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Quasi-periodic finite difference equations

Quasi-periodic finite difference equations

Consider the finite difference eigenvalue problem

(Hθ ψ)(n) = ψ(n+1)+ψ(n−1)+ v(nω +θ)ψ(n) = Eψ(n) (1.1)

where v : R→ R is continuous and v(x+2) = v(x), ω ∈ R and θ ∈ R.

If ω = p/q ∈Q, (p,q) ∈ N×N∗, then n 7→ v(nω +θ) is q-periodic.
Hence,

σ(Hθ ) = σac(Hθ )

and σ(Hθ ) depends on θ .
If ω 6∈Q, then n 7→ v(nω +θ) is quasi-periodic.
There exist closed sets σ , σpp, σac, σsc, such that for almost every θ , one has

σ = σ(Hθ ), σpp = σpp(Hθ ), σac = σac(Hθ ), σsc = σsc(Hθ ) (Pastur).

Actually, σ = σ(Hθ ) for every θ .
For analytic v, σs(Hθ ) = σpp(Hθ )∪σsc(Hθ ) independent of θ (Last-Simon).
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Quasi-periodic finite difference equations

Study has generated a vast literature:

A. Avila, Y. Avron, J. Bellissard, J. Bourgain, V. Buslaev, V. Chulaevsky,
D. Damanik, E. Dinaburg, H. Eliasson, A. F., B. Helffer, M. Hermann,
S. Jitomirskaya, F. K., R. Krikorian, Y. Last, J. Puig, M. Shubin, B. Simon,
Y. Sinaı̈, J. Sjöstrand, S. Sorets, T. Spencer, M. Wilkinson, ...

The spectral theory of quasi-periodic operators very rich. Many models
exhibit

Cantorian spectrum;
spectral nature depending on the “number theoretical” properties of the
frequency ω;
topologically typical singular continuous spectrum (i.e. for a dense Gδ

set of parameters).
This has only been shown for a few models (e.g. the almost Mathieu
equation v(x) = 2λ cos(πx))).
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The Lyapunov exponent

The Lyapunov exponent

Equation (1.1) can be rewritten as(
ψ(n+1)

ψ(n)

)
= M((n−1)ω +θ)

(
ψ(n)

ψ(n−1)

)
, M(x) =

(
E− v(x) −1

1 0

)
The product M((n−1)ω +θ) ·M((n−2)ω +θ) · · ·M(θ) defines the
behavior of the solutions of (1.1). For fixed E, consider

γ(E,θ) = lim
n→+∞

1
n

log‖M((n−1)ω +θ) · · ·M(θ)‖. (1.2)

Theorem
For almost every θ , this limit exists and does not depend on θ .

In this case, we call it the Lyapunov exponent γ(E).

If the limit (1.2) does not exist or exists but differs from γ(E), we say that
the Lyapunov exponent does not exist.

Introduction The results Some ideas from the proof

The Lyapunov exponent

When ω ∈Q, γ(E) is the imaginary part of the Bloch quasi-momentum.
When ω 6∈Q:

The absolutely continuous spectrum is the essential closure of the set of
energies where the Lyapunov exponent vanishes (Ishii-Pastur-Kotani).
If γ(E) is positive on I, an interval, then σ ∩ I ⊂ σs.

One cannot replace σs with σpp.

For γ(E,θ) > 0, solutions to (1.1) have simple exponential behavior.

For given θ , the limit a priori exists only almost everywhere in E.

In general, solutions to equation don’t have a simple behavior.

If γ(E) > 0 on I and if, in I, the spectrum is singular continuous, the
spectrum in I is located at the energies where the limit does not exist.
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Singular continuous spectrum

Two examples of singular continuous spectrum

Both examples: the almost Mathieu equation v(x) = 2λ cos(πx)).

B. Simon’s example:

For almost Mathieu, γ(E) = max(0, logλ ).

If λ > 1 then γ(E) > 0.

Let ω be such that, for some sequence (pm,qm) ∈ N×N∗,∣∣∣∣ω − pm

qm

∣∣∣∣≤ m−qm .

Then, no eigenvalues and no absolutely continuous spectrum i.e. the
spectrum is purely singular continuous.

Such Liouvillean frequencies are topologically typical but of zero measure.
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Singular continuous spectrum

Simon’s result: consequence of a result by A. Gordon:

if potential is exponentially well approximated by periodic potentials, the
equation does not admit any decreasing solutions.

In the case of the almost Mathieu equation, one proves

limsup
m→∞

max(φ(±qm),φ(±2qm))≥ 1
2

φ(0),

φ(n) = (|ψ(n+1)|2 + |ψ(n)|2)1/2

Theory of subordinate solution (Gilbert-Pearson): for ψ , a generalized
eigenfunction of the singular continuous spectrum,

∑
N
n=0 |ψ(n)|2

∑
N
n=0 |ψ̃(n)|2

→ 0 as N →+∞.

for any linearly independent solution ψ̃ .
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Singular continuous spectrum

Example of S. Jitomirskaya and B.Simon.

