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The main result:
On L2(R2), consider the Landau Hamiltonian

H = (−i∇−A)2, where A(x1,x2) =
B
2
(−x2,x1).

The spectrum of H consists of the eigenvalues {(2k+1)B; k ∈ N}; each of them is
infinitely degenerate.

Let Γ =⊕2
i=1Zei be a non-degenerate lattice such that Φ :=

1
2π

Be1∧ e2 ∈Q.

Define the set of real valued, continuous, Γ-periodic functions

CΓ = {V ∈ C(R2,R); ∀x ∈ R2, ∀γ ∈ Γ, V(x+ γ) = V(x)}.

The space CΓ is endowed with the uniform topology defined by the norm ‖ · ‖.

Question: what is the spectral type of H(V) := H+V for V ∈ CΓ?

Our main result is

Theorem (Kl. Math. Annalen 347 (2010))
There exists a dense Gδ -subset of CΓ such that, for V in this set, the spectrum of H(V)
is purely absolutely continuous.
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Some background

Nature of the spectrum for part. diff. operators with periodic coefficients:
Bloch-Floquet theory “implies” absence of singular continuous spectrum.

Absence of point spectrum proved for:
many Schrödinger operators with or without periodic magnetic fields
([Thomas73], · · · , [Sobolev99], · · · )
other periodic PDEs (· · · , [Kuchment93], · · · )

Landau Hamiltonian with periodic potential: coefficients are not periodic. Magnetic
Bloch-Floquet theory if the magnetic flux Φ is rational. =⇒ absence of s.c. spectrum.

For irrational flux Φ, vastly different situation: spectral theory altogether much more
complicated (Hofstadter’s butterfly, devil’s staircase, etc).

An open question:
Our result in some way optimal. Leads to

Conjecture: For rational flux, the spectrum of H(V) is purely a.c. if V is not constant.
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Magnetic Bloch-Floquet theory
For α ∈ R2, and f ∈ C∞

0 (R2), define UB
α f (x) := e

iB
2 x∧α f (x+α).

One checks UB
α UB

β
= eiBα∧β UB

β
UB

α , [UB
α ,H] = 0 and [UB

α ,V] = 0.

For (e1,e2) a basis of Γ, set UB
j := UB

ej
. The rational flux condition, say, Φ = 2πp/q

implies that

(UB
1 )

qUB
2 = ei2πpUB

2 (U
B
1 )

q = UB
2 (U

B
1 )

q and [(UB
1 )

q,H(V)] = 0 = [UB
2 ,H(V)].

Assume q = 1. Define a unitary representation of Γ by

WB
γ = Θ(γ)UB

γ where Θ(γ) = eiBe1∧e2γ1γ2/2 = eiπpγ1γ2 ∈ {−1,+1}.

As WB
γ WB

γ = WB
γ+γ , the Gelfand-Bloch-Floquet transformation TB defined by

(TBf )(x,θ) = ∑
γ∈Γ

eiθ ·(x+γ)(WB
γ f )(x), θ ∈ (R2)∗/Γ

∗, f ∈S (R2)

satisfies (WB
γ TBf )(x,θ) = (TBf )(x,θ). Hence, TB extends to a unitary map form

L2(R2) to L2((R2)∗/Γ∗,HB,p) where HB,p = {v ∈ L2
loc(R2) |WB

γ v = v; ∀γ ∈ Γ}.

Thus, H(V) admits a direct integral TBH(V)(TB)∗ =
∫ ⊕
(R2)∗/Γ∗

H(θ ,V)dθ

where H(θ ,V) = (i∇+A−θ)2 +V .
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Reduction to the study of Bloch-Floquet eigenvalues

The spectrum of H(θ ,V) is discrete; its eigenvalues are of finite multiplicity.
Call them E1(θ ,V)≤ E2(θ ,V)≤ ·· · ≤ En(θ ,V)≤ ·· · .
The function (θ ,V) ∈ (R2)∗/(Γ′)∗×CΓ 7→ En(θ ,V) is locally uniformly Lipschitz
continuous.
In view of the direct integral decomposition of H(V), our main result is a corollary of

Theorem
There exists a dense Gδ -subset of CΓ such that, for V in this set, none of the functions
θ 7→ En(θ ,V), n≥ 1, is constant.

