Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential

F. Klopp
IMJ - UPMC

Inst. Mittag-LEffler
Stockholm
13/09/2012

Outline

(1) Introduction

- The main result
- Some background and an open question
(2) The proof
- Magnetic Bloch-Floquet theory
- Floquet eigenvalues
- The basic technical lemmas
- For generic V eigenvalues must vary with the quasi-momentum
- The nodal set
- The behavior of the phase of the eigenfunction in a horizontal strip

The main result:

On $L^{2}\left(\mathbb{R}^{2}\right)$, consider the Landau Hamiltonian

$$
H=(-i \nabla-A)^{2}, \quad \text { where } \quad A\left(x_{1}, x_{2}\right)=\frac{B}{2}\left(-x_{2}, x_{1}\right) .
$$

The spectrum of H consists of the eigenvalues $\{(2 k+1) B ; k \in \mathbb{N}\}$; each of them is infinitely degenerate.
Let $\Gamma=\oplus_{i=1}^{2} \mathbb{Z} e_{i}$ be a non-degenerate lattice such that $\Phi:=\frac{1}{2 \pi} B e_{1} \wedge e_{2} \in \mathbb{Q}$.
Define the set of real valued, continuous, Γ-periodic functions

$$
C_{\Gamma}=\left\{V \in C\left(\mathbb{R}^{2}, \mathbb{R}\right) ; \forall x \in \mathbb{R}^{2}, \forall \gamma \in \Gamma, V(x+\gamma)=V(x)\right\}
$$

The space C_{Γ} is endowed with the uniform topology defined by the norm $\|\cdot\|$.
Question: what is the spectral type of $H(V):=H+V$ for $V \in C_{\Gamma}$?
Our main result is

Theorem (Kl. Math. Annalen 347 (2010))

There exists a dense $G_{\boldsymbol{\delta}}$-subset of C_{Γ} such that, for V in this set, the spectrum of $H(V)$ is purely absolutely continuous.

Some background

Nature of the spectrum for part. diff. operators with periodic coefficients:
Bloch-Floquet theory "implies" absence of singular continuous spectrum.
Absence of point spectrum proved for:

- many Schrödinger operators with or without periodic magnetic fields ([Thomas73], \cdots, [Sobolev99], \cdots)
- other periodic PDEs $(\cdots$, KKuchment93], \cdots)

Landau Hamiltonian with periodic potential: coefficients are not periodic. Magnetic Bloch-Floquet theory if the magnetic flux Φ is rational. \Longrightarrow absence of s.c. spectrum.

For irrational flux Φ, vastly different situation: spectral theory altogether much more complicated (Hofstadter's butterfly, devil's staircase, etc).

An open question:
Our result in some way optimal. Leads to
Conjecture: For rational flux, the spectrum of $H(V)$ is purely a.c. if V is not constant.

Magnetic Bloch-Floquet theory

For $\alpha \in \mathbb{R}^{2}$, and $f \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, define $U_{\alpha}^{B} f(x):=e^{i \frac{i B}{2} x \wedge \alpha} f(x+\alpha)$.
One checks $U_{\alpha}^{B} U_{\beta}^{B}=e^{i B \alpha \wedge \beta} U_{\beta}^{B} U_{\alpha}^{B}, \quad\left[U_{\alpha}^{B}, H\right]=0 \quad$ and $\quad\left[U_{\alpha}^{B}, V\right]=0$.
For $\left(e_{1}, e_{2}\right)$ a basis of Γ, set $U_{j}^{B}:=U_{e_{j}}^{B}$. The rational flux condition, say, $\Phi=2 \pi p / q$ implies that

$$
\left(U_{1}^{B}\right)^{q} U_{2}^{B}=e^{i 2 \pi p} U_{2}^{B}\left(U_{1}^{B}\right)^{q}=U_{2}^{B}\left(U_{1}^{B}\right)^{q} \quad \text { and } \quad\left[\left(U_{1}^{B}\right)^{q}, H(V)\right]=0=\left[U_{2}^{B}, H(V)\right] .
$$

