Spectral statistics for random Hamiltonians in the localized regime

F. Germinet¹

F. Klopp²

¹Université de Cergy-Pontoise et Institut Universitaire de France ²Université Paris 13 et Institut Universitaire de France

May 10, 2010

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

1 / 10

Outline

- Introduction
 - The random model
 - Basic assumptions
 - The localized regime
 - The questions
- 2 The results
 - Local level statistics
 - Local localization center distribution
 - Level spacings distribution
 - Localization center spacings distribution
- 3 The main ideas of the proofs
 - Reduction to i.i.d. random variables

The random model

Consider H_{ω} , a \mathbb{Z}^d -ergodic random operator on $\mathscr{H} = L^2(\mathbb{R}^d)$ or $\ell^2(\mathbb{Z}^d)$ i.e.

- for Ω , a probability space, $\omega \in \Omega \mapsto H_{\omega}$ is a weakly measurable family of self-adjoint operator on \mathcal{H} ,
- there exists $(T_{\gamma})_{\gamma \in \mathbb{Z}^d}$, an ergodic group of probability preserving transformation on Ω s.t.

$$au_{\gamma}H_{\omega} au_{\gamma}^{*}=H_{T_{\gamma}\omega}$$

where $(\tau_{\gamma}u)(x) = u(x-\gamma)$ for $\gamma \in \mathbb{Z}^d$.

"Spectral" objects almost surely constant e.g. spectrum, a.c., s.c., p.p. spectra.

Two standard examples:

- The discrete Anderson model: on $\ell^2(\mathbb{Z}^d)$, $H_{\omega} = -\Delta + V_{\omega}$
 - ► $-\Delta$ discrete Laplacian,
 - V_{ω} diagonal matrix with i.i.d. entries with nice distribution.
- The continuous Anderson model: on $L^2(\mathbb{R}^d)$, $H_{\omega} = -\Delta + W + V_{\omega}$
 - $-\Delta$ Laplacian on \mathbb{R}^d and $W: \mathbb{R}^d \to \mathbb{R}$ \mathbb{Z}^d -periodic potential,

$$V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} u(\cdot - \gamma)$$

- ★ $(\omega_{\gamma})_{\gamma}$ i.i.d. random variables with nice distribution,
- ★ u bounded with compact support and fixed sign.

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

3 / 19

Basic assumptions on the random model

Let σ be the almost sure spectrum of H_{ω} .

Assume that H_{ω} admits an integrated density of states i.e.

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v. of } H_{\omega}(\Lambda) \text{ less than E}\}}{|\Lambda|}$$

where $H_{\omega}(\Lambda)$ is the operator H_{ω} restricted to Λ (periodic BC). In I, N(E) dist. funct. of a.c. measure with bounded density v(E). Fix $I \subset \mathbb{R}$ a compact interval.

In I, we assume that H_{ω} satisfies a Wegner estimate i.e. for $J \subset I$,

(W)
$$\mathbb{P}(\{\operatorname{tr}(\mathbf{1}_J(H_{\omega}(\Lambda))) \geq 1\}) \leq C|J||\Lambda|$$

where

- $\sigma(H)$ is the spectrum of the operator H,
- $\mathbb{P}(\Omega)$ denotes the probability of the event Ω .

Known to hold for many models in particular for the Anderson models under mild regularity conditions on the random variables.

In I, we assume that H_{ω} satisfies a Minami estimate i.e. for $J \subset I$,

(M)
$$\mathbb{P}\left(\left\{\operatorname{tr}(\mathbf{1}_J(H_{\boldsymbol{\omega}}(\Lambda)))\geq 2\right\}\right)\leq C(|J||\Lambda|)^2.$$

This is known to hold for

- the discrete Anderson model under mild regularity assumptions on the r.v. (Minami, Bellissard et al., Graf et al., Combes-Germinet-Klein);
- the continuous Anderson model in the "Lifshitz tails" region (CGK).

The localized regime

Basic result in theory of RSO: there exists regions in the spectrum, typically the edges of the spectrum, where spectrum is p.p. and the eigenfunctions are exp. decaying.

