Lifshitz tails for some random Schrödinger operators or an aspect of random walk in random traps

F. Klopp

Université Paris 13 and Institut Universitaire de France

Analysis and Probability Nice - 23/06/2008

1/25

A & P - 23/06/2008

Outline

1 Introduction

- The setting and the questions
- Various random potentials
- The integrated density of states and the annealed random walk
- Random operators

Klopp (Paris 13)

2 The results

- The monotonous alloy type model
- The heuristics: how to prove Lifshitz tails
- The Poisson potential
- Internal tails
- The non monotonous case
- A random displacement model
- 3 Some ideas of the proof
 - Decoupling due to symmetry
 - The upper bound in the Lifshitz tails : the non resonant case
 - Absence of Lifshitz tails
 - The upper bound in the Lifshitz tails : the resonant case
 - A local estimate on the ground state energy when $E_{-}(a) = E_{-}(b)$

The setting and the questions

On \mathbb{R}^d , consider a stationnary ergodic random field $x \mapsto V_{\omega}(x)$.

Spectral theory On $L^2(\mathbb{R}^d)$, consider the random Schrödinger operator

$$H_{\omega} = -\frac{1}{2}\Delta + V_{\omega}$$

and the associated evolution equation

$$\begin{cases} i\partial_t \psi_t = H_\omega \psi_t, \\ \psi_{t|t=0} = \psi_0 \end{cases}$$

where

• $-\Delta$ is the Laplace operator on \mathbb{R}^d .

Questions:

- the spectral data of H_{ω} ,
- the large time behavior of the semi-group.

Probability theory Consider the brownian motion in this random field i.e. the path measures

$$Q_t = \frac{1}{S_{t,\omega}} \exp\left(-\int_0^t V_\omega(Z_s)ds\right) P_0$$
$$Q_{t,\omega} = \frac{1}{S_t} \exp\left(-\int_0^t V_\omega(Z_s)ds\right) P_0 \otimes \mathbb{P}$$

where

- \mathbb{P} is the law of the random field V_{ω} ,
- Z_s is the standard Brownian motion,
- P_0 is the Wiener measure,
- S_t and $S_{t,\omega}$ are normalizing constants.

Questions:

• the large *t* behavior of the path measures.

Klopp (Paris 13)	Lifshitz tails	A & P - 23/06/2008	3 / 25

Various random potentials

• The Poisson model: $V_{\omega}(x) = \sum_{n \in \mathbb{N}} V(x - \xi_n)$ where

 V: ℝ^d → ℝ is continuous, non identically vanishing, real valued and compactly supported;

• $(\xi_n)_n$ is a Poisson point process.

2 The alloy type model: $V_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} V(x - \gamma)$ where

- V: ℝ^d → ℝ is continuous, non identically vanishing, real valued and compactly supported;
- $(\omega_{\gamma})_{\gamma}$ are real valued i.i.d random variables.

So The displacement model:
$$V_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^d} V(x - \gamma - \xi_{\gamma})$$

where

- V: ℝ^d → ℝ is continuous, non identically vanishing, real valued and compactly supported;
- $(\xi_{\gamma})_{\gamma}$ are \mathbb{R}^d -valued i.i.d random variables.

A & P - 23/06/2008 4 / 25

The integrated density of states and the annealed random walk

Define the integrated density of states (IDS) of H_{ω} as

$$N(E) = \lim_{L \to +\infty} \frac{1}{(2L)^d} \# \{ \text{eigenvalues of } H_{\omega \mid [-L,L]^d} \text{ less that } E \}.$$

Almost surely, the limit exists, is independent of ω and non decreasing. The Pastur-Shubin formula:

$$N(E) = \begin{cases} \mathbb{E} \left[\mathbf{1}_{(-\infty,E]}(H_{\omega})(0,0) \right] & \text{when } V_{\omega} \text{ is } \mathbb{R}^{d} \text{-ergodic,} \\ \mathbb{E} \left[\operatorname{tr}(\mathbf{1}_{[0,1]^{d}} \mathbf{1}_{(-\infty,E]}(H_{\omega})) \right] & \text{when } V_{\omega} \text{ is } \mathbb{Z}^{d} \text{-ergodic.} \end{cases}$$

