Decorrelation estimates for the eigenlevels of random operators in the localized regime

F. Klopp

Université Paris 13 and Institut Universitaire de France

1/16

F. Klopp (Université Paris 13)

Outline

1 The setting and the results

- The Anderson model in the localized regime
- Local renormalized level distribution
- The independence
- The decorrelation lemmas

Ideas of the proof

- Basic idea
- Reduction to localization boxes
- Analysis on a localization box
- The fundamental estimate
- Completing the proof of the decorrelation lemma
- The proof of the fundamental estimate: case 1
- The proof of the fundamental estimate: case 2

The Anderson model in the localized regime

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.

ω_1	1	0	•••	•••	0)
1	ω_2	1			÷
0	1	ω_3	1		÷
•			·.		0
0	•••	0	1	ω_{n-1}	1
0 /	•••	• • •	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

The local level statistics near E is the point process defined by

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_{j}(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_{j}(E, \omega, \Lambda) = |\Lambda| \nu(E) (E_{j}(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami)

F. Klopp (Université Paris 13)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $\nu(E_0) > 0$ and $\nu(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E_0', \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators.

Results for random matrices.

The answer may be model dependent:

$$\begin{pmatrix} \omega_1 & 0 & \cdots & 0 \\ 0 & \omega_2 & 0 & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \omega_{2n} \end{pmatrix} \qquad \begin{pmatrix} \omega_1 & 0 & 0 & \cdots & 0 \\ 0 & \omega_1 + 1 & 0 & \cdots & 0 \\ \vdots & 0 & \omega_2 & 0 & \vdots \\ \vdots & & & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \omega_n + 1 \end{pmatrix}$$

F. Klopp (Université Paris 13)

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\boldsymbol{\omega}; \left\{\begin{array}{cc} \#\{j; \xi_j(E_0, \boldsymbol{\omega}, \Lambda) \in U_+\} = k_+ \\ \#\{j; \xi_j(E_0', \boldsymbol{\omega}, \Lambda) \in U_-\} = k_- \end{array}\right\}\right) \underset{\Lambda \to \mathbb{Z}^d}{\to} e^{-|U_+|} \frac{|U_+|^{k_+}}{k_+!} \cdot e^{-|U_-|} \frac{|U_-|^{k_-}}{k_-!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

The decorrelation lemmas

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \ge 3$ and $cL^{\alpha} \le \ell \le L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\end{array}\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}.$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

$$\mathbb{E}\left[tr[\mathbf{1}_J(H_{\omega}(\Lambda))] \cdot \left(tr[\mathbf{1}_K(H_{\omega}(\Lambda))] - 1\right)\right] \leq C|J| |K| |\Lambda|^2.$$

UNIVERSITÉ PARIS

Basic idea of the proof of decorrelation lemmas

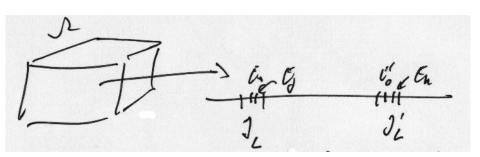
Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

$$\mathbb{P}\left(\#[\sigma(H_{\boldsymbol{\omega}}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\boldsymbol{\omega}}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that

 $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".



Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that ψ : $(\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism.

Problem: even if $|Jac\psi| \approx 1$, one has

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

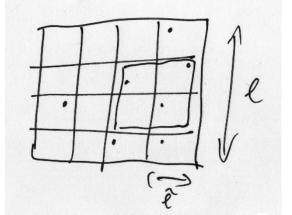
$$\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \mathbb{P}_1$$

where

- $\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$
- $\tilde{\ell} \simeq \log L$, $\tilde{J}_L = J_L + [-L^{-d}, L^{-d}]$ and $\tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence.

As localization boxes of size $\tilde{\ell}$, remains to estimate \mathbb{P}_1 .



