Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line

F. Klopp

Université Paris 13

Frontiers in Mathematical Physics Université de Cergy - Pontoise 26/05/2011

Outline

Two examples

- The Anderson model
- The displacement model

2 The setting and the main results

- A Minami type estimate in the localization region
- Universal estimates

3 Some ideas of the proofs

- Tunneling
- An inverse tunneling result

Two examples

Consider

• the Anderson model

$$H^A_{\varpi} = -\frac{d^2}{dx^2} + W(\cdot) + \sum_{n \in \mathbb{Z}} \omega_n V(\cdot - n)$$

where

- $W: \mathbb{R} \to \mathbb{R}$ is a bounded, continuous, \mathbb{Z} -periodic function;
- ▶ $V : \mathbb{R} \to \mathbb{R}$ is a bounded, continuous, compactly supported, non negative, not identically vanishing function;
- $(\omega_n)_{n \in \mathbb{Z}}$ are bounded i.i.d random variables, the common distribution of which admits a continuous density.
- the random displacement model

$$H^{D}_{\omega} = -\frac{d^2}{dx^2} + \sum_{n \in \mathbb{Z}} V(\cdot - n - \omega_n)$$
(1.1)

where

- ▶ $V : \mathbb{R} \to \mathbb{R}$ is a bounded, odd function that has a fixed sign and is compactly supported in $(-r_0, r_0)$ for some $0 < r_0 < 1/2$;
- $(\omega_n)_{n \in \mathbb{Z}}$ are bounded i.i.d random variables, the common distribution of which admits a continuously differentiable density supported in $[-r,r] \subset [-1/2 + r_0, 1/2 r_0]$ and which support contains $\{-r,r\}$.

Let
$$\bullet \in \{A, D\}$$
. Consider $H_{\omega,L}^{\bullet} := (H_{\omega}^{\bullet})_{|[-L,L]}$.

The spectrum of this operator is discrete and accumulates at $+\infty$; denote it by

$$E_1^{\bullet}(\boldsymbol{\omega},L) < E_2^{\bullet}(\boldsymbol{\omega},L) \leq \cdots \leq E_n^{\bullet}(\boldsymbol{\omega},L) \leq \cdots$$

 ω almost surely, the *integrated density of states* is defined as

$$N^{\bullet}(E) = \lim_{L \to +\infty} \frac{\#\{n; E_n^{\bullet}(\omega, L) \le E\}}{2L}$$

There exists $\tilde{E}^{\bullet} \in (\inf \Sigma^{\bullet}, +\infty]$ such that N^{\bullet} is Lipschitz continuous on $(-\infty, \tilde{E}^{\bullet})$ ([CHKI 07], [KILNS 10]).

The unfolded levels: Fix E_0 . Define the *locally unfolded levels* as

$$\xi_n^{\bullet}(E_0, \omega, L) = 2L[N^{\bullet}(E_n^{\bullet}(\omega, L)) - N^{\bullet}(E_0)].$$

Define the point process

$$\Xi^{\bullet}(\xi; E_0, \omega, L) = \sum_{n \ge 1} \delta_{\xi^{\bullet}_n(E_0, \omega, L)}(\xi),$$

The local level statistics

Theorem

There exists an energy $\inf \Sigma^{\bullet} < E^{\bullet} \leq \tilde{E}^{\bullet}$ and such that, if $E_0 \in (-\infty, E^{\bullet}) \cap \Sigma^{\bullet}$ satisfies, for some $\rho \in [1, 4/3)$, one has

 $\forall a > b, \ \exists C > 0, \ \exists \varepsilon_0 > 0, \forall \varepsilon \in (0, \varepsilon_0), \ |N^{\bullet}(E_0 + a\varepsilon) - N^{\bullet}(E_0 + b\varepsilon)| \ge C\varepsilon^{\rho} \quad (1.2)$

then, when $L \to +\infty$, the point process $\Xi(E_0, \omega, L)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

If $E \mapsto N(E)$ is differentiable at E_0 and $dN/dE(E_0) > 0$, then (1.2) is satisfied.