Related to the heat kernel of H_{ω} by Laplace transform:

$$L(t) = \int_{\mathbb{R}} e^{-tE} dN(E) = \begin{cases} \mathbb{E} \left[e^{-tH_{\omega}}(0,0) \right] \text{ when } V_{\omega} \text{ is } \mathbb{R}^{d} \text{-ergodic}, \\ \mathbb{E} \left[\operatorname{tr} \left(\mathbf{1}_{[0,1]^{d}} e^{-tH_{\omega}} \right) \right] \text{ when } V_{\omega} \text{ is } \mathbb{Z}^{d} \text{-ergodic}, \end{cases}$$
$$= (2\pi t)^{-d/2} \begin{cases} E_{0,0}^{t} \left(\mathbb{E} \left[\exp \left(-\int_{0}^{t} V_{\omega}(Z_{s}) ds \right) \right] \right) \text{ when } V_{\omega} \text{ is } \mathbb{R}^{d} \text{-ergodic}, \\ \int_{[0,1]^{d}} E_{x,x}^{t} \left(\mathbb{E} \left[\exp \left(-\int_{0}^{t} V_{\omega}(Z_{s}) ds \right) \right] \right) dx \text{ when } V_{\omega} \text{ is } \mathbb{Z}^{d} \text{-ergodic}. \end{cases}$$

Random operators

Under our assumptions, $H_{\omega} = -\Delta + V_{\omega}$ is essentially self-adjoint on $\mathscr{C}_0^{\infty}(\mathbb{R}^d)$. It is a metrically transitive family of operators i.e. there exists

- $(U_{\alpha})_{\alpha}$ a family of unitary transform of $L^2(\mathbb{R}^d)$
- $(\tau_{\alpha})_{\alpha}$, an ergodic family of transformation

such that

$$H_{\tau_{\alpha}\omega} = U_{\alpha}H_{\omega}U_{\alpha}^*.$$

The family $(H_{\omega})_{\omega}$ admits an almost sure spectrum, say Σ such that $\Sigma = \operatorname{supp} dN$. Typically Σ is a union of bands

One wants to study the behavior of N(E) near spectral edges, in particular near $E_{-} = \inf(\Sigma)$.

It is known that the behavior of this function is instrumental in the study of the nature spectrum of H_{ω} (Lifshitz '63).

The monotonous alloy type model

On \mathbb{R}^d , consider the alloy type (or Anderson) model

$$H_{\omega} = -\Delta + V_{\omega}$$
 where $V_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} V(x - \gamma)$

where

- V: ℝ^d → ℝ is continuous, non identically vanishing, real valued and compactly supported; assume, moreover, V ≥ 0;
- $(\omega_{\gamma})_{\gamma}$ are i.i.d random variables distributed in [0, a], a > 0.

To fix ideas let us assume that $\log |\log \mathbb{P}(\{\omega_0 \le \varepsilon\})| = o(|\log \varepsilon|)$ when $\varepsilon \to 0^+$. Then, $\Sigma = [0, +\infty)$, i.e. $E_- = 0$. Lifshitz tails:

Theorem (Lifshitz, Pastur, Kirsch, Simon,...)

One has

$$\lim_{E \to 0^+} \frac{\ln|\ln(N(E))|}{\ln(E)} = -\frac{d}{2}$$

Recall for $H_0 = -\Delta$: $N(E) = C_d \max(E, 0)^{d/2}$

An idea of the proof:

Klopp (Paris 13)

By Dirichlet-Neumann bracketing,

$$\mathbb{E}\left(\frac{1}{(2L)^d}\#\{n;\ \lambda_n(H^D_{\omega|[-L,L]^d})\leq E\}\right)\leq N(E)\leq \mathbb{E}\left(\frac{1}{(2L)^d}\#\{n;\ \lambda_n(H^N_{\omega|[-L,L]^d})\leq E\}\right)$$

One reduces the problem to estimating

$$\mathbb{P}\left(\left\{H^{N}_{\boldsymbol{\omega}|[-L,L]^{d}} \text{ has an eigenvalue less than } \boldsymbol{\varepsilon}\right\}\right)$$

for $L \sim \varepsilon^{-\alpha}$.

i.e. the probability that there exists $\psi \in H^1([-L,L]^d)$ such that

$$\langle -\Delta \psi, \psi \rangle + \langle V_{\omega} \psi, \psi \rangle \leq \varepsilon \|\psi\|^2.$$

As $V_{\omega} \ge 0$ and $-\Delta \ge 0$, this implies

$$\langle -\Delta \psi, \psi \rangle \leq \varepsilon \|\psi\|^2$$
 and $\langle V_{\omega}\psi, \psi \rangle \leq \varepsilon \|\psi\|^2$.