We assume:

- for some $\xi \in (0,1]$ and $\gamma > 0$, for any p > 0, there exists q > 0 such that, for $L \ge 1$, with probability larger than $1 L^{-p}$, if
 - $\varphi_{n,\omega}$ is a normalized eigenvector of $H_{\omega}(\Lambda_L)$ associated to $E_{n,\omega} \in I$,
 - $x_n(\omega) \in \Lambda_L$ is a maximum of $x \mapsto \|\varphi_{n,\omega}\|_{x+C}$ on Λ_L

then, for $x \in \Lambda_L$, one has $\|\varphi_{n,\omega}\|_{x+C} \leq L^q e^{-\gamma|x-x_n(\omega)|^{\xi}}$.

FMM provides $\xi = 1$, MSA ξ arbitrarily close to 1.

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

5 / 10

The questions

Local level statistics: Fix $E_0 \in I$ s.t. $v(E_0) := N'(E_0) > 0$. Renormalized local levels near E_0 :

$$\xi_i(E_0, \omega, \Lambda) = |\Lambda| v(E_0) (E_i(\omega, \Lambda) - E_0).$$

Distribution function:
$$\Xi^l(\xi, E_0, \omega, \Lambda) = \sum_{j=1}^N \delta_{\xi_j(E_0, \omega, \Lambda)}(\xi)$$
.

Localization center statistics: Let $\varphi_{n,\omega}$ normalized eigenvector associated to $E_{n,\omega} \in I$.

Localization center for $E_{n,\omega}$ is a maximum of $x \mapsto \|\varphi_{n,\omega}\|_{x+C}$.

A priori not unique!

Localization centers contained in ball of radius $\approx (\log L)^{1/\xi}$.

Distribution function:
$$\Xi^c(\xi, x; E_0, \Lambda_L) = \sum_{i=1}^N \delta_{x_j(\omega)/L}(x)$$
.

Joint statistics: distribution function:

$$\Xi^{2}(\xi,x;E_{0},\Lambda_{L})=\sum_{j=1}^{N}\delta_{\xi_{j}(E_{0},\boldsymbol{\omega},\Lambda)}(\xi)\otimes\delta_{x_{j}(\boldsymbol{\omega})/L}(x).$$

Joint statistics: one can change the scaling. Fix scaling function $\Lambda \mapsto \ell_{\Lambda}$ s.t.

- $\ell_{\Lambda} \to +\infty$ when $|\Lambda| \to +\infty$,
- ℓ_{Λ} not too large, not too small,

Distribution function of covariantly scaled joint statistics:

$$\Xi_{\Lambda}^{2}(\xi,x;E_{0},\ell)=\sum_{j=1}^{N}\delta_{\nu(E_{0})(E_{j}(\boldsymbol{\omega},\Lambda)-E_{0})|\Lambda_{\ell_{\Lambda}}|}(\xi)\otimes\delta_{x_{j}(\boldsymbol{\omega})/\ell_{\Lambda}}(x).$$

Level spacings statistics: Let $(E_j(\Lambda, \omega))_{1 \le j \le N}$ be eigenvalues ordered increasingly; $N = N(\omega)$ random number.

Renormalized eigenvalue spacings

$$\delta E_i(\Lambda, \omega) = |\Lambda|(E_{i+1}(\Lambda, \omega) - E_i(\Lambda, \omega)) \ge 0.$$

Renormalized eigenvalue spacings distribution:

$$DLS(x; \Lambda, \omega) = \frac{\#\{j; \ \delta E_j(\Lambda, \omega) \ge x\}}{N}.$$

Another point of view: The spectrum of H_{ω} is I is p.p. with exp. dec. eigenfcts. Localization centers well defined.

For typical ω , consider eigenvalues in I with localization center in Λ_L . Ask same questions as above.

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

7/19

Local eigenvalue statistics:

Theorem (Molchanov, Minami, Combes-Germinet-Klein, G.-Kl.)

Under the assumptions above, as $|\Lambda| \to +\infty$, $\Xi^l(\xi, E_0, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity measure the Lebesgue measure.

Correlation of local statistics:

Consider the limits of $\Xi^l(\xi, E_0, \omega, \Lambda)$ et $\Xi^l(\xi, E_0', \omega, \Lambda)$ of $E_0 \neq E_0'$.

Q: Are they independent?

