Chapter 3

Introduction to the Theory of
Distributions

3.1 Test Functions and Distributions

3.1.1 Smooth compactly supported functions

Let © be an open subset of R™; we define C2°(Q) as the vector space of complex-
valued compactly supported functions defined on 2. Even in the case n = 1 and
2 =R, it is not completely obvious that this space is not reduced to {0}. We leave
to the reader as an exercise to check that the function

et ift>0
t) = ’ 3.1.1
/00( ) {O ift<0, ( )

is a C* function on R. Starting with pg, we may define a function p on R™ by

p(x) = po(1 = ||z[*) (3.1.2)

and we see right away that p € C°(R"™) with supp p = B(0, 1). Here we have defined
the support of p as the closure of the set {x € R™ p(x) # 0}. Although that
definition is fine when we deal with a continuous function, it will produce strange
results if we want to define the support of a function in L'(R): for instance the
characteristic function of @ is 0 a.e. and thus 0 as a function of L'(R), nevertheless

the above set is R. It is better to use the following definition, say for a function in
u € Li (Q), Q open subset of R":

loc

suppu = {r € , AUopen € ¥, ujy = 0}, (suppu)® = {z € Q,IVopen € ¥, uy = 0}.

(3.1.3)
The above definition makes sense for an Lj , function with upy = 0 meaning u = 0
a.e. in U. The smooth compactly supported functions are very useful as mollifiers,
as shown by the next proposition.

Proposition 3.1.1. Let ¢ € CX(R") with [, ¢(x)dz = 1. For e > 0, we define
dc(x) = e "Pp(xe™t). Then, if f € C™(R™), limeg, ¢e * f = f (convergence in
CI'"(R™)) and if f € LP(R™) with 1 < p < +o00, lime_g, ¢ * f = f (convergence in
LP(R™)). In both cases the function ¢ * f is C*°.
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Proof. We write

(60 @)~ 0) = [ 6.6a = 9)5 Wy~ f@) = [ S~ e9)  Fla))d.

so that, if supp ¢ C B(0, Ry),

(e * )(x) — f(2)] < / 6@y sup  |f(e1) — fla)]

|z1—22|<eRo

The function f is continuous and compactly supported, so is uniformly continuous
on R" (an easy consequence of the Heine theorem 1.5.10), thus

Jim (sup [(6cx )(@) = f@)]) =0,

yielding the uniform convergence of ¢, * f towards f. If f is C", a simple dif-
ferentiation under the integral sign (see e.g. the Théoréme 3.3.2. in [J]) gives as
well the uniform convergence of the derivatives, up to order m. The smoothness
of ¢ x f for € > 0 is due to the same theorem when f € C(R"), since we have

(6 f)(@) = [ el —y) f(y)dy.

Remark 3.1.2. We have not defined a topology on the vector space CI*(R™), but at
the moment it will be enough for us to say that a sequence (uy)ren of functions in
C(R™) is converging if it converges in C™(R™) and if there exists a compact set K
such that, for all k € N, suppuy C K.

We note in particular that these conditions are satisfied by the “sequences”

(¢ * f)eso since for € < 1, supp(¢e * f) C supp f + supp ¢. C supp f + supp ¢.
Let us now take f € LP(R") with 1 < p < co. With ¢ € C%(R"™), we have

froe—f=(f-V)*pe+Vxdp.—+— [
so that

1 * ¢e = fllr@ny < L+ NQl)lf = Yllze@n) + ¢ * ¢e — ¢l r@n
< U+ |6l f =l + [supp 6 + €| VIl * de — ]| poe (rny.
Leb
ebesgue measure

Since ¢ € C°(R™), the previous convergence argument implies the inequality

limsup |1£ 6. — fllnany < (14 [ 82)I1f — Ullioy, for all € C2(RY).

e—04
The density of C°(R™) in LP(R") for 1 < p < oo (see e.g. the Théoréme 3.4.1 in
[9]) yields the result. For e > 0, R > 0, all the functions
Vre(y) = sup [(970)(x —y) f(y)|

lz|<R
belong to L*(R}) since

/ 1 1
[ ey < U ([ s @200 - pPay) D =t
and supp ¢ C Bg, gives that |z — y| < eRy, |z| < R imply |y| < eRo + R, and the
finiteness of the integral above, proving the smoothness of ¢, * f for € > 0. O
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N.B. The result of the proposition does not extend to the case p = oo, since the
uniform convergence of the continuous function f * ¢. would imply the continuity of
the limit.

It will be also useful to use the compactly supported functions to construct some
partitions of unity and, to begin with, to find C'®° functions identically equal to 1
near a compact set.

Lemma 3.1.3. Let Q) be an open subset of R™ and K be a compact subset of €).
Then there exists a function ¢ € C(82;]0,1]) such that ¢ =1 on a neighborhood of
K.

Proof. We claim that there exists g > 0 such that K + ¢;B; C 2, (B is the open
unit ball). First we note that

d(K,Q°) = inf

zeK,yeQe

z —y| >0, (3.1.4)

otherwise, we could find sequences (zx)r>1 in K, (yg)k>1 in Q° such that limy [z —
Y| = 0, and since K is compact, we may suppose that (zj) converges with limit
x € K, implying ¢ 3 limy, y, = x, which is impossible since K C €). As a result, we
have with €y = d(K, Q)

K+€0B1 C Q,

otherwise, we could find |t| < 1,z € K such that x + et = y € Q°, implying
|z —y| < g = d(K, ), which is impossible. With the function p defined in 3.1.2,
we define with 0 < e < & < ¢,

-1
p(r) = / Licrom (W)p((x —y)e‘l)e‘”dy< / p(t)dt> :
The function ¢ is C* and such that

_ _ 3 - 3 -
suppgoCK—l—elBl—i—eBl CK+§€1Bl CK+ZEOBl CK—i—EoBl c Q.
———

compact

Moreover ¢ = 1 on K + ¢ By (which is a neighborhood of K), since if 2 € K + % By,
we have, for y satisfying |z —y| <¢, that y € K+ § B, +eB; C K +e,5;. Asa
result, with g = p( [ p(t)dt)_l, for z € K + ¢ By, we have

- / A(x — y)e e mdy = / (@ = e e W)y = ().

We note also that, since p > 0 with integral 1, 1, (y) € [0, 1], we have, for all z € R™,
0 < ¢(z) < 1. The proof of the lemma is complete. O
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3.1.2 Distributions

Definition 3.1.4. Let Q2 be an open set of R™ and let T : C*(Q2) — C be a linear
form with the following continuity property,

VK compact C ,3Ck > 0,3INg € N,Vp € CE(Q), (T,9)| < Ckx sup [(95¢)(z)],
la|<Ng
zER™

(3.1.5)
where CE () = {p € CX(Q),suppp C K}.

N.B. We shall use also the notation Z(f2) for the space of test functions C2°(§2) and
2'(QY) for the space of distributions on €. We have not introduced a topology on
2(£2) but we have defined a notion of converging sequence with the remark 3.1.2.
It would have been certainly more elegant to start with the display of the natural
topological structure on Z(Q2), at the (heavy) cost of having to deal with a non-
metrizable locally convex topology defined by an uncountable family of semi-norms.
The study of inductive limits of increasing sequences of Fréchet spaces is outlined
in the appendix 3.7.2. Anyhow, one should think of 2’()) as the topological dual
of 2(Q2), a view supported by the next lemmas and remarks.

Remark 3.1.5. With Zx(Q) = C¥(Q2), we have, using the sequence of compact
sets (K;);>1 of the lemma 2.3.1

P(Q2) = Ujz1Zk, ()

and it is not difficult to see that each P, (2) is a Fréchet space with the natural
countable family of semi-norms given by pg; m(u) = supjajzm [(Ogu)(x)|. If we want
zeK

to use the countable family pg; ,», we end-up with the topology on the Fréchet space
C>(Q) as described in the subsection 2.3.3; the actual topology on Z(€) is finer
and it is important to understand that, with p defined in (3.1.2) (say with n = 1),
the sequence (ug)ken, given by

uk(z) = p(z — k)

does converge to 0 in the Fréchet space C*°(R) but is not convergent in C2°(R),
since the second condition of the remark 3.1.2 is not satisfied: there is no compact
subset K of R such that Vk € N, suppu, C K.

Remark 3.1.6. Note that a linear form 7" on C2°(Q) is a distribution if and only
if, for all compact subsets K of €, its restriction to the Fréchet space Zk () is
continuous.

ALl

loc

define for ¢ € 2(Q)

function is a distribution: for € open subset of R, for f € Ll (), we

loc

(T, ) = /f(f@)@(x)dx — [(T, ¢)| < ||<P||L°°(JR")/ |f () |de, (3.1.6)

supp ¢

so that (3.1.5) is satisfied with Cx = [, |f(z)|dx, N = 0. Moreover the canonical

mapping from Li () into 2'(2) is injective, as shown by the next lemma.
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Lemma 3.1.7. Let Q be an open subset of R™, f € L (Q) such that, for all ¢ €
2(Q), | f(z)p(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Q and x € Z(2) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With ¢ as in the proposition 3.1.1, we get that
lime, ¢ex(xf)=xfin L'(R™). We have

(0% (@) = [ 1) @l ~ y)e e " dy, suppi © Ko € 2(9),

=0z (y)

and from the assumption of the lemma, we obtain (¢6 * (Xf))(m) = 0 for all z,
implying xf = 0 from the convergence result; the conclusion follows. ]

We note that it makes sense to restrict a distribution 7' € 2'(Q2) to an open
subset U C €2: just define

(Tiv, VYo ), 2(0) = {Ts @) 7 (02),2(90) (3.1.7)

and Tjy is obviously a distribution on U. With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Q be an open subset of R™ and T € 2'(Q). We define the
support of T as
suppT = {x € Q,YUopen € ¥, Ty # 0}. (3.1.8)

We define the C* singular support of T' as
singsupp T’ = {z € Q,VUopen € ¥, Tiy ¢ C=(U)}. (3.1.9)

Note that the support and the singular support are closed subset of {2 since their
complements in €2 are open: we have

(suppT)“ = {x € Q,3Vopen € ¥, Ty = 0}, (3.1.10)
(singsupp T')° = {z € Q,3UVopen € ¥, Tiy € C*(U)}. (3.1.11)
A simple consequence of that definition is that, for T' € 2'(Q), ¢ € 2(Q),

supp ¢ C (suppT)¢ = (T, ) = 0. (3.1.12)

3.1.3 First examples of distributions
The Dirac mass

We define for ¢ € CO(R"), (dy, ) = (0); the property (3.1.5) is satisfied with
Ck =1, Nk = 0. We have supp dp = {0}. From this, the Dirac mass cannot be an
L} . function, otherwise, since it is 0 a.e., it would be 0. Let ¢, € as in the proposition
3.1.1: then we have from that proposition

m3/¢wmuMw=wm,

e—04

so that the Dirac mass appears as the weak limit of e "¢ (ze™).



