Gaussian exponential sums

A. Fedotov¹ F. Klopp²

¹Saint-Petersburg State University

²Université Paris 13 and Institut Universitaire de France

New Directions In Analysis Ha Noi, Viet Nam, August 10th, 2010

Fedotov et al. (U. Saint-Petersburg and Paris 13)

Gaussian exponential sums

Ha Noi, August 10th, 2010 1 / 19

Outline

1 The renormalization of exponential sums

- Exponential sums
- The Poisson formula
- The exact renormalization formula
- The analysis of the curlicues

2 The growth of Gaussian exponential sums

- Two theorems
- Multiple renormalizations
- Estimates on Gaussian exponential
- A special dynamical system

Exponential sums

We consider sums of the form $S(N,P) = \sum_{0 \le n \le N-1} e(P(n))$ where

- $N = 1, 2, 3, \cdots$,
- $e(z) = e^{2\pi i z}$,
- $P \in \mathbb{R}[X]$, deg P = k > 1.

Such sums play an important role in many areas of mathematics:

- ergodic theory: equidistribution of numbers mod 1,
- number theory: Diophantine equations, Waring's problem, Hardy-Littlewood circle method.
- harmonic analysis: lacunary series,
- analysis of PDEs: linear, nonlinear, on manifolds.

Question: behavior of S(N, P) when $N \to +\infty$.

We concentrate on Gaussian sums i.e. k = 2 or

$$S(N, a, b) = \sum_{0 \le n \le N-1} e\left(-\frac{an^2}{2} + nb\right)$$
Fedotov et al. (U. Saint-Petersburg and Paris 13)
Gaussian exponential sums
Ha Noi, August 10th, 2010 3/19

The graph of a Gaussian sums

We now restrict to the case b = 0 i.e. to sums of the form

$$S(N, a, 0) = \sum_{0 \le n \le N-1} e\left(-\frac{an^2}{2}\right), \quad N = 1, 2, 3...,$$

where $0 < a < 1$

where 0 < a < 1.

The graphs :

video1.mpg ► video3.mpg ► video2.mpg ► video4.mpg ►

A renormalition formula: we shall see that

$$S(N,a,0) \sim \frac{e(-1/8)}{\sqrt{a}} S(N_1,a_1,2), \quad N_1 = [aN], \quad a_1 = -\frac{1}{a}.$$

If a is small, there are less terms in the right hand side. Moreover, the right hand side varies more slowly with N. One erases details (Hardy - Littlewood, Mendès-France, Berry - Goldberg).

The Poisson formula

Let
$$f \in \mathscr{S}(\mathbb{R})$$
. Then, one has $\sum_{n^* \in 2\pi\mathbb{Z}} \hat{f}(n^*) = \sum_{n \in \mathbb{Z}} f(n)$.

Fedotov et al. (U. Saint-Petersburg and Paris 13) Gaussian exponential sums

Renormalizing the sums:

One can apply this to the exponential sum taking $f(x) = e(iax^2/2)\mathbf{1}_{[0,N)}(x)$. Thus,

$$\hat{f}(\xi) = \frac{e(-1/8)}{\sqrt{a}} \exp\left(-\frac{i\xi^2}{4\pi a}\right) \mathbf{1}_{[0,aN)}(\xi) + g(\xi)$$

where g is a remainder term.

This yields

$$S(N,a,0) \sim rac{e(-1/8)}{\sqrt{a}} S(N_1,a_1,2), \quad N_1 = [aN], \quad a_1 = -rac{1}{a};$$

UNIVERSITÉ	PARIS	13

Ha Noi, August 10th, 2010 5 / 19

The basic formula:

$$S(N, a, 0) = \frac{e(-1/8)}{\sqrt{a}}S(N_1, a_1, 2) + \text{error terms.}$$

Three questions:

- describe the "error terms"?
- are the "error terms" really smaller than the main term?
- how do these terms behave?

