\right)$ forme un système régulier de paramètres dans l'anneau local $\mathscr{O}_{Y_{V}, 0}$. Soit $Y_{V}\left(K_{\mathfrak{p}}\right)$ la variété $K_{\mathfrak{p}}$-analytique des points $K_{\mathfrak{p}}$ rationnels de Y_{V}. On a une inclusion naturelle $Y_{V}\left(R_{\mathfrak{p}}\right) \subset Y_{V}\left(K_{\mathfrak{p}}\right)$ de l'ensemble des points $R_{\mathfrak{p}}$-rationnels de Y_{V}. Notons $Y_{V}\left(R_{\mathfrak{p}}\right)_{0}$ l'ensemble des points de $Y_{V}\left(R_{\mathfrak{p}}\right)$ qui coïncident avec l'origine après réduction modulo l'idéal maximal de V. Les x_{i} sont analytiques sur $Y_{V}\left(K_{\mathfrak{p}}\right)_{0}$. Notons μ la mesure sur $Y_{V}\left(K_{\mathfrak{p}}\right)$ qui coïncide avec $\left|d x_{1} \wedge \cdots \wedge d x_{n}\right|$ sur $Y_{V}\left(R_{\mathfrak{p}}\right)_{0}$ et est identiquement nulle ailleurs.

Soit ψ un caractère de $R_{\mathfrak{p}}^{\times}$à valeurs dans \mathbb{C}, d'ordre d et trivial sur $1+\mathfrak{p} R_{\mathfrak{p}}$. On pose

$$
Z_{0}\left(K_{\mathfrak{p}}, \psi, s\right)=\int_{Y_{V}\left(R_{\mathfrak{p}}\right)_{0}} \psi\left(\operatorname{ac} f_{V}(x)\right)\left|f_{V}(x)\right|^{s} \mu
$$

Si $K_{\mathfrak{p}}^{(e)}$ est l'extension non ramifiée de degré e de $K_{\mathfrak{p}}$ et $\psi^{(e)}=\psi \circ N_{K_{\mathrm{p}}^{(e)} \mid K_{\mathrm{p}}}$, on définit de même $Z_{0}\left(K_{\mathrm{p}}^{(e)}, \psi^{(e)}, s\right)$. Pour l comme en (2.3.2), de même qu'en (2.4), il existe $\kappa \in \mathbb{N}_{0}$ et une fonction méromorphe en les variables s et e, $Z_{l, 0}\left(K_{\mathfrak{p}}, \psi, s, e\right)$, sur $\mathbb{Z}_{l} \times \kappa \mathbb{Z}_{l}$, telle que pour tout $s \in \mathbb{N}$ et tout $e \in \kappa \mathbb{N}_{0}$ on ait

$$
Z_{l, 0}\left(K_{\mathfrak{p}}, \psi, s, e\right)=Z_{0}\left(K_{\mathfrak{p}}^{(e)}, \psi^{(e)}, s\right)
$$

De plus, tout comme en (2.4), quitte à choisir l'ouvert dense U de (4.3.1)(ii) plus petit on peut supposer, avec les notations de (2.4), que

$$
\chi_{c}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\overline{\mathbb{F}}_{q}} \cap \pi_{\overline{\mathbb{F}}_{q}}^{-1}(0), \mathfrak{F}_{\psi}\right)=\chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right),
$$

et la même formule pour π^{\prime}.
On obtient alors, de la même façon, que

$$
\lim _{e \rightarrow 0} Z_{l, 0}\left(K_{\mathfrak{p}}, \psi, s, e\right)=Z_{\mathrm{top}, f, \pi, 0}^{(d)}(s)=Z_{\mathrm{top}, f, \pi^{\prime}, 0}^{(d)}(s),
$$

