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The main result:
On L*(IR?), consider the Landau Hamiltonian

B
H=(—iV—A)? where A(x;,x)= 5(—x2,x1).

The spectrum of H consists of the eigenvalues {(2k+ 1)B; k € N}; each of them is

infinitely degenerate.

LetI'= @l.z:lZe,- be a non-degenerate lattice such that ® := %B eiNey €Q.

Define the set of real valued, continuous, I'-periodic functions
Cr={VeCR*R); VxcR* VyeT, V(x+7)=V(x)}.

The space Cr is endowed with the uniform topology defined by the norm || - ||.

Question: what is the spectral type of H(V) := H+V for V € Cr?

Our main result is

Theorem (KI. Math. Annalen 347 (2010))

There exists a dense Gg-subset of Cr such that, for V in this set, the spectrum of H(V)
is purely absolutely continuous.
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Some background

Nature of the spectrum for part. diff. operators with periodic coefficients:
Bloch-Floquet theory “implies” absence of singular continuous spectrum.
Absence of point spectrum proved for:

e many Schrodinger operators with or without periodic magnetic fields
([Thomas73], - - -, [Sobolev99], - - -)

@ other periodic PDEs (- - -, [Kuchment93], - --)

Landau Hamiltonian with periodic potential: coefficients are not periodic. Magnetic
Bloch-Floquet theory if the magnetic flux ® is rational. = absence of s.c. spectrum.

For irrational flux @, vastly different situation: spectral theory altogether much more
complicated (Hofstadter’s butterfly, devil’s staircase, etc).

An open question:

Our result in some way optimal. Leads to

Conjecture: For rational flux, the spectrum of H(V) is purely a.c. if V is not constant.

u=mc
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Magnetic Bloch-Floquet theory .
For a € R?, and f € C3(R?), define UBf(x) := e 2% (x + ).

One checks UgUg = ¢Banp UgUg, [UB,H|=0 and [UB V]=0.

For (e1,e;) a basis of T, set UJB = Ug. The rational flux condition, say, ® = 27p/q
implies that '

(U103 = U3 (UF)? = U3 (UF)7 and  [(UT)?,H(V)] =0=[U3,H(V)].
Assume g = 1. Define a unitary representation of I" by
Wy =0(y)U; where O(y) = BB/l — o ¢ {1 11},

As Wf WB W, ﬂ,, the Gelfand-Bloch-Floquet transformation T2 defined by

(T°F)(x,0) =}, " (WPf)(x), 6€(®)/T", fes (R

yel
satisfies (WB T8f)(x,0) = (T®f)(x,0). Hence, T? extends to a unitary map form
L*(R?) to L2((R2) T, Hp,p) where Hp, = {v e L7, (R*) | WEv=v; VyeT}.
@
Thus, H(V) admits a direct integral TH(V)(T?)* = / H(6,V)do
(R?)*/T*
where H(8,V) = (iV+A—0)>+V. u=mc
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Reduction to the study of Bloch-Floquet eigenvalues

The spectrum of H(0,V) is discrete; its eigenvalues are of finite multiplicity.
Callthem E(0,V)<E;(0,V)<.---<E,(0,V)<---.

The function (8,V) € (R?)*/(I")* x Cr ~ E,(6,V) is locally uniformly Lipschitz
continuous.

In view of the direct integral decomposition of H(V), our main result is a corollary of

Theorem

There exists a dense Gg-subset of Cr such that, for V in this set, none of the functions
0 — E,(6,V), n>1, is constant.

Definition

E, (60, Vo) is an analytically stable eigenvalue of H (6, V) if and only if there exists
an orthonormal system of functions, say ((6,V) — ¢;(-,0,V))1<j<y s.t.
o forje{l,---,J},(0,V)—@i(0,V) € %%p is analytic near (6o, Vo),
e near (6, Vo), (¢j(0,V))1<j<s spans the eigenspace of H(6,V) associated to
E,(6,V).

4
Hff"lll\.'

E. Klopp (IMJ - UPMC) Landau Hamiltonian with a generic periodic potential ML 6/17



The basic technical lemmas:
Our main result follows from the following two lemmas.

Lemma (1)

Pick 6y € (R?)*/(T")* and Vo € Cr. Fix n > 1. Then, for any € > 0, there exists
(8e,Ve) € {l(6,V)—(60,V0)|| < €} and & > 0 such that

e E,(6,V) is an analytically stable eigenvalue for ||(6,V) — (g, Ve)|| < 8.

Lemma (2)

Pick 8y € (R?)*/(I")* and Vi € Cr such that Vy is not a constant. Assume that
E,(6o,Vy) is an analytically stable eigenvalue of H(6y,Vy). Then, for any € > 0,
there exists V such that ||V — V|| < € and 6 — E,(6,V) is not constant.

o As the Floquet eigenvalues are locally uniformly Lipschitz continuous in (6, V),
the set of V € Cr such that 6 — E,(0,V) is not constant is open;

@ By Lemmas (1) and (2), for any n > 1, the set of V € Cr such that 8 — E,(0,V)
is not constant is dense in Cr.

