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Quantum graphs

Consider the set of vertices Zd equipped with its standard basis (hj)j∈{1,...,d}.
Two vertices m and m′ connected if |m−m′|= 1.
Edge (m, j): identify edge with [0, lj] (lj fixed).

Let Hm,j = L2([0, lj]) and H =
⊕

m∈Zd

⊕
j∈{1,...,d}

Hm,j.

We write f ∈H as f = (fm,j)m,j.
Fix real-valued potentials Uj ∈ L2([0, lj]), 1 ≤ j ≤ d.
On Hm,j, consider the Schrödinger operator

Hj =− d2

dt2 +Uj.

Boundary conditions at vertices:
continuity : fm,j(0) = fm−hk,k(lk),1 ≤ j,k ≤ d;
set f (m) = fm,j(0);
Kirchoff relations : f ′(m) = α(m)f (m) where

f ′(m) :=
d

∑
j=1

f ′m,j(0)−
d

∑
j=1

f ′m−hj,j(lj).
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Figure: Quantum graph
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The random model

Random parameters: the Kirchoff boundary conditions (αω(m))m∈Zd

independent identically distributed random variables
common distribution with bounded density ρ of support [α−,α+]

The model is ergodic :
define τm by (τmω)m′ = ωm+m′ , m,m′ ∈ Zd;
define Um on H , (Umf )m′,j′ = fm+m′,j′ , m,m′ ∈ Zd, j′ ∈ {1, . . . ,d}.

Shifts are a measure preserving ergodic family on Ω and

∀m ∈ Zd, Hτmω = U∗
mHω Um

Theorem

For • ∈ {pp,ac,sc}, there exists a closed subset Σ• ⊂ R such that, ω-almost surely,
σ•(Hω) = Σ• for any ω ∈ Ω′.

Let Σ = Σpp ∪Σac ∪Σsc be the almost sure spectrum of Hω .
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Rough description of Σ

For the sake of the discussion, set αω(m) := λαω(m), λ > 0 where
αω(m) ∈ [α−,α+].

The Dirichlet operator: let H0 be the operator on H with the boundary conditions
f (m) = 0, ∀m ∈ Zd.

the spectrum of H0 is a discrete set of point;
it is of infinite multiplicity.

The almost sure spectrum:
Σ is a union of intervals (not reduced to a point);
if α− < 0, for large λ , Σ has spectrum close to −∞;
except at the bottom of Σ, the edges of Σ are at distance of order λ−1 of σ(H0);
if 0 ∈ [α−,α+], σ(H0)⊂ Σ for any λ (H0 is Hω when αω(m) = 0, ∀m).
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Localization results: large coupling and band edge regimes

Theorem

Assume that α− < 0. Then, for any ε > 0, there exists λ0 > 0 such that, for λ > λ0,
the spectrum of Hλ ,ω in (−∞, infσ(H0)− ε) is dense pure point.

Theorem

Let 0 ∈ [α−,α+]. Then, for any E0 > infσH0 and any ε > 0, there exists λ0 > 0 such
that, for λ > λ0, the spectrum of Hλ ,ω in (−∞,E0)\ (σ(H0)+ [−ε,ε]) is dense pure
point.

Theorem

Let E0 /∈ σ(H0) be an edge of the spectrum of Hω . Then, the spectrum of Hω in some
neighborhood of E0 is almost surely pure point.

Actually in all case one obtains strong dynamical localization i.e. exponentially
decaying estimates for bounded functions of the operator supported in the localized
region.
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Reduction to a discrete model
We use the theory of self-adjoint extensions.
Recall

Hm,j = L2([0, lj]) and H =
⊕

m∈Zd

⊕
j∈{1,...,d}

Hm,j;

we consider the functions f = (fm,j) ∈
⊕
m,j

H2([0, lj]) satisfying boundary

conditions:
fm,j(0) = fm−hk,k(lk) =: f (m), j,k = 1, . . . ,d

on H , we consider the “Schrödinger” operator acting as

Hjfm,j =−
d2fm,j

dt2 +Ujfm,j;

Let S be the operator thus defined. On the domain of S, define

f 7→ Γf :=
(
f (m)

)
m∈Zd ∈ l2(Zd), f 7→ Γ

′f :=
(
f ′(m)

)
m∈Zd ∈ l2(Zd)

where we recall f ′(m) =
d

∑
j=1

f ′m,j(0)−
d

∑
j=1

f ′m−hj,j(lj).
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Let H0 be the restriction of S to kerΓ i.e. H0 is the direct sum (over all edges) of the

Dirichlet restrictions of − d2

dt2 +Uj on the segments [0, lj].

Pick E 6∈ σ(H0). For ξ ∈ l2(Zd), let γ(E)ξ be the unique solution to (S−E)f = 0
with Γf = ξ . γ(E) defines an isomorphism between l2(Zd) and ker(S−E).
Moreover, define the operator M(E) : l2(Zd)→ l2(Zd) by M(E) := Γ′γ(E).
Let HA be the “quantum graph” where A diagonal matrix with entries (α(m))m∈Zd

Proposition

The mappings E 7→ γ(E) and E 7→ M(E) are analytic on C\σ(H0).
For E 6∈ σ(H0), M satisfies

dM(E)
dE

= γ
∗(E)γ(E) and

ℑM(E)
ℑE

> 0 for ℑE 6= 0.