ce qui termine la démonstration de la proposition (4.2.4).
(4.5) Fin de la preuve du théorème (3.2). Pour $Z_{\text {top }, f, \pi, 0}^{(d)}$ le théorème (3.2) est une conséquence de la proposition (4.2.4) d'après ce qui précède, tandis que pour $Z_{\text {top }, f, \pi}^{(d)}$ c'est une conséquence directe de la preuve de la proposition (4.2.4).
(4.6) Démonstration du lemme (4.3.2). Soit \mathfrak{M} l'idéal maximal de A correspondant à a. D’après le théorème de prolongement des places [Z-S, Ch. VI §4] il existe un anneau de valuation \mathfrak{D} contenant A, de corps des fractions \mathbb{C}, tel que \mathfrak{M} soit contenu dans l'idéal maximal de \mathfrak{D}. Soit p la caractéristique du corps résiduel de \mathfrak{D}. Choisissons un ensemble maximal $\left\{a_{1}, \ldots, a_{t}\right\}$ d'éléments algébriquement indépendants de A. Soit \mathscr{O} un anneau de valuation de caractéristique nulle dont le corps des fractions est algébriquement clos et dont le corps résiduel est de caractéristique p. Pour tous les $\alpha_{1}, \ldots, \alpha_{t}$ de \mathscr{O} on considère la condition suivante: il existe un homomorphisme $\psi: A \rightarrow \mathcal{O}$ avec $\psi\left(a_{i}\right)=\alpha_{i}$ pour $i=1, \ldots, t$ et $\psi(\mathfrak{M})$ contenu dans l'idéal maximal de \mathscr{O}. D'après le théorème d'élimination des quantificateurs pour les anneaux de valuation dont le corps des fractions est algébriquement clos [W], cette condition est équivalente à une combinaison booléenne de conditions du type $f\left(\alpha_{1}, \ldots, \alpha_{t}\right) \mid g\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ avec f et g des polynômes à coefficients dans \mathbb{Z}. Cette combinaison booléenne ne dépend pas de \mathcal{O}. Elle est satisfaite par des éléments de \mathfrak{D}, et donc (à nouveau par élimination des quantificateurs) elle peut aussi être satisfaite par des éléments de \bar{V}, l'anneau des entiers de la clôture algébrique de \mathbb{Q}_{p}. De plus, comme cette combinaison booléenne est satisfaite par des éléments de \mathfrak{D} algébriquement indépendants, et comme il y a suffisamment d'éléments transcendants dans \bar{V}, elle peut aussi être satisfaite par des éléments algébriquement indépendants de \bar{V} (pour voir ceci, ajouter les conditions $f\left(\alpha_{1}, \ldots, \alpha_{t}\right) \neq 0, g\left(\alpha_{1}, \ldots, \alpha_{t}\right) \neq 0$ pour $f \neq 0, g \neq 0$ apparaissant dans la combinaison booléenne). L'homomorphisme ψ correspondant est alors une injection.

5. Un EXEMPLE: FONCTIONS ZÊTA TOPOLOGIQUES POUR LES FONCTIONS NON DÉGÉNÉRÉES

(5.1) Soit $f(x)=\sum_{k \in \mathbb{N}^{n}} a_{k} x^{k}$ un polynôme à coefficients complexes non nul vérifiant $f(0)=0$. Le support de f est l'ensemble $\operatorname{Supp} f=\left\{k \in \mathbb{N}^{n} ; a_{k} \neq\right.$ $0\}$. Le polyèdre de Newton global Γ_{gl} de f est l'enveloppe convexe de $\operatorname{Supp} f$,
tandis que le polyèdre de Newton Γ_{0} de f à l'origine est l'enveloppe convexe de $\Gamma_{\mathrm{gl}}+\mathbb{R}_{+}^{n}$, avec $\mathbb{R}_{+}=\{x \in \mathbb{R} ; x \geq 0\}$. On dit que f est non dégénéré pour Γ_{gl} si pour toute face τ de Γ_{gl}, y compris $\tau=\Gamma_{\mathrm{gl}}$, le polynôme $f_{\tau}=\sum_{k \in \tau} a_{k} x^{k}$ et les polynômes $\partial f_{\tau} / \partial x_{i}, 1 \leq i \leq n$, n'ont pas de zéro commun dans $(\mathbb{C} \backslash\{0\})^{n}$. (Dans l'article de Varchenko [V] on dit 0 -non dégénéré.)

