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Introduction: the Anderson model

On `2(Zd), consider the standard Anderson model

Hω =−∆+Vω where Vω = ∑
γ∈Z

ωγ Πγ and Πγ = |δγ〉〈δγ |.

Basic feature: for any γ , the map ωγ 7→ Hω is monotonous.
Instrumental in the study of Anderson model:

determine the almost sure spectrum;
obtain a Wegner estimate estimate i.e. study the local fluctuations of the eigenva-
lues for a finite volume restriction;
establish Lifshitz tails i.e. study the band edge behavior of integrated density of
states or the probability of “extremal” energies.

Consider now e.g. the alloy type model for d ≥ 2

Vω = ∑
γ∈2Zd

ωγ(Πγ −Πγ+e1).

Many natural models are non monotonous.
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The alloy type model

On Rd, consider the standard continuous alloy type (or Anderson) model

Hω =−∆+Vω where Vω(x) = W(x)+ ∑
γ∈Zd

ωγ V(x− γ)

where
W : Rd→ R is continuous, non identically vanishing, real valued and
Zd-periodic;
V : Rd→ R is continuous, non identically vanishing, real valued and compactly
supported;
(ωγ)γ are i.i.d. random variables distributed in [a,b], a and b in the support.

Hω is self-adjoint on H2(Rd). It is a metrically transitive family of operators.

Hence, it admits an almost sure spectrum, say, Σ and an integrated density of states,
say, E 7→ N(E). Let E− = inf(Σ).

The model is non monotonous if V changes sign i.e. we assume
H1 there exists x+ 6= x− such that V(x−) ·V(x+) < 0.
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The Wegner estimate

Consider HL
ω the (2L+1)Zd-periodic operator

HL
ω =−∆+W + ∑

β∈(2L+1)Zd
∑

γ∈Zd/(2L+1)Zd

ωγ V(·− γ−β )

on the cube CL = [−L−1/2,L+1/2]d with periodic boundary conditions.

A Wegner estimate is an estimate of the type

P({HL
ω has an eigenvalue in [E0− ε,E0 + ε]})≤ CLa

ε
b.

Ε−ε Ε+ε

Ε

0 0

j (ω)

The basic idea: such an estimate measures
the fluctuation of the eigenvalues of HL

ω as
functions of ω .

Much simpler if this dependence is
monotonous.

Klopp (Paris 13) Non monotonous random Schrödinger operators RSO - 22/04/2009 5 / 20

Theorem (Kl. 1995, Hislop-Kl.2002)
Assume that the distribution of ω0 conditioned on (ωγ)γ 6=0 is sufficiently regular.
Then, for E0 < infσ(−∆+W)) and ν ∈ (0,1), there exists C > 0 such that

P({HL
ω has an eigenvalue in [E0− ε,E0 + ε]})≤ CLd

ε
ν . (2.1)

The case of small perturbations in gaps of σ(−∆+W):
Let now Hω =−∆+W +λVω .

Theorem (Hislop-Kl.2002)
Assume that the distribution of ω0 conditioned on (ωγ)γ 6=0 is sufficiently regular.
Let (a,b) be a connected component of R\σ(−∆+W). Then, for any η > 0, for λ

sufficiently small, there exists C > 0 such that (2.1) holds for E0 ∈ [a+ηλ ,b−ηλ ].

Special structure of the single site potential : reduce the problem to a monotonous
problem but with dependent random variables (see e.g. Veselic 2002):

V(·) = ∑
γ

αγ v(·− γ)⇒ Vω(·) = ∑
β

ω̃β v(·−β ), ω̃β = ∑
γ

αγ ωγ−β .

Open problems:
what happens at high energies?
what happens for perturbations that are not small?
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Lifshitz tails:

Let C0 = [−1/2,1/2]d. We need one more assumption:

H2 V is supported in
·

C0 and reflection symmetric i.e. for any
σ = (σ1, . . . ,σd) ∈ {0,1}d and any x = (x1, . . . ,xd) ∈ Rd, one has

V(x1, . . . ,xd) = V((−1)σ1x1, . . . ,(−1)σd xd).

The bottom of the spectrum:

Consider the operator HN
λ

=−∆+λV with Neumann b.c. on C0.

Its spectrum is discrete and let E−(λ ) be its ground state energy.

It is a simple eigenvalue and λ 7→ E−(λ ) is a real analytic concave function.

