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The setting and the questions

On Rd, consider a stationnary ergodic random field x 7→ Vω(x).

Spectral theory On L2(Rd), consider
the random Schrödinger operator

Hω =−1
2

∆+Vω

and the associated evolution equation{
i∂tψt = Hω ψt,

ψt|t=0 = ψ0

where
−∆ is the Laplace operator on Rd.

Questions:
the spectral data of Hω ,
the large time behavior of the
semi-group.

Probability theory Consider the
brownian motion in this random field i.e.
the path measures

Qt =
1

St,ω
exp
(
−
∫ t

0
Vω(Zs)ds

)
P0

Qt,ω =
1
St

exp
(
−
∫ t

0
Vω(Zs)ds

)
P0⊗P

where
P is the law of the random field Vω ,
Zs is the standard Brownian motion,
P0 is the Wiener measure,
St and St,ω are normalizing constants.

Questions:
the large t behavior of the path
measures.
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Various random potentials

1 The Poisson model: Vω(x) = ∑
n∈N

V(x−ξn) where

I V : Rd → R is continuous, non identically vanishing,
real valued and compactly supported;

I (ξn)n is a Poisson point process.
2 The alloy type model: Vω(x) = ∑

γ∈Zd

ωγ V(x− γ) where

I V : Rd → R is continuous, non identically vanishing,
real valued and compactly supported;

I (ωγ )γ are real valued i.i.d random variables.

3 The displacement model: Vω(x) = ∑
γ∈Zd

V(x− γ−ξγ)

where
I V : Rd → R is continuous, non identically vanishing,

real valued and compactly supported;
I (ξγ )γ are Rd-valued i.i.d random variables.
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The integrated density of states and the annealed random walk

Define the integrated density of states (IDS) of Hω as

N(E) = lim
L→+∞

1
(2L)d #{eigenvalues of H

ω|[−L,L]d less that E}.

Almost surely, the limit exists, is independent of ω and non decreasing.
The Pastur-Shubin formula:

N(E) =

{
E
[
1(−∞,E](Hω)(0,0)

]
when Vω is Rd-ergodic,

E
[
tr(1[0,1]d 1(−∞,E](Hω))

]
when Vω is Zd-ergodic.

Related to the heat kernel of Hω by Laplace transform:

L(t) =
∫

R
e−tEdN(E) =

{
E
[
e−tHω (0,0)

]
when Vω is Rd-ergodic,

E
[
tr
(

1[0,1]d e−tHω

)]
when Vω is Zd-ergodic

= (2πt)−d/2

{
Et

0,0

(
E
[
exp
(
−
∫ t

0 Vω(Zs)ds
)])

when Vω is Rd-ergodic,∫
[0,1]d Et

x,x
(
E
[
exp
(
−
∫ t

0 Vω(Zs)ds
)])

dx when Vω is Zd-ergodic
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Random operators

Under our assumptions, Hω =−∆+Vω is essentially self-adjoint on C ∞
0 (Rd). It is a

metrically transitive family of operators i.e. there exists
(Uα)α a family of unitary transform of L2(Rd)
(τα)α , an ergodic family of transformation

such that
Hτα ω = Uα Hω U∗α .

The family (Hω)ω admits an almost sure spectrum, say Σ such that Σ =suppdN.
Typically Σ is a union of bands

One wants to study the behavior of N(E) near spectral edges, in particular near
E− = inf(Σ).
It is known that the behavior of this function is instrumental in the study of the nature
spectrum of Hω (Lifshitz ’63).
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The monotonous alloy type model

On Rd, consider the alloy type (or Anderson) model

Hω =−∆+Vω where Vω(x) = ∑
γ∈Zd

ωγ V(x− γ)

where
V : Rd→ R is continuous, non identically vanishing, real valued and compactly
supported; assume, moreover, V ≥ 0;
(ωγ)γ are i.i.d random variables distributed in [0,a], a > 0.

