Gaussian exponential sums

A. Fedotov ${ }^{1} \quad$ F. Klopp 2
${ }^{1}$ Saint-Petersburg State University
${ }^{2}$ Université Paris 13
and
Institut Universitaire de France

New Directions In Analysis
Ha Noi, Viet Nam, August 10th, 2010

Outline
(1) The renormalization of exponential sums

- Exponential sums
- The Poisson formula
- The exact renormalization formula
- The analysis of the curlicues
(2) The growth of Gaussian exponential sums
- Two theorems
- Multiple renormalizations
- Estimates on Gaussian exponential
- A special dynamical system

Exponential sums

We consider sums of the form $S(N, P)=\sum_{0 \leq n \leq N-1} e(P(n)) \quad$ where

- $N=1,2,3, \cdots$,
- $e(z)=e^{2 \pi i z}$,
- $P \in \mathbb{R}[X], \quad \operatorname{deg} P=k>1$.

Such sums play an important role in many areas of mathematics:

- ergodic theory: equidistribution of numbers mod 1 ,
- number theory: Diophantine equations, Waring's problem, Hardy-Littlewood circle method,
- harmonic analysis: lacunary series,
- analysis of PDEs: linear, nonlinear, on manifolds.

Question: behavior of $S(N, P)$ when $N \rightarrow+\infty$.
We concentrate on Gaussian sums i.e. $k=2$ or

$$
S(N, a, b)=\sum_{0 \leq n \leq N-1} e\left(-\frac{a n^{2}}{2}+n b\right)
$$

The graph of a Gaussian sums

We now restrict to the case $b=0$ i.e. to sums of the form
$S(N, a, 0)=\sum_{0 \leq n \leq N-1} e\left(-\frac{a n^{2}}{2}\right), \quad N=1,2,3 \ldots$,
where $0<a<1$.
The graphs :

$$
\begin{aligned}
& \text { video1.mpg } \gg \\
& \text { video3.mpg } \gg
\end{aligned}
$$

video2.mpg $>$ video4.mpg \gg

A renormalition formula: we shall see that

$$
S(N, a, 0) \sim \frac{e(-1 / 8)}{\sqrt{a}} S\left(N_{1}, a_{1}, 2\right), \quad N_{1}=[a N], \quad a_{1}=-\frac{1}{a} .
$$

If a is small, there are less terms in the right hand side. Moreover, the right hand side varies more slowly with N. One erases details (Hardy - Littlewood, Mendès-France, Berry - Goldberg).

Let $f \in \mathscr{S}(\mathbb{R})$. Then, one has $\sum_{n^{*} \in 2 \pi \mathbb{Z}} \hat{f}\left(n^{*}\right)=\sum_{n \in \mathbb{Z}} f(n)$.
Renormalizing the sums:
One can apply this to the exponential sum taking $f(x)=e\left(\operatorname{iax}^{2} / 2\right) \mathbf{1}_{[0, N)}(x)$.
Thus,

$$
\hat{f}(\xi)=\frac{e(-1 / 8)}{\sqrt{a}} \exp \left(-\frac{i \xi^{2}}{4 \pi a}\right) \mathbf{1}_{[0, a N)}(\xi)+g(\xi)
$$

where g is a remainder term.
This yields

$$
S(N, a, 0) \sim \frac{e(-1 / 8)}{\sqrt{a}} S\left(N_{1}, a_{1}, 2\right), \quad N_{1}=[a N], \quad a_{1}=-\frac{1}{a} ;
$$

The basic formula:

$$
S(N, a, 0)=\frac{e(-1 / 8)}{\sqrt{a}} S\left(N_{1}, a_{1}, 2\right)+\text { error terms. }
$$

Three questions:

- describe the "error terms"?
- are the "error terms" really smaller than the main term?
- how do these terms behave?