Proposition
One has E− = inf(infσ(Ha), infσ(Hb)) = inf(E−(a),E−(b)).

If a and b sufficiently small, Najar proved proposition without H2 but assuming∫
Rd V(x)dx = E′−(0) 6= 0.
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Lifshitz tails : when E−(a) 6= E−(b)

Theorem (Kl.-Nakamura 2008)

Assume E−(a) 6= E−(b). Then limsup
E→E+

−

log | logN(E)|
log(E−E−)

≤−d
2

.

Lifshitz tails : when E−(a) = E−(b)

Theorem (Kl.-Nakamura 2009)
Assume H1 and H2 and E−(a) = E−(b) . Then,

1 If P(ω0 = a)+P(ω0 = b) < 1, then limsup
E→E+

−

log | logN(E)|
log(E−E−)

≤−1
2

.

2 If P(ω0 = a)+P(ω0 = b) = 1, there exists potentials V satisfying assumption H1

and H2 such that E−(a) = E−(b) and
1
C
≤ N(E)(E−E−)−d/2 ≤ C.

Open problems:
What happens without the symmetry assumptions H2?

Conjecture: Lifshitz tails (i.e. exponential decay of the IDS at the bottom
of the spectrum) hold if random variables are not Bernoulli distributed.
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Generalized alloy type models
On L2(Rd), consider Hω =−∆+W +Vω where Vω(x) = ∑

γ∈Zd

vω(γ)(x− γ) and

(ωγ)γ∈Zd are i.i.d. random variables with values in {1, . . . ,M}.
On L2(C0), define HN

k =−∆+W + vk with Neumann b.c.
We assume
A1 W is symmetric about the plane {xd = 0}.
A2 There exists m ∈ {1, . . . ,M} such that infσ(HN

k ) = 0 for k = 1, . . . ,m, and
infσ(HN

k ) > 0 for k > m.
A3 Moreover, for k = 1, . . . ,m, vk(x) is symmetric about {xd = 0}.

Theorem (Kl.-Nakamura 2009)

Suppose Assumption A with m < M. Then, limsup
E→+0

log | logN(E)|
logE

≤−1
2

.

Let (e1, · · · ,ed) be the standard basis of Rd and define Uj = C0∪ (ej +C0).
Define

B In addition to satisfying Assumption A, W and vk are symmetric
about {xj = 0} for all j = 1, . . . ,d, and k = 1, . . . ,m = M.
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On Uj, with Neumann b.c., define the operator

HN
k`(j) =

{
−∆+W(x)+ vk(x) on C0

−∆+W(x)+ v`(x− ej) on ej +C0

We define vk ∼
j

v` if and only if infσ(HN
k`(j)) = 0.

Theorem (Kl.-Nakamura 2009)
Suppose Assumption A with m = M. Suppose moreover that vk 6∼

d
v` for some k 6= `.

Then, limsup
E→+0

log | logN(E)|
logE

≤−1
2

.

Theorem (Kl.-Nakamura 2009)
Suppose Assumption B. Then

1 If vk 6∼
j

v` for some j and k 6= `, then limsup
E→+0

log | logN(E)|
logE

≤−1
2

.

2 If vk ∼
j

v` for all j and k, `, then
1
C
≤ N(E)E−d/2 ≤ C for some C > 0.
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The random displacement model
Consider Hω =−∆+Vω where Vω(x) = ∑

γ∈Zd

V(x− γ−ξγ) and

V : Rd→ R is continuous, non identically vanishing and
supported in (−r,r)d, 0 < r < 1/2 and satisfies H2;
(ξγ)γ are independent identically distributed (i.i.d.) random
variables distributed in {−1/2+ r,1/2− r}d such that all
these points have a positive probability;

For ξ ∈ {−1/2+ r,1/2− r}d, we define Hξ =−∆+V(x−ξ )
on C0 with Neumann b.c. All the (Hξ )ξ have the same ground
state energy, say 0.

Theorem (Baker-Loss-Stolz 2008, 2009)
If there exists ξ1,2 and j such that Hξ1

6∼
j

Hξ2
, then the minimizing configurations are

given by a symmetric ”clusterization”, and they are the only ones.
If, for all ξ1, ξ2 and j, one has Hξ1

∼
j

Hξ2
, then all the configurationhave the same

ground state energy 0.
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Theorem (Baker-Loss-Stolz 2009)
If d = 1, then, for some c > 0, when E→+0, one has N(E)≥ c log−2(E).