72 CHAPTER 3. INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

The simple layer

We consider in R” the hypersurface ¥ = {(2/,z,) € R"! x R, z,, = f(2/)}, where
f e CHR"1). We define for ¢ € C?(R"),

svh = [ ola' F@) (14 94 P)

The property (3.1.5) is satisfied with C'x = area(X N K), N = 0,supp dy = X, and
since 3 has Lebesgue measure 0 in R”, the simple layer potential cannot be an L{ _
function.

The principal value of 1/x
We define for ¢ € C}(R),

(pvi, @) = lim Mdm. (3.1.13)

=0+ |z|>e z

Let us check that this limit exists. We have for parity reasons,

/xee 2 = / T (ple) o) &

— [ln:p(go(x) — cp(—a:))]zzjoo — / Oo(go'(:p) + gp’(—x)) In zdx

and thus, using that lim._o, elne =0, In|z| € L] (R), we get

loc

v == [ (o) + (o) nads = - [ @ a)nfel)de

yielding \(pv%,@)! < fsupwx | In [z||dz ||| o

3.1.4 Continuity properties

Definition 3.1.9. Let Q be an open subset of R™ and let (¢;);>1 be a sequence of
functions in C2°(2). We shall say that lim; p; = 0 in C'°(2) when the two following
conditions are satisfied:

(1) there exists a compact set K C ), such that Vj > 1,supp ¢; C K,

(2) lim; ¢; = 0 in the Fréchet space C52(Q), i.e. Yoo € N, lim; (sup,e g |(050;)(x)]) = 0.

Proposition 3.1.10. Let Q) be an open subset of R™ and T be a linear form defined
on C°(Q). The linear form T is a distribution on Q if and only if it is sequentially
continuous.

Proof. Assuming [(T, ¢)| < Cx maxja<n, [|05¢| 1~ for all ¢ € CF(Q) and all K
compact C €2 implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

JKocompact C €, Vk > 1,VN € N, Jpx ny € CF; (Q), (T, o, )| > kﬁlg}]\([ 105 or.n || Los -
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From the strict inequality, we infer that the function ¢ y is not identically 0, and
we may define

Pk,k
Yy = : , so that (T, )| > 1.
4 Fmaare [0l T
But the sequence (¢)r>1 converges to 0 since suppy, C Ky and for |G| < k,
1029 || L < 1/k, implying for each multi-index 3 that limy, ||0%4y]|L~ = 0. The
sequential continuity is violated since |[(T,%x)| > 1 and the converse is proven. [

Definition 3.1.11. Let Q be an open subset of R", T € 2'(Q2) and N € N. The
distribution T will be said of finite order N if

IN € N,VK compact C Q,3Ck > 0,Yp € CEF(Q), (T, )| < Ck sup [(0%¢)(z)].
[a|<N
TER™

(3.1.14)
The vector space of distributions of order N on 0 will be denoted by .@’N(Q). The

vector space 9’0(9) is called the space of Radon measures on €.

Proposition 3.1.12. Let Q) be an open subset of R and m € N. The vector
space 9" () is equal to the sequentially continuous' linear forms on CT(Q): if
T € 2'"™(Q), it can be extended to a sequentially continuous linear form on CI*(2).
If T is a sequentially continuous linear form on CI"(Q), then T € 2" (Q).

Proof. Let us first consider T' € 2'™(Q), ¢ € C(Q). Applying the proposition 3.1.1,
we find a sequence (gg)r>1 in C°(Q2), converging in C*(2) with limit ¢. Since we
may assume that all the functions ¢ and ¢ are supported in a fixed compact subset
K of ©, we have, according to the estimate (3.1.14),

T, o1 — @1)| < C‘gfgﬁ 105 (r — @)L = Cp(r — 1),

where p is the norm in the Banach space C72(€2). Since the sequence (¢g)r>1 con-
verges in C(€2), we get that the sequence ((T', px))r>1 is a Cauchy sequence in C,
thus converges; moreover, if for some compact subset L of €2, (¢;)r>1 is another
sequence of C7*(2) converging to ¢, we have

(T, v —r)| < C max 102 (o —tr)|| 2 = C'p(pr—x) < C'plor—)+C'p(p—1r)

and limy (T, ¥, — k) = 0 so that, we can extend the linear form to C*(£2) by defining
(T, ) = lim(T, pr). We get also immediately that (3.1.14) holds with N = m and
CR(Q) replaced by C(2), so that T is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form 7" on C"*(f2); reproduc-
ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T € 2" (). The proof of the proposition is complete. ]

Remark 3.1.13. We have already proven directly that functions in Li .(Q)(see
(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pv%

defined in (3.1.13) is of order 1 and not of order 0.

!The convergence of a sequence in C*(2) is analogous to the convergence given in the definition
3.1.9, except that (2) is required in the Banach space C2(f), i.e. |a] < m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let 2 be an open subset of R, K a compact
subset of Q and €y, ..., open subsets of 2 such that K C QU ---U),. Then
for 1 < j <m, there exists ¢; € C*(Q;;[0,1]) and V open such that

QDVOK VoeV, Y tx)=1,

1<j<m

and for all x € O, 37, ¥i(z) € [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since € K implies x € one of the (2;,

K C UgexB(z,1;), B(x,r;) C one of the Q;, r, > 0.

From the compactness of K, we get that K C Uj<j<yB(x;,7,,) and we may assume
that

B(xl,rxl) CQl, for 1 SZSNl,

B(ﬁl,’l"xl) C QQ, for Nl <1 < NQ,

B(zy,ry,) C Qp,  for Npoy <1< N, = N.

We define then the compact sets

Ki = Uic<n, B(x,72,), -, Ky =Un,,_ <i<n,, B2, 745,),

and we have K C Ui<j<,, K, and for each j, K; C ;. Using the lemma 3.1.3, we
find ; € C°(€;;10,1]) such that ¢; = 1 on a neighborhood V;(C ;) of K;. We
define then

wl = ¥1,

V2 = a(1 = 1),

i =il =¢1)... (1= g;-),
so that ¢; € C2°(;;[0,1]) and we have
Sui= Y w([Ta-w)=1- T 01—, (3.1.15)
1<j<m 1<j<m 1<k<j 1<k<m
since the formula (second equality above) is true for m = 1 and inductively,

> ow(IT0-e0)=1- I O—e+emn IT -0

1<j<m+1 1<k<j 1<k<m 1<k<m

=1-(=¢mn) ] O-0)=1- J[ -

1<k<m 1<k<m+1

We have thus for x € Uj<;<,,V; (which is a neighborhood of K in 2), using (3.1.15)
and p; =1onVj, > i, ¥j(x) = 1. On the other hand, (3.1.15) and ¢; valued in
[0, 1] show that >, _,,, ¥;(z) € [0,1] for all z. The proof is complete. O
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Theorem 3.1.15. Let Q be an open set of R™ and (€2;);es be an open covering of
Q2: each Q; is open and Ujc;Q; = ). Let us assume that for each j € J, we are
given T; € 9'(Q;) in such a way that

Then there exists a unique T € 9'(Q) such that for all j € J, Tiq, = Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (1" — S5)q, = 0, so
that for all j € J, Q; C (supp (T'—5))¢ and thus Q = U;c;Q; C (supp (T' - 9))°,
ie. T'—S5=0.

Existence: let ¢ € 2(2) and let us consider the compact set K = suppy. We
have K' C U,en(); with M a finite subset of J. Using the theorem on partitions
of unity, we find some function ¢; € C°(S;) for j € M such that >, ¢; =
1 on a neighborhood of K. As a consequence, we have ¢ = > jenr Yjp and we define

<T7 §0> = Z<TJ7¢J90>

JEM

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ¢ = )", -y ¢rp, where N is a finite subset of J and ¢, € C2°(€2;): we have

Z<Tk7¢k90>: Z UR NN Z <7}7¢k¢j¢>zz<7}>¢j9@>,

keN jEM,KkEN from (3.1.16) JEM,KEN JjEM

proving that T is defined independently of the decomposition. The linearity follows
at once. The proof is complete. O]

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions Z(€2), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the o(2', Z) convergence.

Definition 3.1.16. Let Q2 be an open set of R", (T});>1 be a sequence of Z'(§2) and
T e 2'(). We shall say that lim; T; = T in the weak-dual topology if

Vo € 2(9), lijm(Tj,gp) = (T, ). (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for p € C2°(R"),
e >0, p(x) = e "p(xet), im0, p = & [ p(t)dt. Moreover, on Z'(R), we have
with Ty(x) = €%, limy_ ;o T = 0 since for ¢ € Z(R),

/Rei’\zgo(x)d:c: (iA)IA%(eiAI)w(x)dx: —(z')\)l/Rengpl(x)dx.
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Theorem 3.1.18. Let Q be an open set of R", (1});>1 be a sequence of Z'(2) such
that, for all o € P(Q2), the (numerical) sequence ({1}, ));>1 converges. Defining the
linear form T on 2(2), by (T, ) =lim; (T}, p), we obtain that T belongs to ' (12).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of 2. Then defining 7} x as the restriction of Tj
to the Fréchet space Pk (1), we see that the assumptions of the corollary 2.1.8 are
satisfied since T} ¢ belongs to the topological dual of 2k (€2), according to the remark
3.1.6. As a consequence the restriction of T' to Zk(€2) belongs to the topological
dual of Zk(2) and from the same remark 3.1.6, it gives that 7" € 2'(2). O

N.B. The reader may note that we have used £ = Z(Q) = U;en%k, () = U; L},
and that our definition of the topological dual of E as linear forms 7" on E such that,
for all j, Ti, € the topological dual of the Fréchet space Ej;. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on E; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication
by C*° functions

3.2.1 Differentiation

Definition 3.2.1. Let Q@ be an open set of R™ and T € 2'(Q). We define the
distributions 0., T and for a multi-inder o € N (see (2.3.6)), 02T by

(0,1, 0) = —(T,00,0), (05T, ) = (~=1)I*UT, 87¢p). (3.2.1)

We note that 097 is indeed a distribution on €2, since the mappings ¢ — 0%¢
are continuous on each Fréchet space Pk ().

Remark 3.2.2. If lim; 7; = T in the weak-dual topology of 2'(€2), then, for all
multi-indices «, lim; 057; = 09T (in the weak-dual topology): we have, for each

v € D(),

<83Tj790> = (_1>|a|<ij@g¢> - (_1)|a‘<T7 ag@) = <a§T’ 90>'

j—too

Remark 3.2.3. If u € C''(Q), its derivative 0,,u as a distribution coincides with
the distribution defined by the continuous function du/0x;: for ¢ € Z(1),

(Ouyt ) = ~(w.0r0) = [ u(e) 22 (2 = 5—;@)@(@@ - <§—;,so>.