To fix ideas let us assume that log | logP({ω0 ≤ ε})|= o(| logε|) when ε → 0+.
Then, Σ = [0,+∞), i.e. E− = 0.
Lifshitz tails:

Theorem (Lifshitz,Pastur,Kirsch,Simon,...)
One has

lim
E→0+

ln | ln(N(E))|
ln(E)

=−d
2
.

Recall for H0 =−∆: N(E) = Cd max(E,0)d/2
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An idea of the proof:
By Dirichlet-Neumann bracketing,

E
(

1
(2L)d #{n; λn(HD

ω|[−L,L]d)≤ E}
)
≤ N(E)≤ E

(
1

(2L)d #{n; λn(HN
ω|[−L,L]d)≤ E}

)
One reduces the problem to estimating

P
(
{HN

ω|[−L,L]d has an eigenvalue less than ε}
)

for L∼ ε−α .
i.e. the probability that there exists ψ ∈ H1([−L,L]d) such that

〈−∆ψ,ψ〉+ 〈Vω ψ,ψ〉 ≤ ε‖ψ‖2.

As Vω ≥ 0 and −∆≥ 0, this implies

〈−∆ψ,ψ〉 ≤ ε‖ψ‖2 and 〈Vω ψ,ψ〉 ≤ ε‖ψ‖2.

So roughly, one has to estimate

ε
d/2

∑
|γ|≤ε−1/2

ωγ ≤ Cε,

and one concludes by large deviations.
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The Poisson potential

On Rd, consider the alloy type (or Anderson) model

Hω =−∆+Vω where Vω(x) = ∑
n∈N

V(x− xn)
where

V : Rd→ R is continuous, non negative, non identically vanishing, real valued
and compactly supported;
(xn)n∈N are the support of a Poissonian cloud of positive density.

Then, Σ = [0,+∞) and E− = 0.

Theorem (Pastur,Sznitman,...)
One has

lim
E→0+

ln(N(E))Ed/2 =−C < 0.

The result is obtained by probabilistic methods.
Much more precise than the previous result obtained using spectral methods.
But the spectral methods are more flexible.
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Internal Lifshitz tails:

Let Vω be of alloy type.
Lifshitz tails also hold at inf(Σ) when H0 =−∆ becomes H0 =−∆+V0 where V0 is
Zd-periodic.
Let n(E) be the IDS of H0. Assume that
Σp = σ(H0), the spectrum of H0 has a gap
below energy 0.
Assume that, for t ∈ [0,1], σ(H0 + tVω)
has a gap below 0.

�p� e+ e� = 0E+ 0
Theorem (K.,K.-Wolff)
Then

lim
E→0+

log | log(N(E)−N(0))|
logE

=−d
2
⇐⇒ lim

E→0+

log(n(E)−n(0))
logE

=
d
2
,

When d = 2, then

limsup
E→0+

log | log(N(E)−N(0))|
logE

< 0.
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The non monotonous alloy type model:

On Rd, consider the standard continuous alloy type (or Anderson) model

Hω =−∆+Vω where Vω(x) = ∑
γ∈Zd

ωγ V(x− γ)

where
V : Rd→ R is continuous, non identically vanishing, real valued and compactly
supported;
(ωγ)γ are i.i.d random variables distributed in [a,b], a and b in the support.

One wants to study the spectrum or spectral quantities for Hω near E− = inf(Σ).

When V has a fixed sign, it is clear that
E− = inf(σ(−∆+Vb)) if V ≤ 0;
E− = inf(σ(−∆+Va)) if V ≥ 0.

We want to address the case when V changes sign i.e. we assume
(H1) there exists x+ 6= x− such that V(x−) ·V(x+) < 0.
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We require one more assumption:
(H2) V is supported in (−1/2,1/2)d and reflection symmetric i.e. for any

σ = (σ1, . . . ,σd) ∈ {0,1}d and any x = (x1, . . . ,xd) ∈ Rd, one has

V(x1, . . . ,xd) = V((−1)σ1x1, . . . ,(−1)σd xd).