A special function:

Consider the function $\mathscr{F}: \mathbb{C} \to \mathbb{C}$ defined by the formula:

$$\mathscr{F}(\xi,a) = \int_{\gamma(\xi)} \frac{e\left(\frac{p^2}{2a}\right)dp}{e(p-\xi)-1},$$

$$\xi$$

An exact renormalization formula (A. Fedotov, F.K.) :

Lemma

For a > 0, the function $\xi \mapsto \mathscr{F}(\xi, a)$ is entire and satisfies, for $\xi \in \mathbb{C}$,

$$\mathscr{F}(\xi,a) - \mathscr{F}(\xi-1,a) = e\left(\frac{\xi^2}{2a}\right) \quad and \quad \mathscr{G}(\xi+a,a) - \mathscr{G}(\xi,a) = e\left(-\frac{\xi^2}{2a}\right)$$

where
$$\mathscr{G}(\xi, a) = c(a) e\left(-\frac{\xi^2}{2a}\right) \mathscr{F}(\xi, a)$$
 and $c(a) = e(-1/8) a^{-1/2}$.

Moreover, one has $\mathscr{F}(-\xi, a) + \mathscr{F}(\xi, a) = e\left(\frac{5}{2a}\right) - \frac{1}{c(a)}$.

Proof. The first relation follows from the residue theorem.

The second relation is obvious after the change of variable $z = p - \xi$ in the integral defining \mathscr{F} .

To get the third relation, change variable $p \to -p$ in the integral $\mathscr{F}(-\xi, a)$ and use the

residue theorem to get
$$\mathscr{F}(-\xi,a) = e\left(\frac{\xi^2}{2a}\right) - \int_{\gamma(\xi)} \frac{e\left(\frac{p^2}{2a}\right)e(p-\xi)dp}{e(p-\xi)-1}.$$

Gaussian exponential sums

This leads to the renormalization formula

Fedotov et al. (U. Saint-Petersburg and Paris 13)

Theorem

Fix $N \in \mathbb{N}$ *and* $(a,b) \in (0,1) \times (-1/2,1/2]$ *. Let*

$$\xi = \{aN\}, \quad N_1 = [aN], \quad a_1 = \left\{\frac{1}{a}\right\}, \quad b_1 \equiv \left\{-\frac{b}{a} + \frac{1}{2}\left[\frac{1}{a}\right]\right\}_0,$$

where $\{x\}$ and [x] denote the fractional and the integer parts of the real number x, and $\{x\}_0 = x \mod 1$ and $-1/2 < \{x\}_0 \le 1/2$.

Then,

$$S(N,a,b) = c(a) \left[e\left(\frac{b^2}{2a}\right) \overline{S(N_1,a_1,b_1)} + e\left(-\frac{aN^2}{2} + Nb\right) \mathscr{F}(\xi - b,a) - \mathscr{F}(-b,a) \right].$$

Analogous formulae were already known (Hardy-Littlewood, Van der Corput, Mordell), but the error terms were not known.

Ha Noi, August 10th, 2010

7/19

Proof

The second equation of Lemma 1 yields we get

$$\mathscr{G}(Na-b,b) = \sum_{k=0}^{N-1} e\left(-\frac{(ka-b)^2}{2a}\right) + \mathscr{G}(-b,a) = e\left(-\frac{b^2}{2a}\right)S(N,a,b) + \mathscr{G}(-b,a).$$

Thus, by the definition of \mathscr{G} ,

$$S(N,a,b) = c(a) \left[e\left(-\frac{N^2a}{2} + Nb \right) \mathscr{F}(Na - b, a) - \mathscr{F}(-b, a) \right]$$

On the other hand, using the first equation of Lemma 1, we obtain

$$\mathscr{F}(Na-b,b) - \mathscr{F}(\xi-b,a) = e\left(\frac{(Na-b)^2}{2a}\right)\sum_{k=0}^{N_1-1} e\left(\frac{k^2}{2a} - \frac{k(Na-b)}{a}\right).$$

As e(l) = 1 for all $l \in \mathbb{Z}$, and as, modulo 1, one has

$$\frac{k^2}{2a} + \frac{b}{a}k = \frac{k(k+1)}{2}\frac{1}{a} + \left(\frac{b}{a} - \frac{1}{2a}\right)k = \frac{k(k+1)}{2}a_1 - k\left(b_1 + \frac{a_1}{2}\right) = \frac{k^2}{2}a_1 - kb_1,$$

we finally get $\mathscr{F}(Na - b, b) = e\left(\frac{(Na - b)^2}{2a}\right)\overline{S(N_1, a_1, b_1)} + \mathscr{F}(\xi - b, a).$
Expressing \mathscr{G} in terms of \mathscr{F} completes the proof. \Box
Fedore et al. (U. Saint-Petersburg and Paris 13)
Gaussian exponential sums Ha Noi. Angust 10th, 2010 9/19