8[[’j
Also, if u,v € CY(Q) are such that d,,u = v in Z2'(Q), then the function u admits v
as a partial derivative with respect to x1. To prove this, we may assume that u,v
are both compactly supported in §2: in fact it is enough to prove that for x € C2°(£2)
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identically equal to 1 near a point xg, the function yu (compactly supported) has
a partial derivative with respect to x; which is xv + ud,, x (compactly supported)
and we know that in 2’(2) we have

(O, (xw), ©) = = (U, X0, ) = — (U, O, (X)) + (U, 902, X) = (O, X©) + (U0, X, @)

which implies a particular case of Leibniz’ formula 0., (xu) = X0 u + u0y, x =
XV + u0,, x. Assuming then that w,v are compactly supported, we have from the
proposition 3.1.1, u = lim(u * ¢.) in C2(2) and the functions u * ¢. € C(2). Also
we have, with the ordinary differentiation,

(O (w6)) () = / w(y) (O 60) (—)dy = (u(-), —0y, (Sela—))) = / o(y)bela—y)dy,

and lim (v * ¢.) = v in C2(Q). As a result the sequences (u * ¢.), (Ox, (u * ¢.)) are
both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x;.

3.2.2 Examples

Defining the Heaviside function H as 1g, , we get
H' =4, (3.2.2)

since for ¢ € Z(R), we have (H',p) = —(H,¢') = —f0+oo o' (t)dt = (0). Still in
one dimension, we have .
(0" ¢) = (=1)"™®(0), (3:2.3)

since it is true for k£ = 0 and inductively ((5(()k+1), Q) = —(5ék), ¢ = —(=1)*'®(0) =
(—1)k+1pk+1)(0). Looking at the definition (3.1.13), we see that we have proven

1 d o o

pv (=) = —(n|z|), (distribution derivative). (3.2.4)

x dz
Let f be a finitely-piecewise C! function defined on R: it means that there is an
increasing finite sequence of real numbers (a,)1<n<n, so that f is C* on all closed
intervals [a,, a,41] for 1 < n < N and on | — 00, a4] and [ay, +oo[. In particular,
the function f has a left-limit f(a; ) and a right-limit f(a;") which may be different.
Let us compute the distribution derivative of f; for ¢ € Z(R), since f is locally
integrable, we have, setting ag = —o00, ani1 = 400,

(o) = —(f ) = — / faona == 3 / "

y ant1 df vde+ 3 (f — flag ) e(ans))

0<n<N v @n 0<n<N

~ [e( 3 %@)yan,am(mw > fa)em) = 3 fa)ola)

0<n<N 1<n<N 1<n<N
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so that we have obtained the so-called formula of jumps
! df —+ —
f'=2 2 Hanana] T > (fah) = fan))da,, (3.2.5)
0<n<N 1<n<N

where ,, is the Dirac mass at a,, defined by (d,,, @) = @(a,).
We consider now the following determination of the logarithm given for z € C\R_

by
d
Log = :7{ —g, (3.2.6)
e €
which makes sense since C\R_ is star-shaped with respect to 1, i.e. the segment

[1,2z] € C\R_ for z € C\RR_. Since the function Log coincides with In on R* and is
holomorphic on C\R_, we get by analytic continuation that

e8% = 2 for z € C\R_. (3.2.7)

Also by analytic continuation, we have for |Im z| < 7, Log(e*) = z. We want now
to study the distributions on R,

uy(x) = Log(z 4+ 1y), where y # 0 is a real parameter.
We leave as an exercise for the reader to prove that

lim Log(z + iy) = In|z| £ ir (1 — H(z)), (3.2.8)

y—0+

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1 1
— Z ; 2.
T pv(x) F imdo, (3.2.9)
where we have defined
1 : o(z)
=1 —2d 3.2.10
A el (3.2.10)

(part of the exercise is to prove that these limits exist for ¢ € Z(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in 2'(I) of ' = 0
are the constants. The solutions in P'(I) of u' = f make a one-dimensional affine

subspace of 2'(1).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u € 2'(I) satisfies v’ = 0. Let xo € C(I) such
that [, xo(z)dx = 1; then we have for any ¢ € C*(I), with J(¢) = [; ¢(z)dz,
P(z) = ffoo (ap(t) — J((p)XO(t))dt, noting that 1) belongs® to C°(I),

(u, 0 = J(@)x0) = (u, ¥) = = (', ¢) =0,

2The function 9 is obviously smooth and if ¢, xo are both supported in {a < x < b},a,b € I,
so is 1), thanks to the condition [ xo = 1.
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which gives (u, ) = J(¢)(u, xo), i.e. u= (u, xo) proving that u is indeed a constant.
We have proven that the solutions u € Z'(I) of v = 0 are simply the constants.
If f e 2'(I), we need only to construct a solution vy of vj = f and then use the
previous result to obtain that the set of solutions of v’ = f is vo+R. Let us construct
such a solution vg. For ¢ € Z(I), we define with the same ¢ as above,

(vo, ) = —=(f, ). (3.2.11)

It is a distribution since for supp ¢ compact C I, we define (the compact set) K; =
supp ¢ U supp xo, and we have

- < D, < D .
(o, o) = {9l < Oy amax (9Pl < € mnax el

Moreover the formula (3.2.11) implies the sought result

(U5, 0) = —(vo, @) = (f,vbr) = ([, 0,

since ¢y (2) = [*__(/(t) — J(¢')xo(t))dt = ¢(x) because J(¢') = 0. The proof of
the lemma is complete. O

—————
3.2.3 Product by smooth functions

We define now the product of a C* (resp. C'V) function by a distribution (resp. of
order N).

Definition 3.2.5. Let Q be an open subset of R™ and u € 2'(Q). For f € C*(Q),
we define the product f - u as the distribution defined by

(f - u,0) 91,200 = (U fO)o@),20)- (3.2.12)

If u is of order N and f € C™(Q), we define the product f - u as the distribution of
order N defined by

(f - u,0) g ). ) = (U [P g ) ov ) (3.2.13)

Remark 3.2.6. Since the multiplication by a C*(Q) (resp. CN(Q)) function is a
continuous linear operator from C°(Q) (resp. CN(€)) into itself, we get that the
above formulas actually define the products as distributions on €2 with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f € C°(Q) and if u € L .(Q), f € C°(Q), the

usual product fu coincides with the f - wu defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let S be an open set of R*, u € 2'(Y), f € C*(2) and o € N"
be a multi-index (see (2.3.6)). Then we have

O (fu) _ 3 02 (f) 03 (w) (3.2.14)
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Proof. We get immediately by induction on |«| the formula

) _ 5, 0200

al 78T B T A

,  with o5, € R..

B,yENT
By=a

To find the o4, we choose f(x) = €% u(z) = ", with £,n € R". We find then
for all £,n € R”, the identity

a9 (£+77 aﬂ aff a7 (e B Y
GBI, e N o L TC R s
a: B,yENT fy |£E:0 B,yENT : fy

Bty=c B+y=a

and the formula (2.3.7) shows that for 3,~ such that § 4+ v = «

al )lgznzo
completing the proof of the theorem. O

Examples. Let f be a continuous function on R and dy be the Dirac mass at 0.
The product f - dq is equal to f(0)dg: since dy is a distribution of order 0, we can
multiply it by a continuous function and if p € C(R), we have

{f 00, ) = (00, fo) = F(0)p(0) = (f(0)bo, ¥) = [ - 0o = f(0)dp.  (3.2.15)

On the other hand if f € C*(R) we have

f -8 = f(0)dg — f'(0)do, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)o; = (f - do) = f 0o+ [ - 0 =
f(0)dg + f - 6. In particular xdy = —dy.

3.2.4 Division of distribution on R by 2™

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

zpv(l/z)=1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant ¢, we have x(pv( 1/z)+ 050) = 1. The next theorem
shows that T' = pv(1/x) + ¢dy are the only distributions solutions of the equation
T = 1.

Theorem 3.2.8. Let m > 1 be an integer.
(1) If u € Z'(R) is such that 2™u =0, then u =} i, cjé( ),
(2) Let v e Z'(R); there exists u € Z'(R) such that v = x™u.
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Proof. Let us first prove (1). For ¢, xo € C2°(R) with yo = 1 near 0, we have

(4) . L1 - pym-1
plr)= > Ld ,(O)xﬂ+ /O %w(m)(m)dtmm, Vmp € CP(R),

e Ymp (@)

and thus, since z™u = 0,

=0 =0

A

- ~N

——
(u, ) = (@™ u, x7™(1 — x0)p) +{u, Xow) = (U, X0Pm.p) + (U, X0Vp,m)

(4) ;
_ Z 80].|(0)<U,X0>: Z <C],5(()J)’g0>7

0<j<m ’ 0<j<m

which the sought result. To obtain (2), for ¢ € C°(R), and a given vy € Z'(R), we
define, using the above notations,

<u7 S0> = <U07 Xowm,go> + <U07 xim(l - X0)90>-

This defines obviously a distribution on R and (x™u,
tion ¢(x) = 2™p(x), we have pym = 0,27y, 4(z) =
functions ¥, 4 = ¢,

) = (u,x™yp); for the func-
x™p(z), so that the smooth

(x™u, @) = (vo, Xop) + (vo, 2™ (L — x0)z™ ) = (vo, ¥)- O

3.3 Distributions with compact support

3.3.1 Identification with &’

Let © be an open subset of R". We have already seen that the space C*>°(Q2) (also
denoted by &(€2)) is a Fréchet space. Denoting by &"(€2) the topological dual of
&(Q), we can consider T' € &”(Q2) as a distribution 7" on by defining

(T, @>@/(Q)7@(Q) = (T, QO>(§/(Q)7(§(Q) (this makes sense since Z(Q2) C &(£2)).

The linearity is obvious and the continuity of 7" as a linear form on the Fréchet space
&(Q) implies that there exists C' > 0, N € N, K compact subset of {2 such that

Vo e &(Q), [T ple@ew| <C  sup  [(07¢)(x)]

|a|<N, zeK

This estimates also proves that T' belongs to 2’ (€2); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have (T, ) = 0 for ¢ € C®(Q),
supp ¢ C K¢, so that T| ke = 0 and thus suppT C K. The next theorem proves that
we can identify the space &”(€2) with the distributions on 2 with compact support,
denoted by 2!

comp(Q)'

Theorem 3.3.1. Let 2 be an open subset of R". The mapping ¢ : &'(Q) —
D (), defined as above by «(T) =T is bijective.

comp
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Proof. The mapping ¢ is linear and if «(T") = 0, we know that 7" vanishes on all
functions of 2(12).

Lemma 3.3.2. Let Q2 be an open subset of R". The space 2(X2) is dense in &(€2).