A special function:
Consider the function $\mathscr{F}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the formula:

An exact renormalization formula (A. Fedotov, F.K.) :

Lemma

For $a>0$, the function $\xi \mapsto \mathscr{F}(\xi, a)$ is entire and satisfies, for $\xi \in \mathbb{C}$,

$$
\mathscr{F}(\xi, a)-\mathscr{F}(\xi-1, a)=e\left(\frac{\xi^{2}}{2 a}\right) \quad \text { and } \quad \mathscr{G}(\xi+a, a)-\mathscr{G}(\xi, a)=e\left(-\frac{\xi^{2}}{2 a}\right)
$$

where $\mathscr{G}(\xi, a)=c(a) e\left(-\frac{\xi^{2}}{2 a}\right) \mathscr{F}(\xi, a)$ and $c(a)=e(-1 / 8) a^{-1 / 2}$.
Moreover, one has $\mathscr{F}(-\xi, a)+\mathscr{F}(\xi, a)=e\left(\frac{\xi^{2}}{2 a}\right)-\frac{1}{c(a)}$.
Proof. The first relation follows from the residue theorem.
The second relation is obvious after the change of variable $z=p-\xi$ in the integral defining \mathscr{F}.
To get the third relation, change variable $p \rightarrow-p$ in the integral $\mathscr{F}(-\xi, a)$ and use the
residue theorem to get $\mathscr{F}(-\xi, a)=e\left(\frac{\xi^{2}}{2 a}\right)-\int_{\gamma(\xi)} \frac{e\left(\frac{p^{2}}{2 a}\right) e(p-\xi) d p}{e(p-\xi)-1}$.

Fedotov et al. (U. Saint-Petersburg and Paris 13)
Gaussian exponential sums
Ha Noi, August 10th, 2010

This leads to the renormalization formula

Theorem

Fix $N \in \mathbb{N}$ and $(a, b) \in(0,1) \times(-1 / 2,1 / 2]$. Let

$$
\xi=\{a N\}, \quad N_{1}=[a N], \quad a_{1}=\left\{\frac{1}{a}\right\}, \quad b_{1} \equiv\left\{-\frac{b}{a}+\frac{1}{2}\left[\frac{1}{a}\right]\right\}_{0},
$$

where $\{x\}$ and $[x]$ denote the fractional and the integer parts of the real number x, and $\{x\}_{0}=x \bmod 1$ and $-1 / 2<\{x\}_{0} \leq 1 / 2$.
Then,

$$
\begin{aligned}
S(N, a, b)=c(a) & {\left[e\left(\frac{b^{2}}{2 a}\right) \overline{S\left(N_{1}, a_{1}, b_{1}\right)}\right.} \\
& \left.+e\left(-\frac{a N^{2}}{2}+N b\right) \mathscr{F}(\xi-b, a)-\mathscr{F}(-b, a)\right] .
\end{aligned}
$$

Analogous formulae were already known (Hardy-Littlewood, Van der Corput,
Mordell), but the error terms were not known.

Proof
The second equation of Lemma 1 yields we get

$$
\mathscr{G}(N a-b, b)=\sum_{k=0}^{N-1} e\left(-\frac{(k a-b)^{2}}{2 a}\right)+\mathscr{G}(-b, a)=e\left(-\frac{b^{2}}{2 a}\right) S(N, a, b)+\mathscr{G}(-b, a) .
$$

Thus, by the definition of \mathscr{G},

$$
S(N, a, b)=c(a)\left[e\left(-\frac{N^{2} a}{2}+N b\right) \mathscr{F}(N a-b, a)-\mathscr{F}(-b, a)\right]
$$

On the other hand, using the first equation of Lemma 1 , we obtain

$$
\mathscr{F}(N a-b, b)-\mathscr{F}(\xi-b, a)=e\left(\frac{(N a-b)^{2}}{2 a}\right) \sum_{k=0}^{N_{1}-1} e\left(\frac{k^{2}}{2 a}-\frac{k(N a-b)}{a}\right) .
$$

As $e(l)=1$ for all $l \in \mathbb{Z}$, and as, modulo 1 , one has

$$
\frac{k^{2}}{2 a}+\frac{b}{a} k=\frac{k(k+1)}{2} \frac{1}{a}+\left(\frac{b}{a}-\frac{1}{2 a}\right) k=\frac{k(k+1)}{2} a_{1}-k\left(b_{1}+\frac{a_{1}}{2}\right)=\frac{k^{2}}{2} a_{1}-k b_{1},
$$

we finally get $\mathscr{F}(N a-b, b)=e\left(\frac{(N a-b)^{2}}{2 a}\right) \overline{S\left(N_{1}, a_{1}, b_{1}\right)}+\mathscr{F}(\xi-b, a)$.
Expressing \mathscr{G} in terms of \mathscr{F} completes the proof.