Definition
En(θ0,V0) is an analytically stable eigenvalue of H(θ0,V0) if and only if there exists
an orthonormal system of functions, say ((θ ,V) 7→ ϕj(·,θ ,V))1≤j≤J s.t.

for j ∈ {1, · · · ,J}, (θ ,V) 7→ ϕj(θ ,V) ∈H 2
B,p is analytic near (θ0,V0),

near (θ0,V0), (ϕj(θ ,V))1≤j≤J spans the eigenspace of H(θ ,V) associated to
En(θ ,V).
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The basic technical lemmas:
Our main result follows from the following two lemmas.

Lemma (1)
Pick θ0 ∈ (R2)∗/(Γ′)∗ and V0 ∈ CΓ. Fix n≥ 1. Then, for any ε > 0, there exists
(θε ,Vε) ∈ {‖(θ ,V)− (θ0,V0)‖< ε} and δ > 0 such that

En(θ ,V) is an analytically stable eigenvalue for ‖(θ ,V)− (θε ,Vε)‖< δ .

Lemma (2)
Pick θ0 ∈ (R2)∗/(Γ′)∗ and V0 ∈ CΓ such that V0 is not a constant. Assume that
En(θ0,V0) is an analytically stable eigenvalue of H(θ0,V0). Then, for any ε > 0,
there exists V such that ‖V−V0‖< ε and θ 7→ En(θ ,V) is not constant.

As the Floquet eigenvalues are locally uniformly Lipschitz continuous in (θ ,V),
the set of V ∈ CΓ such that θ 7→ En(θ ,V) is not constant is open;
By Lemmas (1) and (2), for any n≥ 1, the set of V ∈ CΓ such that θ 7→ En(θ ,V)
is not constant is dense in CΓ.

Hence, the set of V ∈ CΓ for which no Floquet eigenvalue is constant is
a dense Gδ -set.
We concentrate on Lemma 2.
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The proof of Lemma (2)
Pick θ0 ∈ (R2)∗/Γ∗ and V0 ∈ CΓ. Assume that E(θ0,V0) is analytically stable.
Assume that Lemma (2) does not hold. Then, for any V close to V0, the function
θ 7→ E(θ ,V) is constant and V0 can be chosen real analytic.
Pick U ∈ CΓ such that ‖U‖= 1 and set Vt = V0 + tU, t complex small.
As E(θ0,V0) is analytically stable, there exists(θ , t) 7→ ϕ(θ , t) analytic such that, for
(t,θ) close to (0,θ0), one has

(H(θ , t)−E(θ , t))ϕ(θ , t) = 0, ‖ϕ(θ , t)‖= 1;
(θ , t) 7→ E(θ , t) is real analytic.

Differentiating in t yields (H(θ , t)−E(θ , t))∂tϕ(θ , t) = [∂tE(θ , t)−U]ϕ(θ , t).
Thus, one obtains ∂tE(θ , t) = 〈Uϕ(θ , t),ϕ(θ , t)〉.
If ∇θ E(θ , t) = 0, differentiating the expression above in θ , we obtain

0 = ∂t∇θ E(θ , t) = 2Re [〈Uϕ(θ , t),∇θ ϕ(θ , t)〉] .
Thus, at t = 0, one has

0 = Re [〈Uϕ(θ ,0),∇θ ϕ(θ ,0)〉] =
∫
R2/Γ

U(x)Re
(

∇θ ϕ(x;θ ,0)ϕ(x;θ ,0)
)

dx

So, for θ close to θ0, one has

2Re(∇θ ϕ(x;θ ,0)ϕ(x;θ ,0)) = ∇θ

(
|ϕ(x;θ ,0)|2

)
≡ 0.
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The nodal set 1

The operator (i∇−A−θ)2 +V0 is elliptic with analytic coefficients; it is analytically
hypoelliptic. Hence, x 7→ ϕ(x;θ) := ϕ(x;θ ,V0) is analytic on R2.
The nodal set Z = {x ∈ R2; ϕ(x;θ) = 0} is Γ-periodic and independent of θ .
Let C be the fundamental cell of the lattice Γ. It is compact.
By analytic geometry ([Bierstone-Milman88]), we know that Z∩C has the following

finite decomposition Z∩C =
p0⋃

p=1

Ap where the union is disjoint and one has

1 the set Ap either is reduced to a single point or is a connected
real-analytic curve (i.e. a connected real analytic manifold of
dimension 1);

2 if p < p′ and Ap∩Ap′ 6= /0, then
I Ap ⊂Ap′ , Ap is reduced to a single point and Ap′ is a real

analytic curve;
3 assume Ap = {x0}. Then,

I either x0 is isolated in Z∩C
I or, for some ε0 > 0, Z∩C∩ Ḋ(x0,ε0) =

⋃
p′∈E Ap′ ∩ Ḋ(x0,ε0),

where E is a non empty, finite set of indices s. t., for p′ ∈ E, the
set Ap′ is a real analytic curve.