Proof of the lemma. We consider a sequence (K);>1 of compact subsets of 2 such
that the lemma 2.3.1 is satisfied. For each j > 1, we may use the lemma 3.1.3 to
construct a function y; € Z(Q2) with x; = 1 near K. For a given ¢ € &(Q), the
sequence (pyx;);>1 of functions in Z(Q) converges in &(2) to ¢, thanks to the last
property of the lemma 2.3.1, proving the lemma. O]

Since T is continuous on & (), (T, @) e ().e) = Im(T, ©x;) e @)e), = 0 since
T vanishes on Z(2). Let us consider now 7' € 2/ () with suppT = L (compact

comp

subset of Q). Using the lemma 3.1.3, we consider yo € Z(2) such that yo =1 on a
neighborhood of L. For ¢ € &(€2), we define S € £’(§2) by

(S, @) er)e) = (T, X0p) 7 (2),2(0) (note that [(S,¢)| < C sup 05¢]),

|a|<N, z€supp xo

We have ¢(S) = T because

(L(S),; @) 2@),2(0 = (S, )en.e) = (T) X00) 29),2(0 = (XoT ©)9(9),2(2)

and since for ¢ € (), the function (1 — xo)¢ vanishes on an open neighborhood
V of L implying

supp((l — Xg)go) cCVeC L= (T,(1 —xo0)p) =0,
so that ¢(S) = x0T = x0T + (1 — x0)T = T. The proof of the theorem is complete.
~—————

=0

O

Remark 3.3.3. We can then identify 2! () with &’(€2), and we may note that

comp

for T' € Dgomp(2) with suppT' = L, T is of finite order N, and for all neighborhoods
K of L, there exists C' > 0 such that, for all ¢ € &(12),
(Too) <C sup [(07¢)(x)]. (3.3.1)
|a|<N, zeK

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Q2 be an open subset of R™, o € Q and let u € P'(Y) such
that suppu = {xo}. Thenu =73,y a0 where the co are some constants.
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Proof. Let ¢ € C*°(£2); we have for x € V C open neighborhood of z (included in
), Ny the order of u,

o N()'

loe| <No ) < ~ -
YP(z), PeC=(W)

o) = 32 D) (e / L= O 004 (3 1 0 — 0)) A0 —m0) o+,

and thus for xo € C(Vy), xo = 1 near x,

.0) = (o) = 30 B ) an)) + o)) e — ) o).

|| <No
(3.3.2)
We have also

[{u, xo(@)v (@) (@ — 20) ™) < Co sup [0 (xo(@)v(z) (@ —z0)™ )] (3.3.3)

|a[<No

We can take xo(v) = p(*=), where p € C°(R") is supported in the unit ball By,
p=1in %Bl and € > 0. We have then

T — Io)NO+1
€N0+1

X))o — 20) 7 = (I g 4 LT 0

r—T
:ENOHM(—E %)

with p1(t) = p(t)(zo + €t)tNo so that p; € C(R™) is supported in the unit ball
By has all its derivatives bounded independently of €. From (3.3.3), we get for all
e >0,

r — 29

[(u, Xo(2)¥ () (z — 2)N )| < Cy s N1l (97 p1 ) (

)| S CIE)

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for
X1 € C(Vh), x1 = 1 near the support of xo, we have

{u, xa(2)(x —20)%) = {u, xa(@)xo0 (@) (2 = 20)) + (u, x1(2) (1 — xo(2))(x = x0)%)
_— ~

=xo(z) supported in (supp u)®

= (u, Xo(7) (7 — x0)")

so that the latter does not depend on ¢ for € small enough. The result of the theorem
follows from (3.3.2). O

3.4 Tensor products

Let X be an open subset of R™, Y be an open subset of R" and f € C®(X),g €
C(Y). The tensor product f® g is defined by (f®g)(x,y) = f(x)g(y) and belongs
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to CX(X xY). Now if T' € 2'(X),S € 2'(Y), we want to define a distribution
T®SeP'(X xY)such that

(T®S,feg) =T, f)(S 9).

This triggers several questions: is such a construction possible? Is the definition
above sufficient to determine unambiguously the distribution T'®S? We shall answer
positively to these questions, but we first address a related question of derivation of
an “integral” depending on a parameter.

3.4.1 Differentiation of a duality product

Theorem 3.4.1. Let Q2 be an open subset of R, w € 2'(Q2), U an open subset of
R™ and ¢ € C*(Q x U) such that

vVt € U,3V; € %,3K,; compact subset of 2, Vs €V, suppo(-,s) C Ky (3.4.1)

Then the function f defined on U by f(t) = (u, ¢(-,t)) makes sense and belongs to
C>(U). Moreover we have for all o € N™, (08 f)(t) = (u, (08®)(+,1)).

Proof. The function f makes sense since for all ¢ € U, the function ¢(-,t) belongs
to C°(Q). Let to € U and By be a closed ball with center ¢y, and positive radius g
included in V;, given by (3.4.1). For |h| < ry, we have

f(to+h) = f(to) = (u, ¢(-,to + h) — (-, o))

N /

supported in Ky,

and using Taylor’s formula with integral remainder, we get

support in K,

1
Fto + ) — F(to) = (u, (), o))+ (u, / (1 — 0) T2 to + O) d6) b

J/

-

'I‘(to,h)

We have, since Ky, X By is a compact subset of 2 x U,

1
I7(to, h)| < |h[2Cy  sup /(1-9)\(@;33@ (2, to -+ Boh) |d0 < Cu|h?,
sy ol Jo e

proving the differentiability of f on U along with df(t) = (u, 9;¢(+,t)). Inductively,
we get that f is smooth and the result of the theorem. O]

Corollary 3.4.2. Let X,Y be open subsets of R, R™, ¢ € C*°(X xY) and u €
7'(X).

(1) If ¢ is compactly supported in X XY, the function i) defined by ¥ (y) = (u, ¢(-,y))
belongs to C(Y).

(2) If u € &'(X), the function ¢ defined by (y) = (u, ¢(-,y)) belongs to C=(Y).
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Proof. To prove (1), we need only to verify (3.4.1): we have indeed for all y € Y
supp ¢(+,y) C projx(supp ¢) which is a compact subset of X,

which implies that ¢ € C*°(Y"); moreover the function ¢(-,y) = 0 on the open subset
of Y, (projy(supp (b))c, and thus supp ¢ C projy (supp ¢) which is a compact subset
of Y. To obtain (2), we consider xy € C'°(X) equal to 1 near the compact support
of u. We have then u = yu and consequently,

The function ®(z,y) = ¢(z,y)x(x) is smooth on X x Y and supp ®(-,y) C supp x
so that we can apply the theorem 3.4.1 whose assumptions are satisfied. O

3.4.2 Pull-back by the affine group

Let us now recall the definition of the affine group of R": it is the group of mappings
from R™ into itself of the form x — Ax + ¢ = 044(z) where A € Gl(n,R)(n x
n invertible matrices) and ¢ € R™. When A is the identity, Oq; is simply the
translation of vector t; we have also QZ’It = O4-1_a-1;. If u belongs to L} (R") and
© 4, is in the affine group of R", we can define the pull-back of u by the map © by
the identity

O4u =100,y sothat (0} u)(r) =u(Az +1). (3.4.2)

As a result for ¢ € C9(R"), we find

(©hu, ) = / u(Az +t)p(r)dr = / u(y) (A~ y — A7) | det A "My, (3.4.3)

n n

We want to use that formula to define the pull-back of a distribution on R™ by an
affine transformation.

Definition 3.4.3. Let A € Gl(n,R),t € R", ©4, the affine transformation defined
above and let u € Z'(R™). We define the distribution ©% ,u by the identity

(@1, ) = (u,p 0 5| det A| ™. (3.4.4)

Remark 3.4.4. (1) Note that this defines a distribution on R"™, since the mapping
@ — @0 O} is an isomorphism of Z(R"). Moreover, if u € L{, (R"), the previous
definition ensures that ©% ,u = u 0 © 4, thanks to the lemma 3.1.7.

(2) The mapping u — ©% ,u is sequentially continuous from Z'(R") into itself,

(3) A distribution v on R™ is even (resp. odd) if ©* ; yu = u (vesp. —u). Using the
notation

= 0% gou (for a function u, @(z) = u(—x)), (3.4.5)

u is even means u = u, odd means 7 = —u.
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3.4.3 Homogeneous distributions

Definition 3.4.5. Let u € 2'(R™) and A\ € C. The distribution u is said to be
homogeneous with degree X if for all t > 0, u(t-) = t*u(-) (here u(t-) = 0514 ou).

Proposition 3.4.6. Let u € Z'(R") and X\ € C. The distribution u is homogeneous
of degree X\ if and only if the Euler equation is satisfied, namely

Z 70z, u = Au. (3.4.6)

1<j<n

Proof. A distribution v on R" is homogeneous of degree \ means:

Vo € CE(R™),VE>0,  (uly), oly/tt™") = tN{ul@), (),

which is equivalent to Vo € C®(R"),Vs > 0, (u(y), p(sy)s") = (u(z), p()), also
equivalent to

Vo € CF(R"), dis((u(y), @(sy)s"™) =0 on s> 0. (3.4.7)

Note that the differentiability property is due to the theorem 3.4.1 and that

(u(y), p(sy)s™™™) = (u(z), p(z)) ats=1.

As a consequence, applying the theorem 3.4.1, we get that the homogeneity of degree
A of u is equivalent to

Vs >0, (u(y),s" 7 ((n+ Ne(sy) + Y (959)(sy)sy;)) =0,

1<j<n

also equivalent to 0 = (u(y), (n + A+ 32 ;< ¥;0;) (¢(sy))) and by the definition of
the differentiation of a distribution, it is equivalent to (n+Au—>_,,, 9;(y;u) = 0,
which is (3.4.6) by the Leibniz rule (3.2.14). O

Remark 3.4.7. (1) The Dirac mass at 0 in R” is homogeneous of degree —n: we
have for ¢t > 0

(0o (t), () = (do(y), p(y/)E™") = 17"(0) = 17"(do, ¢).

(2) If T is an homogeneous distribution of degree A, then 097 is also homogeneous
with degree A\ — |a|: taking the derivative of the Euler equation (3.4.6), we get

Opu+ Y 00 Ogtt — Apu = 0,

1<j<k

proving that 0, u is homogeneous of degree A — 1 and the result by iteration.

(3) It follows immediately from the definition (3.1.13) that the distribution pv(1) is

homogeneous of degree —1. The same is true for the distributions — as it is clear

x+10
from (3.2.9)and (3.2.10).
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(4) For A € C with Re A > —1 we define the L]

loc

A : A
Y x ifx >0, A\ Ty
= = —T 3.4.8
o {0 itr<o0, T TO+1) (348)

(R) functions

The distributions Xi and xi are homogeneous of degree A and by an analytic con-
tinuation argument, we can prove that Xi may be defined for any A € C, is an
homogeneous distribution of degree A and satisfies
A d ko Ak —k (k—1) *
X+:(d_)(X+ )7 X+ :60 s kGN
x

Lemma 3.4.8. Let (u;)i1<j<m be non-zero homogeneous distributions on R™ with
distinct degrees (A\j)i<j<m (J 7# k implies \j # \g). Then they are independent in
the complex vector space 2'(R™).

Proof. We assume that m > 2 and that there exists some complex numbers (¢;)1<j<m
such that 3, ;. cju; = 0. Then applying the operator £ =3, ;0,;, we get

for all £ € N,
0= Z Cj(c:k<’dj) = Z Cj)\?’dj.

1<j<m 1<j<m

We consider now the Vandermonde matrix m x m

1 1 1
U I T e IT ox—x)#o0.
g L

We note that for ¢ € C°(R"), and X € C™ given by

C1 <U’17 @)
X = Co <u’27 90>

we have V,,, X =0, so that X =0, i.e. Vj,Vp € C*(R"),¢;{uj, ) =0, ie. cju; =0
and since u; is not the zero distribution, we get the sought conclusion ¢; = 0 for all
J. O

3.4.4 Tensor products of distributions

We begin with a lemma.