Analysis of the curlicues

The asymptotics of \mathscr{F} :

Proposition

F

Let
$$-1/2 \le \xi \le 1/2$$
 and $0 < a \le 1$. When $a \to 0$, \mathscr{F} satisfies

$$\mathscr{F}(\xi,a) \sim e(1/8) e(a^{-1}\xi^2/2) f(a^{-1/2}\xi), \quad f(t) = \int_{-\infty}^t e(-\tau^2/2) d\tau.$$

The graph of f is

To simplify, set b = 0. Recall that, for $\xi = \{aN\}$, $N_1 = [aN]$, $a_1 \equiv \frac{1}{a} \mod 1$, one has $\langle aN^2 \rangle$

$$S(N,a,0) = c(a) \left[\overline{S(N_1,a_1,0)} + e\left(-\frac{aN^2}{2}\right) \mathscr{F}(\xi,a) - \mathscr{F}(0,a) \right]$$

Let *a* be small. Then, $N_1 = [aN]$ stays constant over an interval of size roughly 1/a. On this interval, $\{aN\}$ varies by increments of a. Hence, in this interval, one has $\{a(N+k)\} - \{aN\} = ak.$ Therefore,

$$e((N+k)^2/2a)\mathscr{F}(\{aN+ak\},a) = e((N+k)^2/2a)\mathscr{F}(\{aN\}+ka,a)$$

$$\sim e(1/8) e(N_1^2/2a) f(a^{-1/2}\{aN\}+a^{1/2}k).$$

Define the sequence $a_{n+1} \equiv a_n^{-1} \pmod{1}$, $a_0 = a$. In terms of the continued fraction expansion of a

$$a = \frac{1}{n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \dots}}},$$

we get

$$a_j = rac{1}{n_j + rac{1}{n_{j+1} + rac{1}{n_{j+2} + \cdots}}}$$
 for $j \ge 0$.

Thus, a_j is small if and only if n_j is large.

Some examples:

video1.mpg ► video3.mpg ►

video2.mpg ► video4.mpg ►

A short preliminary:

For $b \in \mathbb{R}$, one computes

$$\int_0^1 |S(N,a,b)|^2 da = N + \sum_{0 \le m < n \le N} \int_0^1 \cos(\pi a (n^2 - m^2) - 2\pi b (n - m)) da = N.$$

Thus, it is reasonable to expect that, for many a, $|S(N, a, b)|/\sqrt{N}$ not be too large.

Two theorems on the growth of S(N, a, b): first, consider the case of typical (a, b).

Theorem

Let $g : \mathbb{R}_+ \to \mathbb{R}_+$ be a non increasing function. For almost every $(a,b) \in (0,1) \times (-1/2,1/2]$, one has

$$\limsup_{N \to +\infty} \left(g(\ln N) \, \frac{|S(N,a,b)|}{\sqrt{N}} \right) < \infty \quad \Longleftrightarrow \quad \sum_{l \ge 1} g^6(l) < \infty.$$

Let $\varphi(N) = (\ln N)^{1/4}$. For typical *a* and *b*, the ratio $\frac{S(N, a, b)}{\sqrt{N}}$ grows slower than $(\varphi(N))^{2/3+0}$.

Define the set

Fedotov et al. (U. Saint-Petersburg and Paris 13)

$$B_a = \left\{ \{ \frac{1}{2}(ma+n) \}_0; \ (m,n) \in \mathbb{Z}^2 \setminus (2\mathbb{Z}+1)^2 \right\}$$

where, for $x \in \mathbb{R}$, $\{x\}_0 = x \mod 1$ and $-1/2 < \{x\}_0 \le 1/2$.

For every irrational *a*, the set B_a is dense in (-1/2, 1/2] as $\{ma + n; (m, n) \in \mathbb{Z}^2\}$ is dense in \mathbb{R} .

