Lyapunov exponents and singular continuous

spectrum

A. Fedotov ${ }^{1}$ F. Klopp ${ }^{2}$

${ }^{1}$ Saint-Petersburg State University
${ }^{2}$ Université Paris 13
and
Institut Universitaire de France

QMath 10, Moeciu - 12/09/2007

Outline

(1) Introduction

- Quasi-periodic finite difference equations
- The Lyapunov exponent
- Singular continuous spectrum
(2) The results
- An almost explicitly solvable model
- A criterion for the existence of the Lyapunov exponent
- When the criterion is not satisfied
(3) Some ideas from the proof
- Local behavior of the solutions
- For our model
- Monodromization
- The proof of the criterion

Quasi-periodic finite difference equations

Consider the finite difference eigenvalue problem

$$
\begin{equation*}
\left(H_{\theta} \psi\right)(n)=\psi(n+1)+\psi(n-1)+v(n \omega+\theta) \psi(n)=E \psi(n) \tag{1.1}
\end{equation*}
$$

where $v: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $v(x+2)=v(x), \omega \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
If $\omega=p / q \in \mathbb{Q},(p, q) \in \mathbb{N} \times \mathbb{N}^{*}$, then $n \mapsto v(n \omega+\theta)$ is q-periodic.
Hence,

$$
\sigma\left(H_{\theta}\right)=\sigma_{a c}\left(H_{\theta}\right)
$$

and $\sigma\left(H_{\theta}\right)$ depends on θ.
If $\omega \notin \mathbb{Q}$, then $n \mapsto v(n \omega+\theta)$ is quasi-periodic.
There exist closed sets $\sigma, \sigma_{p p}, \sigma_{a c}, \sigma_{s c}$, such that for almost every θ, one has

$$
\sigma=\sigma\left(H_{\theta}\right), \sigma_{p p}=\sigma_{p p}\left(H_{\theta}\right), \sigma_{a c}=\sigma_{a c}\left(H_{\theta}\right), \sigma_{s c}=\sigma_{s c}\left(H_{\theta}\right) \quad \text { (Pastur). }
$$

Actually, $\sigma=\sigma\left(H_{\theta}\right)$ for every θ.
For analytic $v, \sigma_{s}\left(H_{\theta}\right)=\sigma_{p p}\left(H_{\theta}\right) \cup \sigma_{s c}\left(H_{\theta}\right)$ independent of θ (Last-Simon).

Study has generated a vast literature:
A. Avila, Y. Avron, J. Bellissard, J. Bourgain, V. Buslaev, V. Chulaevsky,
D. Damanik, E. Dinaburg, H. Eliasson, A. F., B. Helffer, M. Hermann, S. Jitomirskaya, F. K., R. Krikorian, Y. Last, J. Puig, M. Shubin, B. Simon, Y. Sinaï, J. Sjöstrand, S. Sorets, T. Spencer, M. Wilkinson, ...

The spectral theory of quasi-periodic operators very rich. Many models exhibit

- Cantorian spectrum;
- spectral nature depending on the "number theoretical" properties of the frequency ω;
- topologically typical singular continuous spectrum (i.e. for a dense $G_{\boldsymbol{\delta}}$ set of parameters).
This has only been shown for a few models (e.g. the almost Mathieu equation $v(x)=2 \lambda \cos (\pi x))$).

Equation (1.1) can be rewritten as

$$
\binom{\psi(n+1)}{\psi(n)}=M((n-1) \omega+\theta)\binom{\psi(n)}{\psi(n-1)}, \quad M(x)=\left(\begin{array}{cc}
E-v(x) & -1 \\
1 & 0
\end{array}\right)
$$

The product $M((n-1) \omega+\theta) \cdot M((n-2) \omega+\theta) \cdots M(\theta)$ defines the behavior of the solutions of (1.1). For fixed E, consider

$$
\begin{equation*}
\gamma(E, \theta)=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \|M((n-1) \omega+\theta) \cdots M(\theta)\| . \tag{1.2}
\end{equation*}
$$

Theorem

For almost every θ, this limit exists and does not depend on θ.
In this case, we call it the Lyapunov exponent $\gamma(E)$.
If the limit (1.2) does not exist or exists but differs from $\gamma(E)$, we say that the Lyapunov exponent does not exist.

