Universal asymptotic ergodicity of the unfolded eigenvalues and localization centers of random Hamiltonians in the localized regime

F. Klopp

Université Paris 13

March 7, 2011

1/20

March 7, 2011

Klopp (Paris 13)

Outline

- 1) The setting and the results
 - A prototypical example
 - The random model
 - Basic assumptions
 - The localized regime
 - Universal asymptotic ergodicity of the unfolded spectrum
 - Another point of view

2 Some ideas of the proofs

- Reduction to i.i.d. random variables
- Distribution of the "local" eigenvalues
- A large deviation principle for the eigenvalue counting function
- The proof of the asymptotic ergodicity

The prototypical example

On $\ell^2(\mathbb{Z}^d)$, consider the random Anderson model

$$H_{\omega} = -\Delta + \lambda V_{\omega}$$

where, for $u = (u_n)_{n \in \mathbb{Z}^d} \in \ell^2(\mathbb{Z}^d)$,

- $-\Delta$ is the free discrete Laplace operator $(-\Delta u)_n = \sum_{|m-n|=1} u_m;$
- V_ω is the random potential (V_ωu)_n = ω_nu_n; the random variables (ω_n)_{n∈Z^d} are i.i.d. with compactly supported bounded density, say g.

Let *N* be the integrated density of states of H_{ω} ; it is a probability distribution on the essential spectrum, say, Σ of H_{ω} .

For $L \in \mathbb{N}$, let $\Lambda = \Lambda_L = [0, L]^d$ be a large box and $H_{\omega}(\Lambda)$ be the operator H_{ω} restricted to Λ with periodic boundary conditions.

It is well known that, for λ large, the whole spectrum of H_{ω} is localized.

The talk is devoted to the description of various statistics of the eigenvalues and localization centers of H_{ω} .

Let us denote the eigenvalues of $H_{\omega}(\Lambda)$ ordered increasingly and repeated according to multiplicity by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_{|\Lambda|}(\omega, \Lambda)$.

Universal asymptotic ergodicity in the localized regir

Unfolded eigenvalues: $N(E_1(\omega, \Lambda)) \leq N(E_2(\omega, \Lambda)) \leq \cdots \leq N(E_{|\Lambda|}(\omega, \Lambda)) \leq \cdots$

For a fixed ω , consider the point process $\Xi(\omega, t, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{|\Lambda|[N(E_n(\omega, \Lambda)) - t]}$ under the uniform distribution in $t \in [0, 1]$.

Theorem (Kl. 10)

For sufficiently large coupling constant λ , ω -almost surely, when $|\Lambda| \to +\infty$, the probability law of the point process $\Xi(\omega, \cdot, \Lambda)$ under the uniform distribution $\mathbf{1}_{[0,1]}(t)$ dt converges to the law of the Poisson point process on the real line with intensity 1.

This result was conjectured by Minami (09): asymptotic ergodicity.

In dimension 1, Minami proved a weaker version, namely L^2 -convergence, using decorrelation estimates (Kl. 10). Rem.: $\lambda \neq 0$ can be arbitrary.

The universal joint statistics:

Klopp (Paris 13)

To each eigenvalue $E_n(\omega, \Lambda)$, one can associate a localization center, say, $x_n(\omega, \Lambda)$.

March 7, 2011

Fix an increasing sequence of scales $\ell = (\ell_{\Lambda})_{\Lambda}$ and $\Lambda = \Lambda_L$ such that

 $\ell_{\Lambda} \leq L$ and $\log L = o(\ell_{\Lambda})$.

such that the following limit exists $\lim_{L\to+\infty} L^{-1}\ell_{\Lambda} =: c \in [0,1].$

Let $g_E : [0,1] \to \mathbb{R}^+$ and $g_X : [0,1]^d \to \mathbb{R}^+$ be two probability densities. For a fixed configuration ω , consider the point process

$$\Xi_{\Lambda}^{2}(e,x;\ell,\boldsymbol{\omega}) = \sum_{j=1}^{N} \delta_{\ell_{\Lambda}^{d}[N(E_{j}(\boldsymbol{\omega},\Lambda))-e]} \otimes \delta_{(x_{j}(\boldsymbol{\omega},\Lambda)-Lx)/\ell_{\Lambda}}$$

under the distribution of density $g_E \otimes g_X$ over $\Lambda \times [0, 1]^{d+1}$.