Pour $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{+}^{n}$, on pose $N(a)=\inf _{x \in \Gamma_{0}} a \cdot x, n(a)=\sum_{i=1}^{n} a_{i}$ et $F(a)=\left\{x \in \Gamma_{0} ; a \cdot x=N(a)\right\}$.

Le cône dual τ^{0} d'une face τ de Γ_{0} est par définition l'adhérence dans \mathbb{R}^{n} de $\left\{a \in \mathbb{R}_{+}^{n} ; F(a)=\tau\right\}$. Si γ est l'enveloppe convexe dans \mathbb{R}^{n} d'une partie de \mathbb{Z}^{n}, on note ω_{γ} la forme volume sur l'espace affine $\operatorname{Aff}(\gamma)$ engendré par γ tel que le parallépipède engendré par une base de réseau $\operatorname{Aff}(\gamma) \cap \mathbb{Z}^{n}$ soit de volume 1. Pour toute face τ de Γ_{0} on définit $\operatorname{Vol}(\tau)$ comme le volume de $\tau \cap \Gamma_{\mathrm{gl}}$ pour la forme ω_{τ}. Remarquons que $\tau \cap \Gamma_{\mathrm{gl}}=\tau$ si τ est compacte. Si $\operatorname{dim} \tau=0$ on pose $\operatorname{Vol}(\tau)=1$.

Soit Δ un cône rationnel simplicial dans \mathbb{R}_{+}^{n} (ayant l'origine pour sommet). Il est donc de la forme $\Delta=\mathbb{R}_{+} a_{1}+\cdots+\mathbb{R}_{+} a_{l}$, avec $a_{1}, \ldots, a_{l} \in \mathbb{N}^{l}$ des vecteurs linéairement indépendants sur \mathbb{R} et primitifs (c'est à dire à composantes premières entre elles). A un tel cône simplicial Δ (et Γ_{0}) on associe la fonction rationnelle

$$
J_{\Delta}(s)=\frac{\operatorname{mult}(\Delta)}{\prod_{1 \leq i \leq l}\left(N\left(a_{i}\right) s+n\left(a_{i}\right)\right)}
$$

en définissant $\operatorname{mult}(\Delta)$, la multiplicité de Δ, comme le volume du parallépipède engendré par a_{1}, \ldots, a_{l} pour la forme ω_{Δ}.

A toute face τ de Γ_{0} on associe une fonction rationelle $J(\tau, s)$ de la façon suivante. On choisit une décomposition $\tau^{0}=\bigcup_{1 \leq i \leq r} \Delta_{i}$ de τ^{0} en cônes rationnels simpliciaux Δ_{i} de dimension $l=\operatorname{dim} \tau^{0}$ tels que $\operatorname{dim}\left(\Delta_{i} \cap \Delta_{j}\right)<l$ si $i \neq j$. On peut alors poser

$$
J(\tau, s)=\sum_{1 \leq i \leq r} J_{\Delta_{i}}(s)
$$

Si $\tau=\Gamma_{0}$, on convient que $J(\tau, s)=1$. Cette définition est raisonnable d'après le lemme suivant.

Lemme (5.1.1). La fonction $J(\tau, s)$ ne dépend pas du choix de la décomposition de τ^{0} en cônes simpliciaux. De plus les pôles de $J(\tau, s)$ sont de la forme $-n(a) / N(a)$, avec a un vecteur orthogonal à une face de dimension $n-1$ de Γ_{0} contenant τ.
Démonstration. La première assertion est une conséquence de la formule