Lemma 3.4.9. Let ¢ € C2°(]0,1["); one can find a sequence of functions in
Vect(@"(]jo (]0, 1[) (the vector space generated by the tensor products)

converging to ¢ in C°(]0,1[") in the sense of the definition 3.1.9.
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Proof. We define for k € Z", ¢(k) = [ e 2™k p(z)dx, and we note that, with
A= Zlgjénagj, m € N,

800 = (1 W)™ [ (1= A () ofa)ds

=1+ |k‘|2)_m/€_2im'k((1 - ﬁA)mgb)(m)dx

so that R
[o(k)| < (14 [k]*) " Cr ﬁgﬁl\laﬁcﬂlm- (3.4.9)

As a result the series ®(z) =), /0 o(k)eX™* converges and is a smooth function,
periodic with periods Z": we need only to check that Y, ,.(1 + |k])™" ! < +00.?
Moreover,

for x € [0, 1]", O(z) = ¢(x). (3.4.10)
We verify this first for n = 1. We have in that case

_ 2imk(x— y
i [ 32 ot

lk|<N
p2imNE _ |
and since Z e?™t — 1 4 2Re Z eBimkt — 1 4 2Re( QMte?i”t——l)
|k|<N 1<k<N
sin(mt(2N + 1))
sin(7t)

— 1 + 2 Re( ’Lﬂ' N+1)t Sln(ﬂ-Nt)
sin(7t)

we get that, since ¢ € C2°(]0, 1]), and for = €]0, 1],

~ b sin(w(m —y)(2N + 1))
(z) = N1—>+oo sin(m(z — y)) )y

. (/01 Sin(w(.ﬂv—y)(QN—l—l)) (¢( ) — b(x dy+gz5 / Z o2imh(a— ydy>

N—+00 sin(m(z —y)) i

Y

= (),
because with ¢ € C®°(R?), 0(s) = == (which is in C*°(R\7Z*) and in particular

n ] —1,+1[), we have i

/1 sin(7(z —y)(2N + 1))

sin((z —y))

(6(y) — é(x))dy

smooth of y on [0, 1]
since x €]0, 1]
7\

_ / sin(w(x — y) (2N + 1)) D(w, y)0(x — y) dy — 0,

N—+o0

3In fact, with Qi = k + (0,1)™ we have, replacing the Euclidean norm |k| by the (equivalent)
sup-norm ||k|| = maxi<j<y |k;|, we have for x € Qg, k; < z; < k; + 1 and thus

]| = maxfz;| <1+ [[kl| = 1+ [[zf] <2+ [|&]
and 3= ez (24 BT < [ Xhezn 1o (@) (1 + [l2l) ™ Hde = [+ [|2])) 7" da < +o0.
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1
since with w € C*°(][0, 1]), we have / sin(7(z — y)(2N + 1))w(y)dy =
0

cos(w(x —y)(2N + 1)) y=1 ! COS(W(I —y)(2N + 1)) /
[ TN+ 1) wy] —/0 TN + 1) w'(y)dy.

y=0

We have proven (3.4.10) for n = 1 and x €]0,1[. Since ®, ¢ are both smooth on
[0,1] the equality holds as well for x € {0,1}.

N.B. We could have used the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in [9]),
but we have preferred a simple self-contained argument with an integration by parts since
there was no shortage of regularity for the function w.

To handle the case n > 2, we use an induction and in n + 1 dimensions, we have
for ¢ € C°(]0, 1[**1),
Vo € [07 1]117 (I)(SC, anrl) = Z / eZiﬂ(miy).k¢(yaxn+1)dy = ¢($,In+1),
kezn /(01"
and thus Vz € [0, 1)", V2,11 € [0, 1], ®(z, 2p01) =
. 1 .
Z /( 62”(“*1/)']“( Z / e2lﬂ($n+1*yn+1)kn+1¢(y’ ynJrl)dynJrl)dy = ¢($, anrl)a
0,1)" 0

kezn =/

which is (3.4.10) since the series are uniformly converging. Since supp ¢ |0, 1[",
there exists ¢y > 0 such that* supp ¢ C [e, 1 — €]", and with x € C°(]0,1[) equal
to 1 on [ey, 1 — €], we have

(@) x(@)d(@) = o) = 37 AT RGR)x(a) . (). (3.4.11)

kez™

The series is uniformly converging as well as all its derivatives, thanks to the fast
decay of ¢(k) expressed by (3.4.9), and the functions

Z Xk eRimenkn (Y x (1) .. ()

[k|<N

belong to Vect(®"C°(]0, 1[) with fixed compact support in |0, 1[". The proof of the
lemma is complete. [

As a consequence, we get the following result.

Proposition 3.4.10. Let X be an open subset of R™, Y be an open subset of R™.
Vect C°(X) @ CX(Y) is dense in CP(X X Y).

*In fact, each projection K; = proj;(supp ¢) is a compact subset of ]0, 1[, thus 0 < inf;ef, t <
Supgeg, t < 1.
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Proof. Let K be a compact subset of X x Y. For each point (z,y) € K, we can find
some open bounded intervals I1,...,I,,, J1,...,J, of R such that

(x,y)€eQ=L x - XL, xJ X xJ,CXxY.

As a result, we can cover K with a finite number of open “cubes” (Q);)1<;<n included
in X x Y. Using a partition of unity given by the theorem 3.1.14, we can find
Y € C(Qy) such that >, ;. y ¢i(z) = 1forx € V opensuch that K C V C X xY.
For ¢ € C®(X x Y), supp ¢ = K compact subset of X x Y, we have

o= > @l ot €C(Q).

1<I<N

We can then apply the lemma 3.4.9 for each ¢ (rescaling the cube @; to |0, 1[")
to obtain the conclusion of the proposition. O

Theorem 3.4.11. Let X be an open subset of R™, Y be an open subset of R",
and u € P'(X),v € P'(Y). Then there exists a unique w € P'(X xY) such that,
Vo e 2(X), YV € 2(Y),

(W, 0 DY) (xxv),2(xxv) = (U &) 57(x),2(x) (Vs V) 2(v), () (3.4.12)

where (¢ @ V) (z,y) = ¢(x)(y). We shall denote w by u @ v and call it the tensor

product of u and v.

Proof. The uniqueness follows from the proposition 3.4.10. To find such a w, we
define for & € C°(X x Y), with obvious notations,

(w, ) = <v(y), (u(z), @(x,y))> (3.4.13)

As a matter of fact, thanks to the corollary 3.4.2 (1), the function Y 3> y —
(u(-), ®(-,y)) belongs to C(Y) so that (3.4.13) makes sense. Using the theorem
3.4.1, we obtain 95 (u(-), (-,y)) = (u(-), 9y (-, y)). If K =supp® (compact subset
of X xY), both projections projx K, projy K are compact so that

[(u(-), Oy (-, y))| < Cy sup (070 ®)(x, y)|

|BI<N1, z€projx K

and thus

[(v(y), (u(z), ®(z,y)))| < Cy sup 105 (u(-), D(-,y))]

<CCy, sup ‘(8583q))(5573/)’a

[BI<N7,|a|<Ng
(z,y)EK

implying that w is indeed a distribution on X x Y. Since the formula (3.4.12) follows
from (3.4.13), this concludes the proof of the theorem. O



3.4. TENSOR PRODUCTS 91

Remark 3.4.12. (1) The uniqueness ensures that w = u ® v is also defined by

(w, @) = (u(@), (v(y), 2(z,y))). (3.4.14)

a formula for which (3.4.12) also holds.
(2) fu e Li (X),v € LL.(Y), then u ® v belongs to L{, .(X x Y) and is defined by

u(z)v(y), thanks to the lemma 3.1.7 and to the proposition 3.4.10.
(3) Foru e 2'(X),v € Z'(Y), we have

supp(u ® v) = supp u X supp v. (3.4.15)

In fact, if ® € C°(X xY') with supp ® C X X (supp v)¢ or with supp ® C (supp u)° x
Y, it follows from (3.4.14) or (3.4.13) that (u ® v, ®) = 0; this holds as well when

supp ® C (suppu X suppv)® = ((supp u) X Y) U (X X (supp U)C),

since supp ® C ; U €y with €); open subset of X x Y and, thanks to the theorem
3.1.14, the compactly supported ® = ®; + ®,, with supp®; C Q; (it is also a
direct consequence of the theorem 3.1.15 since (u ® v)jq; = 0). We have proven that
supp(u ® v) C suppu x suppv. Conversely, if xy € suppu,yo € suppv, and U,V
are respective open neighborhoods of xg,yo in X,Y’, we can find ¢g € C°(U), )y €
C° (V) such that (u, ¢g) # 0 and (v,10) # 0. As a result ¢y @1y € C°(U x V') and
(U ® v, po @ 1) = (u, o) (v, o) # 0, so that (u ® v);yxy is not zero, proving that
(20,%0) € supp(u ® v) and the sought result.

(4) With the notations of the previous theorem, we have obviously from the expres-
sion (3.4.13) and the theorem 3.4.1 that 9207 (u ® v) = (9%u) @ ().

Proposition 3.4.13. Let n € N*, U be an open subset of R*™' I an interval of
R. Let u € 2'(U x I) such that 0,,u = 0. Then, there exists v € 2'(U) such that
u=uv® 1. In other words, the differential equation 0, u = 0 has the only solutions
u(z!, x,) = v(2').

Proof. From the remark 3.4.12 (3) above, the tensor products v(z') ® 1 are indeed
solutions of 0,,u = 0. Conversely the proposition is proven for n = 1 by the lemma
3.2.4. Let us assume n > 2; we consider o € C2°(I) such that [ xo(t)dt = 1 and
we define v € 2'(U) by the identity

(v, 9) ). 2w) = (U, ¢ @ X0) 2 WxD.2Wx1):
For ¢ € 2(U),¢ € 2(I), we have with J(¢) = [(t)dt,
(e Le@y) = (uex0)J(¥).
From the proof of the lemma 3.2.4, we see that ©»— xoJ(¢) = 0’ with § € C2°(I), and

we get (u, p® (xoJ (¥) =¥)) = (u, 0,,(p®0)) = 050 that (v@ L, p®Y) = (u, pDV),
which is the sought result. O]
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3.5 Convolution

We want to define the convolution of two distributions on R”, provided one of them
has compact support. Assuming first that u € L R"),v € Li .(R"), ¢ € C*(R")
the integral

comp(

// u(x — x)dxdy = // ¢(x + y)dxdy, (3.5.1)

makes sense since x and = + y are moving in a compact set in the last integral (and
so is y). This formula allows us to define

(uxv)(x) = / u(z — goly)dy = / u(y)o(z — y)dy

and can naturally be extended to u,v € L'(R™) so that ||uv|| 1@y < |Jul|Lr@n[|v] 21 &),
making L'(R™) a Banach algebra (without unit). The inequality of Young (see e.g.
the Théoreme 6.2.1 in [9]) is a non-trivial extension of that inequality. Anyhow, at
the moment, we want to use the formula (3.5.1) for our general definition.