Analysis of the curlicues
The asymptotics of \mathscr{F} :

Proposition

Let $-1 / 2 \leq \xi \leq 1 / 2$ and $0<a \leq 1$. When $a \rightarrow 0, \mathscr{F}$ satisfies

$$
\mathscr{F}(\xi, a) \sim e(1 / 8) e\left(a^{-1} \xi^{2} / 2\right) f\left(a^{-1 / 2} \xi\right), \quad f(t)=\int_{-\infty}^{t} e\left(-\tau^{2} / 2\right) d \tau
$$

The graph of f is

To simplify, set $b=0$. Recall that, for $\xi=\{a N\}, \quad N_{1}=[a N], \quad a_{1} \equiv \frac{1}{a} \bmod 1$, one has

$$
S(N, a, 0)=c(a)\left[\overline{S\left(N_{1}, a_{1}, 0\right)}+e\left(-\frac{a N^{2}}{2}\right) \mathscr{F}(\xi, a)-\mathscr{F}(0, a)\right]
$$

Let a be small. Then, $N_{1}=[a N]$ stays constant over an interval of size roughly $1 / a$. On this interval, $\{a N\}$ varies by increments of a. Hence, in this interval, one has $\{a(N+k)\}-\{a N\}=a k$.
Therefore,

$$
\begin{aligned}
e\left((N+k)^{2} / 2 a\right) \mathscr{F}(\{a N+a k\}, a) & =e\left((N+k)^{2} / 2 a\right) \mathscr{F}(\{a N\}+k a, a) \\
& \sim e(1 / 8) e\left(N_{1}^{2} / 2 a\right) f\left(a^{-1 / 2}\{a N\}+a^{1 / 2} k\right) .
\end{aligned}
$$

Define the sequence $a_{n+1} \equiv a_{n}^{-1}(\bmod 1), a_{0}=a$. In terms of the continued fraction expansion of a

$$
a=\frac{1}{n_{0}+\frac{1}{n_{1}+\frac{1}{n_{2}+\cdots}}},
$$

we get

$$
a_{j}=\frac{1}{n_{j}+\frac{1}{n_{j+1}+\frac{1}{n_{j+2}+\cdots}}} \text { for } j \geq 0 .
$$

Thus, a_{j} is small if and only if n_{j} is large.
Some examples:

$$
\begin{aligned}
& a= {[30,60,120,1000, \ldots] } \\
& \text { video1.mpg } \gg \\
& \text { video3.mpg } \gg
\end{aligned}
$$

$$
a=[1,1,1,1,1,1,1,1,1,60,1,1,1,1,1,1,1,1,1, \ldots])
$$

A short preliminary:
For $b \in \mathbb{R}$, one computes

$$
\int_{0}^{1}|S(N, a, b)|^{2} d a=N+\sum_{0 \leq m<n \leq N} \int_{0}^{1} \cos \left(\pi a\left(n^{2}-m^{2}\right)-2 \pi b(n-m)\right) d a=N .
$$

Thus, it is reasonable to expect that, for many $a,|S(N, a, b)| / \sqrt{N}$ not be too large.
Two theorems on the growth of $S(N, a, b)$: first, consider the case of typical (a, b).

Theorem

Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non increasing function.
For almost every $(a, b) \in(0,1) \times(-1 / 2,1 / 2]$, one has

$$
\limsup _{N \rightarrow+\infty}\left(g(\ln N) \frac{|S(N, a, b)|}{\sqrt{N}}\right)<\infty \quad \Longleftrightarrow \quad \sum_{l \geq 1} g^{6}(l)<\infty .
$$

Let $\varphi(N)=(\ln N)^{1 / 4}$.
For typical a and b, the ratio $\frac{S(N, a, b)}{\sqrt{N}}$ grows slower than $(\varphi(N))^{2 / 3+0}$.

Define the set

$$
B_{a}=\left\{\left\{\frac{1}{2}(m a+n)\right\}_{0} ;(m, n) \in \mathbb{Z}^{2} \backslash(2 \mathbb{Z}+1)^{2}\right\}
$$

where, for $x \in \mathbb{R},\{x\}_{0}=x \bmod 1$ and $-1 / 2<\{x\}_{0} \leq 1 / 2$.
For every irrational a, the set B_{a} is dense in $(-1 / 2,1 / 2]$ as $\left\{m a+n ;(m, n) \in \mathbb{Z}^{2}\right\}$ is dense in \mathbb{R}.