Z

C
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The nodal set 2

Let Z0 =
⋃

#Ap=1

Ap be the point components in the above decomposition. We prove

Lemma (3)
Let Z∇ be the set of points x0 in C such that ϕ(x0;θ) = 0 and ∇ϕ(x0;θ) = 0. Then,
Z∇ consists of isolated points.

We postpone the proof of Lemma (3).
Consider a line Lx = x+R×{0} s.t. Lx∩ (Z0∪Z∇) = /0. We assume that it intersects
these curves transversally in finitely many points.
For δ > 0, define the strip Sδ

x = x+R× (−δ ,δ ). For some small δ > 0, one has

Sδ
x ∩ (Z0∪Z∇) = /0,

Sδ
x intersects Z in C at, at most, finitely many vertical curves, and these curves

partition the strip in a finite number of open domains (see figure on next slide).
Define Ck to be the left boundary of Dk. As Z is Γ-periodic, we get that

Sδ
x \Z =

⋃
γ∈qZe1

s⋃
k=1

γ +Dk and Z∩Sδ
x =

⋃
γ∈qZe1

s⋃
k=1

γ +Ck

Note that s = 0 if Z = Z0.
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The nodal set 3

The picture we get for the nodal set is

2
D(1,0)+

1
D(1,0)+2C

1
C

1
D

2
D S

x

δ

Z

C

Figure: The strip
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The behavior of the phase of the eigenfunction in a horizontal strip

We prove

Lemma (4)
Let D be one of the domains γ +Dk for some 1≤ k ≤ s, γ = (γ1,γ2) where γ1 ∈ qZ.
For |θ −θ0|< ε , there exists two continuous functions x ∈ D 7→ gD(x;θ) ∈ R and
x ∈ D 7→ ψD(x) ∈ R+ such that

∀x ∈ D, ϕ(x;θ) = eigD(x;θ)
ψD(x).

and

for any x0 ∈ D, (x,θ ′) 7→ gD(x;θ ′) (resp. x 7→ ψD(x))
is real analytic in a neighborhood of (x0,θ) (resp. x0),

let D′ be another domain in the collection (γ +Dk)γ,k;
if D∩D′ 6= /0 and D′ is to the left of D, then, for
x ∈ D∩D′, one has

gD(x;θ) = gD′(x;θ)+π.

2
D(1,0)+

1
D(1,0)+2C

1
C

1
D

2
D S

x

δ

Z

C

We postpone the proof of Lemma (4).
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Completing the proof of Lemma (2)
As ϕ(θ) ∈HB,p one has, for x ∈ Dk and γ = (γ1,γ2), γ1 ∈ qZ

gγ+Dk(x+ γ,θ) = gDk(x,θ)−
B
2

x∧ γ−πγ1γ2 and ψγ+Dk(x+ γ) = ψDk(x).

Plugging the representation of the previous lemma into the eigenvalue equation yields

(i∇x +A−θ −∇xgD)
2
ψD +V0ψD = EψD.

Summing this and its complex conjugate, one obtains that, on D,

(A−θ −∇xgD)
2
ψD = (E−V0)ψD +∆ψD.

There exists x ∈ D 7→ hD(x) that is real analytic in D and θ 7→ cD(θ) also real
analytic such that, near θ0 and for x ∈ D, one has

gD(x,θ) =−θ · x+hD(x)+ cD(θ).

Lemma (4) ensures that, if D′ is to the left of D and D′∩D 6= /0, then we may pick
cD(θ) = cD′(θ)+π .
Thus, we obtain that, near θ0, for γ = (γ1,γ2), γ1 ∈ qZ and x ∈ D, one has

θ · γ = hγ+D(x)−hD(x)+
B
2

x∧ γ +πγ1γ2− sγ1π.

This is absurd.
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The proof of Lemma (3)
The set Z∇∩C is real analytic; it can be decomposed in the same way as Z∩C.
Assume it contains an analytic curve, say, c. Pick a point x0 ∈ c. Near x0 = (x0

1,x
0
2)

assume that the curve is parametrized by x1 = c(x2).
The functions u(x) = Re(ϕ(x;θ)) and v(x) = Im(ϕ(x;θ)) satisfy

−∆u+(A−θ)2u+2A ·∇v = (E−V)u� −∆v+(A−θ)2v−2A ·∇u = (E−V)v
on c, one has 0 = u = v = ∂1u = ∂1v = ∂2u = ∂2v.