What about E^{\bullet} ?

 E^{\bullet} such that

• H^{\bullet}_{ω} localized in $(-\infty, E^{\bullet}]$;

• H^{\bullet}_{ω} satisfies a Wegner estimate in $(-\infty, E^{\bullet}]$.

Thus, $E^A = +\infty$ and $E^D > \inf \Sigma^D$.

More results on spectral statistics:

For J = [a, b], a compact interval s.t. $N^{\bullet}(J) := N^{\bullet}(b) - N^{\bullet}(a) > 0$ and a fixed configuration ω , consider the point process

$$\Xi^{\bullet}_{J}(\omega,t,\Lambda) = \sum_{E^{\bullet}_{n}(\omega,\Lambda) \in J} \delta_{N^{\bullet}(J)|\Lambda|[N^{\bullet}_{J}(E^{\bullet}_{n}(\omega,\Lambda)) - t]}$$

under the uniform distribution in [0, 1] in *t*; here, we have set

$$N_J^{\bullet}(\cdot) := \frac{N^{\bullet}(\cdot) - N^{\bullet}(a)}{N^{\bullet}(b) - N^{\bullet}(a)}.$$

The values $(N^{\bullet}(E_n^{\bullet}(\omega,L)))_{n\geq 1}$ are called the *unfolded eigenvalues* of the operator $H_{\omega,L}^{\bullet}$.

Theorem

Fix $J = [a,b] \subset (-\infty, E^{\bullet}) \cap \Sigma^{\bullet}$ a compact interval such that $N^{\bullet}(b) - N^{\bullet}(a) = N^{\bullet}(J) > 0$. Then, ω -almost surely, the probability law of the point process $\Xi^{\bullet}_{J}(\omega, \cdot, \Lambda)$ under the uniform distribution $\mathbf{1}_{[0,1]}(t)$ dt converges to the law of the Poisson point process on the real line with intensity 1.

CONTRACTOR OF TAXABLE VIEW

The levelspacing statistics

Define the *n*-th unfolded eigenvalue spacings

$$\delta N_n^{\bullet}(\omega,L) = 2LN^{\bullet}(J)(N^{\bullet}(E_{n+1}(\omega,L)) - N^{\bullet}(E_n(\omega,L))) \ge 0.$$

Define the empirical distribution of these spacings to be the random numbers, for $x \ge 0$ $DUS^{\bullet}(x; L, \omega, L) = \#\{n; E_n^{\bullet}(\omega, L) \in J, \delta N_n^{\bullet}(\omega, L) \ge x\}$

$$DLS^{\bullet}(x;J,\omega,L) = \frac{\pi(N,L_{h}(\omega,L) \subseteq S, OL_{h}(\omega,L) \subseteq N}{N^{\bullet}(J,\omega,L)}$$

where $N^{\bullet}(J, \omega, L) := #\{E_n^{\bullet}(\omega, L) \in J\}.$

Theorem

Under the assumptions of the previous theorem, ω -almost surely, as $L \to +\infty$, $DLS^{\bullet}(x; J, \omega, L)$ converges uniformly to the distribution $x \mapsto e^{-x}$.

A Minami type estimate in the localization regime: the setting On $L^2(\mathbb{R})$, consider a random Schrödinger operator of the form

$$H_{\omega}u = -\frac{d^2}{dx^2}u + q_{\omega}u \tag{2.1}$$

where q_{ω} is an almost surely bounded \mathbb{Z}^d -ergodic random potential. Let *N* and Σ be the integrated density of states and almost sure spectrum of H_{ω} .

Fix $I \subset \Sigma$ an interval. Let $\Lambda := \Lambda_L := [0, L]$ and $H_{\omega}(\Lambda) = (H_{\omega})_{|\Lambda}$.

Assume

(IAD) There exists $R_0 > 0$ such that for dist $(\Lambda, \Lambda') > R_0$, the random Hamiltonians $H_{\omega}(\Lambda)$ and $H_{\omega}(\Lambda')$ are independent.