$$
J(\tau, s)=\int_{a \in \tau^{0}} e^{-N(a) s-n(a)} \omega_{\tau^{0}}
$$

dont la vérification est laissée au lecteur. On en déduit la deuxième assertion car on peut choisir une décomposition de τ^{0} en cônes simpliciaux engendrés par des vecteurs a du type requis.
(5.2) Soit $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ un germe de fonction analytique non nul. On définit le polyèdre de Newton de f à l'origine, Γ_{0}, comme en (5.1). On dit que f est non dégénéré pour Γ_{0} si, avec les notations de (5.1), pour toute face compacte τ de Γ_{0}, le système $\partial f_{\tau} / \partial x_{i}=0,1 \leq i \leq n$, n'a pas de solution dans $(\mathbb{C} \backslash\{0\})^{n}$. De la même façon qu'en (5.1), pour toute face compacte τ de Γ_{0}, on définit une fonction rationnelle $J(\tau, s)$.
(5.3) Si $A \subset \mathbb{R}_{+}^{n}$, le plus grand commun diviseur des entiers $N(a), a \in A \cap \mathbb{Z}^{n}$, est noté $N(A)$.
Théorème (5.3). (i) Si $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ est non dégénéré pour Γ_{gl}, alors

$$
\begin{aligned}
Z_{\text {top }, f}^{(1)}(s)= & \sum_{\tau \text { sommet de } \Gamma_{0}} J(\tau, s) \\
& +\left(\frac{s}{s+1}\right) \sum_{\substack{\tau \operatorname{face} \operatorname{de} \Gamma_{0} \\
\operatorname{dim} \tau \geq 1}}(-1)^{\operatorname{dim} \tau}(\operatorname{dim} \tau)!\operatorname{Vol}(\tau) J(\tau, s), \\
Z_{\text {top }, f}^{(d)}(s)= & \sum_{\substack{\tau \text { face de } \Gamma_{0} \\
d \mid N\left(\tau_{0}\right)}}(-1)^{\operatorname{dim} \tau}(\operatorname{dim} \tau)!\operatorname{Vol}(\tau) J(\tau, s), \quad \text { si } d>1 .
\end{aligned}
$$

(Dans la sommation on peut avoir $\tau=\Gamma_{0}$, mais pas $\tau=\varnothing$.)
(ii) Si $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ est un germe de fonction analytique non dégénéré pour Γ_{0}, alors on a une formule analogue pour $Z_{\mathrm{top}, f, 0}^{(1)}(s)$ et $Z_{\mathrm{top}, f, 0}^{(d)}(s), d>$ 1 , en sommant sur les faces compactes τ de Γ_{0}, au lieu de sommer sur toutes les faces de Γ_{0}.
Démonstration. On va montrer seulement (i), (ii) étant similaire. Pour cela on décompose \mathbb{R}_{+}^{n} en cônes rationnels simpliciaux de volume 1 , satisfaisant les propriétés (9.5) à (9.10) de [V]. (Remarquer que l'intérieur de chaque cône est contenu dans un τ^{0}.) Soit Σ l'ensemble de ces cônes. En suivant [$V, \S 10$], on associe à Σ une résolution $\pi: X \rightarrow \mathbb{C}^{n}$ de f. (Comme f est non dégénéré pour Γ_{gl}, le lemme 10.3 de $[\mathrm{V}]$ donne en fait que $\left(\pi^{-1}\left(f^{-1}(0)\right)\right)_{\text {red }}$ est un diviseur à croisements normaux.) La variété X est réunion de tores complexes disjoints. Les tores de dimension l de cette partition sont associés aux cônes Δ de dimension $n-l$ de $\Sigma[V, \S 10]$. Notons $T_{\Delta} \subset X$ le tore associé à $\Delta \in \Sigma$, et W l'adhérence dans X de $\pi^{-1}\left(\left\{x \in \mathbb{C}^{n} ; f(x)=0, x_{1} \cdots x_{n} \neq 0\right\}\right)$. L'additivité de χ et le lemme 10.2(1) de [V] donnent l'égalité