3.5.1 Convolution &'(R") x 2'(R")

Definition 3.5.1. Let u € &'(R™),v € Z'(R"). We define the convolution ux v by
the following bracket of duality

(u v, @) gr(mn) orn) = (u() oz +y))) = (v(y) Pz +y))). (3.5.2)

We note that the theorem 3.4.1 shows that the function R" 3 z +— (v(y), ¢(z+y))
is C*° and thus that the first definition makes sense from the corollary 3.4.2 (2). To
check the second equality above, we note that with y € C2°(R") equal to 1 near the
support of u, we have yu = u and thus from the remark 3.4.12(1) and the formula
(3.4.13),

(u(@), (v(y), oz +y))) = (ul@), (v(y), x(x)d(z +y))) = (u(z) @ v(y), x(2)d(z +y)),
which is also equal to (v(y), (u(z), x(z)¢(z + y))) = (v(y) ¢(x +y))). This
proves as well that u % v is a distribution on R" since the mapplng CP(R™) 3 ¢ —

® € C(R?™), with ®(z,y) = ¢(z + y)x(x) is continuous.

Remark 3.5.2. We note that whatever is x € C2°(R") equal to 1 near the support
of u, we have for u € &"(R"),v € Z'(R"),

(uxv,¢) = (u(z) @v(y), x(x)o(z +y)). (3.5.3)
Proposition 3.5.3. Let u € &'(R"),v € Z'(R"). We have

supp(u * v) C supp u + supp v. (3.5.4)
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Proof. Note first that supp u+supp v is a closed subset of R as the sum of a compact
set and a closed set (exercise). Now if ¢ € C°(R™) with supp ¢ C (supp u+supp v)°,
then

supp((z,y) — é(z + y))C (suppu x suppv)°. (3.5.5)
In fact, if (zo,y0) € suppu X supp v, then zq + yo € supp u + suppv C (supp @), the
latter being open so that there exists U open in %, with ¢(xg+ U + 3o+ U) = 0. As
a consequence, the open set (zo + U) X (yo + U) C (supp((z,y) — ¢(z +y)))* and
this implies (zg, yo) € (supp((a:,y) — qb(:)s+y)))c and proves (3.5.5), so that (3.5.3),
(3.4.15) give the conclusion of the proposition. H

Remark 3.5.4. For u, v both in &'(R"), the formula (3.5.2) ensures that uxv = vxu.

3.5.2 Regularization
Proposition 3.5.5. Let u € Z'(R"),p € C(R™). Then p * u belongs to C°(R™).

Proof. We have from the definitions, with y € C°(R") equal to 1 near supp p,
¢ € CT(R"),

(pxu, ) = (p(x) @ uy), x(x)p(x +y)) = (uly), (p(x), x(x)o(x +y))),  (3.5.6)

and we note that (p(z), x(z)p(x +y)) = [ p(z)p(x + y)dz = [ p(xz — y)p(x)dz. As
a result, we have

(o u.0) = (u(w). [ pla = pola)da) = [ o(2) —y))da

€Ce(R27)

where the last equality is due to the theorem 3.4.1° which gives also that ¢(x) =
(u(y), p(x —y)) is C°°; we have proven p * u = 1) and the result. We note also the
formula following from (3.5.6)

(pxu, ) = (u, px ¢). (3.5.7)
[l

Lemma 3.5.6. Let Q be an open subset of R™ and T € 2'(Q). There exists a
sequence (V;)j>1 in Z(2) such that lim;; =T in the weak-dual topology sense of
the definition 3.1.16.

Proof. We consider first a sequence (K);>1 of compact subsets of 2 as in the lemma
2.3.1 and a sequence (x;);>1 such that x; € C(int K;41), x; = 1 near K (see the
lemma 3.1.3). In the weak-dual topology sense, we have lim; XjT =T:letp € 2(2),
K = suppy. From the lemma 2.3.1, there exists j such that suppy C K; and
thus ¢x; = ¢, implying (T'x;,¢) = (I, x;¢) = (T, ). We can also consider the
compactly supported distribution x;7" and see it as a distribution on R". We take
now a function p € C2°(R") such that [ p(z)dx = 1. According to the first example

SFor ® € CX(R™ x R"), u € Z'(R™), (1@ u, ®) = (u(y), [ ®(z,y)dz) = [(u(y), ®(z,y))dz.
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in the section 3.1.3, we define p. (it tends to the Dirac mass at 0 in the weak-dual
topology when € — 0.). For ¢ € 2(2), using (3.5.7), we have

(pex (X;T),0) = XGT e * ). (3.5.8)

Considering now a decreasing sequence of positive numbers (e;) with limit 0 such
that

supp x; + €; supp p C int(K41) C €,

and we define T; = p., * x;T. We have from the proposition 3.5.3 that supp T is
compact included in €2 and also that 7; € C'* (proposition 3.5.5). Going back to
(3.5.8), for a fixed ¢, we can find j such that suppy C K;_; for j > jo, implying
that

supp(pe; * ¢) C K;_1 + €jsupp p C supp x;j—1 + €j_1supp p C Kj,
implying that x;(pe, * ¢) = pe, * ¢ and (p, * (x;T),¢) = (T, p, * ). The result
follows from the proposition 3.1.1 (implying lim;(pe; * ¢) = ¢ in CF(2)) and the
(sequential) continuity of the distribution 7. O
Proposition 3.5.7. Let u € &'(R"),v € Z'(R"). We have
singsupp(u * v) C singsupp u + singsupp v. (3.5.9)

Proof. We can choose x € C°(R") equal to 1 near the singsupp u, ¢ € C*° equal to
1 near the singular support of v. We have from the proposition 3.5.5

€0 (R™) es'(R")  eC=(R")
—— ~ N —
wrv = (xu)xv+((1-x)u) xv = (xu)* (o) + () *((L-y)v) mod C=(R")
~—— ~ -~
€0 (RM) €C>(Rn)

and thus we get for all € > 0
singsupp(u * v) C supp ¥ + supp ¥ C singsupp u + €B; + singsupp v + €By,

which gives the result. O

3.5.3 Convolution with a proper support condition

Looking at the formula (3.5.1), we see that we can extend it easily for L{ (R")
functions u, v so that the mapping

suppu X suppv 3 (z,y) — x +y = o(z,y) € R" (3.5.10)

is proper, i.e. such that o~!'(K) is compact for K compact subset of R™. In fact
if u,v € L. (R™) are such that the map o of (3.5.10) is proper, the function u * v

loc

defined by
(uxv)(z) = / ulz — y)o(y)dy
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is also L (R"), since for K compact subset of R", we have

loc

/ u(z = y)llo(y) 1k (z)dydz = / [u(@)[[v(y) Lk (z + y)dwdy
- //—1(K) lu(z)||v(y)|dedy < oo, since o *(K) is compact in R*",

We can extend as well the convolution product of distributions u, v, provided ¢ in
(3.5.10) is proper. Before doing so, we prove a simple lemma.

Lemma 3.5.8. Let Fi, ..., F,, be closed subsets of R™ such that the mapping o :
Fy x - x F, — R", defined by o(x1,...,xy) = x1 + - + Xy, is proper. Defining
fore >0, Fj. = {x € R", |x — F}| < €}, the mapping 0. : Fy ¢ X --- X F,, . — R",
defined by oc(x1,...,oy) =21+ -+ T, is also proper.

Proof. We note first that F;. = F; + eB; (Bl is the closed unit ball of R"™) is
closed as the sum of a compact and a closed set. Let K be compact subset of
R™; if (z1,...,2,) € o, (K), then there exists y; € Fj,t; € R" |t;] < €, such
that x; = y; + 15, D 1cjen(y; + 1) € K and thus >, y; € K + meB;, so
that (y;)1<j<m € 0 1(K + meB;), a compact subset of [[ F;. As a consequence,
(2j)1<j<m € 0 H(K + meBy) + €B1nm (Bium is the closed unit ball of R™™), which
is compact. As a result, o, '(K) is compact as a closed subset of [] Fj. (0. is
continuous) included in a compact set. O

Definition 3.5.9. Let uy,...,u, € Z'(R") such that the mapping o

H supp u; 3 (z5)1<j<m — Z x; € R" s proper. (3.5.11)

1<j<m 1<j<m

For e > 0, we take x;. € C®(R"™) such that supp ;. C suppu; + €B; and supp x;..
is 1 on a neighborhood of suppu;. We define then

<U1 koo K Uy, ¢>@/(Rn)79(Rn) = <U,1 & D U, QS)@/(]an),@(an) (3512)

with (1, ..., Tp) = [licjom Xo.e(@i) O3 < jrn )  we note that ¢ is in D(R"™)
since 3
supp & C {(2))1<jem € [] supp ;e with o((x;)) € supp ¢}

1<j<m

which is compact from the previous lemma and (3.5.11).

It is also easy to prove that this definition does not depend on the choices of the
functions x;. having the properties listed above and that this definition coincides
with the definition of convolution in the previous section. In particular, we can prove
the associativity of the convolution using the identity (3.5.12), provided the condition
(3.5.11) is satisfied. As a counterexample we can take u; = 1,uy = 0, u3 = H and
we have since 1% ) = 0,6, * H = &y,

(ug xug) xuzg =0, up*(ug*uz) =1x0=1.
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Naturally the hypothesis (3.5.11) is violated here since the mapping o defined on
R x {0} x Ry is not proper: a1 ({0}) D {(—N,0, N)}nen. The assumption (3.5.11)
is satisfied for m = 2 if suppu; is compact and also for distributions on R with
support in R,. We get also that

Vue 2'(R"), wuxd=u, since (u(z1)® §(x2),d(x1+x2)) = (u, ). (3.5.13)
and for u,v € 2'(R™) such that (3.5.11) holds
O (u*v) = (0%u) xv =u=x* (0%v), (3.5.14)

since (05 (u * v), ¢) = (=1)Nu*v,05¢) = (=1)*Nu(z) ® v(y), (0°¢)(z + y)) =
((0%u)(z) @ v(y), (x + y)) and putting inside the brackets the cut-off functions .
does not change the outcome of the computation.

3.6 Some fundamental solutions

3.6.1 Definitions

Definition 3.6.1. We consider a constant coefficients differential operator

(03 (03 1 6]
P=P(D) = Z a,DY, where a, € C,Dy = W@C. (3.6.1)

la<m

A distribution E € 2'(R") is called a fundamental solution of P when PE = .

We note that if f € &'(R") and E is a fundamental solution of P, we have from
(3.5.14), (3.5.13),
P(Ex f)=PExf=boxf=/,
which allows to find a solution of the Partial Differential Equation (PDE for short)
P(D)u = f, at least when f is a compactly supported distribution.

Examples. We have on the real line already proven (see (3.2.2)) that % = ¢, so
that the Heaviside function is a fundamental solution of d/dt (note that from the
lemma 3.2.4, the other fundamental solutions are C'+ H(t)). This also implies that

Oy (H (1) ® 6p(w2) ® -+ - ® 0o(x,)) = do(x), (the Dirac mass at 0 in R").

Let N € N. With z? defined in (3.4.8), we get, since 92 (z1'1") = H(z1)(N + 1),

that
N+1

0nr - 0:)" (1] (ﬁ): 5o().

