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The general picture
On `2(Zd), consider V a bounded ergodic potential and the operator

H =−∆+V.

By ergodic potential, we mainly think of:
V periodic;
V = Vω random e.g. Anderson model;
V quasi-periodic operator.

Large “ergodic” system: let L ∈ N, L� 1 and set HL =−∆+V1|x|≤L.

Compactly supported perturbation of −∆:
σess(HL) = σ(−∆) = [−2d,2d];
outside σ(−∆), HL has only discrete
eigenvalues.

0−4 4

In dimension 2

Theorem
The operator valued function z ∈ C+ 7→ (z−HL)−1 admits a meromorphic
continuation from C to C\

(
(−∞,2d]∪ [2d,+∞)∪∪1≤k≤d−1(4k−2d + iR−)

)
with

values in the operators from l2comp to l2loc.
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The poles of the analytic continuation are the resonances of HL.
They are associated with finite dimensional resonant subspaces.
Pole width: it is the imaginary part of the pole.
Well known: the resonance width plays an important role in the large time behavior of
e−itHL ,especially the smallest width that gives the leading order contribution.
Goal: “compute” the resonances; relate them (their distribution, the distribution of
their width) to the spectral characteristics of H =−∆+V .
A very simple model:
On `2(N), consider V = (Vn)n≥0 and the eigenvalue problem

un+1 +un−1 +Vnun = Eun if n≥ 0 and u−1 = 0

associated to the operator

H =−∆+V =


V0 1 0 0 · · ·

1 V1 1 0
. . .

0 1 V2 1
. . .

...
. . . . . . . . . . . .

 .
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So, for L > 0, one has

HL =−∆+V1n≤L =



V0 1 0 · · · · · · · · · · · · · · ·
1 V1 1 0
0 1 V2 1 0
...

. . . . . . . . . . . . . . .
... 0 1 VL 1 0
... 0 1 0 1 0
...

. . . . . . . . . . . . . . .


Model was studied:

in physics: Titov - Fyodorov, Texier - Combet, etc
in mathematics: Kunz - Shapiro when `2(Z) instead of `2(N) and L = +∞ (i.e.
half-axis filled with potential); they studied the resonances far away from the real
axis.

We study the resonances close to spectrum of −∆ i.e. those that asymptotically tend
to [−2,2] when L→+∞.
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The periodic case
We assume, for some p > 0, Vn+p = Vn for all n≥ 0:

let Σ′ be the spectrum of H and Σ0 be the spectrum of −∆+V acting on `2(Z);
then Σ′ = Σ0∪{vj;1≤ j≤ n} and Σ0 = ∪p

j=1[a
−
j ,a+

j ];
Σ0 is the a.c. spectrum of H;
the (vj)0≤j≤n are isolated simple eigenvalues associated to exponentially
decaying eigenfunctions.

Resonance free regions:

Theorem
Let I be a compact interval in (−2,2). Then,

if I ⊂ R\Σ′, then, there exists C > 0 such that, for L sufficiently large, there are
no resonances in {Rez ∈ I, Imz≥−1/C};
if I ⊂ Σ0, then, there exists C > 0 such that, for L sufficiently large, there are no
resonances in {Rez ∈ I, Imz≥−1/(CL)};

if {vj}=
◦
I∩Σ′ = I∩Σ′ and I∩Σ0 = /0, then, for L sufficiently large, there exists

a unique resonance in {Rez ∈ I, Imz≥−1/C}; moreover, this resonance, say zj,
satisfies Imzj �−e−ρjL and |zj−νj| � e−ρjL.
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Description of the resonances near the real axis

Let I be a compact interval in (−2,2)∩
◦
Σ0.

Let n be the density of states of −∆+V and, for E ∈
◦
Σ0, define

S(E) = p.v
(∫

R

1
λ −E

dn(λ )
)

.

Let (λj)j = (λ L
j )j be the Dirichlet eigenvalues of (−∆+V)|[0,L] in increasing order.

Theorem
There exists C0 > 0 such that, for C > C0, there exists L0 > 0 such that for L > L0, for
λj ∈ I such that λj+1 ∈ I, there exists a unique resonance in [λj,λj+1]+ i[−CL−1,0],
say zj. It satisfies

zj = λj +
f (λj)

L
cot−1

([
e−iarccos(λj/2) +S(λj)

]
g(λj)

)
+o
(

1
L

)
where f and g are real analytic functions defined by the Floquet theory of H on Z.
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Corollary
In I + i[−C/L,0], for L sufficiently large,

the resonances when rescaled to have imaginary parts of order 1 accumulate on
a real analytic curve;

the local (linear) density of resonances is given by the density of states of H.

Picture of the resonances after
rescaling their width by L:

I

resonances

Description of the resonances away from the real axis

Theorem
There exists C0 > 0 such that, for C > C0, there exists L0 > 0 such that for L > L0,in
I + i(−∞,−C/L], a resonance, say z, satisfies∫

R

dn(λ )
λ − z

+ e−iarccos(z/2) = O
(

1
C

)
Recovers the result of Kunz-Shapiro (C→+∞).
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The random case
Let V = Vω where (Vω(n))n ≥ 0 are bounded i.i.d. random variables with a nice
distribution and set Hω =−∆+Vω on `2(N).

let σ(Hω) be the spectrum of Hω and Σ be the almost sure spectrum of −∆+Vω

acting on `2(Z) (Σ = [−2,2]+suppVω(0));
ω-almost surely, σ(Hω) = Σ∪Kω ;
Σ is the essential spectrum of Hω ; it consists of simple eigenvalues associated to
exponentially decaying eigenfunctions (Anderson localization);
The set Kω is the discrete spectrum of Hω ; it may be empty.