Assume $q=1$. Define a unitary representation of Γ by

$$
W_{\gamma}^{B}=\Theta(\gamma) U_{\gamma}^{B} \quad \text { where } \quad \Theta(\gamma)=e^{i B e_{1} \wedge e_{2} \gamma_{1} \gamma_{2} / 2}=e^{i \pi p \gamma_{1} \gamma_{2}} \in\{-1,+1\}
$$

As $W_{\gamma}^{B} W_{\gamma}^{B}=W_{\gamma+\gamma}^{B}$, the Gelfand-Bloch-Floquet transformation T^{B} defined by

$$
\left(T^{B} f\right)(x, \theta)=\sum_{\gamma \in \Gamma} e^{i \theta \cdot(x+\gamma)}\left(W_{\gamma}^{B} f\right)(x), \quad \theta \in\left(\mathbb{R}^{2}\right)^{*} / \Gamma^{*}, \quad f \in \mathscr{S}\left(\mathbb{R}^{2}\right)
$$

satisfies $\left(W_{\gamma}^{B} T^{B} f\right)(x, \theta)=\left(T^{B} f\right)(x, \theta)$. Hence, T^{B} extends to a unitary map form $L^{2}\left(\mathbb{R}^{2}\right)$ to $L^{2}\left(\left(\mathbb{R}^{2}\right)^{*} / \Gamma^{*}, \mathscr{H}_{B, p}\right)$ where $\mathscr{H}_{B, p}=\left\{v \in L_{l o c}^{2}\left(\mathbb{R}^{2}\right) \mid W_{\gamma}^{B} v=v ; \forall \gamma \in \Gamma\right\}$.
Thus, $H(V)$ admits a direct integral $T^{B} H(V)\left(T^{B}\right)^{*}=\int_{\left(\mathbb{R}^{2}\right)^{*} / \Gamma^{*}}^{\oplus} H(\theta, V) d \theta$ where $H(\theta, V)=(i \nabla+A-\theta)^{2}+V$.

Reduction to the study of Bloch-Floquet eigenvalues

The spectrum of $H(\theta, V)$ is discrete; its eigenvalues are of finite multiplicity.
Call them $\quad E_{1}(\theta, V) \leq E_{2}(\theta, V) \leq \cdots \leq E_{n}(\theta, V) \leq \cdots$.
The function $(\theta, V) \in\left(\mathbb{R}^{2}\right)^{*} /\left(\Gamma^{\prime}\right)^{*} \times C_{\Gamma} \mapsto E_{n}(\theta, V)$ is locally uniformly Lipschitz continuous.
In view of the direct integral decomposition of $H(V)$, our main result is a corollary of

Theorem

There exists a dense G_{δ}-subset of C_{Γ} such that, for V in this set, none of the functions $\theta \mapsto E_{n}(\theta, V), n \geq 1$, is constant.

Definition

$E_{n}\left(\theta_{0}, V_{0}\right)$ is an analytically stable eigenvalue of $H\left(\theta_{0}, V_{0}\right)$ if and only if there exists an orthonormal system of functions, say $\left((\theta, V) \mapsto \varphi_{j}(\cdot, \theta, V)\right)_{1 \leq j \leq J}$ s.t.

- for $j \in\{1, \cdots, J\},(\theta, V) \mapsto \varphi_{j}(\theta, V) \in \mathscr{H}_{B, p}^{2}$ is analytic near $\left(\theta_{0}, V_{0}\right)$,
- near $\left(\theta_{0}, V_{0}\right),\left(\varphi_{j}(\theta, V)\right)_{1 \leq j \leq J}$ spans the eigenspace of $H(\theta, V)$ associated to $E_{n}(\theta, V)$.

The basic technical lemmas:
Our main result follows from the following two lemmas.