Our main result on the Anderson model is

Theorem

For sufficiently large coupling constant λ , ω -almost surely, the probability law of the point process $\Xi^2_{\Lambda}(\cdot,\cdot;\ell,\omega)$ under the distribution $g_E \otimes g_X$ converges to the law of the Poisson point process with intensity 1 on $\mathbb{R} \times [-1/c, 1/c]^d$.

Universal asymptotic ergodicity in the localized regin

Implies the almost sure convergence of many statistics constructed from the eigenvalues and centers (Minami (09)), for example, the level spacings statistics.

The random model

Klopp (Paris 13)

Consider H_{ω} , a \mathbb{Z}^d -ergodic random operator on $\mathscr{H} = L^2(\mathbb{R}^d)$ or $\ell^2(\mathbb{Z}^d)$ i.e.

- for Ω, a probability space, ω ∈ Ω → H_ω is a weakly measurable family of self-adjoint operator on ℋ,
- there exists $(T_{\gamma})_{\gamma \in \mathbb{Z}^d}$, an ergodic group of probability preserving transformation on Ω s.t.

$$au_{\gamma}H_{\omega} au_{\gamma}^*=H_{T_{\gamma}\omega}$$

where $(\tau_{\gamma}u)(x) = u(x-\gamma)$ for $\gamma \in \mathbb{Z}^d$.

"Spectral" objects almost surely constant e.g. spectrum, a.c., s.c., p.p. spectra.

Two standard examples:

- The discrete Anderson model: on $\ell^2(\mathbb{Z}^d)$, $H_{\omega} = -\Delta + V_{\omega}$
 - $-\Delta$ discrete Laplacian,
 - V_{ω} diagonal matrix with i.i.d. entries with nice distribution.
- The continuous Anderson model: on $L^2(\mathbb{R}^d)$, $H_{\omega} = -\Delta + W + V_{\omega}$
 - $-\Delta$ Laplacian on \mathbb{R}^d and $W : \mathbb{R}^d \to \mathbb{R} \mathbb{Z}^d$ -periodic potential,

$$V_{\boldsymbol{\omega}} = \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} \omega_{\boldsymbol{\gamma}} u(\cdot - \boldsymbol{\gamma})$$

- * $(\omega_{\gamma})_{\gamma}$ i.i.d. random variables with nice distribution,
- \star *u* bounded with compact support and fixed sign.

March 7, 2011

Basic assumptions on the random model

Let Σ be the almost sure spectrum of H_{ω} .

Assume that H_{ω} admits an integrated density of states i.e.

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{e.v. of } H_{\omega}(\Lambda) \text{ less than } E\}}{|\Lambda|}$$

where $H_{\omega}(\Lambda)$ is the operator H_{ω} restricted to Λ (periodic BC).

We assume

(IAD) $H_{\omega}(\Lambda)$ and $H_{\omega}(\Lambda')$ are independent if $d(\Lambda,\Lambda') > R$.

Fix $I \subset \mathbb{R}$ a compact interval.

In *I*, we assume that H_{ω} satisfies a Wegner estimate i.e. for $J \subset I$,

(W) $\mathbb{P}(\{\operatorname{tr}(\mathbf{1}_J(H_{\boldsymbol{\omega}}(\Lambda))) \ge 1\}) \le C|J| |\Lambda|$

where $\mathbb{P}(\Omega)$ denotes the probability of the event Ω .

In *I*, N(E) dist. funct. of a.c. measure with bounded density v(E).

Known to hold for many models in particular for the Anderson models under mild regularity conditions on the random variables.

In *I*, we assume that H_{ω} satisfies a Minami estimate i.e. for some $\rho \in (0, 1]$ and any $J \subset I$,

(M) $\mathbb{P}(\{\operatorname{tr}(\mathbf{1}_J(H_{\omega}(\Lambda))) \geq 2\}) \leq C(|J| |\Lambda|)^{1+\rho}.$

This is known to hold for

- the discrete Anderson model under mild regularity assumptions on the r.v. (Minami, Bellissard et al., Graf et al., Combes-Germinet-Klein);
- the continuous Anderson model in the "Lifshitz tails" region (CGK);
- in dimension 1 in the localized regime once a Wegner estimate is known (Kl.).

The localized regime: Basic result in theory of RSO: there exists regions in the spectrum, typically the edges of the spectrum, where spectrum is p.p. and the eigenfunctions are exp. decaying.