Let θ irrational be such that, for some B > 0 and infinitely many integers m,

dist(θ +mω,Z/2)≤ e−B|m|.

Then, equation (1.1) does not admit a square summable solution.

The basic idea is that ψ(k) and ψ(2m− k) satisfy almost the same equation
and are linearly independent: impossible if ψ decays at infinity.
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An almost explicitly solvable model

An almost explicitly solvable model

Consider the equation

ψ(n+1)+ψ(n−1)+2λ eiπω/2 cos(π(nω +θ)) ψ(n) = 0. (2.1)

Our aims:
1 describe when the Lyapunov exponent does not exists.
2 describe solutions of the difference equation whether Lyapunov

exponent exists or not.
Three reasons to study (2.1):

1 existence of the Lyapunov exponent and behavior of the solution
described quite explicitly.

2 model related to self-adjoint models via cocycle representation e.g.

−ψ
′′(t)+α ∑

l≥0
δ ( l(l−1)/2+ lφ1 +φ2 − t ) ψ(t) = Eψ(t).

3 techniques developed extendable to general real analytic v.
Our tool: an extension of the monodromization method introduced by
Buslaev-Fedotov to construct Weyl solutions outside the spectrum.
We study the solutions on the spectrum.
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A criterion for the existence of the Lyapunov exponent

Existence of the Lyapunov exponent:

for L = 0,1,2 . . . , define

ωL+1 =
1

ωL
(mod1), ω0 = ω and λL+1 = λ

1
ωL

L , λ0 = λ

Theorem

Assume λLωL → ∞. There exists a function (k,ω) 7→ L(k,ω) ∈ N such that
the Lyapunov exponent for equation (2.1) exists if and only if there exists a
positive sequence {cL}∞

L=1 tending to zero and such that, for all positive
integers (k, l) satisfying 0 < k− lω0 < 1, one has:∣∣∣∣θ − 1

2
− (k− lω0)

∣∣∣∣≥ ω0ω1 . . .ωLe−
cL

ω0ω1···ωL , L = L(k,ω). (2.2)

For ω fixed, k 7→ L(k,ω) is an increasing sequence of integers such that

k ·ω0 · · ·ωL(k,ω)−1 � 1 (2.3)
Moreover, when the Lyapunov exponent exits, it is equal to logλ .

The set of θ satisfying (2.2) is topologically typical and of measure 0.
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A criterion for the existence of the Lyapunov exponent

Comments.

Condition λLωL → ∞ is satisfied for a set of total measure of frequencies;
it contains all the Diophantine frequencies and many more.

Indeed, ω is Diophantine of order β if

|ω −p/q| ≥ C1(ω)
q2+β

, ∀q ∈ Z+ p ∈ Z.

Such numbers form a set of full measure.
J.C. Yoccoz has shown that an equivalent condition is

ωL+1 ≥ C2(ω)ω1+β

L .

Compare with our requirement

ωL+1 ≥
CL

λL+1
= CLe−

lnλ
ω0ω1...ωL

for an increasing sequence {CL}.
There exists C > 1 such, for typical ω , one has ω0 . . .ωL ≤ C−L (Khinchin,
Lévy).
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When the criterion is not satisfied

What happens when the criterion is not satisfied?

There is a simple result by N. Riedel:

Theorem
Let ω be a Diophantine number. If, for some integers k and l, one has
θ = 1/2+ k− lω , then

ψ(n+1)+ψ(n−1)+2λ cos(π(θ +nω))ψ(n) = 0

has a square summable solution.

Our method allows us to construct this solution which has “simple”
asymptotics at ∞.

For θ = 1/2, it has a bump at the point n = 0 and is exponentially decaying
at infinity.

When θ = 1/2+ k− lω , the solution has various bumps.
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Local behavior of the solutions

Local behavior

We solve ψ(k +1)+ψ(k−1)+ v(kω +θ)ψ(k) = Eψ(k).

Fix 0 < ε < 1. For large λ , for θ + kω in [−1/2+ εω,1/2− εω], solutions
of the form

ψ
±
0 (k) = ϕ

±
0 (k)(1+o(1))

where ϕ
±
0 are solutions to

ϕ
±
0 (k±1)+λv(θ + kω)ϕ±

0 (k) = 0.

ψ
+
0 is exponentially increasing and ψ

+
0 is exponentially decreasing.

Near ±1/2, oscillation zones. Complicated asymptotics.
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Local behavior of the solutions

Behavior of ψ
+
0 to the right of 1/2:

ψ
+
0 = b(θ)ψ+

1 +a(θ)ψ−
1 .

If b(θ) = 0:

it is a quantization condition.