1<j<n
The last example has the following interesting consequence.

Proposition 3.6.2. Let v € Z'(R") and Q a bounded open set. Then uy is a
deriwative of finite order of a continuous function.
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Proof. We consider for x € C2°(R") equal to 1 on 2 the distribution yu € &'(R"™)
whose restriction to €2 coincides with ujg. The distribution xu has finite order N

2N+
(see the remark 3.3.3). We have with E(z) = [[,.,, AT
Xt = xu*08 = (8, ...0,) P (xux*E). (3.6.2)

Since the function E is CV with Nth derivatives (Lipschitz) continuous, we may
consider the function ¢ defined by

Y(z) = (x(v)u(y), E(x —y)).

Since yu is compactly supported with order N, we have with K compact subset of
R™,
Wz +h) =) <C sup |95 (E(x+h—y)— Elx—y))l|

la|<NyeK

Since the function £ is CV with Nth derivatives Lipschitz continuous, we find that
1 is Lipschitz continuous. We have from the definitions, with ¢ € C°(R"),

(B xu, ¢) = (E(2) @ (xu)(y), o(x +y)) = ((xw)(y), (E(z), 6(z + y))),
and we note that (E(z),¢(x +y)) = [ E(x — y)d(x)dr. As a result, we have

(B * xu, ¢) = <U(y),/x(y)E( z) dz) /¢ (xu)(y), E(x —y))dx

eClN (R2n)

where the last equality is due to the theorem 3.4.1° and gives also that 1 = yu * E.
The result follows from the continuity of ¢ and (3.6.2). O

3.6.2 The Laplace and Cauchy-Riemann equations
We define the Laplace operator A in R" as

A=Y o2 (3.6.3)

1<j<n

In one dimension, we have from (3.2.2) that @ (ty) = do and for n > 2 the following

dt?

result describes the fundamental solutions of the Laplace operator. In R? > We define
the operator 0 (a.k.a. the Cauchy-Riemann operator) by
= 1
0= 5(896 +10y). (3.6.4)
Theorem 3.6.3. We have AE = §y with || - || standing for the Fuclidean norm,
1
E(z) = Py In|z||, forn=2, (3.6.5)
T
Blo) = 2" forn>3, with |5 = 2 (3.6.6)
- (2—n)|S" 1 7 - T(n/2)’ a
=, 1
(=) =0, with z=x+iy (equality in 7'(R2)). (3.6.7)
Tz ’

fFor ® € CNR™ x R"), v € Z'(R"), order(v) < N (1® v,®) = (v(y), [ ®(z,y)dz) =
[{v(y), @(z,y))d.
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Proof. We start with n > 3, noting that the function ||z||* ™ is L{,, and homogeneous

with degree 2 —n, so that Al|z||* ™ is homogeneous with degree —n (see the remark

3.4.7 (2)). Moreover, the function ||z||>~™ = f(r?),r? = ||z||?, f(t) = t1+72 is smooth
outside 0 and we can compute there

— Zﬁj( r?)2z;) Zf” )43+ 2nf (%) = 47 ' (r?) 4 2nf' (r?),

3

so that with ¢ = r2,
A(f(%) = 41 = 3) (=537 +2n(1 = )t

As a result, A||z||*™" is homogeneous with degree —n and supported in {0}. From
the theorem 3.3.4, we obtain that

All> =cdo+ D D cjad”.

1<_7<m |o¢| =j

NE

—t3(1— g)(—Zn +2n) = 0.

homogeneous
degree —n

homogeneous

degree —m — j

The lemma 3.4.8 implies that for 1 <j <m, 0=3_,_; cmééa) and A||z||*™" = cdo.
It remains to determine the constant c¢. We calculate, using the previous formulas
for the computation of A(f(r?)), here with f(t) = e ™,

= (Al eI = / >~ (4]}l |*® — 2n) da

+o00 9
— |Sn—1| / TQ—n—l—n—le—m" (47_[_27,2 _ 2n7r)dr
0

1 |
= 8" M (gle ™ (Ut = 20m) o [ e 8 rdr)
= 5" |(=n +2),

giving (3.6.6). For the convenience of the reader, we calculate explicitely |S™~!|. We
have indeed

2 oo 2
1 :/ e~ g = |S"_1|/ e dr
n 0

oo 1
_ |Sn—1|ﬂ_(1—n)/2/ et I 212 |Sn—1|ﬂ_—n/22—1l—\(n/2)‘
—~ 0 2

retl/25—1/2
Turning now our attention to the Cauchy-Riemann equation, we see that 1/z is also
L} .(R?), homogeneous of degree —1, and satisfies d(2~!) = 0 on the complement of

loc
{0}, so that the same reasoning as above shows that

o271 = cdo.

To check the value of ¢, we write ¢ = (O(r'271), e ™) = [0, e ™ n L2 rzdady =

1, which gives (3.6.7). We are left Wlth the Laplace equatlon in two dimensions and

we note that with 2 = (9, — i9,), & = (9, + 10,), we have in two dimensions

0 0 0 0
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Solving the equation 48E = lz leads us to try £ = % In |z| and we check directly”
that 2 (In(22)) = 27+
1 0 0

el B 4, 0
A(%ln|z|) =n 12 24£§(1n(22)) = 1£

(z_l) = dp. O

3.6.3 Hypoellipticity

Definition 3.6.4. Let P be a linear operator of type (3.6.1). We shall say that P
is hypoelliptic when for all open subsets Q of R™ and all u € 2'(2), we have
singsupp u = singsupp Pu. (3.6.9)

It is obvious that singsupp Pu C singsupp u, so the hypoellipticity means that
singsupp v C singsupp Pu, which is a very interesting piece of information since we
can then determine the singularities of our (unknown) solution u, which are located
at the same place as the singularities of the source f, which is known when we try
to solve the equation Pu = f.

Theorem 3.6.5. Let P be a linear operator of type (3.6.1) such that P has a fun-
damental solution E satisfying

singsupp E = {0}. (3.6.10)

Then P is hypoelliptic. In particular the Laplace and the Cauchy-Riemann operators
are hypoelliptic.

N.B. The condition (3.6.10) appears as an iff condition for the hypoellipticity of the
operator P since it is also a consequence of the hypoellipticity property.

Proof. Assume that (3.6.10) holds, let € be an open subset of R” and v € 2'(Q2).
We consider f = Pu € 2'(Q0), x¢ ¢ singsupp f, xo € C(2), xo = 1 near xy. We
have from the proposition 3.5.5 that

€C(R™)

xu=xux PE = (Pxu)* E = ([P, x|u) * E+ @ *

€Co(R)
and thus, using the the proposition 3.5.7 for singular supports, we get
singsupp(xu) C singsupp([P, xJu) + singsupp E = singsupp([P, x]u) C supp(uVy),

and since y is identically 1 near xg, we get that o ¢ supp(uVy), implying zo ¢
singsupp(xu), proving that zq ¢ singsupp v and the result. H

"Noting that In(z? + y?) and its first derivatives are Li _(R?), we have for p € C°(R?),

(g (In21%), ¢) =

// Drp+i0yp) In(z?+y?)drdy = // x,y)(xr 2 —iyr~?)dedy = //(x+iy)7lcp(x,y)da:dy.
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3.7 Appendix

3.7.1 The Gamma function

The gamma function I' is a meromorphic function on C given for Rez > 0 by the
formula

—+00
[(z) = / e ¥ 1dt. (3.7.1)
0

For n € N, we have I'(n 4+ 1) = n!; another interesting value is I'(1/2) = /7. The
functional equation
[(z+ 1) = 2I'(2) (3.7.2)

is easy to prove for Re z > 0 and can be used to extend the I' function into a mero-

morphic function with simple poles at —N and Res(I', —k) = (_kll)k. For instance, for
—1 < Rez <0 with z # 0 we define

r 1
['(z) = M, where we can use (3.7.1) to define I'(z + 1).
z

More generally for k € N, —1 — k < Rez < —k, z # —k, we can define

I'(z+k+1)
20z+1)...(z+k)

['(z) =

There are manifold references on the Gamma function. One of the most compre-
hensive is certainly the chapter VII of the Bourbaki volume Fonctions de variable
réelle [2].

3.7.2 LF spaces
3.7.3 The Schwartz kernel theorem

3.7.4 Coordinate transformations and pullbacks



Chapter 4

Introduction to Fourier Analysis

4.1 Fourier Transform of tempered distributions

4.1.1 The Fourier transformation on .7 (R")

Let n > 1 be an integer. The Schwartz space .(R™) is defined in the section 2.3.5,
is a Fréchet space, as the space of C'*° functions u from R" to C such that, for all
multi-indices' a, 3 € N?,

sup |2%0%u(z)| < +oo.
TER™

A simple example of such a function is e~ (|z| is the Euclidean norm of ) and
more generally if A is a symmetric positive definite n x n matrix the function

VA (l’) — e*ﬂ(Ax,‘r)

belongs to the Schwartz class.

Definition 4.1.1. For u € ./ (R"), we define its Fourier transform u as

() = / e 2™y (z)dw. (4.1.1)
Lemma 4.1.2. The Fourier transform sends continuously . (R™) into itself.
Proof. Just notice that Saﬁgﬁ(f) = [ e72m2€ 92 (2P (x)dw(2im) A=l (—1) 181, O
Lemma 4.1.3. For a symmetric positive definite n X n matrix A, we have

Ua(€) = (det A) V2 mATIE), (4.1.2)

Here we use the multi-index notation: for o = (o, ..., a,) € N we define

o _ _on o o _ o foe _ .
o =, O0f =050 .. .05, ol = E Q.

n
1<j<n

101
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Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (4.1.2), i.e. to check

/e—2i7rm§e—7rx2dx _ /e—w(x+i§)2dxe—7r§2 _ 6—7r§2’

where the second equality is obtained by taking the é-derivative of [ e @+ dz -
we have indeed

d —7(z+i€)? —m(z+i€)? : - : d —m(z+i€)?
d_f(/e (+§)dm):/e (+i8) (—227?)(x+®£)dx:—@/%(e @) dy = 0.

For a > 0, we obtain [, em2imele—mar® 1o — =121 which is the sought result
in one dimension. If n > 2, and A is a positive definite symmetric matrix, there
exists an orthogonal n x n matrix P (i.e. ‘PP = Id) such that

D ='PAP, D =diag(A1,...,\), all \; > 0.

As a consequence, we have, since |det P| =1,
/ e—2i7rx.§€—7r<Ax,x)dx _ / 6—2i7r(Py)-§6—7r<APy,Py)dy — / 6—2i7ry~(’P§)e—7r(Dy,y>dy
n n Rn

; . 22 _ _ —-1,_2
(Wlth n :tpf) — H / 67217ryjnje TA;Y; dy] _ H /\j 1/2e AN
1<j<n VR 1<j<n

= (det A)_1/2e_7r<D71"”7> = (det A)_I/QG_WGPAAP PEPE) (det A)_1/2e_”(’4715’§>. O

Proposition 4.1.4. The Fourier transformation is an isomorphism of the Schwartz
class and for v € S (R™), we have

u(zx) = /e%”{a(g)dg. (4.1.3)

Proof. Using (4.1.2) we calculate for u € .(R") and € > 0, dealing with absolutely
converging integrals,

wle) = [ @mage e ag
= [[ et uge ey
= [utge ey
_ / (ulz + ey) — u(x)) e dy + u(z).