When $\omega \in \mathbb{Q}, \gamma(E)$ is the imaginary part of the Bloch quasi-momentum.
When $\omega \notin \mathbb{Q}$:

- The absolutely continuous spectrum is the essential closure of the set of energies where the Lyapunov exponent vanishes (Ishii-Pastur-Kotani).
- If $\gamma(E)$ is positive on I, an interval, then $\sigma \cap I \subset \sigma_{s}$.

One cannot replace σ_{s} with $\sigma_{p p}$.
For $\gamma(E, \theta)>0$, solutions to (1.1) have simple exponential behavior.
For given θ, the limit a priori exists only almost everywhere in E.
In general, solutions to equation don't have a simple behavior.
If $\gamma(E)>0$ on I and if, in I, the spectrum is singular continuous, the spectrum in I is located at the energies where the limit does not exist.

Both examples: the almost Mathieu equation $v(x)=2 \lambda \cos (\pi x))$.

B. Simon's example:

For almost Mathieu, $\gamma(E)=\max (0, \log \lambda)$.
If $\lambda>1$ then $\gamma(E)>0$.
Let ω be such that, for some sequence $\left(p_{m}, q_{m}\right) \in \mathbb{N} \times \mathbb{N}^{*}$,

$$
\left|\omega-\frac{p_{m}}{q_{m}}\right| \leq m^{-q_{m}} .
$$

Then, no eigenvalues and no absolutely continuous spectrum i.e. the spectrum is purely singular continuous.

Such Liouvillean frequencies are topologically typical but of zero measure.

Simon's result: consequence of a result by A. Gordon:
if potential is exponentially well approximated by periodic potentials, the equation does not admit any decreasing solutions.

In the case of the almost Mathieu equation, one proves

$$
\begin{gathered}
\underset{m \rightarrow \infty}{\limsup } \max \left(\phi\left(\pm q_{m}\right), \phi\left(\pm 2 q_{m}\right)\right) \geq \frac{1}{2} \phi(0), \\
\phi(n)=\left(|\psi(n+1)|^{2}+|\psi(n)|^{2}\right)^{1 / 2}
\end{gathered}
$$

Theory of subordinate solution (Gilbert-Pearson): for ψ, a generalized eigenfunction of the singular continuous spectrum,

$$
\frac{\sum_{n=0}^{N}|\psi(n)|^{2}}{\sum_{n=0}^{N}|\tilde{\psi}(n)|^{2}} \rightarrow 0 \text { as } N \rightarrow+\infty .
$$

for any linearly independent solution $\tilde{\psi}$.

Example of S. Jitomirskaya and B.Simon.
Let θ irrational be such that, for some $B>0$ and infinitely many integers m,

$$
\operatorname{dist}(\theta+m \omega, \mathbb{Z} / 2) \leq e^{-B|m|}
$$

Then, equation (1.1) does not admit a square summable solution.
The basic idea is that $\psi(k)$ and $\psi(2 m-k)$ satisfy almost the same equation and are linearly independent: impossible if ψ decays at infinity.

An almost explicitly solvable model

Consider the equation

$$
\begin{equation*}
\psi(n+1)+\psi(n-1)+2 \lambda e^{i \pi \omega / 2} \cos (\pi(n \omega+\theta)) \psi(n)=0 \tag{2.1}
\end{equation*}
$$

Our aims:

(1) describe when the Lyapunov exponent does not exists.
(2) describe solutions of the difference equation whether Lyapunov exponent exists or not.
Three reasons to study (2.1):
(1) existence of the Lyapunov exponent and behavior of the solution described quite explicitly.
(2) model related to self-adjoint models via cocycle representation e.g.

$$
-\psi^{\prime \prime}(t)+\alpha \sum_{l \geq 0} \delta\left(l(l-1) / 2+l \phi_{1}+\phi_{2}-t\right) \psi(t)=E \psi(t)
$$

(3) techniques developed extendable to general real analytic v.