Theorem

Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non increasing function. Then, for almost all $a \in(0,1)$, there exists a dense G_{δ}, say \tilde{B}_{a}, such that $B_{a} \subset \tilde{B}_{a}$ and, for $b \in \tilde{B}_{a}$, one has

$$
\limsup _{N \rightarrow+\infty}\left(g(\ln N) \frac{|S(N, a, b)|}{\sqrt{N}}\right)<\infty \quad \Longleftrightarrow \quad \sum_{l \geq 1} g^{4}(l)<\infty .
$$

Let $\varphi(N)=(\ln N)^{1 / 4}$. For a typical a and for $b \in \tilde{B}_{a}$, the ratio $S(N, a, b) / \sqrt{N}$ grows faster than $\varphi(N)$.

For $b=0$, the result is known (see Fiedler-Jurkat-Körner).

Multiple renormalizations
The renormalization formula expresses $S(N, a, b)$ in terms $S\left(N_{1}, a_{1}, b_{1}\right)$ containing a smaller number of terms. One can apply it inductively.
Assume a irrational. For $l \geq 0$, we let $a_{l+1}=\left\{\frac{1}{a_{l}}\right\}, a_{0}=a, \quad N_{l+1}=\left[a_{l} N_{l}\right], N_{0}=N$, $b_{l+1} \equiv\left\{-\frac{b_{l}}{a_{l}}+\frac{1}{2}\left[\frac{1}{a_{l}}\right]\right\}_{0}, b_{0}=b$.
The sequence $\left\{N_{l}\right\}$ is strictly decreasing until it reaches the value zero and then becomes constant.
Denote by $L(N)$ the unique natural number such that $N_{L(N)+1}=0$ and $N_{L(N)} \geq 1$.

Corollary

One has $\quad S(N, a, b)=\sum_{l=0}^{L(N)} \frac{e\left(\theta_{l}\right)}{\left(a_{0} a_{1} \ldots a_{l}\right)^{1 / 2}} \Delta \mathscr{F}_{l}^{* l} \quad$ where

- $\Delta \mathscr{F}_{l}=e\left(-a_{l} N_{l}^{2} / 2+N_{l} b_{l}\right) \mathscr{F}\left(\xi_{l}-b_{l}, a_{l}\right)-\mathscr{F}\left(-b_{l}, a_{l}\right)$,
- $* l$ denotes the complex conjugation applied l times,
- $\xi_{l}=\left\{a_{l} N_{l}\right\}$ and $\theta_{l+1}=\theta_{l}+(-1)^{l}\left(\frac{1}{8}+\frac{b_{l}^{2}}{2 a_{l}}\right)$ where $\theta_{0}=-1 / 8$.

Define $N^{-}(L)=\min \{N ; L(N)=L\}$ and $N^{+}(L)=\max \{N ; L(N)=L\}$. Clearly, $N^{+}(L-1)=N^{-}(L)-1$. One has $\frac{1}{a_{0} a_{1} \ldots a_{L-1}}<N^{-}(L)<\frac{1}{a_{0} a_{1} \ldots a_{L-1}}\left(1+4 a_{L-1}\right)$.

Theorem

Let a be irrational and L be a positive integer. Assume that $N^{-}(L) \leq N \leq N^{+}(L)$. Let $\xi_{L}(N)=a_{L} N_{L}(N)$. Then, for $\xi_{L}(N)-b_{L} \leq 1 / 2$, one has

$$
S(N, a, b)=\frac{e\left(\theta_{L+1}\right)}{\sqrt{a_{0} a_{1} \ldots a_{L}}}\left(\int_{-\frac{b_{L}}{\sqrt{a_{L}}}}^{\frac{\xi_{L}(N)-b_{L}}{\sqrt{L}}} e\left(-\tau^{2} / 2\right) d \tau+O\left(\sqrt{a_{L}}\right)\right)^{* L}
$$

and, for $\xi_{L}(N)-b_{L} \geq 1 / 2$, one has

$$
\begin{aligned}
& S(N, a, b)= \frac{e\left(\theta_{L+1}\right)}{\sqrt{a_{0} a_{1} \ldots a_{L}}}\left(\int_{-\frac{b_{L}}{\sqrt{a_{L}}}}^{\infty} e\left(-\tau^{2} / 2\right) d \tau+O\left(\sqrt{a_{L}}\right)+\right. \\
&\left.\quad+e\left(\frac{b_{L}-\xi_{L}(N)+1 / 2}{2 a_{L}}\right) \int_{\frac{1-\left(\xi_{L}(N)-b_{L}\right)}{\sqrt{a_{L}}}}^{\infty} e\left(-\tau^{2} / 2\right) d \tau\right)^{* L}
\end{aligned}
$$

where $* L$ and θ_{l} are defined in previous slide.