For E 6∈ σ(H0)∪σ(HA), one has

(HA −E)−1 = (H0 −E)−1 − γ(E)
(
M(E)−A

)−1
γ
∗(Ē).
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The structure of M(E)
Consequences:

1 σ(HA)\σ(H0) coincides with {E /∈ σ(H0) : 0 ∈ σ
(
M(E)−A

)
};

2 E /∈ σ(H0) is an eigenvalue if and only if 0 if an eigenvalue of M(E)−A and
γ(E) is then an isomorphism between the corresponding eigenspaces.

Let ϕj and ϑj be the solutions to −y′′ +Ujy = Ey satisfying ϕj(0;E) = ϑ ′
j (0;E) = 0

and ϕ ′
j (0;E) = ϑj(0;E) = 1.

Define the functions a(E) :=
d

∑
j=1

ϑj(lj;E)+ϕ ′
j (lj;E)

ϕj(lj;E)
, bj(E) :=

1
ϕj(lj;E)

.

For E 6∈ σ(H0), one computes

M(E)ξ (m) =
d

∑
j=1

bj(E)
(
ξ (m−hj)+ξ (m+hj)

)
−a(E)ξ (m).

For α(m) ∈ [α−,α+], E ∈ σ(Hω) if and only if 0 ∈ ΣM(E) := σ
(
M(E)−A

)
; hence,

E ∈ Σ\σ(H0) if and only if (b(E)−a(E)−α−) · (b(E)+a(E)+α+)≥ 0

where b(E) = 2
d

∑
j=1

∣∣bj(E)
∣∣.
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Finite volume criteria
The finite volume criteria is obtained in 2 steps (follows ideas of finite volume criteria
for operators on Zd (Aizenman et al.)):

1 obtain pure point spectrum from asymptotic estimates of the upper spectral
measures;

2 deduce these estimates from finite volume estimates of the reduced operator.
Localization then as usual proved by finding regimes where the finite volume
estimates hold.

Localization conditions in terms upper spectral measure
Recall that, for µ a complex valued regular Borel measure and F a Borel set, one
defines

|µ|(F) = sup
f∈C0(R), |f |∞≤1

∣∣∣∣∫F
f (E)dµ(E)

∣∣∣∣ .
Let f ,g ∈H . Let µ f ,g denote the spectral measure for HA associated with HA and
|µ f ,g| denote its absolute value. For any measurable set F and any two edges (m, j),
(m′, j′), we define the upper spectral measure

µ
(m,j),(m′,j′)(F) := sup

f =Pm,jf , ‖f‖=‖g‖=1,
g=Pm′,j′g, ‖g‖=1

|µ f ,g|(F).
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Theorem

Let F ⊂ R. Assume that, for any (m, j), one has ∑
m′∈Zd

d

∑
j′=1

µ
(m,j),(m′,j′)(F) < ∞, then HA

has only pure point spectrum in F.

The proof: based on a RAGE type characterization of the point spectrum.

Corollary

Let F ⊂ R. Assume that, for any edge (m, j), one has

E
(

∑
m′∈Zd

d

∑
j′=1

µ
(m,j),(m′,j′)
ω (F)

)
< ∞,

then, almost surely, Hω has only pure point spectrum in F.
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Finite volume estimates
Let Λ ⊂ Zd be finite. Let HΛ

A be the HA with the boundary conditions

f ′(m) = α(m)f (m) on Λ and f (m) = 0 outside Λ.

Let ΠΛ the orthogonal projection from l2(Zd) to l2(Λ). Restrict M(E)−A to Λ and let
γΛ(E) = γ(E)ΠΛ. Then, for E /∈ σ(H0)∪σ(HΛ

A ), one has

(HΛ
A −E)−1 = (H0 −E)−1 − γΛ(E)

(
MΛ(E)−AΛ

)−1
γ
∗
Λ(Ē).

Proposition

Let F ⊂ R be a segment disjoint from σ(H0). Assume that there exists A,a > 0 and
s ∈ (0,1) such that, for all finite Λ ⊂ Zd and all E ∈ F,

E
∣∣∣(MΛ(E)−AΛ,ω)−1 (m,m′)

∣∣∣s ≤ Ae−a|m−m′|.