Generalized Minami estimate : for $J \subset K \subset I$,

(GM)
$$\mathbb{P}\left(\left\{\operatorname{tr}(\mathbf{1}_J(H_{\boldsymbol{\omega}}(\Lambda)))\geq 1 \text{ and } \operatorname{tr}(\mathbf{1}_K(H_{\boldsymbol{\omega}}(\Lambda)))\geq 2\right\}\right)\leq C|J||K||\Lambda|^2.$$

Known for discrete and certain continuous Anderson models [CGK] Decorrelation estimates (D): for $\alpha \in (0,1)$ and $\{E_0,E_0'\} \subset I$ t.q. $E_0 \neq E_0'$, when $L \to +\infty$ and $\ell \asymp L^{\alpha}$,

(D)
$$\mathbb{P}\left[\operatorname{tr}(\mathbf{1}_{I_L}(H_{\omega}(\Lambda_{\ell}))) \geq 1 \text{ and } \operatorname{tr}(\mathbf{1}_{I'_L}(H_{\omega}(\Lambda_{\ell}))) \geq 1\right] = o\left((\ell/L)^d\right)$$

where
$$I_L = E_0 + L^{-d}[-1, 1]$$
, $I'_L = E'_0 + L^{-d}[-1, 1]$.

Known for discrete Anderson in dim. 1 at all energies and for arbitrary d if $|E_0 - E_0'| > 2d$ [Kl].

Theorem

Assume (W), (M), (Loc), (GM) and (D). Pick $E_0 \neq E_0'$ s.t. $v(E_0), v(E_0') > 0$. When $|\Lambda| \to +\infty$, $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E_0', \omega, \Lambda)$ converge to two independent Poisson processes i.e. for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \ \#\{j; \xi_{j}(E_{0}, \omega, \Lambda) \in U_{+}\} = k_{+} \atop \#\{j; \xi_{j}(E'_{0}, \omega, \Lambda) \in U_{-}\} = k_{-}\right\}\right) \underset{\Lambda \to \mathbb{Z}^{d}}{\to} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!} \cdot e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Question: minimal distance between E_0 and E'_0 to keep independence?

Theorem

Assume (W), (M), (Loc), (GM). Pick E_0 s.t. $v(E_0) > 0$ and v cont. near E_0 . If $E_{\Lambda} \in I$ and $E'_{\Lambda} \in I$ such that

- $E_{\Lambda} \to E_0 \leftarrow E'_{\Lambda}$ when $|\Lambda| \to +\infty$,
- $|\Lambda| \cdot |E_{\Lambda} E'_{\Lambda}| \to +\infty$ when $|\Lambda| \to +\infty$,

then, as $|\Lambda| \to +\infty$, $\Xi^l(\xi, E_\Lambda, \omega, \Lambda)$ and $\Xi^l(\xi, E'_\Lambda, \omega, \Lambda)$ converge to two independent Poisson processes on \mathbb{R} .

UNIVERSITÉ PARIS 13

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

9/19

Local localization center statistics

Theorem (Nakano, Nakano-Killip)

Under the assumptions above, as $|\Lambda| \to +\infty$, $\Xi^2(\xi, E_0, \omega, \Lambda_L)$ converges weakly to a Poisson process on $\mathbb{R} \times [-1, 1]^d$ with intensity measure the Lebesgue measure.

Fix sequence of scales $\ell = (\ell_{\Lambda})_{\Lambda}$ such that

$$\frac{(\ell_{\Lambda})^{\xi}}{\log |\Lambda|} \mathop{\to}_{|\Lambda| \to +\infty} + \infty \quad \text{ and } \quad 2\ell_{\Lambda} \le |\Lambda|^{1/d}.$$

Pick $E_0 \in I$ so that $v(E_0) > 0$ and recall covariantly scaled joint local distribution

$$\Xi_{\Lambda}^{2}(\xi,x;E_{0},\ell)=\sum_{j=1}^{N}\delta_{\nu(E_{0})(E_{j}(\boldsymbol{\omega},\Lambda)-E_{0})|\Lambda_{\ell_{\Lambda}}|}(\xi)\otimes\delta_{x_{j}(\boldsymbol{\omega})/\ell_{\Lambda}}(x).$$

The process valued in $\mathbb{R} \times \mathbb{R}^d$. Define $c_\ell = \lim_{|\Lambda| \to +\infty} |\Lambda|^{1/d} (2\ell_\Lambda)^{-1} \in [1, +\infty]$.