So roughly, one has to estimate

Klopp (Paris 13)

$$arepsilon^{d/2} \sum_{|\gamma| \leq arepsilon^{-1/2}} \omega_{\gamma} \leq C arepsilon,$$

and one concludes by large deviations.

A & P - 23/06/2008

The Poisson potential

On \mathbb{R}^d , consider the alloy type (or Anderson) model

$$H_{\omega} = -\Delta + V_{\omega}$$
 where $V_{\omega}(x) = \sum_{n \in \mathbb{N}} V(x - x_n)$

where

- $V: \mathbb{R}^d \to \mathbb{R}$ is continuous, non negative, non identically vanishing, real valued and compactly supported;
- $(x_n)_{n \in \mathbb{N}}$ are the support of a Poissonian cloud of positive density.

Then, $\Sigma = [0, +\infty)$ and $E_- = 0$.

$$\lim_{E \to 0^+} \ln(N(E)) E^{d/2} = -C < 0.$$

The result is obtained by probabilistic methods.

Much more precise than the previous result obtained using spectral methods.

But the spectral methods are more flexible.

Internal Lifshitz tails:

Let V_{ω} be of alloy type.

Klopp (Paris 13)

Lifshitz tails also hold at $inf(\Sigma)$ when $H_0 = -\Delta$ becomes $H_0 = -\Delta + V_0$ where V_0 is \mathbb{Z}^d -periodic.

 Σ_p

 e_+

-]-----E E_{\perp}

Lifshitz tails

Let n(E) be the IDS of H_0 . Assume that $\Sigma_p = \sigma(H_0)$, the spectrum of H_0 has a gap below energy 0. Assume that, for $t \in [0, 1]$, $\sigma(H_0 + tV_{\omega})$

Theorem (K.,K.-Wolff)

Then

$$\lim_{E \to 0^+} \frac{\log |\log(N(E) - N(0))|}{\log E} = -\frac{d}{2} \Longleftrightarrow \lim_{E \to 0^+} \frac{\log(n(E) - n(0))}{\log E} = \frac{d}{2},$$

When d = 2, then

F

has a gap below 0.

$$\limsup_{E\to 0^+} \frac{\log |\log(N(E)-N(0))|}{\log E} < 0.$$

Klopp (Paris 13)

The non monotonous alloy type model:

On \mathbb{R}^d , consider the standard continuous alloy type (or Anderson) model

$$H_{\omega} = -\Delta + V_{\omega}$$
 where $V_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} V(x - \gamma)$

where

- $V: \mathbb{R}^d \to \mathbb{R}$ is continuous, non identically vanishing, real valued and compactly supported;
- $(\omega_{\gamma})_{\gamma}$ are i.i.d random variables distributed in [a, b], a and b in the support.

One wants to study the spectrum or spectral quantities for H_{ω} near $E_{-} = \inf(\Sigma)$.

When V has a fixed sign, it is clear that

•
$$E_{-} = \inf(\sigma(-\Delta + V_{\overline{b}}))$$
 if $V \leq 0$;

• $E_{-} = \inf(\sigma(-\Delta + V_{\overline{a}}))$ if $V \ge 0$.

We want to address the case when V changes sign i.e. we assume

(H1) there exists $x_+ \neq x_-$ such that $V(x_-) \cdot V(x_+) < 0$.

We require one more assumption:

(H2) *V* is supported in $(-1/2, 1/2)^d$ and reflection symmetric i.e. for any $\boldsymbol{\sigma} = (\boldsymbol{\sigma}_1, \dots, \boldsymbol{\sigma}_d) \in \{0, 1\}^d$ and any $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, one has

$$V(x_1,...,x_d) = V((-1)^{\sigma_1}x_1,...,(-1)^{\sigma_d}x_d).$$

Determining the bottom of the spectrum:

Consider the operator $H_{\lambda}^{N} = -\Delta + \lambda V$ with Neumann b. c. on $[-1/2, 1/2]^{d}$. Its spectrum is discrete and let $E_{-}(\lambda)$ be its ground state energy. It is a simple eigenvalue and $\lambda \mapsto E_{-}(\lambda)$ is a real analytic concave function.

