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The random model
Consider Hω , a Zd-ergodic random operator on H = L2(Rd) or `2(Zd) i.e.

for Ω, a probability space, ω ∈Ω 7→ Hω is a weakly measurable family of
self-adjoint operator on H ,
there exists (Tγ)γ∈Zd , an ergodic group of probability preserving transformation
on Ω s.t.

τγ Hω τ
∗
γ = HTγ ω

where (τγ u)(x) = u(x− γ) for γ ∈ Zd.
“Spectral” objects almost surely constant e.g. spectrum, a.c., s.c., p.p. spectra.
Two standard examples:

The discrete Anderson model: on `2(Zd), Hω =−∆+Vω

I −∆ discrete Laplacian,
I Vω diagonal matrix with i.i.d. entries with nice distribution.

The continuous Anderson model: on L2(Rd), Hω =−∆+W +Vω

I −∆ Laplacian on Rd and W : Rd → R Zd-periodic potential,
I Vω = ∑

γ∈Zd

ωγ u(·− γ)

F (ωγ )γ i.i.d. random variables with nice distribution,
F u bounded with compact support and fixed sign.
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Basic assumptions on the random model

Let σ be the almost sure spectrum of Hω .

Assume that Hω admits an integrated density of states i.e.

N(E) := lim
|Λ|→+∞

#{e.v. of Hω(Λ) less than E}
|Λ|

where Hω(Λ) is the operator Hω restricted to Λ (periodic BC).
In I, N(E) dist. funct. of a.c. measure with bounded density ν(E).
Fix I ⊂ R a compact interval.

In I, we assume that Hω satisfies a Wegner estimate i.e. for J ⊂ I,

(W) P({tr(1J(Hω(Λ)))≥ 1})≤ C|J| |Λ|

where
σ(H) is the spectrum of the operator H,
P(Ω) denotes the probability of the event Ω.

Known to hold for many models in particular for the Anderson models
under mild regularity conditions on the random variables.
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In I, we assume that Hω satisfies a Minami estimate i.e. for J ⊂ I,

(M) P({tr(1J(Hω(Λ)))≥ 2})≤ C(|J| |Λ|)2.

This is known to hold for
the discrete Anderson model under mild regularity assumptions on the r.v.
(Minami, Bellissard et al., Graf et al., Combes-Germinet-Klein);
the continuous Anderson model in the “Lifshitz tails” region (CGK).

The localized regime
Basic result in theory of RSO: there exists regions in the spectrum, typically the edges
of the spectrum, where spectrum is p.p. and the eigenfunctions are exp. decaying.

We assume:
for some ξ ∈ (0,1] and γ > 0, for any p > 0, there exists q > 0 such that, for
L≥ 1, with probability larger than 1−L−p, if

I ϕn,ω is a normalized eigenvector of Hω (ΛL) associated to En,ω ∈ I,
I xn(ω) ∈ ΛL is a maximum of x 7→ ‖ϕn,ω‖x+C on ΛL

then, for x ∈ ΛL, one has ‖ϕn,ω‖x+C ≤ Lqe−γ|x−xn(ω)|ξ .

FMM provides ξ = 1, MSA ξ arbitrarily close to 1.
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The questions

Local level statistics: Fix E0 ∈ I s.t. ν(E0) := N′(E0)> 0.
Renormalized local levels near E0:

ξj(E0,ω,Λ) = |Λ|ν(E0)(Ej(ω,Λ)−E0).

Distribution function: Ξ
l(ξ ,E0,ω,Λ) =

N

∑
j=1

δξj(E0,ω,Λ)(ξ ).

Localization center statistics: Let ϕn,ω normalized eigenvector associated to En,ω ∈ I.
Localization center for En,ω is a maximum of x 7→ ‖ϕn,ω‖x+C.
A priori not unique!
Localization centers contained in ball of radius � (logL)1/ξ .

Distribution function: Ξ
c(ξ ,x;E0,ΛL) =

N

∑
j=1

δxj(ω)/L(x).

Joint statistics: distribution function:

Ξ
2(ξ ,x;E0,ΛL) =

N

∑
j=1

δξj(E0,ω,Λ)(ξ )⊗δxj(ω)/L(x).
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Joint statistics: one can change the scaling. Fix scaling function Λ 7→ `Λ s.t.
`Λ→+∞ when |Λ| →+∞,
`Λ not too large, not too small,

Distribution function of covariantly scaled joint statistics:

Ξ
2
Λ(ξ ,x;E0, `) =

N

∑
j=1

δν(E0)(Ej(ω,Λ)−E0)|Λ`Λ
|(ξ )⊗δxj(ω)/`Λ

(x).