Our tool: an extension of the monodromization method introduced by Buslaev-Fedotov to construct Weyl solutions outside the spectrum. We study the solutions on the spectrum.
for $L=0,1,2 \ldots$, define

$$
\omega_{L+1}=\frac{1}{\omega_{L}}(\bmod 1), \quad \omega_{0}=\omega \quad \text { and } \quad \lambda_{L+1}=\lambda_{L}^{\frac{1}{\omega_{L}}}, \quad \lambda_{0}=\lambda
$$

Theorem

Assume $\lambda_{L} \omega_{L} \rightarrow \infty$. There exists a function $(k, \omega) \mapsto L(k, \omega) \in \mathbb{N}$ such that the Lyapunov exponent for equation (2.1) exists if and only if there exists a positive sequence $\left\{c_{L}\right\}_{L=1}^{\infty}$ tending to zero and such that, for all positive integers (k, l) satisfying $0<k-l \omega_{0}<1$, one has:

$$
\begin{equation*}
\left|\theta-\frac{1}{2}-\left(k-l \omega_{0}\right)\right| \geq \omega_{0} \omega_{1} \ldots \omega_{L} e^{-\frac{c_{L}}{\omega_{0} \omega_{1} \cdots \omega_{L}}}, \quad L=L(k, \omega) . \tag{2.2}
\end{equation*}
$$

For ω fixed, $k \mapsto L(k, \omega)$ is an increasing sequence of integers such that

$$
\begin{equation*}
k \cdot \omega_{0} \cdots \omega_{L(k, \omega)-1} \asymp 1 \tag{2.3}
\end{equation*}
$$

Moreover, when the Lyapunov exponent exits, it is equal to $\log \lambda$.
The set of θ satisfying (2.2) is topologically typical and of measure 0 .

Condition $\lambda_{L} \omega_{L} \rightarrow \infty$ is satisfied for a set of total measure of frequencies; it contains all the Diophantine frequencies and many more.

Indeed, ω is Diophantine of order β if

$$
|\omega-p / q| \geq \frac{C_{1}(\omega)}{q^{2+\beta}}, \quad \forall q \in \mathbb{Z}_{+} p \in \mathbb{Z}
$$

Such numbers form a set of full measure.
J.C. Yoccoz has shown that an equivalent condition is

$$
\omega_{L+1} \geq C_{2}(\omega) \omega_{L}^{1+\beta}
$$

Compare with our requirement

$$
\omega_{L+1} \geq \frac{C_{L}}{\lambda_{L+1}}=C_{L} e^{-\frac{\ln \lambda}{\omega_{0} \omega_{1} \ldots \omega_{L}}}
$$

for an increasing sequence $\left\{C_{L}\right\}$.
There exists $C>1$ such, for typical ω, one has $\omega_{0} \ldots \omega_{L} \leq C^{-L}$ (Khinchin, Lévy).

There is a simple result by N . Riedel:

Theorem

Let ω be a Diophantine number. If, for some integers k and l, one has $\theta=1 / 2+k-l \omega$, then

$$
\psi(n+1)+\psi(n-1)+2 \lambda \cos (\pi(\theta+n \omega)) \psi(n)=0
$$

has a square summable solution.
Our method allows us to construct this solution which has "simple" asymptotics at ∞.

For $\theta=1 / 2$, it has a bump at the point $n=0$ and is exponentially decaying at infinity.

When $\theta=1 / 2+k-l \omega$, the solution has various bumps.

We solve $\quad \psi(k+1)+\psi(k-1)+v(k \omega+\theta) \psi(k)=E \psi(k)$.
Fix $0<\varepsilon<1$. For large λ, for $\theta+k \omega$ in $[-1 / 2+\varepsilon \omega, 1 / 2-\varepsilon \omega]$, solutions of the form

$$
\psi_{0}^{ \pm}(k)=\varphi_{0}^{ \pm}(k)(1+o(1))
$$

where $\varphi_{0}^{ \pm}$are solutions to

$$
\varphi_{0}^{ \pm}(k \pm 1)+\lambda v(\theta+k \omega) \varphi_{0}^{ \pm}(k)=0 .
$$

ψ_{0}^{+}is exponentially increasing and ψ_{0}^{+}is exponentially decreasing.
Near $\pm 1 / 2$, oscillation zones. Complicated asymptotics.

Behavior of ψ_{0}^{+}to the right of $1 / 2$:

$$
\psi_{0}^{+}=b(\theta) \psi_{1}^{+}+a(\theta) \psi_{1}^{-}
$$

If $b(\boldsymbol{\theta})=0$:

it is a quantization condition.