(W) there exists C > 0, $s \in (0, 1]$ and $\rho \ge 1$ such that, for $J \subset I$, and Λ , an interval in \mathbb{R} , one has

 $\mathbb{P}(\{\sigma(H_{\omega}(\Lambda)) \cap J \neq \emptyset\}) \leq \mathbb{E}\left[\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda)))\right] \leq C|J|^{s}|\Lambda|^{\rho}.$

For H^A on the whole axis, [CHK1 07]. For H^D near the bottom of the spectrum, [KILNS 10].

The second assumption crucial to our study is the existence of a localization region to which I belongs i.e. we assume

(Loc) there exists
$$\xi > 0$$
 such that

$$\sup_{\substack{L>0\\ \sup pf \subset I\\ |f| \leq 1}} \mathbb{E}\left(\sum_{n \in \mathbb{Z}} e^{\xi |n|} \|\mathbf{1}_{[-1/2,1/2]} f(H_{\omega}(\Lambda_L)) \mathbf{1}_{[n-1/2,n+1/2]} \|_2\right) < +\infty.$$

Many results: many models in 1D ([S], [S]). In higher dimension, mainly Anderson model [GeK 01-11], [A. et al. 06]

For H^A on the whole axis, [DS 10]. For H^D near the bottom of the spec., [KILNS 10].

Missing ingredient for spectral statistics:

Minami's estimate i.e. estimate on

$$\mathbb{P}(\{\#[\sigma(H_{\omega}(\Lambda)) \cap J] \ge 2\}) \le \sum_{k \ge 2} \mathbb{P}(\operatorname{tr}[\mathbf{1}_{J}(H_{\omega}(\Lambda))] \ge k)$$
$$\le \mathbb{E}[\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda)))(\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda))) - 1)].$$

Known for special 1D model ([Mol 81]), discrete models (rank one pert. [Mi 96], [BHS 07], [GV 07] [CGK 09]) and continuous model (more assumptions) at bottom of spectrum [CGK 10].

A Minami type estimate in the localization region

Our main technical result is the following Minami type estimates.

Theorem

Assume (W) and (Loc). Fix J compact in I the region of localization. Then, there exists $\beta > 0$, such that, for any q > 0, there exists $L_q > 0$ s.t., for $E \in J$, $L \ge L_q$ and $\varepsilon \in [L^{-q}, (\log L)^{-1-\beta}]$, one has

$$\sum_{l\geq 2} \mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon,E+\varepsilon]}(H_{\boldsymbol{\omega}}(\Lambda_{L}))\right] \geq k\right) \leq \beta\left(\varepsilon^{s}L(\log L)^{\beta}\right)^{2} e^{\beta\varepsilon^{s}L(\log L)^{\beta}} + L^{-q}.$$

This estimate useful when $\varepsilon^{s}L$ is small (same as (W)).

Stronger standard Minami estimate [Mi 96]: bd on $\mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon,E+\varepsilon]}(H_{\omega}(\Lambda_{L}))\right] \geq 2\right)$. Weaker than the Minami type estimate in [CGK 09]: bd on

$$\mathbb{E}\left[\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda)))(\operatorname{tr}(\mathbf{1}_{J}(H_{\omega}(\Lambda)))-1)\right]=\sum_{k\geq 2}k\mathbb{P}\left(\operatorname{tr}\left[\mathbf{1}_{[E-\varepsilon,E+\varepsilon]}(H_{\omega}(\Lambda_{L}))\right]\geq k\right)$$

But nevertheless sufficient to repeat the analysis done in [G-Kl 10] and [Kl 10].

Universal estimates on the eigenvalue counting function

Assume $q: [0, \ell] \to \mathbb{R}$ is bounded.

On $[0, \ell]$, consider the operator Hu = -u'' + qu with self-adjoint Robin boundary conditions at 0 and ℓ (i.e. $u(0) \cos \alpha + u'(0) \sin \alpha = 0$).

Theorem

Fix J compact. There exists a constant C > 0 (depending only on ||q|| and J) such that, for $\ell \ge 1$, if $\varepsilon \in (0,1)$ is such that $|\log \varepsilon| \ge C\ell$, then, for any $E \in J$, the interval $[E - \varepsilon, E + \varepsilon]$ contains at most a single eigenvalue of H.