We assume:

- for $\xi \in (0,1)$, for any p > 0, there exists q > 0 such that, for $L \ge 1$, with probability larger than $1 L^{-p}$, if
 - $\varphi_{n,\omega}$ is a normalized eigenvector of $H_{\omega}(\Lambda_L)$ associated to $E_{n,\omega} \in I$,
 - $x_n(\omega) \in \Lambda_L$ is a maximum of $x \mapsto \|\varphi_{n,\omega}\|_{x+C}$ on Λ_L

then, for $x \in \Lambda_L$, one has $\|\varphi_{n,\omega}\|_{x+C} \leq L^q e^{-|x-x_n(\omega)|^{\xi}}$.

FMM provides $\xi = 1$, MSA ξ arbitrarily close to 1.

The point process:

Fix J = [a,b] be a compact interval such that N(b) - N(a) =: N(J) > 0. Set $N_J(\cdot) := N(J)^{-1}[N(\cdot) - N(a)]$. Consider eigenvalues in J.

Unfolded eigenvalues: $N_J(E_n(\omega, \Lambda)) \le N_J(E_{n+1}(\omega, \Lambda)) \le \cdots \le N_J(E_m(\omega, \Lambda)) \le \cdots$ The localization centers: $x_n(\omega, \Lambda)$, $x_{n+1}(\omega, \Lambda)$, \cdots , $x_m(\omega, \Lambda)$, \cdots

Fix $\alpha > 1$ and an increasing sequence of scales $\ell = (\ell_{\Lambda})_{\Lambda}$ (recall $\Lambda = \Lambda_L$) such that

- $(\log L)^{\alpha} \leq \ell_{\Lambda} \leq L$,
- the following limit exists $\lim_{L\to+\infty} L^{-1}\ell_{\Lambda} =: c \in [0,1].$

Let $g_E : [0,1] \to \mathbb{R}^+$ and $g_X : [0,1]^d \to \mathbb{R}^+$ be two probability densities. For a fixed configuration ω , consider the point process

$$\Xi_{\Lambda}^{2}(e,x;\ell,\boldsymbol{\omega}) = \sum_{j=1}^{N} \delta_{N(J)\ell_{\Lambda}^{d}[N_{J}(E_{j}(\boldsymbol{\omega},\Lambda))-e]} \otimes \delta_{(x_{j}(\boldsymbol{\omega},\Lambda)-Lx)/\ell_{\Lambda}}$$

under the distribution of density $g_E \otimes g_X$ over $\Lambda \times [0,1]^{d+1}$.

9/20

March 7, 2011

March 7, 2011

10/20

Universal asymptotic ergodicity:

Klopp (Paris 13)

Theorem

Assume (IAD), (W), (M) and (Loc) hold. Assume that $J \subset I$, the localization region, that N(J) > 0.

Then, ω -almost surely, the probability law of the point process $\Xi^2_{\Lambda}(\cdot, \cdot; \ell, \omega)$ under the distribution $g_E \otimes g_X$ converges to the law of the Poisson point process with intensity 1 on $\mathbb{R} \times [-1/c, 1/c]^d$.

Statistics of the eigenvalues and localization centers:

Theorem

Assume (IAD), (W), (M) and (Loc) hold. Assume that $J = [a,b] \subset I$ is a compact interval in the localization region satisfying N(J) > 0. Define

- the probability density $v_J := \frac{1}{N(J)} v(E) \mathbf{1}_J(E)$ where $v = \frac{dN}{dE}$;
- the point process $\tilde{\Xi}_J^2(E, x; \omega, \ell, \Lambda) = \sum_{E_n(\omega, \Lambda) \in J} \delta_{v(E)\ell_{\Lambda}^d[E_n(\omega, \Lambda) E]} \otimes \delta_{(x_j(\omega, \Lambda) Lx)/\ell_{\Lambda}}$.

Then, ω -almost surely, the law of the point process $\tilde{\Xi}_J^2(\cdot, \cdot; \omega, \ell, \Lambda)$ under $v_J \otimes g_X$ converges to the law of the Poisson point process with intensity 1 on $\mathbb{R} \times [-1/c, 1/c]^d$.

