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The Anderson model in the localized regime

On `2(Zd), we consider the Anderson model
Hω =−∆+Vω where Vω = ∑γ∈Zd ωγ πγ and
−∆ is the standard discrete Laplacian,
πγ is the orthogonal projector on δγ ,
the random variables (ωγ)γ∈Zd are non
trivial, i.i.d. bounded and admit a
bounded density.



ω1 1 0 · · · · · · 0

1 ω2 1
...

0 1 ω3 1
...

...
. . . 0

0 · · · 0 1 ωn−1 1
0 · · · · · · 0 1 ωn


Well known : there exists a set, say I ⊂ R, such that, in I, the spectrum of Hω is
localized.
Pick E ∈ I and L ∈ N. Let Λ = ΛL = [−L,L]d ∩Zd ⊂ Zd and Hω(Λ) = Hω|Λ (per.
BC).
Denote its eigenvalues by E1(ω,Λ)≤ E2(ω,Λ)≤ ·· · ≤ EN(ω,Λ).
The local level statistics near E is the point process defined by

Ξ(ξ ,E,ω,Λ) =
N

∑
j=1

δξj(E,ω,Λ)(ξ ) where ξj(E,ω,Λ) = |Λ|ν(E)(Ej(ω,Λ)−E).
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Theorem (Molchanov,Minami)
Assume that ν(E)> 0. When |Λ| →+∞, the point process Ξ(,ω,Λ) converges weakly
to a Poisson process on R with intensity the Lebesgue measure.

Question: pick E0 ∈ I and E′0 ∈ I such that E0 6= E′0, ν(E0)> 0 and ν(E′0)> 0;

Are the point processes Ξ(E0,ω,Λ) and Ξ(E′0,ω,Λ) asymptotically independent?

Not much known about this question for random Schrödinger operators.

Results for random matrices.

The answer may be model dependent:
ω1 0 · · · 0

0 ω2 0
...

...
. . . 0

0 · · · 0 ω2n
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...
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The independence

Theorem (Ge-Kl,Kl)
Assume that the dimension d = 1.When |Λ| →+∞, the point processes Ξ(E0,ω,Λ)
and Ξ(E′0,ω,Λ) converge weakly respectively to two independent Poisson processes
on R with intensity the Lebesgue measure. That is, for U+ ⊂ R and U− ⊂ R compact
intervals and {k+,k−} ∈ N×N, one has

P

({
ω;

{
#{j;ξj(E0,ω,Λ) ∈ U+}= k+
#{j;ξj(E′0,ω,Λ) ∈ U−}= k−

})
→

Λ→Zd
e−|U+| |U+|k+

k+!
· e−|U−| |U−|

k−

k−!
.

Theorem (Ge-Kl,Kl)
Pick E0 ∈ I and E′0 ∈ I such that |E0−E′0|> 2d, ν(E0)> 0 and ν(E′0)> 0.
When |Λ| →+∞, the point processes Ξ(E0,ω,Λ) and Ξ(E′0,ω,Λ) converge weakly
respectively to two independent Poisson processes on R with intensity the Lebesgue
measure.
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The decorrelation lemmas

Lemma (Kl)
For the discrete Anderson model , fix α ∈ (0,1), β ∈ (1/2,1) and {E0,E′0} ⊂ I s.t.
|E0−E′0|> 2d, for any c > 0, there exists C > 0 such that, for L≥ 3 and
cLα ≤ `≤ Lα/c, one has

P

({
σ(Hω(Λ`))∩ (E0 +L−d(−1,1)) 6= /0,

σ(Hω(Λ`))∩ (E′0 +L−d(−1,1)) 6= /0

})
≤ C(`/L)2de(logL)β

.