In general, a and b computed asymptotically for large λ.

For the simple model

For $v(\theta)=2 \lambda^{1 / \omega} e^{i \pi \omega / 2} \cos (\pi \theta)$, exact computation of a and b :
one constructs solution of the form $\psi(k, \theta)=\mu(\theta+k \omega)$ where μ satisfies

$$
\begin{array}{r}
\mu(s+\omega)+\mu(s-\omega)+2 \lambda^{1 / \omega} e^{i \pi \omega / 2} \cos (\pi s) \mu(s)=0 \\
e^{-i \pi / \omega} \mu(s+1)-\mu(s-1)-2 i \lambda^{1 / \omega} \sin (\pi(s-1 / 2) / \omega) \mu(s)=0 \tag{3.1}
\end{array}
$$

For λ large, one has

Compute asymptotics of solutions for large k : the base $\left(\psi_{0}^{ \pm}\right)$given by

$$
\psi_{0}^{+}(k)=\mu(\theta+1+k \omega)(-1)^{k} \quad \text { and } \quad \psi_{0}^{-}(k)=\mu(\theta+k \omega)
$$

Then, $\quad \psi_{1}^{-}(k)=\mu(\theta-1+k \omega)(-1)^{k} \quad$ and $\quad \psi_{1}^{+}(k)=\mu(\theta+k \omega)$.
(3.1) rewrites as

$$
e^{-i \pi / \omega} \psi_{0}^{+}(k)=2 i \lambda^{1 / \omega} \sin (\pi(\theta-1 / 2) / \omega) \psi_{1}^{+}(k)+\psi_{1}^{-}(k)
$$

For the simple model, the quantization condition is

$$
\sin \left(\frac{\pi}{\omega}(\theta-1 / 2)\right)=0
$$

if $\theta-1 / 2 \in \omega \mathbb{Z}$

if $\theta-1 / 2 \notin \omega \mathbb{Z}$ but $\theta-1 / 2$ close to $\omega \mathbb{Z}_{-}^{*}$

if $\theta-1 / 2$ far from $\omega \mathbb{Z}$

When $\theta-1 / 2 \notin \omega \mathbb{Z}$ and $\theta-3 / 2 \notin \omega \mathbb{Z}, \ldots$

If $\theta-1 / 2 \notin \mathbb{N}+\omega \mathbb{Z}_{-}^{*}$ for any k, expect ψ_{0}^{+}exponentially increasing

Transition matrices

Pb : to go to ∞, one has to repeat the procedure indefinitely. But, asymptotics only known on compact.
Use transition matrices between $\left(\psi_{0}^{ \pm}\right),\left(\psi_{1}^{ \pm}\right),\left(\psi_{1}^{ \pm}\right), \ldots$ and study the product.

$$
\begin{aligned}
& \psi_{0}^{-}(k, \theta)=\psi_{1}^{+}(k, \theta)=\mu(\theta+k \omega), \\
& \psi_{1}^{-}(k, \theta)=\psi_{2}^{+}(k, \theta)=\mu(\theta-1+k \omega) .
\end{aligned}
$$

Set $\psi_{0}(k, \theta)=\psi_{0}^{-}(k, \theta)=\psi_{1}^{+}(k, \theta)$ and $\psi_{1}(k, \theta)=\psi_{1}^{-}(k, \theta)=\psi_{2}^{+}(k, \theta)$, and so on ...
The transition matrices:

$$
\binom{\psi_{l+1}(k, \theta)}{\psi_{l}(k, \theta)}=T_{l}(\boldsymbol{\theta})\binom{\psi_{l}(k, \theta)}{\psi_{l-1}(k, \theta)}, \quad T_{l}(j)=\left(\begin{array}{cc}
t_{l}(\theta) & s_{l}(\theta) \\
1 & 0
\end{array}\right)
$$

Relation (3.1) gives

$$
T_{l}(\theta)=\left(\begin{array}{cc}
2 i \lambda^{1 / \omega} e^{i \pi / \omega} \sin (\pi(\theta-1 / 2+l) / \omega) & e^{i \pi / \omega} \\
1 & 0
\end{array}\right)
$$