Theorem

The point process $\Xi^2_{\Lambda}(\xi, x; E_0, \ell)$ converges weakly to a Poisson process on $\mathbb{R} \times (-c_\ell, c_\ell)^d$ with intensity measure the Lebesgue measure.

For non covariant scales: consider scales, say $\ell = (\ell_{\Lambda})_{\Lambda}$ and $\ell' = (\ell'_{\Lambda})_{\Lambda}$ as above. Distribution function:

$$\Xi_{\Lambda}^2(\xi,x;E_0,\ell,\ell') = \sum_{j=1}^N \delta_{\nu(E_0)(E_j(\boldsymbol{\omega},\Lambda)-E_0)|\Lambda_{\ell_{\Lambda}}|}(\xi) \otimes \delta_{x_j(\boldsymbol{\omega})/\ell_{\Lambda}'}(x).$$

Theorem

Let J and X be bounded open sets respectively in \mathbb{R} and $(-c_{\ell'}, c_{\ell'})^d \subset \mathbb{R}^d$. One has

• if $\ell'_{\Lambda}/\ell_{\Lambda} \simeq |\Lambda|^{-\rho}$ then, ω -almost surely, for $|\Lambda|$ sufficiently large,

$$\int_{J\times X} \Xi_{\Lambda}^2(\xi, x; E_0, \ell, \ell') d\xi dx = 0;$$

• if $\ell'_{\Lambda}/\ell_{\Lambda} \simeq |\Lambda|^{\rho}$ then, ω -almost surely,

$$\left(\frac{\ell_{\Lambda}}{\ell_{\Lambda}'}\right)^{d}\int_{J\times X}\Xi_{\Lambda}^{2}(\xi,x;E_{0},\ell,\ell')d\xi dx\underset{|\Lambda|\to+\infty}{\longrightarrow}|J|\cdot|X|.$$

UNIVERSITÉ PARIS 13

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

11 / 10

Level spacing distribution

Let $E_0 \subset I_\Lambda$ compact interval s.t. $\lim_{x,y\to E_0} (x-y)^{-1}(N(x)-N(y)) = v(E_0) > 0$.

For statistics, I_{Λ} needs to contain asymptotically infinitely many energy levels of $H_{\omega}(\Lambda)$ i.e. assume, for some $\delta > 0$, one has

$$|\Lambda|^{1-\delta} \cdot |I_{\Lambda}| \underset{|\Lambda| \to +\infty}{\longrightarrow} +\infty \quad \text{ and } \quad \text{if } \ell_L = o(L) \text{ then } \frac{|I_{\Lambda_{L+\ell_L}}|}{|I_{\Lambda_L}|} \underset{L \to +\infty}{\longrightarrow} 1.$$
 (2.1)

Let $(E_j(\omega, \Lambda))_{1 \leq j \leq N}$ e.v. in I_{Λ} ordered increasingly: $E_j(\omega, \Lambda) \leq E_{j+1}(\omega, \Lambda)$. Their number N is random of size $v(E_0)|\Lambda| \cdot |I_{\Lambda}|$ (by existence of IDS). Consider the renormalized eigenvalue spacings

$$\delta E_j(\boldsymbol{\omega}, \boldsymbol{\Lambda}) = |\boldsymbol{\Lambda}| \boldsymbol{v}(E_0)(E_{j+1}(\boldsymbol{\omega}, \boldsymbol{\Lambda}) - E_j(\boldsymbol{\omega}, \boldsymbol{\Lambda})) \geq 0.$$

Empirical distribution:

$$DLS(x; \boldsymbol{\omega}, \boldsymbol{\Lambda}) = \frac{\#\{j; \ \boldsymbol{\delta}E_j(\boldsymbol{\omega}, \boldsymbol{\Lambda}) \geq x\}}{v(E_0)|\boldsymbol{\Lambda}| \cdot |I_{\boldsymbol{\Lambda}}|} \text{ for } x > 0.$$

Theorem

 ω -almost surely, the empirical distribution of level spacings $DLS(x; \omega, \Lambda)$ converges uniformly to the distribution $x \mapsto e^{-x}$ as $|\Lambda| \to +\infty$, that is

$$\sup_{x\geq 0} |DLS(x;\boldsymbol{\omega},\Lambda) - e^{-x}| \underset{|\Lambda| \to +\infty}{\to} 0, \quad \boldsymbol{\omega}\text{-a.s.}$$

If one omits one of conditions (2.1), then a.s. convergence becomes convergence in probability.

