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Exponential sums
We consider sums of the form S(N,P) = ∑

0≤n≤N−1
e(P(n)) where

N = 1,2,3, · · · ,
e(z) = e2πiz,
P ∈ R[X], degP = k > 1.

Such sums play an important role in many areas of mathematics:

ergodic theory: equidistribution of numbers mod 1,
number theory: Diophantine equations, Waring’s problem, Hardy-Littlewood
circle method,
harmonic analysis: lacunary series,
analysis of PDEs: linear, nonlinear, on manifolds.

Question: behavior of S(N,P) when N→+∞.

We concentrate on Gaussian sums i.e. k = 2 or

S(N,a,b) = ∑
0≤n≤N−1

e
(
−an2

2
+nb

)
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The graph of a Gaussian sums

We now restrict to the case b = 0 i.e. to sums of the form

S(N,a,0)= ∑
0≤n≤N−1

e
(
−an2

2

)
, N = 1,2,3 . . . ,

where 0 < a < 1.

The graphs :
video1.mpg ¸
video3.mpg ¸

video2.mpg ¸
video4.mpg ¸

A renormalition formula: we shall see that

S(N,a,0)∼ e(−1/8)√
a

S(N1,a1,2), N1 = [aN], a1 =−
1
a
.

If a is small, there are less terms in the right hand side. Moreover, the right hand side
varies more slowly with N. One erases details (Hardy - Littlewood, Mendès-France,
Berry - Goldberg).
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The Poisson formula

Let f ∈S (R). Then, one has ∑
n∗∈2πZ

f̂ (n∗) = ∑
n∈Z

f (n).

Renormalizing the sums:

One can apply this to the exponential sum taking f (x) = e(iax2/2)1[0,N)(x).

Thus,

f̂ (ξ ) =
e(−1/8)√

a
exp
(
− iξ 2

4πa

)
1[0,aN)(ξ )+g(ξ )

where g is a remainder term.

This yields

S(N,a,0)∼ e(−1/8)√
a

S(N1,a1,2), N1 = [aN], a1 =−
1
a

;
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The basic formula:

S(N,a,0) =
e(−1/8)√

a
S(N1,a1,2)+ error terms.

Three questions:
describe the “error terms”?
are the “error terms” really smaller than the main term?
how do these terms behave?

A special function:
Consider the function F : C→ C defined by the formula:

F (ξ ,a) =
∫

γ(ξ )

e
(

p2

2a

)
dp

e(p−ξ )−1
,

γ(ξ)

l(ξ)

ξ π/4
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An exact renormalization formula (A. Fedotov, F.K.) :

Lemma
For a > 0, the function ξ 7→F (ξ ,a) is entire and satisfies, for ξ ∈ C,

F (ξ ,a)−F (ξ −1,a) = e
(

ξ 2

2a

)
and G (ξ +a,a)−G (ξ ,a) = e

(
−ξ 2

2a

)

where G (ξ ,a) = c(a)e
(
−ξ 2

2a

)
F (ξ ,a) and c(a) = e(−1/8)a−1/2.

Moreover, one has F (−ξ ,a)+F (ξ ,a) = e
(

ξ 2

2a

)
− 1

c(a)
.

Proof. The first relation follows from the residue theorem.
The second relation is obvious after the change of variable z = p−ξ in the integral
defining F .
To get the third relation, change variable p→−p in the integral F (−ξ ,a) and use the

residue theorem to get F (−ξ ,a) = e
(

ξ 2

2a

)
−
∫

γ(ξ )

e
(

p2

2a

)
e(p−ξ )dp

e(p−ξ )−1
.
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This leads to the renormalization formula

Theorem
Fix N ∈ N and (a,b) ∈ (0,1)× (−1/2,1/2]. Let

ξ = {aN}, N1 = [aN], a1 =

{
1
a

}
, b1 ≡

{
−b

a
+

1
2

[
1
a

]}
0
,

where {x} and [x] denote the fractional and the integer parts of the real number x, and
{x}0 = xmod1 and −1/2 < {x}0 ≤ 1/2.
Then,

S(N,a,b) = c(a)
[

e
(

b2

2a

)
S(N1,a1,b1)

+e
(
−aN2

2
+Nb

)
F (ξ −b,a)−F (−b,a)

]
.

Analogous formulae were already known (Hardy-Littlewood, Van der Corput,
Mordell), but the error terms were not known.
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Proof
The second equation of Lemma 1 yields we get

G (Na−b,b) =
N−1

∑
k=0

e
(
− (ka−b)2

2a

)
+G (−b,a) = e

(
− b2

2a

)
S(N,a,b)+G (−b,a).