$$
\begin{aligned}
Z_{\text {top }, f}^{(d)}(s) & =\sum_{\substack{\Delta \in \Sigma \\
d \mid N(\Delta)}} \chi\left(T_{\Delta} \backslash W\right) J_{\Delta}(s)+\delta_{1, d} \sum_{\substack{\Delta \in \Sigma \\
d \mid N(\Delta)}} \chi\left(T_{\Delta} \cap W\right) \frac{J_{\Delta}(s)}{s+1} \\
& =\sum_{\substack{\Delta \in \Sigma, \operatorname{dim} T_{\Delta}=0 \\
d \mid N(\Delta)}} J_{\Delta}(s)+\left(\frac{\delta_{1, d}}{s+1}-1\right) \sum_{\substack{\Delta \in \Sigma \\
\text { dim } \\
d \mid N(\Delta)}} \chi\left(T_{\Delta} \cap W\right) J_{\Delta}(s)
\end{aligned}
$$

avec $\delta_{1, d}$ le symbole de Kronecker, $\operatorname{car} \chi\left(T_{\Delta}\right)=0$ si $\operatorname{dim} T_{\Delta}>0$.

Pour $\Delta \in \Sigma$, posons $F(\Delta)=\bigcap_{a \in \Delta} F(a)$. Si $F(\Delta)=\tau$ et $\operatorname{dim} T_{\Delta}>0$, le même argument que dans [$\mathrm{V}, \S 11$] donne

$$
\begin{aligned}
\chi\left(T_{\Delta} \cap W\right) & =(-1)^{n-\operatorname{dim} \Delta-1}(n-\operatorname{dim} \Delta)!\operatorname{Vol}(\tau) & & \text { si } \operatorname{dim} \tau=n-\operatorname{dim} \Delta \\
& =0 & & \text { si } \operatorname{dim} \tau<n-\operatorname{dim} \Delta .
\end{aligned}
$$

Soit τ une face de Γ_{0}. Les cônes $\Delta \in \Sigma$ tels que $F(\Delta)=\tau$ et $\operatorname{dim} \tau=$ $n-\operatorname{dim} \Delta$ forment une décomposition de τ^{0} du type employé pour définir $J(\tau, s)$. De plus $d \mid N\left(\tau^{0}\right)$ si et seulement si l'un des cônes Δ (et donc tous) satisfait $d \mid N(\Delta)$. On obtient (i) en regroupant les termes correspondant à ces décompositions.
(5.4) Exemple. Soit $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ un polynôme quasi homogène, non dégénéré pour Γ_{gl}, et contenant les monômes $x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}, \alpha_{1}, \ldots, \alpha_{n} \geq 1$ étant donnés. On pose $\rho=-\sum_{1 \leq i \leq n} \alpha_{i}^{-1}$ et

$$
C^{(d)}=\sum_{\substack{I \subset\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \\ d \mid \operatorname{ppcm} I}}(-1)^{\operatorname{card} I} \frac{\operatorname{prod} I}{(\operatorname{ppcm} I)^{2}}
$$

prod I désignant le produit des éléments de I et ppcm I leur plus petit commun multiple. (On convient que si I est vide, $\operatorname{prod} I=\operatorname{ppcm} I=1$.)

On a alors

$$
Z_{\mathrm{top}, f}^{(1)}(s)=\frac{1}{s+1}-\frac{s C^{(1)}}{(s+1)(s-\rho)}
$$

et

$$
Z_{\mathrm{top}, f}^{(d)}(s)=-\frac{C^{(d)}}{s-\rho} \quad \text { pour } d>1
$$

Remarquons que dans le cas où les α_{i} sont deux à deux premiers entre eux, $C^{(1)}=\prod_{1 \leq i \leq n}\left(1-\alpha_{i}^{-1}\right)$.

6. UNE FORMULE POUR LES MODIFICATIONS ANALYTIQUES

(6.1) On conserve les notations du $\S 1$.