Macroscopic energy intervals:

Let $J \subset I$ compact s.t. $E \mapsto v(E)$ be continuous on J and let $N(J) := \int_J v(E) dE > 0$. Renorm. spacings: for $1 \le j \le N$, $\delta_J E_j(\omega, \Lambda) = |\Lambda| N(J) (E_{j+1}(\omega, \Lambda) - E_j(\omega, \Lambda))$. Empirical distribution denoted by $DLS'(x; I_\Lambda, \omega, \Lambda)$.

Theorem

 ω -almost surely, as $|\Lambda| \to +\infty$, the empirical distribution of level spacings $DLS'(x;I_{\Lambda},\omega,\Lambda)$ converges uniformly to the distribution $x \mapsto g_{V,J}(x)$ defined by

$$g_{V,J}(x) = \int_J e^{-v_J(\lambda)x} v_J(\lambda) d\lambda$$
 and $v_J = \frac{1}{N(J)} v$.

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

12 / 10

Localization center spacings distribution

In Λ , number of centers corresponding to energies in I_{Λ} roughly $v(E_0)|I_{\Lambda}||\Lambda|$.

Reference mean spacing: $(|\Lambda|/[\nu(E_0)|I_\Lambda||\Lambda|])^{1/d} = (\nu(E_0)\cdot|I_\Lambda|)^{-1/d}$.

Empirical distribution of center spacing:

$$DCS(s; \Lambda, \omega) = \frac{\#\{j; \ (\nu(E_0)|I_\Lambda|)^{1/d} \min_{i \neq j} |x_j(\omega) - x_i(\omega)| \ge s\}}{\nu(E_0) \cdot |I_\Lambda| \cdot |\Lambda|}$$

Theorem

 ω -almost surely, the empirical distribution of localization center spacings $DCS(s; \Lambda, \omega)$ converges uniformly to the distribution $s \mapsto e^{-s^d}$ as $|\Lambda| \to +\infty$.

The other point of view:

Recall that N is the IDS of H_{ω} .

Proposition

Fix q > 2d and $\xi \in (0,1]$. Then, there exists $\gamma > 0$ such that, ω -almost surely, there exists $C_{\omega} > 1$ such that

• if $E \in I \cap \sigma(H_{\omega})$ and φ is a normalized eigenfunction associated to E then, for $x(E) \in \mathbb{R}^d$ a maximum of $x \mapsto \|\varphi\|_x$, one has, for $x \in \mathbb{R}^d$,

$$\|\boldsymbol{\varphi}\|_{x} \leq C_{\boldsymbol{\omega}} \langle x(E) \rangle^{q} e^{-\gamma |x-x(E)|^{\xi}}.$$

② if x(E) and x'(E) are two centers of localization for $E \in I$, then

$$|x(E) - x'(E)| \le \gamma^{-2} (\log \langle x(E) \rangle + \log C_{\omega})^{1/\xi}.$$

③ for $L \ge 1$, pick $I_L \subset I$ such that $|\Lambda_L|N(I_L) \to +\infty$; if $N(I_L, L)$ denotes the number of eigenvalues of $H_ω$ having a center of localization in Λ_L , then

$$N(I_L, L) = N(I_L) |\Lambda_L| (1 + o(1)).$$

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

15 / 19

For $L \ge 1$, pick $I_L \subset I$ such that $L^d v(I_L) \to +\infty$.