Prove inductively that, for any α ∈ N2, ∂ α u = ∂ α v = 0 on c.
Differentiating α1−1 in x1 times equations and α2−1 times in x2 yields that, on c,
one has

∂
α1+1
1 ∂

α2−1
2 u+∂

α1−1
1 ∂

α2+1
2 u = ∑

β1+β2≤N
aβ1β2

∂
β1
1 ∂

β2
2 u+bβ1β2

∂
β1
1 ∂

β2
2 v = 0,

∂
α1+1
1 ∂

α2−1
2 v+∂

α1−1
1 ∂

α2+1
2 v = ∑

β1+β2≤N
cβ1β2

∂
β1
1 ∂

β2
2 u+dβ1β2

∂
β1
1 ∂

β2
2 v = 0.

Differentiating ∂
α1
1 ∂

α2
2 u = 0 along c, we get

c′(x2)
(

∂
α1+1
1 ∂

α2
2 u
)
(c(x2),x2)+

(
∂

α1
1 ∂

α2+1
2 u

)
(c(x2),x2) = 0.
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The end of the proof of Lemma (3)

Using (α1,α2) = (N,0) and (α1,α2) = (N−1,1) and the first equation in the system
for (α1,α2) = (N,1), we get

∂
N+1
1 u+ c′∂ N

1 ∂2u = 0
∂ N

1 ∂2u+ c′∂ N−1
1 ∂ 2

2 u = 0
∂

N+1
1 u+∂

N−1
1 ∂ 2

2 u = 0

which implies that
∂

N+1
1 u = ∂

N
1 ∂2u = ∂

N−1
1 ∂

2
2 u = 0.

Then, using the system inductively, we get that ∂
N+1−α

1 ∂ α
2 u = 0 for all 0≤ α ≤ N+1.

Thus, if Z∇∩C contains a curve, for all (α1,α2), the functions (∂ α1
1 ∂

α2
2 )ϕ(θ) vanish

identically on this curve.

As ϕ(θ) is real analytic, this implies that this function vanishes identically which
contradicts the assumption that its norm in HB,p is 1.

The proof of Lemma (3) is complete.
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The proof of Lemma (4)
In the domains (Dk)1≤k≤s and their translates, the decomposition in Lemma (4) is the
decomposition into argument and modulus of the complex number ϕ(x;θ).
As ϕ(x;θ) does not vanish and is analytic, its argument and modulus are real analytic.
So we only need to study what happens at the crossing of one of the curves (Ck)1≤k≤s.
So, we study x 7→ ϕ(x;θ) near x0 ∈ Ck.
By Lemma (3), as Sδ

x ∩ (Z0∪Z∇) = /0, we know that ∇ϕ(x0,θ) 6= 0.
As the curve Ck is vertical, we may assume that ∂1u(x0) 6= 0.
Rectifying c at x0 by a real analytic change of variables, in a neighborhood of 0, one
obtains

u(x1,x2) = 0⇔ x1 = 0, ∂1u(0,0) 6= 0, v(0,x2) = 0.

Write

u(x1,x2) = w̃(x2)+ x1w(x1,x2) and v(x1,x2) = t̃(x2)+ x1t(x1,x2).

Then, w(0,0) 6= 0 and w̃(x2) = t̃(x2) = 0 identically. Hence, we obtain that

(u+ iv)(x1,x2) = x1 (w+ it)(x1,x2) where |(w+ it)(0,0)| 6= 0.
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The end of the proof of Lemma (4)

Changing back to the initial variables, if x2 7→ c(x2) is a parametrization of the curve
Ck in U a neighborhood of x0, we can write

ϕ(x;θ) = (x1− c(x2))ψ(x) where ψ(x0) 6= 0.

Hence, for x ∈ Dk ∩U, one has

eigDk (x;θ)
ψDk(x) = (x1− c(x2))ψ(x), x1 ≥ c(x2)

and for x ∈ Dk−1∩U, one has

eigDk−1 (x;θ)
ψDk−1(x) = (x1− c(x2))ψ(x) =−(c(x2)− x1)ψ(x), x1 ≤ c(x2).

This implies that we can continue gDk−1 and gDk continuously up to the boundary Ck
and that, on Ck, they satisfy

gDk(x;θ) = gDk−1(x;θ)+π.

This completes the proof of Lemma (4).

THANKS FOR YOUR ATTENTION!
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