Lemma (1)

Pick $\theta_{0} \in\left(\mathbb{R}^{2}\right)^{*} /\left(\Gamma^{\prime}\right)^{*}$ and $V_{0} \in C_{\Gamma}$. Fix $n \geq 1$. Then, for any $\varepsilon>0$, there exists $\left(\theta_{\varepsilon}, V_{\varepsilon}\right) \in\left\{\left\|(\theta, V)-\left(\theta_{0}, V_{0}\right)\right\|<\varepsilon\right\}$ and $\delta>0$ such that

- $E_{n}(\theta, V)$ is an analytically stable eigenvalue for $\left\|(\theta, V)-\left(\theta_{\varepsilon}, V_{\varepsilon}\right)\right\|<\delta$.

Lemma (2)

Pick $\theta_{0} \in\left(\mathbb{R}^{2}\right)^{*} /\left(\Gamma^{\prime}\right)^{*}$ and $V_{0} \in C_{\Gamma}$ such that V_{0} is not a constant. Assume that $E_{n}\left(\theta_{0}, V_{0}\right)$ is an analytically stable eigenvalue of $H\left(\theta_{0}, V_{0}\right)$. Then, for any $\varepsilon>0$, there exists V such that $\left\|V-V_{0}\right\|<\varepsilon$ and $\theta \mapsto E_{n}(\theta, V)$ is not constant.

- As the Floquet eigenvalues are locally uniformly Lipschitz continuous in (θ, V), the set of $V \in C_{\Gamma}$ such that $\theta \mapsto E_{n}(\theta, V)$ is not constant is open;
- By Lemmas (1) and (2), for any $n \geq 1$, the set of $V \in C_{\Gamma}$ such that $\theta \mapsto E_{n}(\theta, V)$ is not constant is dense in C_{Γ}.
Hence, the set of $V \in C_{\Gamma}$ for which no Floquet eigenvalue is constant is a dense G_{δ}-set.
We concentrate on Lemma 2.

The proof of Lemma (2)

Pick $\theta_{0} \in\left(\mathbb{R}^{2}\right)^{*} / \Gamma^{*}$ and $V_{0} \in C_{\Gamma}$. Assume that $E\left(\theta_{0}, V_{0}\right)$ is analytically stable.
Assume that Lemma (2) does not hold. Then, for any V close to V_{0}, the function $\theta \mapsto E(\theta, V)$ is constant and V_{0} can be chosen real analytic.
Pick $U \in \mathscr{C}_{\Gamma}$ such that $\|U\|=1$ and set $V_{t}=V_{0}+t U, t$ complex small.
As $E\left(\theta_{0}, V_{0}\right)$ is analytically stable, there exists $(\theta, t) \mapsto \varphi(\theta, t)$ analytic such that, for (t, θ) close to $\left(0, \theta_{0}\right)$, one has

$$
\text { - }(H(\theta, t)-E(\theta, t)) \varphi(\theta, t)=0, \quad\|\varphi(\theta, t)\|=1
$$

- $(\theta, t) \mapsto E(\theta, t)$ is real analytic.

Differentiating in t yields $\quad(H(\theta, t)-E(\theta, t)) \partial_{t} \varphi(\theta, t)=\left[\partial_{t} E(\theta, t)-U\right] \varphi(\theta, t)$.
Thus, one obtains $\partial_{t} E(\theta, t)=\langle U \varphi(\theta, t), \varphi(\theta, t)\rangle$.
If $\nabla_{\theta} E(\theta, t)=0$, differentiating the expression above in θ, we obtain

$$
0=\partial_{t} \nabla_{\theta} E(\theta, t)=2 \operatorname{Re}\left[\left\langle U \varphi(\theta, t), \nabla_{\theta} \varphi(\theta, t)\right\rangle\right] .
$$

Thus, at $t=0$, one has

$$
0=\operatorname{Re}\left[\left\langle U \varphi(\theta, 0), \nabla_{\theta} \varphi(\theta, 0)\right\rangle\right]=\int_{\mathbb{R}^{2} / \Gamma} U(x) \operatorname{Re}\left(\nabla_{\theta} \varphi(x ; \theta, 0) \overline{\varphi(x ; \theta, 0)}\right) d x
$$