Then, there exists B,c > 0 such that, for any two edges (m, j) and (m′, j′), one has

E
(
µ

(m,j),(m′,j′)
ω (F)

)
≤ Be−c|m−m′|.
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Proof of the main technical result

The proof follows the ideas introduced by Aizenman for the discrete case.
Let F ⊂ R\σ(H0). Hence, the spectrum of HΛ

A,ω is discrete. and almost surely
simple.
Let Ek be the points of F and ξk 6= 0 vectors such that (MΛ(Ek)−AΛ,ω)ξk = 0; then

µ
f ,g
Λ,ω(F) = ∑

Ek∈σ(HΛ
ω )∩F

〈f ,γΛ(Ek)ξk〉〈γΛ(Ek)ξk,g〉
‖γΛ(Ek)ξk‖2 ,

Assume f = Pm,jf and g = Pm′,j′g. Let Âω := Aω +(v̂−α(m′))Πm′ where
Πm′ is the projection onto δm′ ,
v̂ is distributed identically to αω(m′).

For almost every v̂, if 0 ∈ σ(MΛ(E)−AΛ,ω), then MΛ(E)− ÂΛ,ω is invertible.

Let ϕ̂E :=

(
MΛ(E)−AΛ,ω

)−1
δm′

〈δm′ ,
(
MΛ(E)−AΛ,ω

)−1
δm′〉

=

(
MΛ(E)− ÂΛ,ω

)−1
δm′

〈δm′ ,
(
MΛ(E)− ÂΛ,ω

)−1
δm′〉

.

Let ξ be an eigenvector of MΛ(E)−AΛ,ω associated to 0. Then,
0 = (MΛ(E)−AΛ,ω)ξ = (MΛ(E)− ÂΛ,ω)ξ +

(
v̂−αω(m′)

)
Πm′ξ .

Thus, ξ =
(
αω(m′)− v̂

)
〈δm′ ,ξ 〉(MΛ(E)− ÂΛ,ω)−1δm′ i.e. ξ = Cϕ̂E.
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One computes
(
MΛ(E)−AΛ,ω

)
ϕ̂E = (αω(m′)− v̂− Γ̂(E))δm′ where

Γ̂(E) =− 1

〈δm′ ,
(
MΛ(E)− ÂΛ,ω

)−1
δm′〉

.

So E ∈ σ(HΛn
A,ω ∩F if and only if αω(m′)− ṽ = Γ̂(E). This yields

µ
f ,g
Λ,ω(dE) = δ (αω(m′)− v̂− Γ̂(E))〈f ,γΛ(E)ϕ̂E〉〈γΛ(E)ϕ̂E,g〉dE

One has µ
f ,g
Λ,ω(dE) = Ψf ,g(E)µ

f ,f
Λ,ω(dE), where Ψf ,g is a measurable function satisfying∫

R
|Ψf ,g(E)|2µ

f ,f
Λ,ω(dE)≤ ‖g‖2‖f‖2.

Hence,
∫

R

∣∣〈γΛ(E)ϕ̂E,g〉
∣∣2δ
(
αω(m′)− v̂− Γ̂(E)

)
dE ≤ ‖g‖2.

One estimates

E

(
sup

‖f‖=‖g‖=1
|µ f ,g

Λ,ω |(F)

)
≤ CE

(
sup
‖f‖=1

∫
F
|〈f ,γΛ(E)ϕ̂E〉|δ (αω(m′)− v̂− Γ̂(E))dE

)
.

Recall that, by the definition of ϕ̂E,

〈f ,γΛ(E)ϕ̂E〉= 〈f ,γΛ(E)(MΛ(E)− ÂΛ)−1
δm′〉.
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Completing the proof of localization

In the large coupling regime
We use the following result due to Aizenman et al; it is a consequence of general
finite volume localization criteria

Theorem

Let F ⊂ R be an interval disjoint from σ(H0). Assume that there exists s ∈ (0,1/4)
such that, for all E ∈ F, one has

c(E)
(

1+ c(E)
C̃s

λ s

)∫ α+

α−

1∣∣a(E)+λV
∣∣s ρ(dV) < 1, c(E) := 2

d

∑
j=1

∣∣bj(E)
∣∣s.

Then, there exists B,c > 0 such that, for any finite Λ ⊂ Zd, for any m,m′ ∈ Λ, and any
E ∈ F there holds

E
(∣∣∣(MΛ(E)−λAΛ,ω

)−1(m,m′)
∣∣∣s)≤ Be−c|m−m′|.
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At the band edges

Proposition

Pick E0 ∈ σ(Hω)\σ(H0). If E0 ∈ ∂σ(Hω), then 0 ∈ ∂σ
(
M(E0)−Aω

)
.

Assume E0 ∈ ∂Σ, then 0 ∈ ∂σ(M(E0)−Aω); more precisely, assume
infσ(M(E0)−Aω) = 0.

Localization will follow if one proves Lifshitz tail behavior near E0:
there exists δ > 0 such that for ε sufficiently small and #W not too large with respect
to ε−1, one has

P
{

ω ∈ Ω : ∃E ∈ [E0 − ε,E0 + ε], infσ
(
MW(E)−AW,ω

)
≤ ε/δ

}
≤ e−ε−δ

.

This is a consequence of
standard Lifshitz tails near 0 for the integrated density of states of the random
operator M(E0)−Aω ;
analyticity of E 7→ M(E) which yields a representation of the form
M(E) = M(E0)+(E−E0)B(E).
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