Analysis on a localization box

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- S Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\boldsymbol{\omega}}(E(\boldsymbol{\omega}))\|_{\ell^{\infty}\to\ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\boldsymbol{\omega}),\sigma(H_{\boldsymbol{\omega}}(\Lambda_{\tilde{\ell}}))\setminus\{E(\boldsymbol{\omega})\})}$$

Hence, by Minami's estimate

Lemma
For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C\varepsilon \tilde{\ell}^{2d}L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and
 $\Omega_0(\varepsilon) = \begin{cases} \omega; & \sigma(H_\omega(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L = \{E(\omega)\} = \sigma(H_\omega(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_\omega(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L = \{E'(\omega)\} = \sigma(H_\omega(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$

To estimate the Jac(ψ), need to show that $\nabla_{\omega} E(\omega)$ and $\nabla_{\omega} E'(\omega)$ not collinear as

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

F. Klopp (Université Paris 13)

Lemma

In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{\kappa} L^{-d/2}$;

② *in dimension 1: fix* E < E' *and* $\beta > 1/2$ *; let* \mathbb{P} *denote the probability that there exists* $E_j(\omega)$ *and* $E_k(\omega)$ *, simple eigenvalues of* $H_{\omega}(\Lambda_L)$ *such that* $|E_k(\omega) - E| + |E_j(\omega) - E'| \le e^{-L^{\beta}}$ *and such that*

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1\leq e^{-L^{\boldsymbol{\beta}}};$$

then, there exists c > 0 such that $\mathbb{P} \leq e^{-cL^{2\beta}}$.

Completing the proof of the decorrelation lemma

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_r$ where

•
$$\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_0(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega),E'(\omega))| \ge e^{-\tilde{\ell}^{\beta}} \right\};$$

• $J_{\gamma,\gamma'}(E(\omega),E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}}E(\omega) & \partial_{\omega_{\gamma'}}E(\omega) \\ \partial_{\omega_{\gamma}}E'(\omega) & \partial_{\omega_{\gamma'}}E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$.

The estimate of Jacobian and picking $\varepsilon \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\ell}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq C L^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

The proof of the fundamental estimate: case 1

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$.

Then, $\omega \mapsto E_j(\omega)$ and $\omega \mapsto E_k(\omega)$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\boldsymbol{\omega}).$

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}} (E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \boldsymbol{\varphi}_j(\boldsymbol{\omega}), \boldsymbol{\varphi}_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \boldsymbol{\varphi}_k(\boldsymbol{\omega}), \boldsymbol{\varphi}_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \boldsymbol{\varphi}_k(\boldsymbol{\omega}), \boldsymbol{\varphi}_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \boldsymbol{\varphi}_j(\boldsymbol{\omega}), \boldsymbol{\varphi}_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \leq |E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})| - 2d \leq |\boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}))|.$$

Hence,

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_2 \geq \frac{\Delta E-2d}{K}L^{-d/2}.$$

The proof of the fundamental estimate: case 2

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

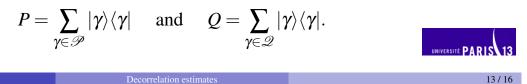
Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

- for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{j}(\omega) \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$
- for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by



F. Klopp (Université Paris 13)

One has $\|P\varphi^{j} - P\varphi^{k}\|_{2} \le L^{-\nu+d/2}$ and $\|Q\varphi^{j} + Q\varphi^{k}\|_{2} \le L^{-\nu+d/2}$. As $\|Pu\|^{2} + \|Qu\|^{2} = \|u\|^{2}$ and $\langle \varphi^{j}, \varphi^{k} \rangle = 0$, one has

$$||P\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } ||Q\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha}) \\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}), \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

So

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

The operator $P\Delta Q + Q\Delta P$:

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has
$$(\partial \mathscr{P} + 1) \subset \mathscr{Q}$$
 and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence,
$$(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$$
 and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

F. Klopp (Université Paris 13)

Decorrelation estimates

Then

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l .

Its spectral decomposition can be computed explicitly: for segment of length n,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let $\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$ then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$ $\Delta \mathscr{E} = (\cap_n \bigcup_{L\geq n} \Delta \mathscr{E}_L^c)$ is of total measure.

This completes the proof.