So, for θ close to θ_{0}, one has

$$
2 \operatorname{Re}\left(\nabla_{\theta} \varphi(x ; \theta, 0) \overline{\varphi(x ; \theta, 0)}\right)=\nabla_{\theta}\left(|\varphi(x ; \theta, 0)|^{2}\right) \equiv 0
$$

The nodal set 1

The operator $(i \nabla-A-\theta)^{2}+V_{0}$ is elliptic with analytic coefficients; it is analytically hypoelliptic. Hence, $x \mapsto \varphi(x ; \theta):=\varphi\left(x ; \theta, V_{0}\right)$ is analytic on \mathbb{R}^{2}.
The nodal set $Z=\left\{x \in \mathbb{R}^{2} ; \varphi(x ; \theta)=0\right\}$ is Γ-periodic and independent of θ.
Let C be the fundamental cell of the lattice Γ. It is compact.
By analytic geometry ([Bierstone-Milman88]), we know that $Z \cap C$ has the following finite decomposition $\quad Z \cap C=\bigcup_{p=1}^{p_{0}} \mathscr{A}_{p} \quad$ where the union is disjoint and one has
(1) the set \mathscr{A}_{p} either is reduced to a single point or is a connected real-analytic curve (i.e. a connected real analytic manifold of dimension 1);
(2) if $p<p^{\prime}$ and $\mathscr{A}_{p} \cap \overline{\mathscr{A}_{p^{\prime}}} \neq \emptyset$, then

- $\mathscr{A}_{p} \subset \overline{\mathscr{A}_{p^{\prime}}}, \mathscr{A}_{p}$ is reduced to a single point and $\mathscr{A}_{p^{\prime}}$ is a real analytic curve;
(0) assume $\mathscr{A}_{p}=\left\{x_{0}\right\}$. Then,
- either x_{0} is isolated in $Z \cap C$
- or, for some $\varepsilon_{0}>0, \quad Z \cap C \cap \dot{\bar{D}}\left(x_{0}, \varepsilon_{0}\right)=\bigcup_{p^{\prime} \in E} \mathscr{A}_{p^{\prime}} \cap \dot{\bar{D}}\left(x_{0}, \varepsilon_{0}\right)$,
\quad where E is a non empty, finite set of indices s. t., for $p^{\prime} \in E$, the
- or, for some $\varepsilon_{0}>0, \quad Z \cap C \cap \dot{\bar{D}}\left(x_{0}, \varepsilon_{0}\right)=\bigcup_{p^{\prime} \in E} \mathscr{A}_{p^{\prime}} \cap \dot{\bar{D}}\left(x_{0}, \varepsilon_{0}\right)$,
\quad where E is a non empty, finite set of indices s. t., for $p^{\prime} \in E$, the set $\mathscr{A}_{p^{\prime}}$ is a real analytic curve.

The nodal set 2

Let $Z_{0}=\bigcup_{\# \mathscr{A}_{p}=1} \mathscr{A}_{p}$ be the point components in the above decomposition. We prove

Lemma (3)

Let Z_{∇} be the set of points x_{0} in C such that $\varphi\left(x_{0} ; \theta\right)=0$ and $\nabla \varphi\left(x_{0} ; \theta\right)=0$. Then, Z_{∇} consists of isolated points.