Theorem

Let $g : \mathbb{R}_+ \to \mathbb{R}_+$ be a non increasing function. Then, for almost all $a \in (0,1)$, there exists a dense G_{δ} , say \tilde{B}_a , such that $B_a \subset \tilde{B}_a$ and, for $b \in \tilde{B}_a$, one has

$$\limsup_{N \to +\infty} \left(g(\ln N) \, \frac{|S(N,a,b)|}{\sqrt{N}} \right) < \infty \quad \Longleftrightarrow \quad \sum_{l \ge 1} g^4(l) < \infty.$$

Let $\varphi(N) = (\ln N)^{1/4}$. For a typical *a* and for $b \in \tilde{B}_a$, the ratio $S(N, a, b)/\sqrt{N}$ grows faster than $\varphi(N)$.

For b = 0, the result is known (see Fiedler-Jurkat-Körner).

Ha Noi, August 10th, 2010

Multiple renormalizations

The renormalization formula expresses S(N, a, b) in terms $S(N_1, a_1, b_1)$ containing a smaller number of terms. One can apply it inductively.

Assume *a* irrational. For $l \ge 0$, we let $a_{l+1} = \left\{\frac{1}{a_l}\right\}$, $a_0 = a$, $N_{l+1} = [a_l N_l]$, $N_0 = N$, $b_{l+1} \equiv \left\{-\frac{b_l}{a_l} + \frac{1}{2}\left[\frac{1}{a_l}\right]\right\}_0$, $b_0 = b$.

The sequence $\{N_l\}$ is strictly decreasing until it reaches the value zero and then becomes constant.

Denote by L(N) the unique natural number such that $N_{L(N)+1} = 0$ and $N_{L(N)} \ge 1$.

Corollary

One has
$$S(N,a,b) = \sum_{l=0}^{L(N)} \frac{e(\theta_l)}{(a_0 a_1 \dots a_l)^{1/2}} \Delta \mathscr{F}_l^{*l}$$
 where

- $\Delta \mathscr{F}_l = e(-a_l N_l^2/2 + N_l b_l) \mathscr{F}(\xi_l b_l, a_l) \mathscr{F}(-b_l, a_l),$
- *l denotes the complex conjugation applied l times,
- $\xi_l = \{a_l N_l\}$ and $\theta_{l+1} = \theta_l + (-1)^l \left(\frac{1}{8} + \frac{b_l^2}{2a_l}\right)$ where $\theta_0 = -1/8$.

Define $N^{-}(L) = \min\{N; L(N) = L\}$ and $N^{+}(L) = \max\{N; L(N) = L\}$. Clearly, $N^{+}(L-1) = N^{-}(L) - 1$. One has $\frac{1}{a_0a_1 \dots a_{L-1}} < N^{-}(L) < \frac{1}{a_0a_1 \dots a_{L-1}} (1 + 4a_{L-1})$.

Gaussian exponential sum

Theorem

Fedotov et al. (U. Saint-Petersburg and Paris 13)

Let a be irrational and L be a positive integer. Assume that $N^-(L) \le N \le N^+(L)$. Let $\xi_L(N) = a_L N_L(N)$. Then, for $\xi_L(N) - b_L \le 1/2$, one has

$$S(N,a,b) = \frac{e(\theta_{L+1})}{\sqrt{a_0 a_1 \dots a_L}} \left(\int_{-\frac{b_L}{\sqrt{a_L}}}^{\frac{\xi_L(N) - b_L}{\sqrt{a_L}}} e(-\tau^2/2) d\tau + O(\sqrt{a_L}) \right)^{*L}$$

and, for $\xi_L(N) - b_L \ge 1/2$, one has

$$S(N,a,b) = \frac{e(\theta_{L+1})}{\sqrt{a_0 a_1 \dots a_L}} \left(\int_{-\frac{b_L}{\sqrt{a_L}}}^{\infty} e(-\tau^2/2) d\tau + O(\sqrt{a_L}) + e\left(\frac{b_L - \xi_L(N) + 1/2}{2a_L}\right) \int_{\frac{1 - (\xi_L(N) - b_L)}{\sqrt{a_L}}}^{\infty} e(-\tau^2/2) d\tau \right)^{*L}$$

where *L and θ_l are defined in previous slide.