Hence, the set of V € Cr for which no Floquet eigenvalue is constant is

a dense Gg-set. UFJH c
We concentrate on Lemma 2.
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The proof of Lemma (2)
Pick 8y € (R?)*/T™ and Vj € Cr. Assume that E(6p, V) is analytically stable.

Assume that Lemma (2) does not hold. Then, for any V close to Vj, the function
0 — E(0,V) is constant and V; can be chosen real analytic.

Pick U € 6t such that ||U|| = 1 and set V; = Vp +tU, t complex small.

As E(6y, Vp) is analytically stable, there exists(0,¢) — ¢(0,¢) analytic such that, for
(¢,0) close to (0, 6)), one has

o (H(6,1)—E(6,1)p(6,1)=0, |[o(6,1)]=1;
e (0,t) — E(8,1) is real analytic.
Differentiating in ¢ yields  (H(0,t) — E(60,1))d,¢(0,t) = [3,E(0,1) — U]@(0,1).
Thus, one obtains JE(0,t) = (U@(0,1),9(0,1)).
If VeE(6,1) = 0, differentiating the expression above in 6, we obtain
0=09,VoE(0,1) =2Re[{(U@(0,1),Vo0(0,1))].
Thus, at r = 0, one has

0=Re[(U(6,0),Voe(6,0))] = [

U(x)Re (ve 0(x:6,0)9(x; 9,0)) dx
R2/T

So, for O close to 6y, one has

2Re(Vop(x:0,0)9(x:0,0)) = Vo |9 (x:6,0)) =0. yPme
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The nodal set 1

The operator (iV —A — 0)% + Vj is elliptic with analytic coefficients; it is analytically
hypoelliptic. Hence, x — ¢(x;0) := @(x; 0, Vp) is analytic on R,

The nodal set Z = {x € R?; ¢(x;0) = 0} is I-periodic and independent of 6.

Let C be the fundamental cell of the lattice I". It is compact.

By analytic geometry ([Bierstone-Milman88]), we know that Z N C has the following
finite decomposition ZNC = fj &/,  where the union is disjoint and one has

p=1
Q the set 7, either is reduced to a single point or is a connected

real-analytic curve (i.e. a connected real analytic manifold of
dimension 1);
Q if p <p' and o, N7y # 0, then
> ), C Fp/, 4, is reduced to a single point and 7, is a real
analytic curve;
@ assume .2/, = {xo}. Then,
> either xg is isolated in ZN C
> or, for some g > 0, ZﬂCﬂﬁ(xo,SO) =Upece %y ﬂﬁ(xo,so),

where E is a non empty, finite set of indices s. t., for p’ € E, the
set 7y is a real analytic curve. uPmcC
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The nodal set 2

Let Zy = U <7, be the point components in the above decomposition. We prove
#aty=1

Lemma (3)

Let Zy be the set of points xq in C such that ¢(xy; 0) = 0 and V¢ (x;0) = 0. Then,
Zy consists of isolated points.

We postpone the proof of Lemma (3).

Consider a line Ly = x+ R x {0} s.t. Ly N (ZpUZy) = 0. We assume that it intersects
these curves transversally in finitely many points.

For & > 0, define the strip 2 = x+R x (—8,8). For some small § > 0, one has
0 SN (ZyUZy) =0,
° Sf intersects Z in C at, at most, finitely many vertical curves, and these curves
partition the strip in a finite number of open domains (see figure on next slide).
Define Cy to be the left boundary of Dy. As Z is I'-periodic, we get that

N s
s9\z= |J Ur+bDe and znst= |J Ur+Ge
YEqZey k=1 veqZey k=1

Note that s = 0 if Z = Z,. u2mc
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The nodal set 3

The picture we get for the nodal set is

Figure: The strip
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The behavior of the phase of the eigenfunction in a horizontal strip

We prove

Lemma (4)
Let D be one of the domains Y+ Dy, for some 1 <k <s, Y= (11,Y,) where ¥, € qZ.

For |0 — 6o| < &, there exists two continuous functions x € D — gp(x;8) € R and
x € D yp(x) € R such that

VxeD, o(x;0)=erE0yp(x).
and

e foranyxy €D, (x,0") — gp(x;0") (resp. x — yp(x))
is real analytic in a neighborhood of (xg,0) (resp. xp),

o let D' be another domain in the collection (Y+Dy)yr: S [(N\__% [\
ifDND' # 0 and D' is to the left of D, then, for i = [

x € DND, one has CJZ CJHDZ

gp(x;0) =gp(x;0) + .

v

We postpone the proof of Lemma (4). uPmc
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Completing the proof of Lemma (2)
As ¢(0) € 3, onehas, forx € Dyand y= (y1,7%), "1 € qZ

8y (x+7,0) = gp,(x,0) — g)m Y=7nY and  Yyp (x+7) = Yp,(x).
Plugging the representation of the previous lemma into the eigenvalue equation yields
(iVi+A—0—Vigp)wp+ Vowp = Eyp.
Summing this and its complex conjugate, one obtains that, on D,
(A—6—Vigp)*yp = (E— Vo) ¥p + Ayp.

