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Two examples
Consider

the Anderson model

HA
ω =− d2

dx2 +W(·)+ ∑
n∈Z

ωnV(·−n)
where

I W : R→ R is a bounded, continuous, Z-periodic function;
I V : R→ R is a bounded, continuous, compactly supported, non negative, not

identically vanishing function;
I (ωn)n∈Z are bounded i.i.d random variables, the common distribution of which

admits a continuous density.

the random displacement model

HD
ω =− d2

dx2 + ∑
n∈Z

V(·−n−ωn) (1.1)
where

I V : R→ R is a bounded, odd function that has a fixed sign and is compactly
supported in (−r0,r0) for some 0 < r0 < 1/2;

I (ωn)n∈Z are bounded i.i.d random variables, the common distribution of which
admits a continuously differentiable density supported in
[−r,r]⊂ [−1/2+ r0,1/2− r0] and which support contains {−r,r}.
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Let • ∈ {A,D}. Consider H•
ω,L := (H•ω)|[−L,L].

The spectrum of this operator is discrete and accumulates at +∞; denote it by

E•1(ω,L)< E•2(ω,L)≤ ·· · ≤ E•n(ω,L)≤ ·· ·

ω almost surely, the integrated density of states is defined as

N•(E) = lim
L→+∞

#{n; E•n(ω,L)≤ E}
2L

.

There exists Ẽ• ∈ (infΣ•,+∞] such that N• is Lipschitz continuous on (−∞, Ẽ•)
([CHKl 07], [KlLNS 10]).

The unfolded levels: Fix E0. Define the locally unfolded levels as

ξ
•
n (E0,ω,L) = 2L [N•(E•n(ω,L))−N•(E0)].

Define the point process

Ξ
•(ξ ;E0,ω,L) = ∑

n≥1
δξ •n (E0,ω,L)(ξ ),
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The local level statistics

Theorem
There exists an energy infΣ• < E• ≤ Ẽ• and such that, if E0 ∈ (−∞,E•)∩Σ• satisfies,
for some ρ ∈ [1,4/3), one has

∀a > b, ∃C > 0, ∃ε0 > 0,∀ε ∈ (0,ε0), |N•(E0 +aε)−N•(E0 +bε)| ≥ Cε
ρ (1.2)

then, when L→+∞, the point process Ξ(E0,ω,L) converges weakly to a Poisson
process on R with intensity the Lebesgue measure.

If E 7→ N(E) is differentiable at E0 and dN/dE(E0)> 0, then (1.2) is satisfied.

What about E•?
E• such that

H•ω localized in (−∞,E•];
H•ω satisfies a Wegner estimate in (−∞,E•].

Thus, EA =+∞ and ED > infΣD.
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More results on spectral statistics:

For J = [a,b], a compact interval s.t. N•(J) := N•(b)−N•(a)> 0 and a fixed
configuration ω , consider the point process

Ξ
•
J(ω, t,Λ) = ∑

E•n(ω,Λ)∈J
δN•(J)|Λ|[N•J (E•n(ω,Λ))−t]

under the uniform distribution in [0,1] in t; here, we have set

N•J (·) :=
N•(·)−N•(a)
N•(b)−N•(a)

.

The values (N•(E•n(ω,L)))n≥1 are called the unfolded eigenvalues of the operator
H•

ω,L.

Theorem
Fix J = [a,b]⊂ (−∞,E•)∩Σ• a compact interval such that
N•(b)−N•(a) = N•(J)> 0. Then, ω-almost surely, the probability law of the point
process Ξ•J(ω, ·,Λ) under the uniform distribution 1[0,1](t)dt converges to the law of
the Poisson point process on the real line with intensity 1.
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The levelspacing statistics

Define the n-th unfolded eigenvalue spacings

δN•n(ω,L) = 2LN•(J)(N•(En+1(ω,L))−N•(En(ω,L)))≥ 0.

Define the empirical distribution of these spacings to be the random numbers, for
x≥ 0

DLS•(x;J,ω,L) =
#{n; E•n(ω,L) ∈ J, δN•n(ω,L)≥ x}

N•(J,ω,L)

where N•(J,ω,L) := #{E•n(ω,L) ∈ J}.

Theorem
Under the assumptions of the previous theorem, ω-almost surely, as L→+∞,
DLS•(x;J,ω,L) converges uniformly to the distribution x 7→ e−x.
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A Minami type estimate in the localization regime: the setting
On L2(R), consider a random Schrödinger operator of the form

Hω u =− d2

dx2 u+qω u (2.1)

where qω is an almost surely bounded Zd-ergodic random potential.
Let N and Σ be the integrated density of states and almost sure spectrum of Hω .

Fix I ⊂ Σ an interval. Let Λ := ΛL := [0,L] and Hω(Λ) = (Hω)|Λ.

Assume
(IAD) There exists R0 > 0 such that for dist(Λ,Λ′)> R0, the random

Hamiltonians Hω(Λ) and Hω(Λ
′) are independent.

(W) there exists C > 0, s ∈ (0,1] and ρ ≥ 1 such that, for J ⊂ I, and Λ, an
interval in R, one has

P({σ(Hω(Λ))∩ J 6= /0})≤ E [tr(1J(Hω(Λ)))]≤ C|J|s|Λ|ρ .

For HA on the whole axis, [CHKl 07]. For HD near the bottom of the
spectrum, [KlLNS 10].
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The second assumption crucial to our study is the existence of a localization region to
which I belongs i.e. we assume

(Loc) there exists ξ > 0 such that

sup
L>0

suppf⊂I
|f |≤1

E

(
∑
n∈Z

eξ |n| ‖1[−1/2,1/2]f (Hω(ΛL))1[n−1/2,n+1/2]‖2

)
<+∞.