Théorème (6.1). (1) Soit Y le germe de \mathbb{C}^{n} à l'origine, $\pi: X \rightarrow Y$ une modification analytique à croisements normaux. On a l'égalité

$$
1=\sum_{I \subset J} \frac{\chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right)}{n_{I}}
$$

(2) Soit $\pi: X \rightarrow Y$ une modification analytique à croisements normaux d'espaces analytiques complexes compacts. On a l'égalité

$$
\chi(Y)=\sum_{I \subset J} \frac{\chi\left(\stackrel{\circ}{E}_{I}\right)}{n_{I}}
$$

Remarque. Rappelons que par convention $\chi\left(\stackrel{\circ}{E}_{\varnothing}\right)=\chi(X \backslash E(X))=\chi(Y \backslash E(Y))$. Donc

$$
\chi(\pi(E(X)))=\sum_{\varnothing \neq I \subset J} \chi\left(\stackrel{\circ}{E}_{I}\right) / n_{I}
$$

(6.2) Démonstration du théorème (6.1). On va démontrer (1) et on laisse au lecteur le soin de déduire (2) de (1).

En suivant le même cheminement que dans la preuve du théorème (3.2) (algébrisation relative, approximation), on se ramène à démontrer l'égalité (1) quand X et Y sont algébriques, $0 \in Y$ et $\pi: X \rightarrow Y$ est une modification algébrique à croisements normaux.

Comme en (4.3.1), il existe dans ce cas $A \subset \mathbb{C}$ de type fini sur \mathbb{Z} tel que $\pi: X \rightarrow Y$ provienne, après extension des scalaires, de $\pi_{A}: X_{A} \rightarrow Y_{A}$ défini sur A, et un ouvert dense $U \operatorname{de} \operatorname{Spec} A$, tel que pour tout point fermé a de U, π_{A} ait bonne réduction en a (comme modification à croisements normaux). On prend alors un anneau $V, A \subset V \subset \mathbb{C}$ comme en (4.3.2) et on reprend les notations de (4.4). On note $X\left(K_{\mathfrak{p}}\right)$ l'ensemble des points $K_{\mathfrak{p}}$-rationnels de X_{V}.

On va calculer de deux façons différentes l'intégrale

$$
I_{0}\left(K_{\mathfrak{p}}\right)=\int_{Y\left(K_{\mathfrak{p}}\right)} \mu
$$

Comme $\left(x_{1}, \ldots, x_{n}, t\right)$ est un système régulier de paramètres, on a directement $I_{0}\left(K_{\mathfrak{p}}\right)=q^{-n}$. D'autre part on a $I_{0}\left(K_{\mathfrak{p}}\right)=\int_{X\left(K_{\mathfrak{p}}\right)} \pi^{*} \mu$.

Comme π_{A} a bonne réduction en a, π_{V} a bonne réduction au point fermé de $\operatorname{Spec} V$ et par un calcul similaire à [D1], on obtient

$$
I_{0}\left(K_{p}\right)=q^{-n} \sum_{I \subset J} \#\left(\left(\stackrel{\circ}{E}_{I}\right)_{\mathbb{F}_{q}} \cap \pi_{\mathbb{F}_{q}}^{-1}(0)\right)\left(\mathbb{F}_{q}\right) \prod_{i \in I} \frac{(q-1) q^{-n_{i}}}{1-q^{-n_{i}}}
$$

ou encore, par la formule des traces de Grothendieck

$$
\begin{equation*}
I_{0}\left(K_{\mathfrak{p}}\right)=q^{-n} \sum_{I \subset J} c_{I} \prod_{i \in I} \frac{(q-1) q^{-n_{i}}}{1-q^{-n_{i}}} \tag{6.2.1}
\end{equation*}
$$

avec $c_{I}=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}, H_{c}^{i}\left(\left(\dot{\circ}_{I}\right)_{\overline{\mathbb{F}}_{q}} \cap \pi_{\overline{\mathbb{F}}_{q}}^{-1}(0), \mathbb{Q}_{l}\right)\right)$, pour l premier à q.
Si $K_{\mathfrak{p}}^{(e)}$ est l'extension non ramifiée de degré e de $K_{\mathfrak{p}}$, on définit et on calcule de la même façon $I_{0}\left(K_{\mathrm{p}}^{(e)}\right)$.

