Internal Lifshitz tails for the density of surface states of random operators

F. Klopp¹ O. Tchebotareva²

¹Université Paris 13 and Institut Universitaire de France ²Universidad Nacional Autonoma de México

SAMP VI 2008, Santiago - 07/01/2008

Klopp & Tchebotareva (Paris 13 & UNAM)

SAMP VI 2008 1/11

Outline

1 The main result in a simple setting

2 The general setting

- The setup
- Partially periodic operators
- The density of surface states for partially periodic operators
- The integrated density of surface states of the random model

3 Lifshitz tails

- Fluctuating edges
- The case of surfaces of low dimensions
- The case of non degenerate band edges

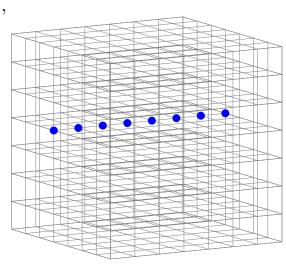
The main result in a simple setting.

Let $d_1 + d_2 = 3$, $(d_1, d_2) \in \{1, 2\}^2$. On \mathbb{R}^3 ,

$$H_{\boldsymbol{\omega}} = H + V_{\boldsymbol{\omega}} = H + \sum_{\boldsymbol{\gamma}_1 \in \mathbb{Z}^{d_1} \times \{0\}} \omega_{\boldsymbol{\gamma}_1} V(\cdot - \boldsymbol{\gamma}_1),$$

where

- *H* = −Δ + *W* where *W* is a Z³-periodic, bounded, real valued potential;
- *V* is a non-negative, strictly positive on some open set, bounded, real valued, compactly supported potential;
- $\boldsymbol{\omega} = (\boldsymbol{\omega}_{\gamma_1})_{\gamma_1 \in \mathbb{Z}^{d_1}}$ is a collection of independent identically uniformly distributed, say on [a,b] (a < b real), random variables.



Let Σ_0 be the spectrum of H and $\Sigma = \sigma(H_{\omega})$ be the almost sure spectrum of H_{ω} . One has $\Sigma_0 \subset \Sigma$.

The integrated density of surface states (IDSS):

For
$$\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$$

 $(\varphi, dN_s) = \mathbb{E}(\operatorname{tr}(\mathbf{1}_{|x_1| \le 1/2}[\varphi(H_{\omega}) - \varphi(H)]))$

Outside Σ_0 , this density of states is a positive measure. In the setting described above, let $E_0 \in \partial \Sigma \setminus \partial \Sigma_0$. Let

$$H_t = H + t \sum_{\gamma_1 \in \mathbb{Z}^{d_1} \times \{0\}} V(\cdot - \gamma_1), \quad t \in [a, b].$$

Then, $E_0 \in \partial \sigma(H_a)$ or $E_0 \in \partial \sigma(H_b)$.

Theorem

Assume the spectrum of H_a (or H_b) is absolutely continuous near E_0 . Then, one has

$$\limsup_{\substack{E \to E_0 \\ E \in \Sigma}} \frac{\ln |\ln(N_s(E) - N_s(E_0))|}{\ln |E - E_0|} < 0$$

Exponential decay of the density of surface states.

This estimate can then be used to obtain localization.

At the bottom of the spectrum, results of Kirsch and Warzel (2006). In the discrete case, results by Kirsch and Klopp (2006).

The general setting:

Let $d = d_1 + d_2$, $(d_1, d_2) \in (\mathbb{N}^*)^2$. In \mathbb{R}^d , let Γ be a degenerate lattice i.e. Span $\Gamma \subsetneq \mathbb{R}^d$. Let $\mathscr{E} = \text{Span}\{e_j, 1 \le j \le d_1\}$ where $(e_j)_{1 \le j \le d_1}$ is a basis of Γ . Define $\mathscr{C}_0 = \{x = \sum_{j=1}^{d_1} x_j e_j; |x_j| \le 1/2\} \subset \mathscr{E}$, the Brillouin zone of Γ in \mathscr{E} . Let $(f_j)_{1 \le j \le d_2}$ be a basis of \mathscr{E}^{\perp} , the orthogonal of \mathscr{E} .

Consider

$$H_{\omega} = H + V_{\omega} = H + \sum_{\gamma \in \Gamma} \omega_{\gamma} V(\cdot - \gamma),$$

where

- $H = -\Delta + W$ and W is a Γ -periodic (i.e. $\forall \gamma \in \Gamma$, $W(x + \gamma) = W(x)$), bounded potential;
- *V* is a non-negative, strictly positive on some open set, bounded, real valued, compactly supported potential;
- $\omega = (\omega_{\gamma})_{\gamma \in \Gamma}$ is a collection of independent identically distributed bounded random variables.