Lemma (Kl)
Assume d = 1. For the discrete Anderson model, for α ∈ (0,1) and {E0,E′0} ⊂ I s.t.
E0 6= E′0, for any c > 0, there exists C > 0 such that, for L≥ 3 and cLα ≤ `≤ Lα/c,
the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)
For J ⊂ K, one has

E [tr[1J(Hω(Λ))] · (tr[1K(Hω(Λ))]−1)]≤ C|J| |K| |Λ|2.
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Basic idea of the proof of decorrelation lemmas

Let JL = E0 +L−d(−1,1) and J′L = E′0 +L−d(−1,1).
By Minami’s estimate

P
(
#[σ(Hω(Λ`))∩ JL]≥ 2 or #[σ(Hω(Λ`))∩ J′L]≥ 2

)
≤ C(`/L)2d

If P0 = P
(
#[σ(Hω(Λ`))∩ JL] = 1,#[σ(Hω(Λ`))∩ J′L] = 1

)
, suffices to show that

P0 ≤ C(`/L)2de(logL)β

.

Let Ej(ω) and Ek(ω) be the eigenvalues resp. in JL and J′L.
Need to show that they don’t vary “synchronously”.

Basic idea: find random variables (ωγ ,ωγ ′) such that
ψ : (ωγ ,ωγ ′) 7→ (Ej(ω),Ek(ω)) be a local diffeomorphism.
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Problem: even if |Jacψ| � 1, one has

Proba≤∑
j,k

∑
γ,γ ′

L−2d � `4d/L2d.

We need to reduce the volume of the cube Λ`.

Reduction to localization boxes:

This can be done using localization.

Lemma
There exists C > 0 such that for L sufficiently large

P0 ≤ C(`/L)2d +C(`/ ˜̀)d P1

where

P1 := P(#[σ(Hω(Λ ˜̀))∩ J̃L] = #[σ(Hω(Λ ˜̀))∩ J̃′L] = 1)
˜̀� logL, J̃L = JL +[−L−d,L−d] and J̃′L = J′L +[−L−d,L−d]

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence.

As localization boxes of size ˜̀, remains to estimate P1.
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Analysis on a localization box
Let ω 7→ E(ω) be the e.v of Hω(Λ ˜̀) in JL.

1 E(ω) being simple, ω 7→ E(ω) and the ass. eigenvect. ω 7→ ϕ(ω) analytic;
2 ∂ωγ

E(ω) = 〈πγ ϕ(ω),ϕ(ω)〉 ≥ 0 ; hence ‖∇ω E(ω)‖`1 = 1;
3 Hessω E(ω) = ((hγβ ))γ,β , hγ,β =−2Re〈(Hω(Λ ˜̀)−E(ω))−1

ψγ(ω),ψβ (ω)〉
where

I ψγ = Π(ω)πγ ϕ(ω),
I Π(ω) is the orthogonal projector on the orthogonal to ϕ(ω).

Lemma
‖Hessω(E(ω))‖`∞→`1 ≤ C

dist(E(ω),σ(Hω(Λ ˜̀))\{E(ω)}) .

Hence, by Minami’s estimate

Lemma
For ε ∈ (4L−d,1), one has P1 ≤ Cε ˜̀2dL−d +Pε where Pε = P(Ω0(ε)) and

Ω0(ε) =

{
ω;

σ(Hω(Λ ˜̀))∩ J̃L = {E(ω)}= σ(Hω(Λ ˜̀))∩ (E−Cε,E+Cε),

σ(Hω(Λ ˜̀))∩ J̃′L = {E′(ω)}= σ(Hω(Λ ˜̀))∩ (E′−Cε,E′+Cε)

}
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To estimate the Jac(ψ), need to show that ∇ω E(ω) and ∇ω E′(ω) not colinear as

Lemma

Pick (u,v) ∈ (R+)2n such that ‖u‖1 = ‖v‖1 = 1. Then max
j 6=k

∣∣∣∣uj uk
vj vk

∣∣∣∣2 ≥ 1
2n3 ‖u− v‖2

1.

Difficulty : gradient may be colinear e.g. for ω = 0.