Theorem (Kl.-Nakamura 2009)
Let d ≥ 2 and N(E) denote the IDS of Hω .

1 If there exists ξ1,2 and j such that Hξ1
6∼
j

Hξ2
then, limsup

E→+0

log | logN(E)|
log(E)

≤−1
2

;

2 If, for all ξ1, ξ2 and j, one has Hξ1
∼
j

Hξ2
, then N(E)≥ cEd/2.

Wegner estimates: No results for this model!
Consider Hω,λ =−∆+λVω for Vω(x) displacement model as above where V need
not satisfy the symmetry assumption, is assumed to be smooth, non positive and to
have a single global minimum that is non degenerate.

Theorem (Kl. 1993)
Hω,λ admit a Wegner estimate near the bottom of its spectrum.

Obtained through analysis of the tunnel effect.
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Small random displacements:
Consider Hλ ,ξ =−∆+W +Vξ where Vξ (x) = ∑γ∈Zd V(x− γ−λξγ) where

the potential W is a real valued, Zd-periodic function;
V : Rd→ R is C2, non identically vanishing and compactly supported;
(ξγ)γ is a collection of non trivial, independent, identically distributed, bounded
random variables; let K be the support of their common distribution.
λ is a small positive coupling constant.

Define Hλ ,ξ ,n =−∆+W(·)+ ∑
β∈(2n+1)Zd

∑
γ∈Zd/(2n+1)Zd

V(·−β − γ−λξγ).

Let HP
λ ,ξ ,n be the restriction of Hλ ,ξ ,n to the cube Cn = [−n−1/2,n+1/2]d with

periodic boundary conditions.
Define Hζ = H

λ ,ζ =−∆+W(·)+ ∑
γ∈Zd

V(·− γ−λζ ).

Assume that
H1 there exits λ0 > 0 such that, for λ ∈ (0,λ0), there exists a unique point in K, say,

ζ (λ ), so that E(λ ,ζ (λ )) = min
ζ∈K

E(λ ,ζ );

H2 there exists α0 > 0 such that, for λ ∈ (0,λ0) and ζ ∈ K, one has

∇ζ E(λ ,ζ (λ )) · (ζ −ζ (λ ))≥ α0 λ |ζ −ζ (λ )|2.
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Theorem (Ghribi-Kl. 2009)
Under assumption H1 and H2, there exists λ0 > 0 such that, for any n≥ 0, for
λ ∈ (0,λ0], on K(2n+1)d

, the function ξ 7→ En
0(λξ ) reaches its infimum E(λ ,ζ (λ )) at

a single point, the point ξ = (ζ (λ ))
γ∈Zd/(2n+1)Zd .

So Eλ = inf(σ(Hλ ,ω)) = E(λ ,ζ (λ )).

The minimum is reached at a single point like in the monotonous case.

Lifshitz tails for small displacements:

Theorem
Under assumptions H1 and H2, there exists λ0 > 0 such that, for all λ ∈]0,λ0],

lim
E→Eλ

log | log(Nλ (E)−Nλ (Eλ )|
log(E−Eλ )

≤−d
2
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Wegner estimates for small displacements:
Assume

H3 There exists C > 0 such that, for λ sufficiently small, one
has Eλ ≤ E0−λ/C.

Clearly, the first theorem on the small displacement shows that
this assumption is a consequence of assumption H1.
Assume
H4 for almost all σ ∈ Sd−1, the distribution of rσ (ξ0) admits a

density with respect to the Lebesgue measure, say, hσ that
itself is absolutely continuous; moreover, one has

ess-sup
σ∈Sd−1

‖h′σ‖∞ < +∞.

K

K

Theorem (Hislop-Kl. 2002, Ghribi-Kl. 2009)
Fix ν ∈ (0,1). Under assumptions H3 and H4, there exists λ0 > O such that, for
λ ∈ (0,λ0], there exists Cλ > 0 such that, for all E ∈ [Eλ ,Eλ +λ/C] and ε > 0,

P(dist(σ(HP
λ ,ξ ,n),E)≤ ε)≤ Cλ ε

ν nd.
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The validity of assumption H1 and H2:

Let E0 be the infimum of σ(Hλ ,0) and ϕ0 be the positive normalized ground state of
the periodic b.c. operator Hλ ,0 considered on C0.