Consider the eigenvalues of H_{ω} having a localization center in Λ_L , say,

$$E_1(\boldsymbol{\omega},L) \leq E_2(\boldsymbol{\omega},L) \leq \cdots \leq E_N(\boldsymbol{\omega},L).$$

Consider the renormalized eigenvalue spacings, for $1 \le j \le N$,

$$\delta E_j(\boldsymbol{\omega}, L) = |\Lambda_L|(E_{j+1}(\boldsymbol{\omega}, L) - E_j(\boldsymbol{\omega}, L)) \ge 0.$$

Empirical distribution of spacing: for $x \ge 0$

$$DLS(x;I_L,\omega,L) = \frac{\#\{j; E_j(\omega,L) \in I_L, \delta E_j(\omega,L) \ge x\}}{N(I_L,L)}$$

Theorem

One has

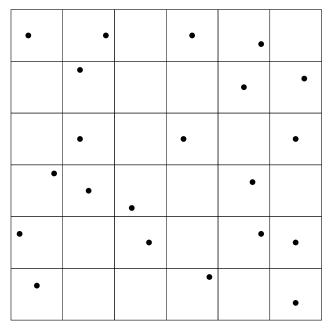
- if $E_0 \in I_L$ s.t. $v(E_0) > 0$ and $|I_L| \to 0$, then, ω -almost surely, $DLS(x; I_L, \omega, L)$ converges uniformly to $e^{-v(E_0)x} \mathbf{1}_{x>0}$;
- if, for all L large, $I_L = J$ such that N(J) > 0 and v is continuous on J then, ω -almost surely, $DLS(x; I_L, \omega, L)$ converges uniformly to $g_{v,J}(N(J)x)$.

UNIVERSITÉ PARIS 13

The main ideas of the proofs

Localized regime \Rightarrow e.v. depend only on local picture of potential \Rightarrow explicit description of the eigenvalues in I in terms of eigenvalues of smaller independent cubes.

- pick cube of size L
- the localization centers
- Cut large cube into smaller cubes of size ℓ
- Problems:
 - multiple centers in small cubes probability is small due to Minami's estimate: $\ell^{2d}|I|^2(L/\ell)^d = \ell^dL^d|I|^2$
 - centers not localized well in cube probability is small due to Wegner's estimate: $l \cdot L^{d-1} \cdot |I|$
- With good probability, this does not occur.



So with good probability, in *I*, e.v. of big cube given by e.v. of small cubes.

Germinet & Klopp (Cergy & Paris 13)

Spectral statistics in the localized regime

May 10, 2010

17 / 19

Following these ideas, we prove

Theorem

Pick α , β s.t. $1 > \alpha$ and $\beta - d/(d+2) = 2(\alpha - (d+1)/(d+2)) > 0$. Set $\ell = L^{\beta}$ and $\tilde{N} = N^{1-\beta}$. Set $N = L^d$ and $I_N^{\alpha} = [E_0 - N^{-\alpha}, E_0 + N^{-\alpha}] \subset I$.

There exists p > 0 such that, for N large enough, there exists a set of configurations \mathcal{Z}_N s.t.

- $\bullet \ \mathbb{P}(\mathscr{Z}_N) \geq 1 N^{-p},$
- for $\omega \in \mathscr{Z}_N$, each box $\Lambda_{\ell}(\gamma_i) := \gamma_i + [0, l]^d$ satisfies:
 - the Hamiltonian $H_{\omega}(\Lambda_{\ell}(\gamma_j))$ has at most one eigenvalue in I_N^{α} , say, $E_j(\omega, \Lambda_{\ell}(\gamma_j))$;
 - ② $\Lambda_{\ell}(\gamma_j)$ contains at most one center of localization, say $x_{k_j}(\omega, L)$, of an eigenvalue of $H_{\omega,L}$ in I_N^{α} , say $E_{k_i}(\omega, L)$;

Problem: for analysis, energy intervals have to be small.

On larger intervals, still possible but cannot control all eigenvalues.

Still enough for level spacings.

Theorem

Pick $\alpha = (\alpha_N)_N$ s.t. $\lim_N \alpha_N \searrow 0$. Set $\tilde{N} = n/\alpha_N$, $n = n'/\alpha_N$, $n' = (R \log N)^d$, with R large. Set $I_N^{\alpha} = [E_0 - i_n, E_0 + i_n] \subset I$ with $i_N = n^{1/d} \ge c(\log N)^{-d} \alpha_N^2$.

For any p > 0 and N large enough, there exists a set of configurations \mathcal{Z}_N so that

- $\bullet \ \mathbb{P}(\mathscr{Z}_N) \geq 1 N^{-p},$
- for all $\omega \in \mathcal{Z}_N$, there exists at least $\frac{N}{n}(1-o(1))$ disjoint boxes $\Lambda_{\ell}(\gamma_j)$ satisfying the properties described in the previous theorem.