Thus, by the definition of G ,

S(N,a,b) = c(a)
[

e
(
−N2a

2
+Nb

)
F (Na−b,a)−F (−b,a)

]
On the other hand, using the first equation of Lemma 1, we obtain

F (Na−b,b)−F (ξ −b,a) = e
(
(Na−b)2

2a

) N1−1

∑
k=0

e
(

k2

2a
− k(Na−b)

a

)
.

As e(l) = 1 for all l ∈ Z, and as, modulo 1, one has

k2

2a
+

b
a

k =
k(k+1)

2
1
a
+

(
b
a
− 1

2a

)
k =

k(k+1)
2

a1− k
(

b1 +
a1

2

)
=

k2

2
a1− kb1,

we finally get F (Na−b,b) = e
(
(Na−b)2

2a

)
S(N1,a1,b1)+F (ξ −b,a).

Expressing G in terms of F completes the proof. �
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Analysis of the curlicues

The asymptotics of F :

Proposition
Let −1/2≤ ξ ≤ 1/2 and 0 < a≤ 1. When a→ 0, F satisfies

F (ξ ,a)∼ e(1/8)e(a−1
ξ

2/2) f (a−1/2
ξ ), f (t) =

∫ t

−∞

e(−τ
2/2)dτ.

The graph of f is
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To simplify, set b = 0. Recall that, for ξ = {aN}, N1 = [aN], a1 ≡ 1
a mod1, one

has
S(N,a,0) = c(a)

[
S(N1,a1,0)+ e

(
−aN2

2

)
F (ξ ,a)−F (0,a)

]
.

Let a be small. Then, N1 = [aN] stays constant over an interval of size roughly 1/a.
On this interval, {aN} varies by increments of a. Hence, in this interval, one has
{a(N + k)}−{aN}= ak.
Therefore,

e((N + k)2/2a)F ({aN +ak},a) = e((N + k)2/2a)F ({aN}+ ka,a)

∼ e(1/8)e(N2
1/2a) f (a−1/2{aN}+a1/2k).
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Define the sequence an+1 ≡ a−1
n (mod1), a0 = a.

In terms of the continued fraction expansion of a

a =
1

n0 +
1

n1 +
1

n2 + · · ·

,

we get
aj =

1

nj +
1

nj+1 +
1

nj+2 + · · ·

for j≥ 0.

Thus, aj is small if and only if nj is large.

Some examples:
a = [30,60,120,1000, . . . ]

video1.mpg ¸
video3.mpg ¸

a = [1,1,1,1,1,1,1,1,1,60,1,1,1,1,1,1,1,1,1, . . . ]
video2.mpg ¸
video4.mpg ¸
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A short preliminary:

For b ∈ R, one computes∫ 1

0
|S(N,a,b)|2da = N + ∑

0≤m<n≤N

∫ 1

0
cos(πa(n2−m2)−2πb(n−m))da = N.

Thus, it is reasonable to expect that, for many a, |S(N,a,b)|/
√

N not be too large.

Two theorems on the growth of S(N,a,b): first, consider the case of typical (a,b).

Theorem
Let g : R+→ R+ be a non increasing function.
For almost every (a,b) ∈ (0,1)× (−1/2,1/2], one has

limsup
N→+∞

(
g(lnN)

|S(N,a,b) |√
N

)
< ∞ ⇐⇒ ∑

l≥1
g6(l)< ∞.

Let ϕ(N) = (lnN)1/4.

For typical a and b, the ratio
S(N,a,b)√

N
grows slower than (ϕ(N))2/3+0.
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Define the set

Ba =

{
{1

2
(ma+n)}0; (m,n) ∈ Z2 \ (2Z+1)2

}
where, for x ∈ R, {x}0 = xmod1 and −1/2 < {x}0 ≤ 1/2.

For every irrational a, the set Ba is dense in (−1/2,1/2] as {ma+n; (m,n) ∈ Z2} is
dense in R.

Theorem
Let g : R+→ R+ be a non increasing function. Then, for almost all a ∈ (0,1), there
exists a dense Gδ , say B̃a, such that Ba ⊂ B̃a and, for b ∈ B̃a, one has

limsup
N→+∞

(
g(lnN)

|S(N,a,b) |√
N

)
< ∞ ⇐⇒ ∑

l≥1
g4(l)< ∞.

Let ϕ(N) = (lnN)1/4. For a typical a and for b ∈ B̃a, the ratio S(N,a,b)/
√

N grows
faster than ϕ(N).

For b = 0, the result is known (see Fiedler-Jurkat-Körner).
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Multiple renormalizations

The renormalization formula expresses S(N,a,b) in terms S(N1,a1,b1) containing a
smaller number of terms. One can apply it inductively.