Level spacings statistics: Let (Ej(Λ,ω))1≤j≤N be eigenvalues ordered increasingly;
N = N(ω) random number.
Renormalized eigenvalue spacings

δEj(Λ,ω) = |Λ|(Ej+1(Λ,ω)−Ej(Λ,ω))≥ 0.

Renormalized eigenvalue spacings distribution:

DLS(x;Λ,ω) =
#{j; δEj(Λ,ω)≥ x}

N
.

Another point of view: The spectrum of Hω is I is p.p. with exp. dec. eigenfcts.
Localization centers well defined.
For typical ω , consider eigenvalues in I with localization center in ΛL.
Ask same questions as above.
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Local eigenvalue statistics:

Theorem (Molchanov, Minami, Combes-Germinet-Klein, G.-Kl.)
Under the assumptions above, as |Λ| →+∞, Ξl(ξ ,E0,ω,Λ) converges weakly to a
Poisson process on R with intensity measure the Lebesgue measure.

Correlation of local statistics:
Consider the limits of Ξl(ξ ,E0,ω,Λ) et Ξl(ξ ,E′0,ω,Λ) of E0 6= E′0.

Q: Are they independent ?

Generalized Minami estimate : for J ⊂ K ⊂ I,

(GM) P({tr(1J(Hω(Λ)))≥ 1 and tr(1K(Hω(Λ)))≥ 2})≤ C|J||K| |Λ|2.

Known for discrete and certain continuous Anderson models [CGK]
Decorrelation estimates (D): for α ∈ (0,1) and {E0,E′0} ⊂ I t.q. E0 6= E′0, when
L→+∞ and `� Lα ,

(D) P
[
tr(1IL(Hω(Λ`)))≥ 1 and tr(1I′L

(Hω(Λ`)))≥ 1
]
= o

(
(`/L)d

)
where IL = E0 +L−d[−1,1], I′L = E′0 +L−d[−1,1].

Known for discrete Anderson in dim. 1 at all energies and for arbitrary d if
|E0−E′0|> 2d [Kl].
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Theorem

Assume (W), (M), (Loc), (GM) and (D). Pick E0 6= E′0 s.t. ν(E0),ν(E′0)> 0.
When |Λ| →+∞, Ξ(E0,ω,Λ) and Ξ(E′0,ω,Λ) converge to two independent Poisson
processes i.e. for U+ ⊂ R and U− ⊂ R compact intervals and {k+,k−} ∈ N×N, one
has

P

({
ω;

#{j;ξj(E0,ω,Λ) ∈ U+}= k+
#{j;ξj(E′0,ω,Λ) ∈ U−}= k−

})
→

Λ→Zd
e−|U+| |U+|k+

k+!
· e−|U−| |U−|

k−

k−!
.

Question: minimal distance between E0 and E′0 to keep independence?

Theorem
Assume (W), (M), (Loc), (GM). Pick E0 s.t. ν(E0)> 0 and ν cont. near E0.
If EΛ ∈ I and E′

Λ
∈ I such that

EΛ→ E0← E′
Λ

when |Λ| →+∞,

|Λ| · |EΛ−E′
Λ
| →+∞ when |Λ| →+∞,

then, as |Λ| →+∞, Ξl(ξ ,EΛ,ω,Λ) and Ξl(ξ ,E′
Λ
,ω,Λ) converge to two independent

Poisson processes on R.
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Local localization center statistics

Theorem (Nakano, Nakano-Killip)
Under the assumptions above, as |Λ| →+∞, Ξ2(ξ ,E0,ω,ΛL) converges weakly to a
Poisson process on R× [−1,1]d with intensity measure the Lebesgue measure.

Fix sequence of scales `= (`Λ)Λ such that

(`Λ)
ξ

log |Λ|
→

|Λ|→+∞

+∞ and 2`Λ ≤ |Λ|1/d.

Pick E0 ∈ I so that ν(E0)> 0 and recall covariantly scaled joint local distribution

Ξ
2
Λ(ξ ,x;E0, `) =

N

∑
j=1

δν(E0)(Ej(ω,Λ)−E0)|Λ`Λ
|(ξ )⊗δxj(ω)/`Λ

(x).