We postpone the proof of Lemma (3).
Consider a line $L_{x}=x+\mathbb{R} \times\{0\}$ s.t. $L_{x} \cap\left(Z_{0} \cup Z_{\nabla}\right)=\emptyset$. We assume that it intersects these curves transversally in finitely many points.
For $\delta>0$, define the strip $S_{x}^{\delta}=x+\mathbb{R} \times(-\delta, \delta)$. For some small $\delta>0$, one has

- $\overline{S_{x}^{\delta}} \cap\left(Z_{0} \cup Z_{\nabla}\right)=\emptyset$,
- S_{x}^{δ} intersects Z in C at, at most, finitely many vertical curves, and these curves partition the strip in a finite number of open domains (see figure on next slide).
Define C_{k} to be the left boundary of D_{k}. As Z is Γ-periodic, we get that

$$
S_{x}^{\delta} \backslash Z=\bigcup_{\gamma \in q \mathbb{Z} e_{1}} \bigcup_{k=1}^{s} \gamma+D_{k} \quad \text { and } \quad Z \cap S_{x}^{\delta}=\bigcup_{\gamma \in q \mathbb{Z} e_{1}} \bigcup_{k=1}^{s} \gamma+C_{k}
$$

Note that $s=0$ if $Z=Z_{0}$.

The nodal set 3

The picture we get for the nodal set is

Figure: The strip

The behavior of the phase of the eigenfunction in a horizontal strip

We prove

Lemma (4)

Let D be one of the domains $\gamma+D_{k}$ for some $1 \leq k \leq s, \gamma=\left(\gamma_{1}, \gamma_{2}\right)$ where $\gamma_{1} \in q \mathbb{Z}$. For $\left|\theta-\theta_{0}\right|<\varepsilon$, there exists two continuous functions $x \in \bar{D} \mapsto g_{D}(x ; \theta) \in \mathbb{R}$ and $x \in \bar{D} \mapsto \psi_{D}(x) \in \mathbb{R}^{+}$such that

$$
\forall x \in D, \quad \varphi(x ; \theta)=e^{i g_{D}(x ; \theta)} \psi_{D}(x)
$$

and

- for any $x_{0} \in D,\left(x, \theta^{\prime}\right) \mapsto g_{D}\left(x ; \theta^{\prime}\right)\left(\right.$ resp. $\left.x \mapsto \psi_{D}(x)\right)$ is real analytic in a neighborhood of $\left(x_{0}, \theta\right)\left(r e s p . x_{0}\right)$,
- let D^{\prime} be another domain in the collection $\left(\gamma+D_{k}\right)_{\gamma, k}$; if $\bar{D} \cap \overline{D^{\prime}} \neq \emptyset$ and D^{\prime} is to the left of D, then, for $x \in \bar{D} \cap \overline{D^{\prime}}$, one has

$$
g_{D}(x ; \theta)=g_{D^{\prime}}(x ; \theta)+\pi .
$$

We postpone the proof of Lemma (4).

Completing the proof of Lemma (2)

As $\varphi(\theta) \in \mathscr{H}_{B, p}$ one has, for $x \in D_{k}$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \gamma_{1} \in q \mathbb{Z}$

$$
g_{\gamma+D_{k}}(x+\gamma, \theta)=g_{D_{k}}(x, \theta)-\frac{B}{2} x \wedge \gamma-\pi \gamma_{1} \gamma_{2} \quad \text { and } \quad \psi_{\gamma+D_{k}}(x+\gamma)=\psi_{D_{k}}(x) .
$$

Plugging the representation of the previous lemma into the eigenvalue equation yields

$$
\left(i \nabla_{x}+A-\theta-\nabla_{x} g_{D}\right)^{2} \psi_{D}+V_{0} \psi_{D}=E \psi_{D}
$$

Summing this and its complex conjugate, one obtains that, on D,

$$
\left(A-\theta-\nabla_{x} g_{D}\right)^{2} \psi_{D}=\left(E-V_{0}\right) \psi_{D}+\Delta \psi_{D}
$$

There exists $x \in \bar{D} \mapsto h_{D}(x)$ that is real analytic in D and $\theta \mapsto c_{D}(\theta)$ also real analytic such that, near θ_{0} and for $x \in D$, one has

$$
g_{D}(x, \theta)=-\theta \cdot x+h_{D}(x)+c_{D}(\theta) .
$$

Lemma (4) ensures that, if D^{\prime} is to the left of D and $\overline{D^{\prime}} \cap \bar{D} \neq \emptyset$, then we may pick $c_{D}(\theta)=c_{D^{\prime}}(\theta)+\pi$.
Thus, we obtain that, near θ_{0}, for $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \gamma_{1} \in q \mathbb{Z}$ and $x \in D$, one has

$$
\theta \cdot \gamma=h_{\gamma+D}(x)-h_{D}(x)+\frac{B}{2} x \wedge \gamma+\pi \gamma_{1} \gamma_{2}-s \gamma_{1} \pi .
$$

This is absurd.