Proposition (K.-Nakamura)

One has $E_{-} = \inf(\inf \sigma(H_{\overline{a}}), \inf \sigma(H_{\overline{b}})) = \inf(E_{-}(a), E_{-}(b)).$

If *a* and *b* sufficiently small, Najar proved proposition assuming $\int_{\mathbb{R}^d} V(x) dx = E'_{-}(0) \neq 0$ without (H2).

Lifshitz tails : when $E_{-}(a) \neq E_{-}(b)$

Denote by N(E) the integrated density of states of H_{ω} .

Theorem (K.-Nakamura) Assume $E_{-}(a) \neq E_{-}(b)$. Then $-\frac{d}{2} - \alpha_{-} \leq \liminf_{E \to E_{-}^{+}} \frac{\log |\log N(E)|}{\log (E - E_{-})} \leq \limsup_{E \to E_{-}^{+}} \frac{\log |\log N(E)|}{\log (E - E_{-})} \leq -\frac{d}{2} - \alpha_{+}$ where c = a if $E_{-}(a) < E_{-}(b)$ and c = b if $E_{-}(a) > E_{-}(b)$ and $\alpha_{-} = -\liminf_{\varepsilon \to 0} \frac{\log |\log \mathbb{P}(\{|c - \omega_{0}| \leq \varepsilon\})|}{\log \varepsilon} \geq 0,$ $\alpha_{+} = -\limsup_{\varepsilon \to 0} \frac{\log |\log \mathbb{P}(\{|c - \omega_{0}| \leq \varepsilon\})|}{\log \varepsilon} \geq 0.$

This result is similar to the one obtained in the monotonous case.

13/25

A & P - 23/06/2008

Lifshitz tails: when
$$E_{-}(a) = E_{-}(b)$$

Klopp (Paris 13)

Theorem (K.-Nakamura) Assume (H1) and (H2) and $E_- := E_-(a) = E_-(b)$. Then, If the random variables $(\omega_{\gamma})_{\gamma}$ are not Bernoulli distributed i.e. if $\mathbb{P}(\omega_0 = a) + \mathbb{P}(\omega_0 = b) < 1$, then $-\frac{d}{2} - \alpha_- \leq \liminf_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq \limsup_{E \to E_-^+} \frac{\log|\log N(E)|}{\log(E - E_-)} \leq -\frac{1}{2} - \alpha_+$. (2.1) If $\mathbb{P}(\omega_0 = a) + \mathbb{P}(\omega_0 = b) = 1$, there exists potentials V satisfying assumption (H1) and (H2) such that $E_-(a) = E_-(b)$ and, there exists C > 0 such that, for $E \geq E_-$, $\frac{1}{C}(E - E_-)^{d/2} \leq N(E) \leq C(E - E_-)^{d/2}$.

A random displacement model

Consider

$$H_{\omega} = -\Delta + V_{\omega}$$
 where $V_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^d} V(x - \gamma - \xi_{\gamma}).$

where

- $V: \mathbb{R}^d \to \mathbb{R}$ is continuous, non identically vanishing and supported in $(-r, r)^d$, 0 < r < 1/2 and satisfies (H2);
- $(\xi_{\gamma})_{\gamma}$ are independent identically distributed (i.i.d.) random variables distributed in $\{-1/2 + r, 1/2 r\}^d$ such that all these points have a positive probability.

By work of Baker, Loss and Stolz, minimizing configurations given by a symmetric "clusterization".

For $\xi \in \{-1/2 + r, 1/2 - r\}^d$, we define $H_{\xi} = -\Delta + V(x - \xi)$ on $[-1/2, 1/2]^d$ with Neumann BC.

All the $(H_{\xi})_{\xi}$ have the same ground state energy, say E_{-} .

 H_{ξ_1} and H_{ξ_2} match in the direction e_j if E_- is also the ground state energy of $-\Delta + V(\cdot - \xi_1) + V(\cdot - e_j - \xi_2)$ on $[-1/2, 1/2]^d \cup (e_j + [-1/2, 1/2]^d)$ (Neumann BC).