Up to conjugation and multiplication by complex unit,

$$
\tilde{T}_{l}(\theta)=\left(\begin{array}{cc}
2 \lambda^{1 / \omega} \sin (\pi(\theta+l) / \omega) & e^{-i \pi(\theta+l) / \omega} \\
e^{i \pi(\theta+l) / \omega} & 0
\end{array}\right)
$$

$$
\tilde{T}_{l}(\theta) \cdot \tilde{T}_{l-1}(\theta) \cdots \tilde{T}_{0}(\theta)= \pm \tilde{M}\left(\theta_{1}+l \omega_{1}\right) \cdot \tilde{M}\left(\theta_{1}+(l-1) \omega_{1}\right) \cdots \tilde{M}\left(\theta_{1}\right)
$$

where

$$
\theta_{1}=\frac{\theta}{\omega} \bmod 1, \quad \omega_{1}=\frac{1}{\omega} \bmod 1, \quad \tilde{M}\left(\theta_{1}\right)=\left(\begin{array}{cc}
2 \lambda^{1 / \omega} \sin \left(\pi \theta_{1}\right) & -e^{-i \pi \theta_{1}} \\
e^{i \pi \theta_{1}} & 0
\end{array}\right)
$$

Studying the Lyapunov exponent for

$$
\psi(n+1)+\psi(n-1)+2 \lambda e^{i \pi \omega / 2} \cos (\pi(n \omega+\theta)) \psi(n)=0
$$

comes up to studying the product $M_{0}(\theta+k \omega) \cdots M_{0}(\theta+\omega) M_{0}(\theta)$ for

$$
M_{0}(\theta)=\left(\begin{array}{cc}
-2 \lambda^{1 / \omega} e^{i \pi \omega / 2} \cos (\pi(k \omega+\theta)) & -1 \\
1 & 0
\end{array}\right)
$$

Theorem

For $\theta_{1}=\theta / \omega \bmod 1, \omega_{1}=1 / \omega \bmod 1$ and $k_{1}=[k \omega+\theta]$, one has

$$
\begin{aligned}
& M_{0}(\theta+k \omega) \cdots M_{0}(\theta+\omega) M_{0}(\theta) \\
& \quad=\Psi_{0}(\{\theta+k \omega\}) M_{1}^{-1}\left(\theta_{1}-k_{1} \omega_{1}\right) \cdot M_{1}^{-1}\left(\theta_{1}-\left(k_{1}-1\right) \omega_{1}\right) \cdots \\
& \cdots M_{1}^{-1}\left(\theta_{1}-\omega_{1}\right) \Psi_{0}^{-1}(\{\theta\})
\end{aligned}
$$

where M_{1} same form as M_{0} and Ψ_{0} is constructed from μ.

Repeating this

$$
\begin{aligned}
& M_{0}(\theta+k \omega) \cdots M(\theta+\omega) M_{0}(\theta) \\
& =\Psi_{0}(\{\theta+k \omega\}) \Psi_{1}\left(\left\{\theta_{1}-k \omega\right\}\right) \cdots \Psi_{l}\left(\left\{\theta_{l} \pm k_{l} \omega_{l}\right\}\right) \\
& M_{l+1}\left(\tilde{\theta}_{l}\right) \cdot \Psi_{l}^{-1}\left(\left\{\theta_{l}\right\}\right) \cdots \Psi_{1}^{-1}(\{\theta\}) \cdot \Psi_{0}^{-1}\left(\left\{\theta_{0}\right\}\right)
\end{aligned}
$$

Two gains:

- number of terms in product.
- asymptotic form of each term: $\lambda_{l}=\lambda_{l-1}^{1 / \omega_{l-1}}$.

Under assumption of criterion, the products

$$
\Pi_{l}=\Psi_{l} M_{l+1} \Psi_{l}^{-1}, \Pi_{l-1}=\Psi_{l-1} \Pi_{l} \Psi_{l-1}^{-1}, \Pi_{l-2}=\Psi_{l-2} \Pi_{l-1} \Psi_{l-2}^{-1}, \ldots
$$

admit quasi-scalar asymptotics

$$
\Pi_{k}=\tau_{k}\left(\begin{array}{cc}
1 & o(1) \\
o(1) & o(1)
\end{array}\right) .
$$

