Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line

F. Klopp
Université Paris 13
Frontiers in Mathematical Physics
Université de Cergy - Pontoise
26/05/2011

Outline

(1) Two examples

- The Anderson model
- The displacement model
(2) The setting and the main results
- A Minami type estimate in the localization region
- Universal estimates
(3) Some ideas of the proofs
- Tunneling
- An inverse tunneling result

Two examples

Consider

- the Anderson model
where

$$
H_{\omega}^{A}=-\frac{d^{2}}{d x^{2}}+W(\cdot)+\sum_{n \in \mathbb{Z}} \omega_{n} V(\cdot-n)
$$

- $W: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded, continuous, \mathbb{Z}-periodic function;
- $V: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded, continuous, compactly supported, non negative, not identically vanishing function;
- $\left(\omega_{n}\right)_{n \in \mathbb{Z}}$ are bounded i.i.d random variables, the common distribution of which admits a continuous density.
- the random displacement model
where

$$
\begin{equation*}
H_{\omega}^{D}=-\frac{d^{2}}{d x^{2}}+\sum_{n \in \mathbb{Z}} V\left(\cdot-n-\omega_{n}\right) \tag{1.1}
\end{equation*}
$$

- $V: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded, odd function that has a fixed sign and is compactly supported in $\left(-r_{0}, r_{0}\right)$ for some $0<r_{0}<1 / 2$;
- $\left(\omega_{n}\right)_{n \in \mathbb{Z}}$ are bounded i.i.d random variables, the common distribution of which admits a continuously differentiable density supported in $[-r, r] \subset\left[-1 / 2+r_{0}, 1 / 2-r_{0}\right]$ and which support contains $\{-r, r\}$.

Let $\bullet \in\{A, D\}$. Consider $H_{\omega, L}^{\bullet}:=\left(H_{\omega}^{\bullet}\right)_{[-L, L]}$.
The spectrum of this operator is discrete and accumulates at $+\infty$; denote it by

$$
E_{1}^{\bullet}(\omega, L)<E_{2}^{\bullet}(\omega, L) \leq \cdots \leq E_{n}^{\bullet}(\omega, L) \leq \cdots
$$

ω almost surely, the integrated density of states is defined as

$$
N^{\bullet}(E)=\lim _{L \rightarrow+\infty} \frac{\#\left\{n ; E_{n}^{\bullet}(\omega, L) \leq E\right\}}{2 L}
$$

There exists $\tilde{E}^{\bullet} \in\left(\inf \Sigma^{\bullet},+\infty\right]$ such that N^{\bullet} is Lipschitz continuous on $\left(-\infty, \tilde{E}^{\bullet}\right)$ ([CHKl 07], [KILNS 10]).

The unfolded levels: Fix E_{0}. Define the locally unfolded levels as

$$
\xi_{n}^{\bullet}\left(E_{0}, \omega, L\right)=2 L\left[N^{\bullet}\left(E_{n}^{\bullet}(\omega, L)\right)-N^{\bullet}\left(E_{0}\right)\right] .
$$

Define the point process

$$
\Xi^{\bullet}\left(\xi ; E_{0}, \omega, L\right)=\sum_{n \geq 1} \delta_{\xi_{n}\left(E_{0}, \omega, L\right)}(\xi)
$$

The local level statistics

Theorem

There exists an energy $\inf \Sigma^{\bullet}<E^{\bullet} \leq \tilde{E}^{\bullet}$ and such that, if $E_{0} \in\left(-\infty, E^{\bullet}\right) \cap \Sigma^{\bullet}$ satisfies, for some $\rho \in[1,4 / 3)$, one has

$$
\begin{equation*}
\forall a>b, \exists C>0, \exists \varepsilon_{0}>0, \forall \varepsilon \in\left(0, \varepsilon_{0}\right),\left|N^{\bullet}\left(E_{0}+a \varepsilon\right)-N^{\bullet}\left(E_{0}+b \varepsilon\right)\right| \geq C \varepsilon^{\rho} \tag{1.2}
\end{equation*}
$$

then, when $L \rightarrow+\infty$, the point process $\Xi\left(E_{0}, \omega, L\right)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

If $E \mapsto N(E)$ is differentiable at E_{0} and $d N / d E\left(E_{0}\right)>0$, then (1.2) is satisfied.
What about E^{*} ?
E^{\bullet} such that

- H_{ω}^{\bullet} localized in $\left(-\infty, E^{\bullet}\right]$;
- H_{ω}^{\bullet} satisfies a Wegner estimate in $\left(-\infty, E^{\bullet}\right]$.