Many results: many models in 1D ([S], [S]). In higher dimension, mainly Anderson
model [GeK 01-11], [A. et al. 06]

For HA on the whole axis, [DS 10]. For HD near the bottom of the spec., [KlLNS 10].

Missing ingredient for spectral statistics:

Minami’s estimate i.e. estimate on

P({#[σ(Hω(Λ))∩ J]≥ 2})≤ ∑
k≥2

P(tr [1J(Hω(Λ))]≥ k)

≤ E [tr(1J(Hω(Λ)))(tr(1J(Hω(Λ)))−1)] .

Known for special 1D model ([Mol 81]), discrete models (rank one pert. [Mi 96],
[BHS 07], [GV 07] [CGK 09]) and continuous model (more assumptions)
at bottom of spectrum [CGK 10].
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A Minami type estimate in the localization region

Our main technical result is the following Minami type estimates.

Theorem
Assume (W) and (Loc). Fix J compact in I the region of localization. Then, there
exists β > 0, such that, for any q > 0, there exists Lq > 0 s.t., for E ∈ J, L≥ Lq and
ε ∈

[
L−q,(logL)−1−β

]
, one has

∑
k≥2

P
(
tr [1[E−ε,E+ε](Hω(ΛL))]≥ k

)
≤ β

(
ε

sL(logL)β

)2
eβεsL(logL)β

+L−q.

This estimate useful when εsL is small (same as (W)).

Stronger standard Minami estimate [Mi 96]: bd on P
(
tr [1[E−ε,E+ε](Hω(ΛL))]≥ 2

)
.

Weaker than the Minami type estimate in [CGK 09]: bd on

E [tr(1J(Hω(Λ)))(tr(1J(Hω(Λ)))−1)] = ∑
k≥2

kP
(
tr [1[E−ε,E+ε](Hω(ΛL))]≥ k

)
But nevertheless sufficient to repeat the analysis done in [G-Kl 10]
and [Kl 10].
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Universal estimates on the eigenvalue counting function

Assume q : [0, `]→ R is bounded.
On [0, `], consider the operator Hu =−u′′+qu with self-adjoint Robin boundary
conditions at 0 and ` (i.e. u(0) cosα +u′(0) sinα = 0).

Theorem
Fix J compact. There exists a constant C > 0 (depending only on ‖q‖ and J) such
that, for `≥ 1, if ε ∈ (0,1) is such that | logε| ≥ C`, then, for any E ∈ J, the interval
[E− ε,E+ ε] contains at most a single eigenvalue of H.

Theorem

Fix ν > 2 and J compact. There exists `0 > 1 and C > 0 (depending only on ‖q‖∞ and
J) such that, for `≥ `0, if ε ∈ (0, `−ν) then, for E ∈ J, the number of eigenvalues of H
in the interval [E− ε,E+ ε] is bounded by max(1,C`/| logε|).

Level repulsion at much smaller scales than levelspacing of random systems.
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A heuristic: tunneling and inverse tunneling

Fix ` ∈ R and q : [0, `]→ R a bounded real valued function.
On [0, `], consider the Dirichlet eigenvalue problem

− d2

dx2 u(x)+q(x)u(x) = Eu(x), u(0) = u(`) = 0.

E1

E2

∆E

x1 x2

∆x

W1

W2

ϕ1
ϕ2

Tunneling occurs if ∆E� e−∆x.
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Figure 5: the asymmetric double well.

E1

W1 W2

ϕ−

ϕ+

Figure 6: the symmetric double well.

No tunneling occurs: no overlap
between eigenfunctions.

Tunneling occurs: large overlap
between eigenfunctions.

Define rϕj :=
√
|ϕj|2 + |ϕ ′j |2 (j ∈ {1,2}).

Two cases:
if rϕ1 · rϕ2 becomes “large” over [0, `]: the “tunneling case”;
if rϕ1 · rϕ2 stays “small” over [0, `]: the “non tunneling case”.
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An inverse tunneling result

Theorem

Fix S > 0 arbitrary and J ⊂ R a compact interval. There exists ε0 > 0 and `0 > 0
(depending only on ‖q‖∞, J and S) such that, for `≥ `0 and 0 < ε`4 ≤ ε0, for E ∈ J, if
the operator H defined above has two eigenvalues in [E− ε,E+ ε], then there exists
two points x+ and x− in the lattice segment ε0Z∩ [0, `] satisfying S < x+− x− < 2S
such that, if H−, resp. H+, denotes the second order differential operator H defined
above and Dirichlet boundary conditions on [0,x−], resp. on [x+, `], then H− and H+

each have an eigenvalue in the interval [E− ε`4/ε0,E+ ε`4/ε0].

Assume E = 0 and eigenvalues considered in theorem are 0 and E ∈ (0,ε].

Let u and v be the eigenfunctions associated respectively to 0 and E.

Goal: find linear combinations of u and v such that
they vanish at two points, say, x− and x+ satisfying the statement of the theorem,
in [0,x−] and [x+, `], their masses are of order `−α (for α > 0 not too large).
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Therefore, consider two cases:
1 if ru · rv becomes “large” over [0, `]: the “tunneling case”;
2 if ru · rv stays “small” over [0, `]: the “non tunneling case”.

In the “no tunneling case”, u and v put mass only at different locations locations in
[0, `].

ru and rv are also almost orthogonal.

Using linear combination, one can split [0, `] in two by Dirichlet bc.

In the “no tunneling case”, u and v put mass at the same locations in [0, `]

u and v are quite similar except for a phase change.

Analyze this phase difference to show that, with linear combination, one can split
[0, `] in two by Dirichlet bc.

And localization?

Localization implies [0,L] reduced to [0, `] where `� (logL)β .
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