The process valued in R×Rd. Define c` = lim
|Λ|→+∞

|Λ|1/d(2`Λ)
−1 ∈ [1,+∞].

Theorem
The point process Ξ2

Λ
(ξ ,x;E0, `) converges weakly to a Poisson process on

R× (−c`,c`)d with intensity measure the Lebesgue measure.
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For non covariant scales: consider scales, say `= (`Λ)Λ and `′ = (`′
Λ
)Λ as above.

Distribution function:

Ξ
2
Λ(ξ ,x;E0, `, `

′) =
N

∑
j=1

δν(E0)(Ej(ω,Λ)−E0)|Λ`Λ
|(ξ )⊗δxj(ω)/`′

Λ
(x).

Theorem
Let J and X be bounded open sets respectively in R and (−c`′ ,c`′)d ⊂ Rd. One has

if `′
Λ
/`Λ � |Λ|−ρ then, ω-almost surely, for |Λ| sufficiently large,∫

J×X
Ξ

2
Λ(ξ ,x;E0, `, `

′)dξ dx = 0;

if `′
Λ
/`Λ � |Λ|ρ then, ω-almost surely,(

`Λ

`′
Λ

)d ∫
J×X

Ξ
2
Λ(ξ ,x;E0, `, `

′)dξ dx →
|Λ|→+∞

|J| · |X|.
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Level spacing distribution

Let E0 ⊂ IΛ compact interval s.t. lim
x,y→E0

(x− y)−1(N(x)−N(y)) = ν(E0)> 0.

For statistics, IΛ needs to contain asymptotically infinitely many energy levels of
Hω(Λ) i.e. assume, for some δ > 0, one has

|Λ|1−δ · |IΛ| →
|Λ|→+∞

+∞ and if `L = o(L) then
|IΛL+`L

|
|IΛL |

→
L→+∞

1. (2.1)

Let (Ej(ω,Λ))1≤j≤N e.v. in IΛ ordered increasingly: Ej(ω,Λ)≤ Ej+1(ω,Λ).
Their number N is random of size ν(E0)|Λ| · |IΛ| (by existence of IDS).
Consider the renormalized eigenvalue spacings

δEj(ω,Λ) = |Λ|ν(E0)(Ej+1(ω,Λ)−Ej(ω,Λ))≥ 0.

Empirical distribution :

DLS(x;ω,Λ) =
#{j; δEj(ω,Λ)≥ x}

ν(E0)|Λ| · |IΛ|
for x > 0.
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Theorem
ω-almost surely, the empirical distribution of level spacings DLS(x;ω,Λ) converges
uniformly to the distribution x 7→ e−x as |Λ| →+∞, that is

sup
x≥0

∣∣DLS(x;ω,Λ)− e−x∣∣ →
|Λ|→+∞

0, ω-a.s.

If one omits one of conditions (2.1), then a.s. convergence becomes convergence in
probability.
Macroscopic energy intervals:
Let J ⊂ I compact s.t. E 7→ ν(E) be continuous on J and let N(J) :=

∫
J ν(E)dE > 0.

Renorm. spacings: for 1≤ j≤ N, δJEj(ω,Λ) = |Λ|N(J)(Ej+1(ω,Λ)−Ej(ω,Λ)).
Empirical distribution denoted by DLS′(x; IΛ,ω,Λ).

Theorem
ω-almost surely, as |Λ| →+∞, the empirical distribution of level spacings
DLS′(x; IΛ,ω,Λ) converges uniformly to the distribution x 7→ gν ,J(x) defined by

gν ,J(x) =
∫

J
e−νJ(λ )xνJ(λ )dλ and νJ =

1
N(J)

ν .
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Localization center spacings distribution

In Λ, number of centers corresponding to energies in IΛ roughly ν(E0) |IΛ| |Λ|.

Reference mean spacing: (|Λ|/[ν(E0) |IΛ| |Λ|])1/d = (ν(E0) · |IΛ|)−1/d.

Empirical distribution of center spacing:

DCS(s;Λ,ω) =
#{j; (ν(E0)|IΛ|)1/d mini 6=j |xj(ω)− xi(ω)| ≥ s}

ν(E0) · |IΛ| · |Λ|

Theorem
ω-almost surely, the empirical distribution of localization center spacings
DCS(s;Λ,ω) converges uniformly to the distribution s 7→ e−sd

as |Λ| →+∞.
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The other point of view:

Recall that N is the IDS of Hω .