Previous results

Minami (09): L^2 convergence in dimension 1. Local level statistics: Renormalized local levels near E_0 :

$$\xi_j(E_0,\boldsymbol{\omega},\boldsymbol{\Lambda}) = |\boldsymbol{\Lambda}|\boldsymbol{\nu}(E_0)(E_j(\boldsymbol{\omega},\boldsymbol{\Lambda}) - E_0).$$

Processes:

• $\Xi_{loc}(\xi, E_0, \omega, \Lambda) = \sum \delta_{\xi_j(E_0, \omega, \Lambda)}(\xi),$ • $\Xi^2_{loc}(\xi, x, E_0, \omega, \Lambda) = \sum \delta_{\xi_j(E_0, \omega, \Lambda)}(\xi) \otimes \delta_{x_j(E_0, \omega, \Lambda)/L}(x).$ Results: weak convergence to Poisson. Assume $v(E_0) > 0$: Molchanov (81), Minami (96), Combes-Germinet-Klein (09), Nakano (07), Nakano-Killip (07). Unfolded levels (allows for $v(E_0) = 0$): Germinet-Kl. (10).

Level spacings statistics: Let $(E_j(\Lambda, \omega))_j$ be eigenvalues ordered increasingly; renormalized eigenvalue spacings

$$\delta N_j(\Lambda, \boldsymbol{\omega}) = |\Lambda|(N(E_{j+1}(\Lambda, \boldsymbol{\omega})) - N(E_j(\Lambda, \boldsymbol{\omega}))) \ge 0.$$

Renormalized eigenvalue spacings distribution:

$$DLS(x;\Lambda,\omega) = \frac{\#\{j; \ \delta N_j(\Lambda,\omega) \ge x\}}{N}$$

Results: convergence to $x \mapsto e^{-x}$ (Germinet-K1. (10)). Universal asymptotic ergodicity in the localized regime

March 7, 2011 11 / 20

Another point of view:

Klopp (Paris 13)

Consider the random operator H_{ω} on the whole space.

Pick J an interval where the Hamiltonian H_{ω} satisfies (Loc).

Implies that, ω -as, the spectrum in *J* is made only of eigenvalues associated to eigenfunctions that fall off exponentially.

Assume $\Sigma \cap J = J$.

Proposition (Ge-Kl:10)

Assume (IAD), (M), (W) and (Loc). With probability 1, if $E \in J$ and φ is a normalized eigenfunction associated to E then, for some $x(E, \omega) \in \mathbb{R}^d$ (or \mathbb{Z}^d), a maximum of $x \mapsto \|\varphi\|_x$, for some $C_{\omega} > 0$, one has, for $x \in \mathbb{R}^d$,

$$\|\varphi\|_{x} \leq C_{\omega}(1+|x(E,\omega)|^{2})^{q/2}e^{-\gamma|x-x(E,\omega)|^{\xi}}$$

Moreover, if N(J,L) denotes the number of eigenvalues of H_{ω} having a center of localization in Λ_L , then

$$N(J,L) = N(J) \left| \Lambda_L \right| (1 + o(1)).$$

UNIVERSITÉ PARIS 13

Enumerate the finitely many eigenvalues of H_{ω} in J with localization center in Λ_L : $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_n(\omega, \Lambda).$

Pick the scale $(\ell_\Lambda)_\Lambda$ as above and define

$$\Xi^2_{\Lambda}(e,x;\ell,\boldsymbol{\omega}) = \sum \delta_{N(J)\ell^d_{\Lambda}[N_J(E_j(\boldsymbol{\omega},\Lambda))-e]} \otimes \delta_{(x_j(\boldsymbol{\omega},\Lambda)-Lx)/\ell_{\Lambda}}.$$

Theorem

Assume (IAD), (W), (M) and (Loc) hold on J s.t. N(J) > 0. Then, ω -almost surely, the law of the point process $\Xi_J^2(\cdot, \cdot; \omega, \ell, \Lambda)$ under the law $g_E \otimes g_X$ converges to the law of the Poisson point process with intensity 1 on $\mathbb{R} \times [-1/c, 1/c]^d$.

Results that are local in energy:

One can prove analogues of these results if *J* is replaced with J_{Λ} such that, for some $\tilde{\rho} > 0$ small enough,

(1) $|J_{\Lambda}| \to 0$, (2) $N(J_{\Lambda})|\Lambda| \to +\infty$, (3) $N(J_{\Lambda})|J_{\Lambda}|^{-1-\tilde{\rho}} \to +\infty$.

Universal asymptotic ergodicity in the localized regime

- (1) describes the local character;
- (2) guarantees that the interval contains asymptotically infinitely many eigenvalues;
- (3) is imposed by the Minami estimate.

Reduction to i.i.d. random variables

Localized regime \Rightarrow e.v. depend only on local picture of potential \Rightarrow explicit description of the eigenvalues in *I* in terms of eigenvalues of smaller independent cubes.