Determining the bottom of the spectrum:
Consider the operator HN

λ
=−∆+λV with

Neumann b. c. on [−1/2,1/2]d.
Its spectrum is discrete and let E−(λ ) be its ground
state energy.
It is a simple eigenvalue and λ 7→ E−(λ ) is a real
analytic concave function.

a b

Proposition (K.-Nakamura)
One has E− = inf(infσ(Ha), infσ(Hb)) = inf(E−(a),E−(b)).

If a and b sufficiently small, Najar proved proposition assuming∫
Rd V(x)dx = E′−(0) 6= 0 without (H2).
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Lifshitz tails : when E−(a) 6= E−(b)

Denote by N(E) the integrated density of states of Hω .

Theorem (K.-Nakamura)
Assume E−(a) 6= E−(b). Then

−d
2
−α− ≤ liminf

E→E+
−

log | logN(E)|
log(E−E−)

≤ limsup
E→E+

−

log | logN(E)|
log(E−E−)

≤−d
2
−α+

where c = a if E−(a) < E−(b) and c = b if E−(a) > E−(b) and

α− =− liminf
ε→0

log | logP({|c−ω0| ≤ ε})|
logε

≥ 0,

α+ =− limsup
ε→0

log | logP({|c−ω0| ≤ ε})|
logε

≥ 0.

This result is similar to the one obtained in the monotonous case.
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Lifshitz tails: when E−(a) = E−(b)

Theorem (K.-Nakamura)
Assume (H1) and (H2) and E− := E−(a) = E−(b) . Then,

1 If the random variables (ωγ)γ are not Bernoulli distributed i.e. if
P(ω0 = a)+P(ω0 = b) < 1, then

− d
2
−α− ≤ liminf

E→E+
−

log | logN(E)|
log(E−E−)

≤ limsup
E→E+

−

log | logN(E)|
log(E−E−)

≤−1
2
−α+. (2.1)

2 If P(ω0 = a)+P(ω0 = b) = 1, there exists potentials V satisfying assumption
(H1) and (H2) such that E−(a) = E−(b) and, there exists C > 0 such that, for
E ≥ E−,

1
C

(E−E−)d/2 ≤ N(E)≤ C(E−E−)d/2.
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A random displacement model

Consider
Hω =−∆+Vω where Vω(x) = ∑

γ∈Zd

V(x− γ−ξγ).

where
V : Rd→ R is continuous, non identically vanishing and supported in (−r,r)d,
0 < r < 1/2 and satisfies (H2);
(ξγ)γ are independent identically distributed (i.i.d.) random variables distributed
in {−1/2+ r,1/2− r}d such that all these points have a positive probability.

By work of Baker, Loss and Stolz, minimizing configurations given by a symmetric
”clusterization”.
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For ξ ∈ {−1/2+ r,1/2− r}d, we define
Hξ =−∆+V(x−ξ ) on [−1/2,1/2]d with
Neumann BC.
All the (Hξ )ξ have the same ground state
energy, say E−.

Hξ1
and Hξ2

match in the direction ej if E− is also the ground state energy of
−∆+V(·−ξ1)+V(·−ej−ξ2) on [−1/2,1/2]d∪ (ej +[−1/2,1/2]d) (Neumann BC).

Theorem (K.-Nakamura)
Let N(E) denote the IDS of Hω . Then,

1 if, at least, two of the (Hξ )ξ do not match in, at least, one direction, one has

limsup
E→E+

−

log | logN(E)|
log(E−E−)

≤−1
2

;

2 if all the (Hξ )ξ match in all directions, then N(E)≥ c(E−E−)d/2.
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Finding the minimum: decoupling due to symmetry

Recall that E−(λ ) is the ground state energy of the operator HN
λ

i.e. −∆+λV on
[−1/2,1/2]d with Neumann boundary conditions.
To fix ideas, assume E−(a)≤ E−(b).
Partitioning Rd into cubes γ +[−1/2,1/2]d for γ ∈ Zd, we get that

Hω ≥
⊕
γ∈Zd

HN
ωγ

.