Let ρ(E) denote the Lyapunov exponent of Hω at energy E.
Resonance free regions:

Theorem
Let I be a compact interval in (−2,2).Then, ω-a.s., one has

if I ⊂ R\σ(Hω), then, there exists C > 0 such that, for L sufficiently large, there
are no resonances of Hω,L in {Rez ∈ I, Imz≥−1/C};

if I ⊂
◦
Σ, then, there exists C > 0 such that, for L sufficiently large, there are no

resonances of Hω,L in {Rez ∈ I, Imz≥−e−2ρL(1+o(1)))} where ρ is the
maximum of the Lyapunov exponent ρ(E) on I.
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Description of the resonances closest to the real axis

Let n(E) denote the density of states of Hω at energy E.

Theorem

Let I be a compact interval in (−2,2)∩
◦
Σ. Then, ω-a.s.,

for any κ ∈ (0,1), one has

1
L

#
{

z resonance of Hω,L s.t. Rez ∈ I, Imz≥−e−Lκ
}
→
∫

I
dn(E);

fix E ∈ I such that n(E) > 0; then, for δ > 0, there exits ε > 0 such that

liminf
L→+∞

1
L

#
{

resonances z s.t. Rez ∈ [E− ε,E + ε], Imz≥−e−2(ρ(E)−δ )L
}

> 0.

The resonances are much closer to the real axis than in the periodic case; the lifetime
of these resonances is much larger.
Consequence of localization.
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The local behavior of the resonances

Let I be a compact interval in (−2,2)∩
◦
Σ and κ ∈ (0,1).

Fix E0 ∈ I such that n(E0) > 0.
Let (zL

i (ω))i be the resonances of Hω,L in KL := [E0− ε,E0 + ε]+ i
[
−e−Lκ

,0
]
.

Rescaling the resonances: define

xj = xL
j (ω) = (RezL

j (ω)−E0)L and yj = yL
j (ω) =− 1

2L
log |ImzL

j (ω)|.

Consider now the two-dimensional point process ξL(ω) = ∑
zL
j ∈KL

δ(xj,yj).

Theorem
The point process ξL converges weakly to a Poisson process in R× [0,1] with density
n(E0)ρ(E0)dxdy.

Picture of the resonances after
rescaling:

E0

resonances
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Characterizing resonances
Pick E such that ImE > 0 and set E = 2cos(θ) (Imθ > 0, Reθ ∈ (−π,0));{

un+1 +un−1 +Vnun = E un, ∀n≥ 0
u−1 = 0

where Vn = 0 if n≥ L+1.
For n≥ L+1, u+

n = u+
n (θ) = βeinθ (exp. decay at +∞).

−2 2

E

−π 0

θ

Hence, we solve, for Imθ > 0 and Reθ ∈ (−π,0)
V0 1 0 · · · 0
1 V1 1 0
...

. . . . . . . . .
0 1 VL−1 1

0 · · · 0 1 VL + eiθ




u0

...

uL

= E


u0

...

uL

 where E = 2cosθ .
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By rank one perturbation theory, E ∈ C− is a resonance if and only if

L

∑
j=0

aj

λj−E
=−e−iθ(E), E = 2cosθ(E) (3.1)

where
(λj)0≤j≤L = (λj(L))0≤j≤L are the Dirichlet eigenvalues of HL, λj < λj+1;
aj = aj(L) = |ϕj(L)|2 where ϕj = (ϕj(x))0≤x≤L is a normalized eigenvector
associated to λj.

Resonances near a gap of σ(H)

For E near gap and ]−2,2[, sinθ(E) < 0 (indep of L) and Im

(
L

∑
j=0

aj

λj−E

)
� ImE.

No solution to (3.1), hence, no resonance, up to distance O(1) to the axis.
Resonances near an isolated eigenvalue of σ(H)
For L� 1, there is a unique λj near the isolated eigenvalue. (3.1) becomes

−e−iθ(E) =
aj

λj−E
+SL(E)

where
aj � |ϕ(L)|2, ϕ normalized eigenvector associated to isolated eigenvalue;
E 7→ SL(E) nice analytic in E.
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A general result on resonance free regions
define dj = min(λj+1−λj,λj−λj−1) and

Uj(C0) =

E ∈ C−;
E = 2cosθ , ReE ∈

[
λj +λj−1

2
,

λj +λj+1

2

]
Reθ ∈ (−π,0), 0 <−Imθ ≤ ajd2

j |sin(Reθ)|/C0


Theorem
There exists C0 > 0 such that, for 0≤ j≤, there are
no resonances in Uj(C0).

λ
j−1 λ

j
λ

j+1

Uj

Asymptotics in the periodic case
Near E0 in band:

λj = E0 +g(j/L)∼ E0 +β (j− j0)/L where j0 ∼ ρL;
aj ∼ f (λj)/L∼ α/L, f and g nice functions.

So (3.1) becomes
−e−iθ(E) =

ρL/2

∑
j=−ρL/2

α

j− (E−E0)Lβ
+SL(E)

= απ cot(βπL(E−E0))+S(E)+o(1)
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In the random case

Localized regime:
E(dj)� 1/L so dj(ω)� 1/L fluctuating;
Minami’s estimate: a.s. dj(ω)≥ L−3;
logaj(ω)�−2ρ(λj)(L− xj) where xj localization center of ϕj;
most localization centers are far from L.

If L− xj0 ≥ Lα (α ∈ (0,1)), then aj0 � dj0 . So, for |E−λj0 | � aj0 ,

L

∑
j=0

aj

λj−E
=

aj0
λj0 −E

+SL(E)

where E 7→ SL(E) is well behaved and its imaginary part is of order aj0/dj0 � 1.

Solution to (3.1) then of the form

E = λj0 +
aj0

e−iθ(λj0 )−SL(λj0)
(1+o(1))
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