The fundamental estimate:

Lemma
1 In any dimension d: for ∆E > 2d, if the random variables (ωγ)γ∈Λ are bounded

by K, for Ej(ω) and Ek(ω) are simple eigenvalues of Hω(ΛL) such that

|Ek(ω)−Ej(ω)| ≥ ∆E, one has ‖∇ω(Ej(ω)−Ek(ω))‖2 ≥
∆E−2d

K
L−d/2;

2 in dimension 1: fix E < E′ and β > 1/2; let P denote the probability that there
exists Ej(ω) and Ek(ω), simple eigenvalues of Hω(ΛL) such that
|Ek(ω)−E|+ |Ej(ω)−E′| ≤ e−Lβ

and such that

‖∇ω(Ej(ω)−Ek(ω))‖1 ≤ e−Lβ

;

then, there exists c > 0 such that P≤ e−cL2β

.
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Completing the proof of the decorrelation lemma

One now has Pε ≤ ∑γ 6=γ ′ P(Ω
γ,γ ′

0,ν (ε))+Pr where

Ω
γ,γ ′

0,ν (ε) = Ω0(ε)∩
{

ω; |Jγ,γ ′(E(ω),E′(ω))| ≥ e− ˜̀β
}

;

Jγ,γ ′(E(ω),E′(ω)) =

∣∣∣∣∣∂ωγ
E(ω) ∂ω

γ ′E(ω)

∂ωγ
E′(ω) ∂ω

γ ′E
′(ω)

∣∣∣∣∣;
in dimension 1, we have Pr ≤ Ce−c ˜̀2β

, thus, Pr ≤ L−2d;
in dimension d, as by assumption ∆E > 2d, one has Pr = 0.

The estimate of Jacobian and picking ε � L−d ˜̀ν+1 yields

P(Ωγ,γ ′

0,ν (ε))≤ CL−2de2 ˜̀β
.

Summing over (γ,γ ′) ∈ Λ2
˜̀, we obtain

Pε ≤ CL−2de4 ˜̀β

Proof is complete.
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The proof of the fundamental estimate: case 1

Ej(ω) and Ek(ω) simple evs of Hω(ΛL) such that |Ek(ω)−Ej(ω)| ≥ ∆E > 2d.

Then, ω 7→ Ej(ω) and ω 7→ Ek(ω) are real analytic functions.

Let ω 7→ ϕj(ω) and ω 7→ ϕk(ω) be normalized eigenvec. ass. resp. to Ej(ω) and
Ek(ω).

Differentiating the eigenvalue equation in ω , one computes

ω ·∇ω(Ej(ω)−Ek(ω)) = 〈Vω ϕj(ω),ϕj(ω)〉−〈Vω ϕk(ω),ϕk(ω)〉
= Ej(ω)−Ek(ω)+ 〈−∆ϕk(ω),ϕk(ω)〉−〈−∆ϕj(ω),ϕj(ω)〉.

So
∆E−2d ≤ |Ej(ω)−Ek(ω)|−2d ≤ |ω ·∇ω(Ej(ω)−Ek(ω))|.

Hence,

‖∇ω(Ej(ω)−Ek(ω))‖2 ≥
∆E−2d

K
L−d/2.
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The proof of the fundamental estimate: case 2
Let us now assume d = 1. We prove a weaker result.

Theorem
Fix ν > 8. For the discrete Anderson model in dimension 1, there exists ∆E of total
measure such that, for E−E′ ∈ ∆E , for L sufficiently large, if Ej(ω) and Ek(ω) are
simple eigenvalues of Hω(ΛL) such that |Ek(ω)−E|+ |Ej(ω)−E′| ≤ L−ν then
‖∇ω(Ej(ω)−Ek(ω))‖1 ≥ L−ν ;

Fix E < E′. Pick Ej(ω) and Ek(ω), simple evs s.t. |Ek(ω)−E|+ |Ej(ω)−E′| ≤ L−α .
Then,