 H_{ω} is self-adjoint on $H^2(\mathbb{R}^d)$. Let $\Sigma = \sigma(H_{\omega})$ be the almost sure spectrum of H_{ω} .

Internal Lifshitz tail

Klopp & Tchebotareva (Paris 13 & UNAM)

The Floquet decomposition of partially periodic operators

Define

• Γ^* be the dual lattice to Γ i.e. $\Gamma^* = \{\gamma^* \in \mathscr{E}; \forall \gamma \in \Gamma, \gamma \cdot \gamma^* \in 2\pi\mathbb{Z}\};$

•
$$\mathbb{T}^* = \mathscr{E}/\Gamma^*$$
 and $S_{1/2} = \{x = \sum_{j=1}^{d_1} x_j e_j + \sum_{j=1}^{d_2} y_j f_j; |x_j| \le 1/2\} \subset \mathbb{R}^d$.

Define

$$(Uu)(x,\theta) = \sum_{\gamma \in \Gamma} e^{i\gamma \cdot \theta} u(x-\gamma).$$

Define

$$\mathscr{H} = \left\{ u \in L^2_{\text{loc}}(\mathbb{R}^d) \otimes L^2(\mathbb{T}^*); \begin{array}{c} \theta \text{ a.e., } \int_{S_{1/2}} |u(x,\theta)|^2 dx < +\infty \text{ and} \\ \forall (x,\theta,\gamma) \in \mathbb{R}^d \times \mathbb{T}^* \times \Gamma, \ u(x+\gamma,\theta) = e^{i\gamma \cdot \theta} u(x,\theta) \end{array} \right\}$$

U is a unitary isometry from $L^2(\mathbb{R}^d)$ to \mathscr{H} and $(U^{-1}v)(x) = \frac{1}{Vol(\mathbb{T}^*)} \int_{\mathbb{T}^*} v(x,\theta) d\theta$. *H* admits the Floquet decomposition $UHU^* = \int_{\mathbb{T}^*}^{\oplus} H_{\theta} d\theta$ and $\Sigma_0 = \bigcup_{\theta \in \mathbb{T}^*} \sigma(H_{\theta})$ where Σ_0 denotes the spectrum of *H*.

Main difference with the totally periodic case: as $S_{1/2}$ is not compact, the operators H_{θ} are not necessarily of compact resolvent.

SAMP VI 2008

5/11

The density of surface states for partially periodic operators

Let $V : \mathbb{R}^d \to \mathbb{R}$ be a potential that is Γ -periodic such that

$$\forall x \in \mathscr{F}, \quad \sup_{y \in \mathscr{E}} |V(x+y)| \leq \frac{C}{(1+|x|)^{\alpha_2}} \text{ where } \alpha_2 > d_2.$$

Clearly V_{θ} is a relatively compact perturbation of H_{θ} . The spectrum of $H_{\theta} + V_{\theta}$ in the gaps of Σ_0 is discrete. One defines $n_s(E)$, the IDSS of the operator H + V as follows

$$\int_{\mathbb{R}} \varphi(E) dn_s(E) = \frac{1}{(2\pi)^{d_1}} \int_{\mathbb{T}^*} \operatorname{tr}_{\theta} \left(\varphi(H_{\theta} + V_{\theta}) - \varphi(H_{\theta}) \right) d\theta, \quad \forall \varphi \in \mathscr{C}_0^{\infty}(\mathbb{R}).$$

Lemma

For
$$\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, $\int_{\mathbb{R}} \varphi(E) dn_s(E) = \frac{1}{Vol(\mathscr{C}_0)} \operatorname{tr} \left(\mathbf{1}_{S_{1/2}}[\varphi(H+V) - \varphi(H)] \right)$.

Klopp & Tchebotareva (Paris 13 & UNAM)

Internal Lifshitz tails

SAMP VI 2008 7 / 11

The integrated density of surface states of the random model

Consider $V_{\omega,L} = \sum_{\beta \in (2L+1)\Gamma} \sum_{\gamma \in \Gamma/(2L+1)\Gamma} \omega_{\gamma} V(\cdot - \gamma - \beta).$ Define $H_{\omega,L} = H + V_{\omega,L}$ and $dn_s(\omega, L)$, the density of surface states of $H_{\omega,L}$ and H.