Proposition
Fix q > 2d and ξ ∈ (0,1]. Then, there exists γ > 0 such that, ω-almost surely, there
exists Cω > 1 such that

1 if E ∈ I∩σ(Hω) and ϕ is a normalized eigenfunction associated to E then, for
x(E) ∈ Rd a maximum of x 7→ ‖ϕ‖x, one has, for x ∈ Rd,

‖ϕ‖x ≤ Cω〈x(E)〉qe−γ|x−x(E)|ξ .

2 if x(E) and x′(E) are two centers of localization for E ∈ I, then

|x(E)− x′(E)| ≤ γ
−2(log〈x(E)〉+ logCω)

1/ξ .

3 for L≥ 1, pick IL ⊂ I such that |ΛL|N(IL)→+∞; if N(IL,L) denotes the number
of eigenvalues of Hω having a center of localization in ΛL, then

N(IL,L) = N(IL) |ΛL|(1+o(1)).
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For L≥ 1, pick IL ⊂ I such that Ldν(IL)→+∞.
Consider the eigenvalues of Hω having a localization center in ΛL, say,

E1(ω,L)≤ E2(ω,L)≤ ·· · ≤ EN(ω,L).
Consider the renormalized eigenvalue spacings, for 1≤ j≤ N,

δEj(ω,L) = |ΛL|(Ej+1(ω,L)−Ej(ω,L))≥ 0.

Empirical distribution of spacing: for x≥ 0

DLS(x; IL,ω,L) =
#{j; Ej(ω,L) ∈ IL, δEj(ω,L)≥ x}

N(IL,L)

Theorem
One has

if E0 ∈ IL s.t. ν(E0)> 0 and |IL| → 0, then, ω-almost surely, DLS(x; IL,ω,L)
converges uniformly to e−ν(E0)x1x≥0;

if, for all L large, IL = J such that N(J)> 0 and ν is continuous on J then,
ω-almost surely, DLS(x; IL,ω,L) converges uniformly to gν ,J(N(J)x).
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The main ideas of the proofs

Localized regime⇒ e.v. depend only on local picture of potential⇒ explicit
description of the eigenvalues in I in terms of eigenvalues of smaller independent
cubes.

pick cube of size L

the localization centers
Cut large cube into smaller cubes of
size `

Problems:
I multiple centers in small cubes

probability is small due to Minami’s
estimate: `2d|I|2(L/`)d = `dLd|I|2

I centers not localized well in cube
probability is small due to Wegner’s
estimate: l ·Ld−1 · |I|

With good probability, this does not
occur.

So with good probability, in I, e.v. of big cube given by e.v. of small cubes.
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Following these ideas, we prove

Theorem
Pick α , β s.t. 1 > α and β −d/(d+2) = 2(α− (d+1)/(d+2))> 0. Set `= Lβ and
Ñ = N1−β . Set N = Ld and Iα

N = [E0−N−α ,E0 +N−α ]⊂ I.

There exists p > 0 such that, for N large enough, there exists a set of configurations
ZN s.t.

P(ZN)≥ 1−N−p,

for ω ∈ZN , each box Λ`(γj) := γj +[0, l]d satisfies:

1 the Hamiltonian Hω (Λ`(γj)) has at most one eigenvalue in Iα
N , say, Ej(ω,Λ`(γj));

2 Λ`(γj) contains at most one center of localization, say xkj(ω,L), of an eigenvalue of
Hω,L in Iα

N , say Ekj(ω,L);

3 Λ`(γj) contains a center xkj(ω,L) if and only if σ(Hω (Λ`(γj)))∩ Iα
N 6= /0;

then, |Ekj(ω,L)−Ej(ω,Λ`(γj))|= O(L−∞) and dist(xkj(ω,L),ΛL \Λ`(γj))≥ Lp.
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Problem : for analysis, energy intervals have to be small.
On larger intervals, still possible but cannot control all eigenvalues.
Still enough for level spacings.

Theorem
Pick α = (αN)N s.t. limN αN ↘ 0. Set Ñ = n/αN , n = n′/αN , n′ = (R logN)d, with R
large. Set Iα

N = [E0− in,E0 + in]⊂ I with iN = n1/d≥ c(logN)−dα2
N .

For any p > 0 and N large enough, there exists a set of configurations ZN so that

P(ZN)≥ 1−N−p,

for all ω ∈ZN , there exists at least
N
n
(1−o(1)) disjoint boxes Λ`(γj) satisfying

the properties described in the previous theorem.
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