- pick cube of size L
- the localization centers

Klopp (Paris 13)

- Cut large cube into smaller cubes of size ℓ
- Problems:
 - ► multiple centers in small cubes probability is small due to Minami's estimate: l^{2d}|I|²(L/ℓ)^d = l^dL^d|I|²
 - ► centers not localized well in cube probability is small due to Wegner's estimate: l · L^{d-1} · |I|
- With good probability, this does not occur.

So with good probability, in *I*, e.v. of big cube given by e.v. of small cubes.

March 7, 2011

Theorem (Ge-Kl:10)

Pick $\alpha = (\alpha_N)_N$ s.t. $\lim_N \alpha_N \searrow 0$. Set $\tilde{N} = n/\alpha_N$, $n = n'/\alpha_N$, $n' = (R \log N)^d$, with R large. Set $I_N^{\alpha} = [a_n, b_n] \subset I$ with $b_N - a_N = n^{1/d} \ge c(\log N)^{-d} \alpha_N^2$.

- For any p > 0 and N large enough, there exists a set of configurations \mathscr{Z}_N so that • $\mathbb{P}(\mathscr{Z}_N) \ge 1 - N^{-p}$,
 - for $\omega \in \mathscr{Z}_N$, there exists at least $\frac{N}{n}(1-o(1))$ disjoint boxes $\Lambda_{\ell}(\gamma_j)$ satisfying the properties:
 - the Hamiltonian $H_{\omega}(\Lambda_{\ell}(\gamma_j))$ has at most one eigenvalue in I_N^{α} , say, $E_j(\omega, \Lambda_{\ell}(\gamma_j))$;
 - Λ_ℓ(γ_j) contains at most one center of localization, say x_{k_j}(ω,L), of an eigenvalue of H_{ω,L} in I^α_N, say E_{k_i}(ω,L);

• $\Lambda_{\ell}(\gamma_j)$ contains a center $x_{k_j}(\omega, L)$ if and only if $\sigma(H_{\omega}(\Lambda_{\ell}(\gamma_j))) \cap I_N^{\alpha} \neq \emptyset$;

then,
$$|E_{k_i}(\omega, L) - E_j(\omega, \Lambda_\ell(\gamma_j))| = O(L^{-\infty})$$
 and $dist(x_{k_i}(\omega, L), \Lambda_L \setminus \Lambda_\ell(\gamma_j)) \ge L^p$.

Universal asymptotic ergodicity in the localized regime

Distribution of the "local" eigenvalues

Pick $1 \ll \ell' \ll \ell$. Consider $\Lambda = \Lambda_{\ell}$. Pick an interval $I_{\Lambda} = [a_{\Lambda}, b_{\Lambda}] \subset I$ Consider the following random variables:

• $X = X(\Lambda, I_{\Lambda})$ is the Bernoulli random variable

 $X = \mathbf{1}_{H_{\omega}(\Lambda)}$ has exactly one eigenvalue in I_{Λ} with localization center in $\Lambda_{\ell-\ell'}$

• $\tilde{E} = \tilde{E}(\Lambda, I_{\Lambda})$ is this eigenvalue conditioned on X = 1. Let $\tilde{\Xi}$ be the distribution function of \tilde{E} .

Lemma (Ge-Kl:10)

Assume (W), (M) and (Loc) hold. For $v \in (0, 1/d)$, one has

$$\begin{aligned} |\mathbb{P}(X=1) - N(I_{\Lambda})|\Lambda|| \\ &\leq C\left(|\Lambda|^{1+\rho}|I_{\Lambda}|^{1+\rho} + |I_{\Lambda}|^{-C}e^{-\ell^{\nu}/C} + N(I_{\Lambda})|\Lambda|\ell'\ell^{-1} + \ell^{d}e^{-(\ell')^{\nu}}\right) \end{aligned}$$

Set
$$N(x,y) := (N(a_{\Lambda} + x|I_{\Lambda}|) - N(a_{\Lambda} + y|I_{\Lambda}|))|\Lambda|$$
. For $(x,y) \in [0,1]^2$, one has

$$\begin{aligned} & \left| (\tilde{\Xi}(x) - \tilde{\Xi}(y)) P(X = 1) - N(x, y, \Lambda) \right| \\ & \leq C \left(|x - y|^{1 + \rho} |\Lambda|^{1 + \rho} |I_{\Lambda}|^{1 + \rho} + (|I_{\Lambda}| |x - y|)^{-C} e^{-\ell^{\nu}/C} + N(x, y, \Lambda) \ell' \ell^{-1} + \ell^{d} e^{-(\ell')^{\nu}} \right). \end{aligned}$$

March 7, 2011

$$N(I_{\Lambda}, \Lambda, \omega) := \#\{j; E_j(\omega, \Lambda) \in I_{\Lambda}\}.$$

Write $I_{\Lambda} = [a_{\Lambda}, b_{\Lambda}]$ and recall that $N(I_{\Lambda}) = N(b_{\Lambda}) - N(a_{\Lambda})$ where *N* is the integrated density of states.