The proof of Lemma (3)

The set $Z_{\nabla} \cap C$ is real analytic; it can be decomposed in the same way as $Z \cap C$.
Assume it contains an analytic curve, say, c. Pick a point $x^{0} \in c$. Near $x^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)$ assume that the curve is parametrized by $x_{1}=c\left(x_{2}\right)$.
The functions $u(x)=\operatorname{Re}(\varphi(x ; \theta))$ and $v(x)=\operatorname{Im}(\varphi(x ; \theta))$ satisfy

- $-\Delta u+(A-\theta)^{2} u+2 A \cdot \nabla v=(E-V) u /-\Delta v+(A-\theta)^{2} v-2 A \cdot \nabla u=(E-V) v$
- on c, one has $0=u=v=\partial_{1} u=\partial_{1} v=\partial_{2} u=\partial_{2} v$.

Prove inductively that, for any $\alpha \in \mathbb{N}^{2}, \partial^{\alpha} u=\partial^{\alpha} v=0$ on c.
Differentiating $\alpha_{1}-1$ in x_{1} times equations and $\alpha_{2}-1$ times in x_{2} yields that, on c, one has

$$
\begin{aligned}
& \partial_{1}^{\alpha_{1}+1} \partial_{2}^{\alpha_{2}-1} u+\partial_{1}^{\alpha_{1}-1} \partial_{2}^{\alpha_{2}+1} u=\sum_{\beta_{1}+\beta_{2} \leq N} a_{\beta_{1} \beta_{2}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} u+b_{\beta_{1} \beta_{2}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} v=0, \\
& \partial_{1}^{\alpha_{1}+1} \partial_{2}^{\alpha_{2}-1} v+\partial_{1}^{\alpha_{1}-1} \partial_{2}^{\alpha_{2}+1} v=\sum_{\beta_{1}+\beta_{2} \leq N} c_{\beta_{1} \beta_{2}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} u+d_{\beta_{1} \beta_{2}} \partial_{1}^{\beta_{1}} \partial_{2}^{\beta_{2}} v=0 .
\end{aligned}
$$

Differentiating $\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} u=0$ along c, we get

$$
c^{\prime}\left(x_{2}\right)\left(\partial_{1}^{\alpha_{1}+1} \partial_{2}^{\alpha_{2}} u\right)\left(c\left(x_{2}\right), x_{2}\right)+\left(\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}+1} u\right)\left(c\left(x_{2}\right), x_{2}\right)=0 .
$$

The end of the proof of Lemma (3)

Using $\left(\alpha_{1}, \alpha_{2}\right)=(N, 0)$ and $\left(\alpha_{1}, \alpha_{2}\right)=(N-1,1)$ and the first equation in the system for $\left(\alpha_{1}, \alpha_{2}\right)=(N, 1)$, we get

$$
\begin{cases}\partial_{1}^{N+1} u+c^{\prime} \partial_{1}^{N} \partial_{2} u & =0 \\ \partial_{1}^{N} \partial_{2} u+c^{\prime} \partial_{1}^{N-1} \partial_{2}^{2} u & =0 \\ \partial_{1}^{N+1} u+\partial_{1}^{N-1} \partial_{2}^{2} u & =0\end{cases}
$$

which implies that

$$
\partial_{1}^{N+1} u=\partial_{1}^{N} \partial_{2} u=\partial_{1}^{N-1} \partial_{2}^{2} u=0 .
$$

Then, using the system inductively, we get that $\partial_{1}^{N+1-\alpha} \partial_{2}^{\alpha} u=0$ for all $0 \leq \alpha \leq N+1$. Thus, if $Z_{\nabla} \cap C$ contains a curve, for all $\left(\alpha_{1}, \alpha_{2}\right)$, the functions $\left(\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}}\right) \varphi(\theta)$ vanish identically on this curve.