There exists x € D — hp(x) that is real analytic in D and 8 — cp(0) also real
analytic such that, near 6y and for x € D, one has

gp(x,0) = —0 -x+hp(x)+cp(6).

Lemma (4) ensures that, if D' is to the left of D and D’ N D # 0, then we may pick
cp(0) =cp(0)+m.
Thus, we obtain that, near 6y, for Y= (y1,%), 1 € ¢Z and x € D, one has

B
0 -y =hyp(x) —hp(x)+ Ex/\ Y+ Ny —snm.
u=mc

This is absurd. [
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The proof of Lemma (3)

The set Zy N C is real analytic; it can be decomposed in the same way as ZN C.

Assume it contains an analytic curve, say, c¢. Pick a point x° € ¢. Near x° = (x(l),xg)
assume that the curve is parametrized by x; = c(x2).

The functions u(x) = Re(¢@(x;0)) and v(x) = Im(¢(x; 0)) satisfy
o —Au+(A—0)*u+2A-Vv=(E-~V)u / —Av+(A—0)>v—2A-Vu=(E—-V)v
eonc,onehass0=u=v=0ju=0v=cdu=ov.

Prove inductively that, for any a € N2, 9% = d%v =0 on c.

Differentiating oy — 1 in x; times equations and o, — 1 times in x, yields that, on c,
one has

oy oot u= Y app,dP 9P ut by 5,00 9y =0,
Bi+B<N

31061+182062—1v+81061—182062+1v _ Z Cﬁ]ﬁzalﬁl a£2“+d[31ﬁzalﬁl 323211 —0.
Bi+B<N

Differentiating 9, d;2u = 0 along c, we get

¢ (x2) (a;’““a;‘zu) (c(x2),x2) + (af‘l a;‘2+1u) (c(x2),x2) = 0.
y=mc
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The end of the proof of Lemma (3)

Using (a;,0p) = (N,0) and (aq,0,) = (N —1,1) and the first equation in the system
for (o, 0) = (N, 1), we get

afVHM—l—c/alNazu =0
N oru +c’8fv_1322u =0
Nu+aN1olu =0

which implies that
N u=09Yohu=0oN"'9fu=0.

Then, using the system inductively, we get that a{V H*O‘Bz“u =0forall0 <o <N+1.

Thus, if Zy N C contains a curve, for all (a;, ), the functions (9 d,2) (@) vanish
identically on this curve.

As ¢(0) is real analytic, this implies that this function vanishes identically which
contradicts the assumption that its norm in 73, is 1.

The proof of Lemma (3) is complete. [
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The proof of Lemma (4)

In the domains (Dy);<k<; and their translates, the decomposition in Lemma (4) is the
decomposition into argument and modulus of the complex number @ (x; 6).

As @(x; 0) does not vanish and is analytic, its argument and modulus are real analytic.

So we only need to study what happens at the crossing of one of the curves (Cy)<g<s-
So, we study x + @(x; ) near x° € Cy.

By Lemma (3), as S0 N (ZyUZy) = 0, we know that Vo (x°, 0) # 0.
As the curve Cy is vertical, we may assume that d;u(x°) # 0.

Rectifying c at x° by a real analytic change of variables, in a neighborhood of 0, one
obtains
u(x;,x2) =0<x =0, du(0,0)#0, v(0,x)=0.

Write
u(xy,x) =wxp) +xwxy,xy) and  v(xp,x) =7(x2) +x1#(x1,x2).
Then, w(0,0) # 0 and Ww(x2) = 7(x2) = 0 identically. Hence, we obtain that

(u+v)(x1,x2) = x1 (w+it)(x1,x2) where |(w+ir)(0,0)| # 0.
u=mc
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The end of the proof of Lemma (4)

Changing back to the initial variables, if x, — ¢(x;) is a parametrization of the curve
Cy in U a neighborhood of X0, we can write

P (x;60) = (x1 — c(x2)) y(x) where y(x") # 0.
Hence, for x € DN U, one has
Py (x) = (x1 — (@) W(x), x> c(x)
and for x € D;,_; N U, one has
P Oy (1) = (1 — ) W(x) = —(c(w) —x)y(x), x5 < ().

This implies that we can continue gp, , and gp, continuously up to the boundary Cy
and that, on Cy, they satisfy

gp, (x:0) =gp, ,(x:0)+ .

This completes the proof of Lemma (4). [
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