Theorem

When $L \to +\infty$, $\mathbb{E}(dn_s(\omega, L))$ converges to dN_s , the integrated density of surface states. It satisfies, for $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$,

$$\langle \boldsymbol{\varphi}, dN_s \rangle = \frac{1}{Vol(\mathscr{C}_0)} \mathbb{E}(\operatorname{tr}(\mathbf{1}_{S_{1/2}}[\boldsymbol{\varphi}(H_{\boldsymbol{\omega}}) - \boldsymbol{\varphi}(H)]))$$

where $Vol(\mathcal{C}_0)$ is the volume of \mathcal{C}_0 (measured with respect to the restriction of the Lebesgue measure to \mathcal{E}).

Moreover, for $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that $supp \varphi \subset \mathbb{R} \setminus \Sigma_0$, almost surely,

$$\langle \boldsymbol{\varphi}, dN_s \rangle = \lim_{L \to +\infty} \langle \boldsymbol{\varphi}, dn_s(\boldsymbol{\omega}, L) \rangle$$

Moreover, dN_s defines a positive measure in the gaps of Σ_0 .

Fluctuating edges

The edge $E_0 \in \partial \Sigma$ is *fluctuating* for H_{ω} if, for all $\varepsilon > 0$ sufficiently small, E_0 is in a gap of the spectrum of either $H_{\omega} + \varepsilon \sum_{\gamma \in \Gamma} V(\cdot - \gamma)$ or $H_{\omega} - \varepsilon \sum_{\gamma \in \Gamma} V(\cdot - \gamma)$.

Theorem

Let E_0 be an edge of the spectrum of H_{ω} . E_0 is fluctuating if and only if it does not belong to the union of the essential spectra of H_{θ} when θ runs over \mathbb{T}^* .

Low dimensional surfaces

Theorem

Assume $d_1 \in \{1,2\}$ and that the common support of the random variables $(\omega_{\gamma})_{\gamma \in \Gamma}$ is the interval [a,b]. Assume that E_0 is a fluctuating edge and that if $E_0 \in \sigma(H_a)$ (resp. $E_0 \in \sigma(H_b)$) then H_a (resp. H_b) has only a.c. spectrum near E_0 . Then, one has $\ln |\ln |N_s(E) - N_s(E_0)|| = 0$

$$\limsup_{\substack{E \to E_0 \\ E \in \Sigma}} \frac{\prod |\Pi| |V_s(E) - |V_s(E_0)||}{\ln |E - E_0|} < 0$$

Klopp & Tchebotareva (Paris 13 & UNAM)

Internal Lifshitz tails

SAMP VI 2008 9 / 11

Non degenerate band edges

Assume that

(H2) for some
$$\delta > 0$$
, $(E_0 - \delta, E_0) \cap \Sigma = \emptyset$ and $E_0 \in \Sigma$.

Consider the operator

$$H_a = H + a \sum_{\gamma \in \Gamma} V(\cdot - \gamma)$$

where the support of ω_{γ_1} is [a,b]. This operator is Γ -periodic. Under our assumptions of the random variables, E_0 is also an edge of $\sigma(H_a)$. Let n_s be the integrated density of surface states of H_a . We say that E_0 is a *non degenerate edge* if

$$\limsup_{E \to E_0^+} \frac{\log(n_s(E) - n_s(E_0))}{\log |E - E_0|} = \frac{d_1}{2}.$$

Assume that $\frac{\log \mathbb{P}(\omega_{\gamma} - a \leq \varepsilon)}{\log \varepsilon} \underset{\varepsilon \to 0^+}{\to} 0$

We prove

Theorem

Let $E_0 \in \partial \Sigma$ be a fluctuating edge and that the spectrum of H_a at E_0 is absolutely continuous.

Then

one has

$$\liminf_{E \to E_0^+} \frac{\ln |\ln(N_s(E) - N_s(E_0))|}{\ln(E - E_0)} \ge -\frac{d_1}{2};$$

2 E_0 is a non degenerate edge of the spectrum of H_a if and only if

$$\limsup_{E \to E_0^+} \frac{\ln |\ln(N_s(E) - N_s(E_0))|}{\ln(E - E_0)} = -\frac{d_1}{2};$$

Klopp & Tchebotareva (Paris 13 & UNAM)

Internal Lifshitz tails

SAMP VI 2008 11 / 11