De même qu'en (2.4), si l est premier à q, il existe $\kappa \in \mathbb{N}_{0}$ et une fonction méromorphe en $e, I_{l, 0}\left(K_{\mathfrak{p}}, e\right)$, sur $\kappa \mathbb{Z}_{l}$, telle que pour tout $e \in \kappa \mathbb{N}_{0}$ on ait

$$
I_{l, 0}\left(K_{\mathfrak{p}}, e\right)=I_{0}\left(K_{\mathfrak{p}}^{(e)}\right)
$$

De plus, tout comme en (2.4), quitte à choisir U plus petit, on peut supposer que $\chi_{c}\left(\left(\stackrel{\circ}{E}_{I}\right)_{\overline{\mathbb{F}}_{q}} \cap \pi_{\overline{\mathbb{F}}_{q}}^{-1}(0), \mathbb{Q}_{l}\right)=\chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right)$. On déduit alors de (6.2.1) que

$$
\lim _{e \rightarrow 0} I_{l, 0}\left(K_{\mathfrak{p}}, e\right)=\sum_{I \subset J} \frac{\chi\left(\stackrel{\circ}{E}_{I} \cap \pi^{-1}(0)\right)}{n_{I}}
$$

Mais comme $I_{l, 0}\left(K_{\mathrm{p}}, e\right)=q^{-n e}$ si $e \in \kappa \mathbb{N}_{0}$, on a également

$$
\lim _{e \rightarrow 0} I_{l, 0}\left(K_{\mathrm{p}}, e\right)=1
$$

et on obtient l'égalité recherchée.

Références

[An] V. Ancona, Espaces de Moišezon relatifs et algébrisation des modifications analytiques, Math. Ann. 246 (1980), 155-165.
[A] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math., no. 36 (1969), 23-58.
[B-B-D] A. A. Beilinson, J. Bernstein, et P. Deligne, Faisceaux pervers, Astérisque, no. 100, Soc. Math. France, Paris, 1982, pp. 3-172.
[D1] J. Denef, On the degree of Igusa's local zeta function, Amer. J. Math. 109 (1987), 991-1008.
[D2] __, Local zeta functions and Euler characteristics, Duke Math. J. 63 (1991), 713-721.
[II] L. Illusie, Théorie de Brauer et caractéristique d'Euler-Poincaré (d'après P. Deligne), Astérisque, nos. 82-83, Soc. Math. France, Paris, 1981, pp. 161-172.
[L1] F. Loeser, Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), 1-22.
[L2] __, Fonctions d'Igusa p-adiques, polynômes de Bernstein et polyèdres de Newton, J. Reine Angew. Math. 412 (1990), 75-96.
[M] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque, nos. 101-102, Soc. Math. France, Paris, 1983, pp. 243-267.
[Ma] H. Matsumura, Commutative algebra, Benjamin, New York, 1970.
[V] A. N. Varchenko, Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), 253-262.
[Ve] W. Veys, Poles of Igusa's local zeta function and monodromy, a paraître.
[W] V. Weispfenning, Quantifier elimination and decision procedures for valued fields. Models and Sets, Lecture Notes in Math., vol. 1103, Springer, Berlin-New York, 1984, pp. 419-472.
[Z-S] O. Zariski et P. Samuel, Commutative algebra II, Van Nostrand, Princeton, 1960.
[EGA IV] A. Grothendieck (avec la collaboration de J. Dieudonné), Éléments de géométrie algébrique, Etude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math., no. 20 (1964), no. 24 (1965), no. 28 (1966), no. 32 (1967).
[SGA4 $\frac{1}{2}$] P. Deligne, Cohomologie étale, Lecture Notes in Math., vol. 589, Springer, Berlin-New York, 1977.

University of Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven, Belgium

E-mail address: fgaba02@blekul $11 . b i t n e t$
Université Paris 6, UER 920, 4 Place Jussieu, 75252 Paris Cedex 05 et Centre de Mathématiques, École Polytechnique, 91128 Palaiseau Cedex, France

E-mail address: loeser@orphee.polytechnique.fr

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Mathematical Society.

[^1]: Received by the editors January 3, 1991.
 1991 Mathematics Subject Classification. Primary 14G20, 32S45, 32S50; Secondary 11D79.