As $\varphi(\theta)$ is real analytic, this implies that this function vanishes identically which contradicts the assumption that its norm in $\mathscr{H}_{B, p}$ is 1 .
The proof of Lemma (3) is complete.

The proof of Lemma (4)

In the domains $\left(D_{k}\right)_{1 \leq k \leq s}$ and their translates, the decomposition in Lemma (4) is the decomposition into argument and modulus of the complex number $\varphi(x ; \theta)$.
As $\varphi(x ; \theta)$ does not vanish and is analytic, its argument and modulus are real analytic.
So we only need to study what happens at the crossing of one of the curves $\left(C_{k}\right)_{1 \leq k \leq s}$. So, we study $x \mapsto \varphi(x ; \theta)$ near $x^{0} \in C_{k}$.
By Lemma (3), as $S_{x}^{\delta} \cap\left(Z_{0} \cup Z_{\nabla}\right)=\emptyset$, we know that $\nabla \varphi\left(x^{0}, \theta\right) \neq 0$.
As the curve C_{k} is vertical, we may assume that $\partial_{1} u\left(x^{0}\right) \neq 0$.
Rectifying c at x^{0} by a real analytic change of variables, in a neighborhood of 0 , one obtains

$$
u\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=0, \quad \partial_{1} u(0,0) \neq 0, \quad v\left(0, x_{2}\right)=0 .
$$

Write

$$
u\left(x_{1}, x_{2}\right)=\tilde{w}\left(x_{2}\right)+x_{1} w\left(x_{1}, x_{2}\right) \quad \text { and } \quad v\left(x_{1}, x_{2}\right)=\tilde{t}\left(x_{2}\right)+x_{1} t\left(x_{1}, x_{2}\right) .
$$

Then, $w(0,0) \neq 0$ and $\tilde{w}\left(x_{2}\right)=\tilde{t}\left(x_{2}\right)=0$ identically. Hence, we obtain that

$$
(u+i v)\left(x_{1}, x_{2}\right)=x_{1}(w+i t)\left(x_{1}, x_{2}\right) \text { where }|(w+i t)(0,0)| \neq 0
$$

The end of the proof of Lemma (4)

Changing back to the initial variables, if $x_{2} \mapsto c\left(x_{2}\right)$ is a parametrization of the curve C_{k} in U a neighborhood of x^{0}, we can write

$$
\varphi(x ; \theta)=\left(x_{1}-c\left(x_{2}\right)\right) \psi(x) \text { where } \psi\left(x^{0}\right) \neq 0 .
$$

Hence, for $x \in D_{k} \cap U$, one has

$$
e^{i g_{D_{k}}(x ; \theta)} \psi_{D_{k}}(x)=\left(x_{1}-c\left(x_{2}\right)\right) \psi(x), \quad x_{1} \geq c\left(x_{2}\right)
$$

and for $x \in D_{k-1} \cap U$, one has

$$
e^{i g_{D_{k-1}}(x ; \theta)} \psi_{D_{k-1}}(x)=\left(x_{1}-c\left(x_{2}\right)\right) \psi(x)=-\left(c\left(x_{2}\right)-x_{1}\right) \psi(x), \quad x_{1} \leq c\left(x_{2}\right) .
$$

This implies that we can continue $g_{D_{k-1}}$ and $g_{D_{k}}$ continuously up to the boundary C_{k} and that, on C_{k}, they satisfy

$$
g_{D_{k}}(x ; \theta)=g_{D_{k-1}}(x ; \theta)+\pi .
$$

This completes the proof of Lemma (4).