In general, a and b computed asymptotically for large λ .
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For our model

For the simple model

For v(θ) = 2λ 1/ω eiπω/2 cos(πθ), exact computation of a and b:
one constructs solution of the form ψ(k,θ) = µ(θ + kω) where µ satisfies

µ(s+ω)+ µ(s−ω)+2λ
1/ω eiπω/2 cos(πs)µ(s) = 0,

e−iπ/ω
µ(s+1)−µ(s−1)−2iλ 1/ω sin(π(s−1/2)/ω)µ(s) = 0. (3.1)

For λ large, one has

Compute asymptotics of solutions for large k: the base (ψ±
0 ) given by

ψ
+
0 (k) = µ(θ +1+ kω)(−1)k and ψ

−
0 (k) = µ(θ + kω).

Then, ψ
−
1 (k) = µ(θ −1+ kω)(−1)k and ψ

+
1 (k) = µ(θ + kω).

(3.1) rewrites as

e−iπ/ω
ψ

+
0 (k) = 2iλ 1/ω sin(π(θ −1/2)/ω)ψ+

1 (k)+ψ
−
1 (k).
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For our model

For the simple model, the quantization condition is

sin
(

π

ω
(θ −1/2)

)
= 0

if θ −1/2 ∈ ωZ if θ −1/2 6∈ ωZ but
θ −1/2 close to ωZ∗

−

if θ −1/2 far from ωZ

When θ −1/2 6∈ ωZ and
θ −3/2 6∈ ωZ, ...

If θ −1/2 6∈ N+ωZ∗
− for any

k, expect ψ
+
0 exponentially

increasing
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Monodromization

Transition matrices

Pb: to go to ∞, one has to repeat the procedure indefinitely. But, asymptotics
only known on compact.
Use transition matrices between (ψ±

0 ), (ψ±
1 ), (ψ±

1 ), ... and study the
product.

ψ
−
0 (k,θ) = ψ

+
1 (k,θ) = µ(θ + kω),

ψ
−
1 (k,θ) = ψ

+
2 (k,θ) = µ(θ −1+ kω).

Set ψ0(k,θ) = ψ
−
0 (k,θ) = ψ

+
1 (k,θ) and ψ1(k,θ) = ψ

−
1 (k,θ) = ψ

+
2 (k,θ),

and so on ...
The transition matrices:(

ψl+1(k,θ)
ψl(k,θ)

)
= Tl(θ)

(
ψl(k,θ)

ψl−1(k,θ)

)
, Tl(j) =

(
tl(θ) sl(θ)

1 0

)
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Monodromization

The renormalization

Relation (3.1) gives

Tl(θ) =
(

2iλ 1/ω eiπ/ω sin(π(θ −1/2+ l)/ω) eiπ/ω

1 0

)
Up to conjugation and multiplication by complex unit,

T̃l(θ) =
(

2λ 1/ω sin(π(θ + l)/ω) e−iπ(θ+l)/ω

eiπ(θ+l)/ω 0

)

T̃l(θ) · T̃l−1(θ) · · · T̃0(θ) =±M̃(θ1 + lω1) · M̃(θ1 +(l−1)ω1) · · ·M̃(θ1)

where

θ1 =
θ

ω
mod1, ω1 =

1
ω

mod1, M̃(θ1) =
(

2λ 1/ω sin(πθ1) −e−iπθ1

eiπθ1 0

)
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Monodromization

Studying the Lyapunov exponent for

ψ(n+1)+ψ(n−1)+2λ eiπω/2 cos(π(nω +θ)) ψ(n) = 0.

comes up to studying the product M0(θ + kω) · · ·M0(θ +ω)M0(θ) for

M0(θ) =
(
−2λ 1/ω eiπω/2 cos(π(kω +θ)) −1

1 0

)
Theorem

For θ1 = θ/ω mod 1, ω1 = 1/ω mod 1 and k1 = [kω +θ ], one has

M0(θ + kω) · · ·M0(θ +ω)M0(θ)

= Ψ0({θ + kω})M−1
1 (θ1− k1ω1) ·M−1

1 (θ1− (k1−1)ω1) · · ·
· · ·M−1

1 (θ1−ω1)Ψ−1
0 ({θ})

where M1 same form as M0 and Ψ0 is constructed from µ .
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The proof of the criterion

Completion of the proof of Theorem 2.1

Repeating this

M0(θ + kω) · · ·M(θ +ω)M0(θ)
= Ψ0({θ + kω})Ψ1({θ1− kω}) · · ·Ψl({θl± klωl})·

Ml+1(θ̃l) ·Ψ−1
l ({θl}) · · ·Ψ−1

1 ({θ}) ·Ψ−1
0 ({θ0})

Two gains:
number of terms in product.

asymptotic form of each term: λl = λ
1/ωl−1
l−1 .

Under assumption of criterion, the products

Πl = ΨlMl+1Ψ
−1
l , Πl−1 = Ψl−1ΠlΨ

−1
l−1, Πl−2 = Ψl−2Πl−1Ψ

−1
l−2, . . .

admit quasi-scalar asymptotics

Πk = τk

(
1 o(1)

o(1) o(1)

)
.
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