Proposition (Ghribi-Kl. 2009)
Assume that K is a strictly convex set with C2-boundary and V

be such that v(V) :=−
∫

Rd
∇V(x)|ϕ0(x)|2dx 6= 0.

Then, assumption H1 is satisfied. K

Non vanishing condition satisfied for small generic V .

Proposition (Ghribi-Kl. 2009)

Assume that v(V) 6= 0 and that there exists ε > 0 and ζ0 ∈ K, such
that, for all ζ ∈ K and |v− v(V)|< ε , one has v · (ζ −ζ0)≥ 0.

Then, assumption H1 is satisfied, and, for λ small, ζ (λ ) = ζ0.

K

ζ
0

v(V)
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Random magnetic fields:

Let x ∈ Rd 7→ Aω(x) be a random vector field and, on L2(Rd), consider

Hω = (i∇−Aω)2.

Assume that
Bω = d Aω is a Rd-ergodic closed 2-form;
Bω is almost surely bounded;
Bω(x)1x∈Λ and Bω(x)1x∈Λ′ satisfy a decorrelation condition when d(Λ,Λ′)
grows.

Theorem (Nakamura 2000)
Then, the integrated density of states exhibits Lifshitz tails at 0.

No Wegner estimate known for such operators.

Also results by Ueki, Leschke, Warzel, Weichlein (continuous) and, in the discrete
case, by Nakamura and Kl.-Nakamura-Nakano-Nomura.
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Small random magnetic potential:
On Rd, consider Hλ ,ω = (i∇+A0 +λAω)2 +V0 where

A0 and V0 are smooth and Zd-periodic,
Aω(x) = ∑

γ∈Zd

ωγ a(x− γ),

the single-site vector potential a is a real, smooth, vector-valued function of
compact support,
the (ωγ)γ are bounded i.i.d. random variables with a smooth density,
λ is a small real parameter.

We assume that H0 = H0,ω has an internal gap that is

σ(H0)∩ (E−1,E1) = (E−1,E−]∪ [E+,E1), E−1 < E− < E+ < E1.
Assume
H1 The edge of the spectrum E+ is simple i.e. it is attained by a single Floquet

eigenvalue En0(θ).
H2 The IDS N0(E) of H0 at E+ is non degenerate that is

lim
ε→0+

ε
−1 log(N0(E+ + ε)−N0(E+)) =

d
2
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An assumption to control local behavior of eigenvalues:
H3 The matrix M ≡ (Mkk′)1≤k,k′≤m, with matrix elements given by

Mkk′ =
∫

C0

[(a(x) · i∇+ i∇ ·a(x)+2a(x) ·A0)φ0,n0 ](θk,x)φ0,n0(θk′ ,x) dx

is either positive or negative definite.
Let (E−,E−(λ ))∪ (E+(λ ),E+) = σ(Hλ ,ω)∩ (E−,E+).

Theorem (Ghribi 2007)
Under the assumptions given above, there exists λ0 > 0 and C > 0 so that, for all
λ ∈ [0,λ0], one has E+−Cλ ≤ E+(λ )≤ E+−λ/C and

lim
E→E+(λ )+

log | log(Nλ (E)−Nλ (E+(λ )))|
log(E−E+(λ ))

=−d
2
.

A similar statement holds at the lower band edge E−(λ ).
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For G = (E−,E+), a gap in σ(H0) and η0 > 0, let Gη0(λ ) = (E−+η0λ ,E+−η0λ )

Theorem (Hislop-Kl. 2002, Ghribi-Hislop-Kl. 2007)
Fix q > 1. Under the assumptions stated above, there exists λ0 > 0, η0 > 0 and C0 > 0
such that, for all |λ |< λ0, η ∈ (0,η0), E0 ∈ G2η(λ ), n≥ 1 and δ ∈ (0,ηλ ), one has

P{ dist (σ(HP
λ ,ω,n),E0)≤ δ} ≤ Cη λ

−1
δ

1/qnd

where HP
λ ,ω,n is the operator (i∇+A0 +λAn

ω)2 +V0 restricted to Cn with periodic b.c.
and

An
ω(·) = ∑

β∈(2n+1)Zd
∑

γ∈Zd/(2n+1)Zd

ωγ a(·− γ−β ).

One then obtains localization at the edge of the spectrum.

Related results by Ueki (2008).

Open problems:
What happens when the random magnetic potentials are not small?
What happens for non zero flux random magnetic operators?
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