Hence, Hω ≥ E−(a).
Consider HP

ω,L, the operator Hω restricted to the cube [−L−1/2,L+1/2]d with
periodic boundary conditions.
One proves

Lemma

Σ =
⋃
L≥1

⋃
ω admissible

σ(HP
ω,L).
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The characterization of the infimum of the almost sure spectrum follows from

inf
ω∈[a,b]C

d
L

infσ(HP
ω,L)≤ E−(a) where Cd

L = Zd ∩ [−L−1/2,L+1/2]d.

The normalized positive ground state of HN
a , say ψ , is simple and unique.

The reflection symmetry of the potential V guarantees that ψ is reflection symmetric.
For γ ∈ Zd such that |γ|1 = 1, we continue ψ to the γ +[−1/2,1/2]d by reflection
symmetry with respect to the common boundary of [−1/2,1/2]d and
γ +[−1/2,1/2]d.
As ψ is reflection symmetric, we obtain a continuation of ψ that is Zd-periodic,
positive and reflection symmetric with respect to any plane that is common boundary
to two cubes of the form γ +[−1/2,1/2]d.
Moreover ψ satisfies, for any L≥ 0, HP

a,Lψ = HP
a,0ψ = HN

a,0ψ = E−(a)ψ . This proves
that E−(a)≥ infσ(HP

a,L).

When the single site potential of fixed sign, HP
ω,L is increasing/decreasing in any ωγ

=⇒ one can optimize each random variables separately.
With symmetry assumption, also decoupling the dependence on the random variables.
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The upper bound in the Lifshitz tails when E−(a) 6= E−(b)

Theorem (K.-Nakamura)
Suppose assumptions (H1) and (H2) are satisfied, and, that E−(a) < E−(b). Then,
there exists C > 0 such that, for E close to E−(a), one has N(E)≤ Nm(C(E−E−(a)))
where Nm is the integrated density of states of the random operator

Hm
ω = Ha−E−(a)+ ∑

γ∈Zd

(ωγ −a)1[−1/2,1/2]d(x− γ)

and Ha is defined above.

This is a consequence of Neumann BC and the simple

Lemma
Let H0 be self-adjoint on H a separable Hilbert space such that 0 = infσ(H0). Let
V1 be a non trivial closed symmetric operator relatively bounded with respect to H0
with bound 0. Set H1 = H0 +V1 and E1 = infσ(H1). Assume E1 > 0. Then, there
exists C > 0 such that, for t ∈ [0,1], one has

C(H0 + tV1)≥ H0 + t
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When E−(a) = E−(b): absence of Lifshitz tails.

Let ϕ ∈ C ∞((−1/2,1/2)d) be positive, reflection symmetric, constant near the
boundary of [−1/2,1/2]d and normalized in the cube.

Let V = ∆ϕ/ϕ . Then, ϕ is the positive normalized ground state of −∆+V on
[−1/2,1/2]d with Neumann boundary conditions.

Let (ωγ)γ∈Zd be Bernoulli r.v. with support {0,1}.

Let ϕL be ground state of HN
ω,L: it is equal to

in γ +[−1/2,1/2]d, ϕL(·) = ϕ(·− γ) if ωγ = 1;
in γ +[−1/2,1/2]d, ϕL(·) =cst if ωγ = 0.

As the ground state is uniformly bounded (in ω and L ), a result of [KiSi89] and a
calculation imply that, there exists CD ≥ cN > 0, for all ω ,

the second eigenvalue of the Neumann problem is larger than cNL−2;
the ground state of the Dirichlet problem is smaller than CDL−2.