Thus, $E^{A}=+\infty \quad$ and $\quad E^{D}>\inf \Sigma^{D}$.

More results on spectral statistics:

For $J=[a, b]$, a compact interval s.t. $N^{\bullet}(J):=N^{\bullet}(b)-N^{\bullet}(a)>0$ and a fixed configuration ω, consider the point process

$$
\Xi_{J}^{\bullet}(\omega, t, \Lambda)=\sum_{E_{n}^{*}(\omega, \Lambda) \in J} \delta_{N^{\bullet}(J)|\Lambda|\left[\Lambda \boldsymbol{N}_{j}\left(E_{n}^{*}(\omega, \Lambda)\right)-t\right]}
$$

under the uniform distribution in $[0,1]$ in t; here, we have set

$$
N_{J}^{\bullet}(\cdot):=\frac{N^{\bullet}(\cdot)-N^{\bullet}(a)}{N^{\bullet}(b)-N^{\bullet}(a)} .
$$

The values $\left(N^{\bullet}\left(E_{n}^{\bullet}(\omega, L)\right)\right)_{n \geq 1}$ are called the unfolded eigenvalues of the operator $H_{\omega, L}^{\bullet}$.

Theorem

Fix $J=[a, b] \subset\left(-\infty, E^{\bullet}\right) \cap \Sigma^{\bullet}$ a compact interval such that $N^{\bullet}(b)-N^{\bullet}(a)=N^{\bullet}(J)>0$. Then, ω-almost surely, the probability law of the point process $\Xi_{j}^{*}(\omega, \cdot, \Lambda)$ under the uniform distribution $\mathbf{1}_{[0,1]}(t) d t$ converges to the law of the Poisson point process on the real line with intensity 1.

The levelspacing statistics

Define the n-th unfolded eigenvalue spacings

$$
\delta N_{n}^{\bullet}(\omega, L)=2 L N^{\bullet}(J)\left(N^{\bullet}\left(E_{n+1}(\omega, L)\right)-N^{\bullet}\left(E_{n}(\omega, L)\right)\right) \geq 0 .
$$

Define the empirical distribution of these spacings to be the random numbers, for $x \geq 0$

$$
D L S^{\bullet}(x ; J, \omega, L)=\frac{\#\left\{n ; E_{n}^{\bullet}(\omega, L) \in J, \delta N_{n}^{\bullet}(\omega, L) \geq x\right\}}{N^{\bullet}(J, \omega, L)}
$$

where $N^{\bullet}(J, \omega, L):=\#\left\{E_{n}^{\bullet}(\omega, L) \in J\right\}$.

Theorem

Under the assumptions of the previous theorem, ω-almost surely, as $L \rightarrow+\infty$, $D L S^{\bullet}(x ; J, \omega, L)$ converges uniformly to the distribution $x \mapsto e^{-x}$.

A Minami type estimate in the localization regime: the setting On $L^{2}(\mathbb{R})$, consider a random Schrödinger operator of the form

$$
\begin{equation*}
H_{\omega} u=-\frac{d^{2}}{d x^{2}} u+q_{\omega} u \tag{2.1}
\end{equation*}
$$

where q_{ω} is an almost surely bounded \mathbb{Z}^{d}-ergodic random potential. Let N and Σ be the integrated density of states and almost sure spectrum of H_{ω}.

Fix $I \subset \Sigma$ an interval. Let $\Lambda:=\Lambda_{L}:=[0, L]$ and $H_{\omega}(\Lambda)=\left(H_{\omega}\right)_{\mid \Lambda}$.
Assume
(IAD) There exists $R_{0}>0$ such that for $\operatorname{dist}\left(\Lambda, \Lambda^{\prime}\right)>R_{0}$, the random Hamiltonians $H_{\omega}(\Lambda)$ and $H_{\omega}\left(\Lambda^{\prime}\right)$ are independent.
(W) there exists $C>0, s \in(0,1]$ and $\rho \geq 1$ such that, for $J \subset I$, and Λ, an interval in \mathbb{R}, one has

$$
\mathbb{P}\left(\left\{\sigma\left(H_{\omega}(\Lambda)\right) \cap J \neq \emptyset\right\}\right) \leq \mathbb{E}\left[\operatorname{tr}\left(\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right)\right] \leq C|J|^{s}|\Lambda|^{\rho} .
$$

For H^{A} on the whole axis, [CHKl 07]. For H^{D} near the bottom of the spectrum, [KILNS 10].