Estimates on Gaussian sums

Using previous theorem, we now estimate $S(N, a, b)$ in terms of $\left(a_{l}\right)_{l}$ and $\left(b_{l}\right)_{l}$.
For $L \in \mathbb{N}$, define $\quad M(L, a, b)=\max _{N^{-}(L) \leq N \leq N^{+}(L)}\left|\frac{S(N, a, b)}{\sqrt{N}}\right|$.

Proposition

There exist $c>0$ and $C>0$ independent of a, and b such that, for $L \in \mathbb{N}$,

$$
M(L, a, b) \leq C \frac{1}{\sqrt{\left|b_{L}\right|}+\sqrt[4]{a_{L}}}
$$

and

$$
\text { if } \sqrt{\left|b_{l}\right|}+\sqrt[4]{a_{L}} \leq c, \text { then } \frac{1}{C} \frac{1}{\sqrt{\left|b_{L}\right|}+\sqrt[4]{a_{L}}} \leq M(L, a, b)
$$

So studying the growth of the sum reduces to studying the dynamical system defined by $\left(a_{l}, b_{l}\right) \mapsto\left(a_{l+1}, b_{l+1}\right)$ defined by $a_{l+1}=\left\{\frac{1}{a_{l}}\right\}, b_{l+1} \equiv\left\{-\frac{b_{l}}{a_{l}}+\frac{1}{2}\left[\frac{1}{a_{l}}\right]\right\}_{0}$ and $\left(a_{0}, b_{0}\right)=(a, b)$.

A special dynamical system

For $(a, b) \in(0,1) \times(-1 / 2,1 / 2)$, for $l \geq 0$, define

$$
a_{l+1}=\left\{\frac{1}{a_{l}}\right\}, b_{l+1} \equiv\left\{-\frac{b_{l}}{a_{l}}+\frac{1}{2}\left[\frac{1}{a_{l}}\right]\right\}_{0} \text { where }\left(a_{0}, b_{0}\right)=(a, b)
$$

Note that the sequence $\left(a_{l}\right)_{l}$ is defined by the Gauss map, thus given by the continued fraction expansion of a. It is well studied.

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non increasing function.
Let $\gamma(a, b)$ be the trajectory of the dynamical system.
Let $\mathfrak{N}(L, \varphi, a, b)$ be the number of the conditions

$$
" \sqrt[4]{a_{l}} \leq \varphi(l) \quad \text { and } \quad \sqrt{\left|b_{l}\right|} \leq \varphi(l) "
$$

that are satisfied along $\gamma(a, b)$ while $0 \leq l \leq L$.

On $K:=(0,1) \times(-1 / 2,1 / 2)$, let m be the probability measure of density $\frac{1}{\ln 2} \frac{d a d b}{1+a}$. Let $\|\mathfrak{N}(L, \varphi)\|_{1}$ and $\|\mathfrak{N}(L, \varphi)\|_{2}$ denote the $L^{1}(K, m)$ and $L^{2}(K, m)$ norms of the function $(a, b) \rightarrow \mathfrak{N}(L, a, b)$.

Lemma

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non increasing function such that, for all $l \in \mathbb{N}, \varphi(l) \leq 1 / 2$.
Then, $\quad\|\mathfrak{N}(L, \varphi)\|_{1} \leq C \quad \forall L \in \mathbb{N} \quad \Longleftrightarrow \quad \sum_{N \geq 1} \varphi^{6}(N)<\infty$.

Lemma

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be as above. If $\sum_{N \geq 1} \varphi^{6}(N)$ diverges then,

$$
\|\mathfrak{N}(L, \varphi)\|_{2} \underset{L \rightarrow \infty}{\sim}\|\mathfrak{N}(L, \varphi)\|_{1} .
$$

Note that, if $\|\mathfrak{N}(L, \varphi)\|_{2}=\|\mathfrak{N}(L, \varphi)\|_{1}$ then $\mathfrak{N}(L, \varphi, \cdot, \cdot)=\|\mathfrak{N}(L, \varphi)\|_{1}$ a.s.