Theorem (K.-Nakamura)

Let N(E) denote the IDS of H_{ω} . Then,

- *if, at least, two of the* $(H_{\xi})_{\xi}$ *do not match in, at least, one direction, one has* $\limsup_{E \to E^+} \frac{\log |\log N(E)|}{\log (E - E_-)} \leq -\frac{1}{2};$
- if all the $(H_{\xi})_{\xi}$ match in all directions, then $N(E) \ge c(E-E_{-})^{d/2}$.

Finding the minimum: decoupling due to symmetry

Recall that $E_{-}(\lambda)$ is the ground state energy of the operator H_{λ}^{N} i.e. $-\Delta + \lambda V$ on $[-1/2, 1/2]^{d}$ with Neumann boundary conditions. To fix ideas, assume $E_{-}(a) \leq E_{-}(b)$. Partitioning \mathbb{R}^{d} into cubes $\gamma + [-1/2, 1/2]^{d}$ for $\gamma \in \mathbb{Z}^{d}$, we get that

$$H_{oldsymbol{\omega}} \geq igoplus_{\gamma \in \mathbb{Z}^d} H^N_{\omega_{\gamma}}.$$

Hence, $H_{\omega} \ge E_{-}(a)$. Consider $H_{\omega,L}^{P}$, the operator H_{ω} restricted to the cube $[-L-1/2, L+1/2]^{d}$ with periodic boundary conditions. One proves

The characterization of the infimum of the almost sure spectrum follows from

$$\inf_{\boldsymbol{\omega}\in[a,b]} \inf_{C_L^d} \sigma(H_{\boldsymbol{\omega},L}^P) \leq E_-(a) \quad \text{where } C_L^d = \mathbb{Z}^d \cap [-L-1/2,L+1/2]^d.$$

The normalized positive ground state of H_a^N , say ψ , is simple and unique.

The reflection symmetry of the potential *V* guarantees that ψ is reflection symmetric. For $\gamma \in \mathbb{Z}^d$ such that $|\gamma|_1 = 1$, we continue ψ to the $\gamma + [-1/2, 1/2]^d$ by reflection symmetry with respect to the common boundary of $[-1/2, 1/2]^d$ and $\gamma + [-1/2, 1/2]^d$.

As ψ is reflection symmetric, we obtain a continuation of ψ that is \mathbb{Z}^d -periodic, positive and reflection symmetric with respect to any plane that is common boundary to two cubes of the form $\gamma + [-1/2, 1/2]^d$.

Moreover ψ satisfies, for any $L \ge 0$, $H^P_{\overline{a},L}\psi = H^P_{a,0}\psi = H^N_{a,0}\psi = E_-(a)\psi$. This proves that $E_-(a) \ge \inf \sigma(H^P_{\overline{a},L})$.

When the single site potential of fixed sign, $H^P_{\omega,L}$ is increasing/decreasing in any $\omega_{\gamma} \implies$ one can optimize each random variables separately.

With symmetry assumption, also decoupling the dependence on the random variables.

The upper bound in the Lifshitz tails when $E_{-}(a) \neq E_{-}(b)$

Theorem (K.-Nakamura)

Suppose assumptions (H1) and (H2) are satisfied, and, that $E_{-}(a) < E_{-}(b)$. Then, there exists C > 0 such that, for E close to $E_{-}(a)$, one has $N(E) \le N_m(C(E - E_{-}(a)))$ where N_m is the integrated density of states of the random operator

$$H^m_{\boldsymbol{\omega}} = H_{\overline{a}} - E_{-}(a) + \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} (\boldsymbol{\omega}_{\boldsymbol{\gamma}} - a) \mathbf{1}_{[-1/2, 1/2]^d} (x - \boldsymbol{\gamma})$$

and $H_{\overline{a}}$ is defined above.

This is a consequence of Neumann BC and the simple

Lemma

Let H_0 be self-adjoint on \mathscr{H} a separable Hilbert space such that $0 = \inf \sigma(H_0)$. Let V_1 be a non trivial closed symmetric operator relatively bounded with respect to H_0 with bound 0. Set $H_1 = H_0 + V_1$ and $E_1 = \inf \sigma(H_1)$. Assume $E_1 > 0$. Then, there exists C > 0 such that, for $t \in [0, 1]$, one has

$$C(H_0 + tV_1) \ge H_0 + t$$

Klopp (Paris 13)

When $E_{-}(a) = E_{-}(b)$: absence of Lifshitz tails.