The second assumption crucial to our study is the existence of a localization region to which I belongs i.e. we assume
(Loc) there exists $\xi>0$ such that

$$
\sup _{\substack{L>0 \\ \text { suppf } \subset I \\|f| \leq 1}} \mathbb{E}\left(\sum_{n \in \mathbb{Z}} e^{\xi|n|}\left\|\mathbf{1}_{[-1 / 2,1 / 2]} f\left(H_{\omega}\left(\Lambda_{L}\right)\right) \mathbf{1}_{[n-1 / 2, n+1 / 2]}\right\|_{2}\right)<+\infty .
$$

Many results: many models in 1D ([S], [S]). In higher dimension, mainly Anderson model [GeK 01-11], [A. et al. 06]
For H^{A} on the whole axis, [DS 10]. For H^{D} near the bottom of the spec., [KILNS 10]. Missing ingredient for spectral statistics:

Minami's estimate i.e. estimate on

$$
\begin{aligned}
\mathbb{P}\left(\left\{\#\left[\sigma\left(H_{\omega}(\Lambda)\right) \cap J\right] \geq 2\right\}\right) & \leq \sum_{k \geq 2} \mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right] \geq k\right) \\
& \leq \mathbb{E}\left[\operatorname{tr}\left(\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right)\left(\operatorname{tr}\left(\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right)-1\right)\right] .
\end{aligned}
$$

Known for special 1D model ([Mol 81]), discrete models (rank one pert. [Mi 96], [BHS 07], [GV 07] [CGK 09]) and continuous model (more assumptions) at bottom of spectrum [CGK 10].

A Minami type estimate in the localization region
Our main technical result is the following Minami type estimates.

Theorem

Assume (W) and (Loc). Fix J compact in I the region of localization. Then, there exists $\beta>0$, such that, for any $q>0$, there exists $L_{q}>0$ s.t., for $E \in J, L \geq L_{q}$ and $\varepsilon \in\left[L^{-q},(\log L)^{-1-\beta}\right]$, one has

$$
\sum_{k \geq 2} \mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon, E+\varepsilon]}\left(H_{\omega}\left(\Lambda_{L}\right)\right)\right] \geq k\right) \leq \beta\left(\varepsilon^{s} L(\log L)^{\beta}\right)^{2} e^{\beta \varepsilon^{s} L(\log L)^{\beta}}+L^{-q}
$$

This estimate useful when $\varepsilon^{s} L$ is small (same as (W)).
Stronger standard Minami estimate $\left[\right.$ Mi 96]: bd on $\mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon, E+\varepsilon]}\left(H_{\omega}\left(\Lambda_{L}\right)\right)\right] \geq 2\right)$.
Weaker than the Minami type estimate in [CGK 09]: bd on

$$
\mathbb{E}\left[\operatorname{tr}\left(\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right)\left(\operatorname{tr}\left(\mathbf{1}_{J}\left(H_{\omega}(\Lambda)\right)\right)-1\right)\right]=\sum_{k \geq 2} k \mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon, E+\varepsilon]}\left(H_{\omega}\left(\Lambda_{L}\right)\right)\right] \geq k\right)
$$

But nevertheless sufficient to repeat the analysis done in [G-Kl 10] and [Kl 10].

Universal estimates on the eigenvalue counting function

Assume $q:[0, \ell] \rightarrow \mathbb{R}$ is bounded.
On $[0, \ell]$, consider the operator $H u=-u^{\prime \prime}+q u$ with self-adjoint Robin boundary conditions at 0 and ℓ (i.e. $u(0) \cos \alpha+u^{\prime}(0) \sin \alpha=0$).

Theorem

Fix J compact. There exists a constant $C>0$ (depending only on $\|q\|$ and J) such that, for $\ell \geq 1$, if $\varepsilon \in(0,1)$ is such that $|\log \varepsilon| \geq C \ell$, then, for any $E \in J$, the interval $[E-\varepsilon, E+\varepsilon]$ contains at most a single eigenvalue of H.