4L−2ν ≥ ‖∇ω(Ej(ω)−Ek(ω))‖2
2 = ∑

γ∈ΛL

|ϕ j
γ(ω)−ϕ

k
γ (ω)|2 · |ϕ j

γ(ω)+ϕ
k
γ (ω)|2

there exists a partition of ΛL, say P ⊂ ΛL and Q ⊂ ΛL s.t.
for γ ∈P , |ϕ j

γ(ω)−ϕk
γ (ω)| ≤ L−ν ;

for γ ∈Q, |ϕ j
γ(ω)+ϕk

γ (ω)| ≤ L−ν .
Introduce the orthogonal projectors P and Q defined by

P = ∑
γ∈P
|γ〉〈γ| and Q = ∑

γ∈Q
|γ〉〈γ|.
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One has ‖Pϕ
j−Pϕ

k‖2 ≤ L−ν+d/2 and ‖Qϕ
j +Qϕ

k‖2 ≤ L−ν+d/2.

As ‖Pu‖2 +‖Qu‖2 = ‖u‖2 and 〈ϕ j,ϕk〉= 0, one has

‖Pϕ
j‖2 =

1
2
+O(L−ν+d/2) and ‖Qϕ

j‖2 =
1
2
+O(L−ν+d/2).

This implies that P 6= /0 and Q 6= /0.

To simplify the notation, from now on, we write u = ϕj. So ϕk = Pu−Qu+O(L−ν).

Plugging this into the eigenavalue equations yields{
[−(P∆Q+Q∆P)−∆E]u = O(L−α)

[−(P∆P+Q∆Q)+Vω −E]u = O(L−α),

where ∆E = E′−E and E = (E+E′)/2.

So
∆E is at a distance at most L−α to the spectrum of −(P∆Q+Q∆P),
u is close to being an eigenvector associated to this eigenvalue,
u is also close to being in the kernel of −(P∆P+Q∆Q)+Vω −E.
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The operator P∆Q+Q∆P:
−P∆Q−Q∆P = ∑

γ∈∂P

(|γ +1〉〈γ|+ |γ〉〈γ +1|)+ ∑
γ∈∂Q

(|γ +1〉〈γ|+ |γ〉〈γ +1|)

where ∂P = {γ ∈P; γ +1 ∈Q} ⊂P and ∂Q = {γ ∈Q; γ +1 ∈P} ⊂Q.

One checks ∂P 6= /0, and ∂Q 6= /0 and ∂P ∩∂Q = /0.

For A ⊂ ΛL we define A +1 = {p+1; p ∈A } to be the shift by one of A .

One clearly has (∂P +1)⊂Q and (∂Q+1)⊂P .

Hence, (∂P +1)∩∂P = /0 and (∂Q+1)∩∂Q = /0.

Consider the set C := ∂P ∪∂Q.

Partition it into its “connected components” i.e. C can be written a a disjoint union of
intervals of integers, say C = ∪l0

l=1C
c
l .

Then, for l 6= l′,
C c

l ∩C c
l′ = C c

l ∩ (C c
l′ +1) = /0.

Define Cl = C c
l ∪ (C c

l +1). One has, for l 6= l′, Cl∩Cl′ = /0.

Note that one may have ∪l0
l=1Cl = ΛL.
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Then

−P∆Q−Q∆P =−
l0

∑
l=1

Cl∆Cl

where Cl is the projector Cl = ∑
γ∈Cj

|γ〉〈γ|.

The projectors Cl and Cl′ are orthogonal to each other for l 6= l′.

So the spectrum of−P∆Q−Q∆P is given by the union of the spectra of (Cl∆Cl)1≤j≤J .

Each of these operators : Dirichlet Laplacian on interval of length, the length of Cl.

Its spectral decomposition can be computed explicitly: for segment of length n,
the eigenvalues are simple and are given by (2cos(kπ/(n+1)))1≤k≤n;
for k ∈ {1, · · · ,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by
the vector (sin(kjπ/(n+1))1≤j≤n.

Let ∆E c
L = ∪L

n=0σ(−Cn∆Cn)+ [−L−ν ,L−ν ] then |∩n≥1∪L≥n∆E c
L |= 0.

∆E =c (∩n∪L≥n ∆E c
L ) is of total measure.

This completes the proof.
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