Let $\varphi \in \mathscr{C}^{\infty}((-1/2, 1/2)^d)$ be positive, reflection symmetric, constant near the boundary of $[-1/2, 1/2]^d$ and normalized in the cube.

Let $V = \Delta \varphi / \varphi$. Then, φ is the positive normalized ground state of $-\Delta + V$ on $[-1/2, 1/2]^d$ with Neumann boundary conditions.

Let $(\omega_{\gamma})_{\gamma \in \mathbb{Z}^d}$ be Bernoulli r.v. with support $\{0, 1\}$.

Let φ_L be ground state of $H^N_{\omega,L}$: it is equal to

- in $\gamma + [-1/2, 1/2]^d$, $\varphi_L(\cdot) = \varphi(\cdot \gamma)$ if $\omega_{\gamma} = 1$;
- in $\gamma + [-1/2, 1/2]^d$, $\varphi_L(\cdot) = \operatorname{cst} \operatorname{if} \omega_{\gamma} = 0$.

As the ground state is uniformly bounded (in ω and L), a result of [KiSi89] and a calculation imply that, there exists $C_D \ge c_N > 0$, for all ω ,

• the second eigenvalue of the Neumann problem is larger than $c_N L^{-2}$;

• the ground state of the Dirichlet problem is smaller than $C_D L^{-2}$.

As

$$\frac{1}{L^d} \mathbb{E}\left(\#\{\text{eigenvalues of } H^D_{\omega,L} \leq E\}\right) \leq N(E) \leq \frac{1}{L^d} \mathbb{E}\left(\#\{\text{eigenvalues of } H^N_{\omega,L} \leq E\}\right),$$

for $L = cE^{-1/2}$, we get $C^{-1}E^{d/2} \leq N(E) \leq CE^{d/2}$.

Klopp (Paris 13)

A & P - 23/06/2008

The upper bound in the Lifshitz tails when $E_{-}(a) = E_{-}(b)$

Assume that $(\omega_{\gamma})_{\gamma}$ are not Bernoulli distributed i.e. $P(\omega_0 = a) + P(\omega_0 = b) < 1$. Pick $\varepsilon > 0$ such that

$$P(\omega_0 \leq a + \varepsilon) + P(\omega_0 \geq b - \varepsilon) < 1.$$

Let $H_{\omega,L}^N$ be the operator H_{ω} restricted to the cube $[-L-1/2, L+1/2]^d$ with Neumann boundary conditions.

Define

$$N_L^N(E) = (2L+1)^{-d} \mathbb{E}(\#\{\text{eigenvalues of } H^N_{\omega,L} \le E\})$$

Well known : the sequence $N_L^N(E)$ is decreasing and converges to N(E) (except possibly at countably many E).

Define
$$E_{-,L}(\omega) = \inf \sigma(H^N_{\omega,L})$$
. One has $N^N_L(E) \le C\mathbb{P}(\{E_{-,L}(\omega) \le E\})$

Sufficient to prove a suitable upper bound for $\mathbb{P}(\{E_{-,L}(\omega) \leq E\})$ for a well chosen value of *L*.

Lifshitz tails

Basic property:

Lemma

The function $\omega \mapsto E_{-,L}(\omega)$ *is real analytic and strictly concave.*

```
Klopp (Paris 13)
```

The function $\boldsymbol{\omega} \mapsto E_{-,L}(\boldsymbol{\omega})$ is defined on $\mathbb{R}^{C_L^d}$.

The upper epigraphs of $\omega \mapsto E_{-,L}(\omega)$ i.e. the sets $\Omega_L(E) := \{ \omega \in \Omega_L; E_{-,L}(\omega) > E \}$ are convex.

On Ω_L , $E_{-,L}(\omega)$ reaches its minimum only at one or more vertices of Ω_L .

One studies what happens at the vertices of Ω_L i.e. at the points of $\{a, b\}^{C_L^d}$.

A & P - 23/06/2008

21/25

A local estimate on the ground state energy

Assume $E_{-} = E_{-}(a) = E_{-}(b)$.