Assume a irrational. For l≥ 0, we let al+1 =
{

1
al

}
, a0 = a, Nl+1 = [alNl], N0 = N,

bl+1 ≡
{
− bl

al
+ 1

2

[
1
al

]}
0

, b0 = b.

The sequence {Nl} is strictly decreasing until it reaches the value zero and then
becomes constant.
Denote by L(N) the unique natural number such that NL(N)+1 = 0 and NL(N) ≥ 1.

Corollary

One has S(N,a,b) =
L(N)

∑
l=0

e(θl)

(a0a1 . . .al)1/2 ∆F ∗l
l where

∆Fl = e(−alN2
l /2+Nlbl)F (ξl−bl,al)−F (−bl,al),

∗l denotes the complex conjugation applied l times,

ξl = {alNl} and θl+1 = θl +(−1)l
(

1
8 +

b2
l

2al

)
where θ0 =−1/8.
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Define N−(L) = min{N; L(N) = L} and N+(L) = max{N; L(N) = L}. Clearly,

N+(L−1) = N−(L)−1. One has
1

a0a1 . . .aL−1
< N−(L)<

1
a0a1 . . .aL−1

(1+4aL−1).

Theorem
Let a be irrational and L be a positive integer. Assume that N−(L)≤ N ≤ N+(L). Let
ξL(N) = aLNL(N). Then, for ξL(N)−bL ≤ 1/2, one has

S(N,a,b) =
e(θL+1)√
a0a1 . . .aL

(∫ ξL(N)−bL√aL

− bL√aL

e(−τ
2/2)dτ +O(

√
aL)

)∗L

and, for ξL(N)−bL ≥ 1/2, one has

S(N,a,b) =
e(θL+1)√
a0a1 . . .aL

(∫
∞

− bL√aL

e(−τ
2/2)dτ +O(

√
aL)+

+ e
(

bL−ξL(N)+1/2
2aL

) ∫ ∞

1−(ξL(N)−bL)√aL

e(−τ
2/2)dτ

)∗L
where ∗L and θl are defined in previous slide.
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Estimates on Gaussian sums

Using previous theorem, we now estimate S(N,a,b) in terms of (al)l and (bl)l.

For L ∈ N, define M(L,a,b) = max
N−(L)≤N≤N+(L)

∣∣∣∣S(N,a,b)√
N

∣∣∣∣.
Proposition
There exist c > 0 and C > 0 independent of a, and b such that, for L ∈ N,

M(L,a,b)≤ C
1√

|bL|+ 4
√

aL

and
if
√
|bl|+ 4

√
aL ≤ c, then

1
C

1√
|bL|+ 4

√
aL
≤M(L,a,b).

So studying the growth of the sum reduces to studying the dynamical system defined
by (al,bl) 7→ (al+1,bl+1) defined by al+1 =

{
1
al

}
, bl+1 ≡

{
− bl

al
+ 1

2

[
1
al

]}
0

and

(a0,b0) = (a,b).
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A special dynamical system

For (a,b) ∈ (0,1)× (−1/2,1/2), for l≥ 0, define

al+1 =

{
1
al

}
, bl+1 ≡

{
−bl

al
+

1
2

[
1
al

]}
0

where (a0,b0) = (a,b).

Note that the sequence (al)l is defined by the Gauss map, thus given by the continued
fraction expansion of a. It is well studied.

Let ϕ : R+→ R+ be a non increasing function.

Let γ(a,b) be the trajectory of the dynamical system.

Let N(L,ϕ,a,b) be the number of the conditions

“ 4
√

al ≤ ϕ(l) and
√
|bl| ≤ ϕ(l) ”

that are satisfied along γ(a,b) while 0≤ l≤ L.
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On K := (0,1)× (−1/2,1/2), let m be the probability measure of density
1

ln2
dadb
1+a

.

Let ‖N(L,ϕ)‖1 and ‖N(L,ϕ)‖2 denote the L1(K, m) and L2(K, m) norms of the
function (a,b)→N(L,a,b).

Lemma
Let ϕ : R+→ R+ be a non increasing function such that, for all l ∈ N, ϕ(l)≤ 1/2.

Then, ‖N(L,ϕ)‖1 ≤ C ∀L ∈ N ⇐⇒ ∑
N≥1

ϕ
6(N)< ∞.

Lemma
Let ϕ : R+→ R+ be as above. If ∑

N≥1
ϕ

6(N) diverges then,

‖N(L,ϕ)‖2 ∼
L→∞
‖N(L,ϕ)‖1.

Note that, if ‖N(L,ϕ)‖2 = ‖N(L,ϕ)‖1 then N(L,ϕ, ·, ·) = ‖N(L,ϕ)‖1 a.s.
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