As
1
Ld E

(
#{eigenvalues of HD

ω,L ≤ E}
)
≤ N(E)≤ 1

Ld E
(
#{eigenvalues of HN

ω,L ≤ E}
)
,

for L = cE−1/2, we get C−1Ed/2 ≤ N(E)≤ CEd/2.
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The upper bound in the Lifshitz tails when E−(a) = E−(b)
Assume that (ωγ)γ are not Bernoulli distributed i.e. P(ω0 = a)+P(ω0 = b) < 1. Pick
ε > 0 such that

P(ω0 ≤ a+ ε)+P(ω0 ≥ b− ε) < 1.

Let HN
ω,L be the operator Hω restricted to the cube [−L−1/2,L+1/2]d with

Neumann boundary conditions.
Define

NN
L (E) = (2L+1)−dE(#{eigenvalues of HN

ω,L ≤ E}).

Well known : the sequence NN
L (E) is decreasing and converges to N(E) (except

possibly at countably many E).

Define E−,L(ω) = infσ(HN
ω,L). One has NN

L (E)≤ CP({E−,L(ω)≤ E})

Sufficient to prove a suitable upper bound for P({E−,L(ω)≤ E}) for a well chosen
value of L.
Basic property:

Lemma
The function ω 7→ E−,L(ω) is real analytic and strictly concave.
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The function ω 7→ E−,L(ω) is defined on
RCd

L .

The upper epigraphs of ω 7→ E−,L(ω) i.e.
the sets ΩL(E) := {ω ∈ΩL; E−,L(ω) > E}
are convex.

On ΩL, E−,L(ω) reaches its minimum only
at one or more vertices of ΩL.

One studies what happens at the vertices
of ΩL i.e. at the points of {a,b}Cd

L .
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A local estimate on the ground state energy

Assume E− = E−(a) = E−(b).

Lemma (K.-Nakamura)
Partition the discrete cube Cd

L into strips

Cd
L =

⋃
γ ′∈Cd−1

L

SL,γ ′ where SL,γ ′ = {(γ1,γ
′); −L≤ γ1 ≤ L}.

There exists C > 0 such, for all L≥ 0, if
ω ∈ {a,b,a+ ε,b− ε}Cd

L is such that

(Prop) for all γ ′ ∈ Cd−1
L , there exists γ ∈ SL,γ ′

such that ωγ ∈ {a+ ε,b− ε}
then

E−,L(ω)≥ E−+
1

CL2 .

X
Y

Z

The proof of this result relies on Neumann decoupling and on the analysis of the
ground state energy of a strip where all but one single site potential are the
same.
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Using the concavity of the ground state, one gets

Corollary
There exists C > 0, independent of L≥ 0 and ω ∈ΩL, such that if

(Prop (ter)) for all γ ′ ∈ Cd−1
L , there exists γ ∈ SL,γ ′ s.t. ωγ ∈ [a+ ε,b− ε]

then
E−,L(ω)≥ E−+

1
CL2 .

with the same constant as in the lemma.

Pick E > E−(a) = E−(b), L = c(E−E−(a))−1/2 and c > 0 s.t. Cc2 < 1.
Corollary ensures that, if ω satisfies (Prop (ter)), then E−(ω) > E.
So, the set ΩL(E) := {ω ∈ΩL; E−(ω) > E} satisfies

ΩL \ΩL(E)⊂ {ω ∈ΩL; ∃γ ′ ∈ Cd−1
L , ∀γ ∈ SL,γ ′ , ωγ ∈ [a,a+ ε)∪ (b− ε,b]}.

Hence,
P(ΩL \ΩL(E))≤ ∑

γ ′∈Cd−1
L

P({∀γ ∈ SL,γ ′ , ωγ ∈ [a,a+ ε)∪ (b− ε,b]})

= (2L+1)d−1[P(ω0 ∈ [a,a+ ε))+P(ω0 ∈ (b− ε,b])]2L+1

This yields exponential decay.
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