Lemma (K.-Nakamura) Partition the discrete cube C_L^d into strips $C_L^d = \bigcup_{\gamma' \in C_L^{d-1}} S_{L,\gamma'}$ where $S_{L,\gamma'} = \{(\gamma_1, \gamma'); -L \leq \gamma_1 \leq L\}.$ There exists C > 0 such, for all $L \geq 0$, if $\omega \in \{a, b, a + \varepsilon, b - \varepsilon\}^{C_L^d}$ is such that (Prop) for all $\gamma' \in C_L^{d-1}$, there exists $\gamma \in S_{L,\gamma'}$ such that $\omega_{\gamma} \in \{a + \varepsilon, b - \varepsilon\}$ then $E_{-,L}(\omega) \geq E_- + \frac{1}{CL^2}.$

A & P - 23/06/2008

23/25

The proof of this result relies on Neumann decoupling and on the analysis of the ground state energy of a strip where all but one single site potential are the same.

Using the concavity of the ground state, one gets

Corollary

Klopp (Paris 13)

There exists C > 0*, independent of* $L \ge 0$ *and* $\omega \in \Omega_L$ *, such that if*

(Prop (ter)) for all $\gamma' \in C_L^{d-1}$, there exists $\gamma \in S_{L,\gamma'}$ s.t. $\omega_{\gamma} \in [a + \varepsilon, b - \varepsilon]$

then

$$E_{-,L}(\boldsymbol{\omega}) \geq E_{-} + \frac{1}{CL^2}.$$

with the same constant as in the lemma.

Pick $E > E_{-}(a) = E_{-}(b)$, $L = c(E - E_{-}(a))^{-1/2}$ and c > 0 s.t. $Cc^{2} < 1$. Corollary ensures that, if ω satisfies (Prop (ter)), then $E_{-}(\omega) > E$. So, the set $\Omega_{L}(E) := \{\omega \in \Omega_{L}; E_{-}(\omega) > E\}$ satisfies

$$\Omega_L \setminus \Omega_L(E) \subset \{ \boldsymbol{\omega} \in \Omega_L; \exists \boldsymbol{\gamma}' \in C_L^{d-1}, \forall \boldsymbol{\gamma} \in S_{L,\boldsymbol{\gamma}'}, \boldsymbol{\omega}_{\boldsymbol{\gamma}} \in [a, a+\boldsymbol{\varepsilon}) \cup (b-\boldsymbol{\varepsilon}, b] \}.$$

Hence,

$$\mathbb{P}(\Omega_L \setminus \Omega_L(E)) \le \sum_{\gamma' \in C_L^{d-1}} \mathbb{P}(\{\forall \gamma \in S_{L,\gamma'}, \ \boldsymbol{\omega}_{\gamma} \in [a, a+\varepsilon) \cup (b-\varepsilon, b]\})$$
$$= (2L+1)^{d-1} [\mathbb{P}(\boldsymbol{\omega}_0 \in [a, a+\varepsilon)) + \mathbb{P}(\boldsymbol{\omega}_0 \in (b-\varepsilon, b])]^{2L+1}$$

This yields exponential decay.

Klopp (Paris 13)

References

F. Klopp. Internal Lifshits tails for rand Duke Math. J., 98(2):335–39	lom perturbations of periodic Schrödir 6, 1999.	ager operators.	
F. Klopp and S. Nakamura. Spectral extrema and lifshitz http://arxiv.org/ab.	tails for non monotonous alloy type m	odels.	
F. Klopp and T. Wolff. Lifshitz tails for 2-dimension J. Anal. Math., 88:63–147, 20	al random Schrödinger operators.		
I.M. Lifshitz, S.A. Gredesku Introduction to the theory of Wiley, New-York, 1988.	l, and L.A. Pastur. disordered systems.		
S. Nakamura. Lifshitz tail for Schrödinger <i>Comm. Math. Phys.</i> , 214(3)::	operator with random magnetic field.		
L. Pastur and A. Figotin. Spectra of random and almo. Vol. 297 Grundl. Math. Wiss.	st-periodic operators, . Springer-Verlag, Berlin, 1992.		
AS. Sznitman. Brownian motion, obstacles of	and random media.	08	12.
 Klopp (Paris 13)	Lifshitz tails	A & P - 23/06/2008	25 / 25