Theorem

Fix v > 2 and J compact. There exists $\ell_0 > 1$ and C > 0 (depending only on $||q||_{\infty}$ and J) such that, for $\ell \ge \ell_0$, if $\varepsilon \in (0, \ell^{-v})$ then, for $E \in J$, the number of eigenvalues of H in the interval $[E - \varepsilon, E + \varepsilon]$ is bounded by $\max(1, C\ell/|\log \varepsilon|)$.

Level repulsion at much smaller scales than levelspacing of random systems.

A heuristic: tunneling and inverse tunneling

Fix $\ell \in \mathbb{R}$ and $q : [0, \ell] \to \mathbb{R}$ a bounded real valued function. On $[0, \ell]$, consider the Dirichlet eigenvalue problem

$$-\frac{d^2}{dx^2}u(x) + q(x)u(x) = Eu(x), \quad u(0) = u(\ell) = 0.$$

Tunneling occurs if $\Delta E \ll e^{-\Delta x}$.

No tunneling occurs: no overlap between eigenfunctions.

Tunneling occurs: large overlap between eigenfunctions.

Define
$$r_{\varphi_j} := \sqrt{|\varphi_j|^2 + |\varphi_j'|^2} \ (j \in \{1, 2\}).$$

Two cases:

- if $r_{\varphi_1} \cdot r_{\varphi_2}$ becomes "large" over $[0, \ell]$: the "tunneling case";
- if $r_{\varphi_1} \cdot r_{\varphi_2}$ stays "small" over $[0, \ell]$: the "non tunneling case".

An inverse tunneling result

Theorem

Fix S > 0 arbitrary and $J \subset \mathbb{R}$ a compact interval. There exists $\varepsilon_0 > 0$ and $\ell_0 > 0$ (depending only on $||q||_{\infty}$, J and S) such that, for $\ell \ge \ell_0$ and $0 < \varepsilon \ell^4 \le \varepsilon_0$, for $E \in J$, if the operator H defined above has two eigenvalues in $[E - \varepsilon, E + \varepsilon]$, then there exists two points x_+ and x_- in the lattice segment $\varepsilon_0 \mathbb{Z} \cap [0, \ell]$ satisfying $S < x_+ - x_- < 2S$ such that, if H_- , resp. H_+ , denotes the second order differential operator H defined above and Dirichlet boundary conditions on $[0, x_-]$, resp. on $[x_+, \ell]$, then H_- and H_+ each have an eigenvalue in the interval $[E - \varepsilon \ell^4 / \varepsilon_0, E + \varepsilon \ell^4 / \varepsilon_0]$.

Assume E = 0 and eigenvalues considered in theorem are 0 and $E \in (0, \varepsilon]$.

Let *u* and *v* be the eigenfunctions associated respectively to 0 and *E*.

Goal: find linear combinations of u and v such that

- they vanish at two points, say, x_{-} and x_{+} satisfying the statement of the theorem,
- in $[0, x_{-}]$ and $[x_{+}, \ell]$, their masses are of order $\ell^{-\alpha}$ (for $\alpha > 0$ not too large).

Therefore, consider two cases:

- if $r_u \cdot r_v$ becomes "large" over $[0, \ell]$: the "tunneling case";
- if $r_u \cdot r_v$ stays "small" over $[0, \ell]$: the "non tunneling case".

In the "no tunneling case", u and v put mass only at different locations locations in $[0, \ell]$.

- r_u and r_v are also almost orthogonal.
- Using linear combination, one can split $[0, \ell]$ in two by Dirichlet bc.
- In the "no tunneling case", u and v put mass at the same locations in $[0, \ell]$

u and *v* are quite similar except for a phase change.

Analyze this phase difference to show that, with linear combination, one can split $[0, \ell]$ in two by Dirichlet bc.

And localization?

Localization implies [0, L] reduced to $[0, \ell]$ where $\ell \asymp (\log L)^{\beta}$.