Theorem

Fix $v>2$ and J compact. There exists $\ell_{0}>1$ and $C>0$ (depending only on $\|q\|_{\infty}$ and $J)$ such that, for $\ell \geq \ell_{0}$, if $\varepsilon \in\left(0, \ell^{-v}\right)$ then, for $E \in J$, the number of eigenvalues of H in the interval $[E-\varepsilon, E+\varepsilon]$ is bounded by $\max (1, C \ell /|\log \varepsilon|)$.

Level repulsion at much smaller scales than levelspacing of random systems.

A heuristic: tunneling and inverse tunneling

Fix $\ell \in \mathbb{R}$ and $q:[0, \ell] \rightarrow \mathbb{R}$ a bounded real valued function.
On $[0, \ell]$, consider the Dirichlet eigenvalue problem

$$
-\frac{d^{2}}{d x^{2}} u(x)+q(x) u(x)=E u(x), \quad u(0)=u(\ell)=0 .
$$

Tunneling occurs if $\Delta E \ll e^{-\Delta x}$.

Figure 5: the asymmetric double well.

Define $r_{\varphi_{j}}:=\sqrt{\left|\varphi_{j}\right|^{2}+\left|\varphi_{j}^{\prime}\right|^{2}}(j \in\{1,2\})$.
Two cases:

- if $r_{\varphi_{1}} \cdot r_{\varphi_{2}}$ becomes "large" over $[0, \ell]$: the "tunneling case";
- if $r_{\varphi_{1}} \cdot r_{\varphi_{2}}$ stays "small" over $[0, \ell]$: the "non tunneling case".

An inverse tunneling result

Theorem

Fix $S>0$ arbitrary and $J \subset \mathbb{R}$ a compact interval. There exists $\varepsilon_{0}>0$ and $\ell_{0}>0$ (depending only on $\|q\|_{\infty}, J$ and S) such that, for $\ell \geq \ell_{0}$ and $0<\varepsilon \ell^{4} \leq \varepsilon_{0}$, for $E \in J$, if the operator H defined above has two eigenvalues in $[E-\varepsilon, E+\varepsilon]$, then there exists two points x_{+}and x_{-}in the lattice segment $\varepsilon_{0} \mathbb{Z} \cap[0, \ell]$ satisfying $S<x_{+}-x_{-}<2 S$ such that, if H_{-}, resp. H_{+}, denotes the second order differential operator H defined above and Dirichlet boundary conditions on $\left[0, x_{-}\right]$, resp. on $\left[x_{+}, \ell\right]$, then H_{-}and H_{+} each have an eigenvalue in the interval $\left[E-\varepsilon \ell^{4} / \varepsilon_{0}, E+\varepsilon \ell^{4} / \varepsilon_{0}\right]$.

Assume $E=0$ and eigenvalues considered in theorem are 0 and $E \in(0, \varepsilon]$.
Let u and v be the eigenfunctions associated respectively to 0 and E.
Goal: find linear combinations of u and v such that

- they vanish at two points, say, x_{-}and x_{+}satisfying the statement of the theorem,
- in $\left[0, x_{-}\right]$and $\left[x_{+}, \ell\right]$, their masses are of order $\ell^{-\alpha}$ (for $\alpha>0$ not too large).

Therefore, consider two cases:
(1) if $r_{u} \cdot r_{v}$ becomes "large" over $[0, \ell]$: the "tunneling case";
(O) if $r_{u} \cdot r_{v}$ stays "small" over $[0, \ell]$: the "non tunneling case".

In the "no tunneling case", u and v put mass only at different locations locations in $[0, \ell]$.
r_{u} and r_{v} are also almost orthogonal.
Using linear combination, one can split $[0, \ell]$ in two by Dirichlet bc.
In the "no tunneling case", u and v put mass at the same locations in $[0, \ell]$
u and v are quite similar except for a phase change.
Analyze this phase difference to show that, with linear combination, one can split $[0, \ell]$ in two by Dirichlet bc.

And localization?

Localization implies $[0, L]$ reduced to $[0, \ell]$ where $\ell \asymp(\log L)^{\beta}$.