Theorem (Ge-Kl:10)

Assume (IAD), (W), (M) and (Loc) hold. Assume that $(I_{\Lambda})_{\Lambda}$ is a sequence of compact intervals in the localization region I such that

- for some $v \in (0,1)$, one has $N(I_{\Lambda})|\Lambda|^{1-\nu} \to +\infty$,
- $N(I_{\Lambda})|I_{\Lambda}|^{-1-\rho} \to +\infty$ as $|\Lambda| \to +\infty$ where ρ is defined in Assumption (M).

Then, there exists $\delta > 0$ such that, for $|\Lambda|$ sufficiently large, one has

$$\mathbb{P}\left(N(I_{\Lambda},\Lambda,\omega)-N(I_{\Lambda})|\Lambda|=o(N(I_{\Lambda})|\Lambda|)\right)\geq 1-e^{-(N(I_{\Lambda})|\Lambda|)^{o}}.$$

Universal asymptotic ergodicity in the localized regime

The proof of the asymptotic ergodicity

It suffices to prove that, for $\varphi : \mathbb{R} \to \mathbb{R}^+$ continuous and compactly supported, if one sets

$$\mathscr{L}_{\omega,\Lambda}(\varphi) := \mathscr{L}_{\omega,J,\Lambda} := \int_0^1 e^{-\langle \Xi(\omega,t,\Lambda),\varphi \rangle} dt$$

and

$$\langle \Xi(\boldsymbol{\omega},t,\Lambda),\boldsymbol{\varphi}\rangle := \sum_{E_n(\boldsymbol{\omega},\Lambda)\in J} \boldsymbol{\varphi}(|\Lambda|[N(E_n(\boldsymbol{\omega},\Lambda))-t)])$$

then, ω -almost surely,

$$\mathscr{L}_{\boldsymbol{\omega},\Lambda}(\boldsymbol{\varphi}) \underset{|\Lambda| \to +\infty}{\to} \exp\left(-\int_{-\infty}^{+\infty} \left(1 - e^{-\boldsymbol{\varphi}(x)}\right) dx\right).$$

Basic idea: split $[0,1] = \bigcup_n N(I_{n,\Lambda})$ where $I_{n,\Lambda}$ are intervals satisfying

• $I_{n,\Lambda}$ are small enough so that one can apply the reduction theorem;

• $I_{n,\Lambda}$ are large enough so that there are not too many of them.

One computes

$$\int_0^1 e^{-\langle \Xi(\omega,t,\Lambda),\varphi\rangle} dt = \sum_n N(I_{n,\Lambda}) \int_0^1 e^{-\langle \Xi_{I_{n,\Lambda}}(\omega,t,\Lambda),\varphi\rangle} dt.$$

March 7, 2011

We are left with analyzing $\int_0^1 e^{-\langle \Xi_{I_{m,\Lambda}}(\omega,t,\Lambda), \varphi \rangle} dt$ where

$$\langle \Xi_{I_{m,\Lambda}}(\boldsymbol{\omega},t,\Lambda),\boldsymbol{\varphi}\rangle = \sum_{E_n(\boldsymbol{\omega},\Lambda)\in I_{m,\Lambda}} \boldsymbol{\varphi}(N(I_{m,\Lambda})|\Lambda|[N_{I_{m,\Lambda}}(E_n(\boldsymbol{\omega},\Lambda))-t]).$$

Want to replace $E_n(\omega, \Lambda)$ with "local" eigenvalues.

- Pb.: this does not control all eigenvalues;
- Sol.: integral in *t* enables cutting off ngbhd of uncontrolled eigenvalues.
- Pb.: $N(I_{m,\Lambda})$ is not the number of eigenvalues in $I_{m,\Lambda}$ of the "local" random operator;
- Sol.: close by large deviation estimate.
- Pb.: $N_{I_{m,\Lambda}}$ is not the distribution function of the "local" eigenvalues;
- Sol.: close by lemma on their distribution.

Happy 65th, Jean!!!