Fedotov et al. (U. Saint-Petersburg and Paris 13)

Ha Noi, August 10th, 2010

15/19

Estimates on Gaussian sums

Using previous theorem, we now estimate S(N, a, b) in terms of $(a_l)_l$ and $(b_l)_l$.

For
$$L \in \mathbb{N}$$
, define $M(L, a, b) = \max_{N^{-}(L) \le N \le N^{+}(L)} \left| \frac{S(N, a, b)}{\sqrt{N}} \right|.$

Proposition

There exist c > 0 *and* C > 0 *independent of a, and b such that, for* $L \in \mathbb{N}$ *,*

$$M(L,a,b) \le C \frac{1}{\sqrt{|b_L|} + \sqrt[4]{a_L}}$$

and

if
$$\sqrt{|b_l|} + \sqrt[4]{a_L} \le c$$
, then $\frac{1}{C} \frac{1}{\sqrt{|b_L|} + \sqrt[4]{a_L}} \le M(L, a, b)$.

So studying the growth of the sum reduces to studying the dynamical system defined by $(a_l, b_l) \mapsto (a_{l+1}, b_{l+1})$ defined by $a_{l+1} = \left\{\frac{1}{a_l}\right\}, b_{l+1} \equiv \left\{-\frac{b_l}{a_l} + \frac{1}{2}\left[\frac{1}{a_l}\right]\right\}_0$ and $(a_0, b_0) = (a, b).$

Gaussian exponential sur

A special dynamical system

Fedotov et al. (U. Saint-Petersburg and Paris 13)

For $(a,b) \in (0,1) \times (-1/2, 1/2)$, for $l \ge 0$, define

$$a_{l+1} = \left\{\frac{1}{a_l}\right\}, \ b_{l+1} \equiv \left\{-\frac{b_l}{a_l} + \frac{1}{2}\left[\frac{1}{a_l}\right]\right\}_0 \text{ where } (a_0, b_0) = (a, b).$$

Note that the sequence $(a_l)_l$ is defined by the Gauss map, thus given by the continued fraction expansion of *a*. It is well studied.

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a non increasing function.

Let $\gamma(a, b)$ be the trajectory of the dynamical system.

Let $\mathfrak{N}(L, \varphi, a, b)$ be the number of the conditions

"
$$\sqrt[4]{a_l} \le \varphi(l)$$
 and $\sqrt{|b_l|} \le \varphi(l)$ "

that are satisfied along $\gamma(a, b)$ while $0 \le l \le L$.

Ha Noi, August 10th, 2010

17/19

On $K := (0,1) \times (-1/2, 1/2)$, let *m* be the probability measure of density $\frac{1}{\ln 2} \frac{dadb}{1+a}$. Let $\|\mathfrak{N}(L, \varphi)\|_1$ and $\|\mathfrak{N}(L, \varphi)\|_2$ denote the $L^1(K, m)$ and $L^2(K, m)$ norms of the function $(a,b) \to \mathfrak{N}(L,a,b)$.

Lemma

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ *be a non increasing function such that, for all* $l \in \mathbb{N}$ *,* $\varphi(l) \le 1/2$ *. Then,* $\|\mathfrak{N}(L,\varphi)\|_1 \le C \quad \forall L \in \mathbb{N} \iff \sum_{N \ge 1} \varphi^6(N) < \infty$.

Lemma

Fedotov et al. (U. Saint-Petersburg and Paris 13)

Let
$$\varphi : \mathbb{R}_+ \to \mathbb{R}_+$$
 be as above. If $\sum_{N \ge 1} \varphi^6(N)$ diverges then,
 $\|\mathfrak{N}(L, \varphi)\|_2 \underset{L \to \infty}{\sim} \|\mathfrak{N}(L, \varphi)\|_1.$

Note that, if $\|\mathfrak{N}(L, \varphi)\|_2 = \|\mathfrak{N}(L, \varphi)\|_1$ then $\mathfrak{N}(L, \varphi, \cdot, \cdot) = \|\mathfrak{N}(L, \varphi)\|_1$ a.s.

19/19

Ha Noi, August 10th, 2010