( J/
-

with absolute value<el|y|||w'|| oo

Taking the limit when e goes to zero, we get the Fourier inversion formula

u(z) = / 2 mEG (&) dE . (4.1.4)
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We have also proven for v € . (R") and u(z) = u(—x)

(4.1.5)

¢

u =

Since u +— @ and u +— @ are continuous homomorphisms of . (R"), this completes
the proof of the proposition. n

Proposition 4.1.5. Using the notation

1 0 o TV e n
zj:%é?_xj’ Dac:jl;[lDw]J_ with « = (o, ..., a,) € N7, (4.1.6)

we have, for u € . (R"™)

Dgu(§) = €*a(6).  (Dga)(©) = (~1)z*u(2)(€) (4.1.7)
Proof. We have for u € ./ (R"), 4(¢) = [ e 2™ 4y(z)dzr and thus

(Dgi)e) = (-1 [ e arua)de,
£oa(e) / (—2im) 192 (™€) u () d = / e=2m€ (9 1ol (900) (),

proving both formulas. m

N.B. The normalization factor ﬁ leads to a simplification in the formulas (4.1.7),
but the most important aspect of these formulas is certainly that the Fourier trans-
formation exchanges the operation of derivation against the operation of multiplica-
tion. For instance if P(D) is given by a formula (3.6.1), we have

Pu(€) = Y an€®u(€) = P(€)u(e).

lal<m
Remark 4.1.6. We have the following continuous inclusions”
2(R") — Z(R") — &R"), (4.1.8)
triggering the (continuous) inclusions of topological duals,
E'(R") — S'(R") — Z'(R"). (4.1.9)

The space ./(R") is the topological dual of the Fréchet space ./(R™) and is called
the space of tempered distributions on R™. We shall sometimes omit the “R"™” in
S (R™), ' (R"™), at least when it is clear that the dimension is fixed equal to n.

The Fourier transformation can be extended to .7/ (R™).

2The first inclusion is certainly sequentially continuous according to the definition 3.1.9 and the
second is an inclusion of Fréchet spaces: for each semi-norm p on &(R™), there exists a semi-norm
g on . (R™) such that for all u € .Z(R"), p(u) < q(u).
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4.1.2 The Fourier transformation on .7'(R")

Definition 4.1.7. Let T be a tempered distribution ; the Fourier transform T of T
1s the tempered distibution defined by the formula

(T, 0) .9 = (T, Q) 1.5. (4.1.10)

The linear form T is obviously a tempered distribution since the Fourier transfor-
mation is continuous on .. Thanks to the lemma 5.1.7, of T € &/, the present
definition of T and (4.1.1) coincide.

Note that for T, € ., we have (T, @) = [[T(z)e %™ 4p(&)dade = (T, $).
This definition gives that R
5o =1, (4.1.11)

since <(5A0, @) = (0o, P) = = [ p(z)dz = (1, ¢).

Theorem 4.1.8. The Fourier transformation is an isomorphism of %' (R™). Let T
be a tempered distribution. Then we have®

H>><

T = (4.1.12)
With obvious notations, we have the following extensions of (4.1.7),
DeT(€) = &7(e),  (DET)(E) = (—1)*T(w)(¢). (4.1.13)

Proof. Using the notation (¢)(z) = p(—x) for ¢ € 7, we define S for S € . by
(see the remark 3.4.4), (S, @) » = (S, 9)9 » and we obtain for T' € .

~ ~ ~

(T, ). = (T, @) 1,0 = (T, Q)50 = (T, Q.0 = (T, 0) 0 5,
where the last equality is due to the fact that ¢ — ¢ commutes® with the Fourier

transform and (4.1.4) means (,2 = ¢, a formula also proven true on .%’ by the previous
line of equality. The formula (4.1.7) is true as well for T' € . since, with ¢ € .%

and @q(§) = £%p(§), we have
(DT, @) 71,9 = (T, (—=1)"'D*®) 51 o = (T, Ga) .10 = (T, 0a) .,
and the other part is proven the same way. O
The following lemma will be useful.

Lemma 4.1.9. Let T € .'(R™) be a homogeneous distribution of degree m. Then
its Fourier transform is a homogeneous distribution of degree —m —n

Proof. We check

. — — n . 1 — (n+m) -
DT = —¢-2T = —(Dy -aT) = ——2T — —(¢-0,T) = — T
(& DT =~ ol = =Dy -al) = =gl = 5 (o 0uT) 2ir
so that the Euler equation (3.4.6) €9:7 = —(n 4+ m)T is satisfied. O

_ ?According to the remark 3.4.4, T is the distribution defined by (T, ¢) = (T, ) and if T € .,
T is also a tempered distribution since ¢ — ¢ is an involutive isomorphism of ..
If p € 7, we have ¢(§) = [ e 2T p(—a)dz = [ ¥ p(x)dr = $(—€) = p(€).
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4.1.3 The Fourier transformation on L'(R")

Theorem 4.1.10. The Fourier transformation is linear continuous from L'(R™)
into L=®(R™) and for u € L'(R™), we have

a(e) = /eﬂmfu(:c)dx, @]l poo @y < ||uf£1Rn)- (4.1.14)

Proof. The formula (4.1.1) can be used to define directly the Fourier transform of
a function in L'(R™) and this gives an L>(R") function which coincides with the
Fourier transform: for a test function ¢ € .(R"), and u € L'(R"), we have by the
definition (4.1.10) above and the Fubini theorem

(t)rnr = [ule)pta)ds = [ [ utyple)e 2o dudg = [T©0(c)at

with a(§) = [ e %™ €u(x)dr which is thus the Fourier transform of w. O

4.1.4 The Fourier transformation on L?(R")

We refer the reader to the section 5.3 in Chapter 5.

4.1.5 Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(z) = 1forz > 0, H(z) =0
for x < 0; it is obviously a tempered distribution, so that we can compute its Fourier
transform. With the notation of this section, we have, with dy the Dirac mass at 0,
H(x) = H(~x),

-~
® —

~ N A~ - ]_ ]_ ~ —_— —_—
H+H=1=4¢y, H— H =sign, — = —20¢(§) = Dsign(§) = &signé
i 2

so that §(sTg\n£ — Lpv(1/€)) = 0 and from the theorem 3.2.8, we get

1
signé — %pv(l/ﬁ) = o,

with ¢ = 0 since the lhs is odd. We obtain

i = —pu- 4.1.15
T = v (4.115)
/;T5 /sign § (4.1.16)
v(—) = —isign 1.
p - gng,
s 11 11
H=—+4+—p(=s) = —. 4.1.17
> Vo) = sy am (4.1.17)
Let us consider now for 0 < a < n the L{ _(R") function u,(z) = |z[*™ (|x| is

the Euclidean norm of z); since u, is also bounded for |z| > 1, it is a tempered
distribution. Let us calculate its Fourier transform v,. Since u, is homogeneous of
degree a — n, we get from the lemma 4.1.9 that v, is a homogeneous distribution
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of degree —a. On the other hand, if S € O(R™) (the orthogonal group), we have in
the distribution sense (see the definition 3.4.3), since u, is a radial function,

0a(5§) = va(§). (4.1.18)

The distribution [£|*v, () is homogeneous of degree 0 on R™\{0} and is also “radial”,
i.e. satisfies (4.1.18). Moreover on R™\{0}, the distribution v, is a C'! function which
coincides with

/ e o () |2 de + 1€ 7Y / e TE| Dy PN (X () ]2 )

where yo € C°(R") is 1 near 0 and x; =1 — xo, N € Nya+1 < 2N. As a result
1€]%va(§) = ¢ on R™\{0} and the distribution on R™ (note that o < n)

T = v(§) — calé]™

is supported in {0} and homogeneous (on R") with degree —ca. From the theorem
3.3.4 and the lemma 3.4.8, the condition 0 < o < n gives v, = ¢, |&|7. To find c,,
we compute

[ e e T B A

which yields

+oo +OO - n—«
2_1F(%)7r_% = / ro~teT ™ dp = Ca/ et g = ca2_1F(n 5 a)ﬂ_T.
0 0

We have proven the following lemma.

Lemma 4.1.11. Let n € N* and a €]0,n[. The function u,(x) = |z|*™ is L}, (R"™)

and also a temperate distribution on R"™. Its Fourier transform v, is also Lj, (R™)
and given by
L)

er(g) = |€|_aﬂ-%_al—\(n—a) )

w‘

4.2 The Poisson summation formula

4.2.1 Wave packets
We define for x € R, (y,n) € R" x R”

pr,n(x) _ 2n/4€—7r(a:—y)2€2i7r(33—y)~77 _ 271/46—7r(r—y—i77)2e—7r'r]27 (421)

where for ¢ = (¢1,...,(,) €C?, (2= Z Cf (4.2.2)

1<j<n

We note that the function ¢, , is in S(R") and with L? norm 1. In fact, ¢, , appears
as a phase translation of a normalized Gaussian. The following lemma introduces
the wave packets transform as a Gabor wavelet.
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Lemma 4.2.1. Let u be a function in the Schwartz class S(R™). We define
(Wu)(y,m) = (u, pyq)L2@mn) = 2”/4/u(x)e_”(x_y)ze_%”(x_y)‘"dx (4.2.3)
= 2"/4/u(m)e‘”(y_i”_x)dee_“”Q. (4.2.4)
For u € L*(R"), the function Tu defined by
(Tu)(y +in) = ™ Wuly, —n) = 2"/ / w(z)e W= gy (4.2.5)

is an entire function. The mapping u — Wu is continuous from S(R") to S(R*")
and isometric from L?*(R™) to L*(R®*"). Moreover, we have the reconstruction for-
mula

u(z) = / / Wy, n) gy n(x)dydn. (4.2.6)
R xR™
Proof. For u in S(R™), we have
Wu(y,n) = ™10 (n, y)

where Q' is the Fourier transform with respect to the first variable of the & (R?")
function Q(z,y) = u(z)e ™@¥*27/4 Thus the function Wu belongs to S(R?"). It
makes sense to compute

Q_N/Q(WU, WU)LQ(]R277,) =

elir& Wz )U(w)e M@=y (o) 20—t %) gy dn e day. (4.2.7)

Now the last integral on R*" converges absolutely and we can use the Fubini theorem.
Integrating with respect to n involves the Fourier transform of a Gaussian function
and we get e e “@1722)”  Gince
20w —y)? + 2(w2 — y)? = (21 + 22 — 29)° + (21 — 22)°,
integrating with respect to y yields a factor 27/2. We are left with
(Wu, Wu) p2meny = h%l u(zy) ﬂ(xg)e_”(““_’32)2/26_”6_“72(’31_“)Qdacldxg. (4.2.8)
€—U4

Changing the variables, the integral is

. _ _e242 2

lim [ u(s+ et/2) U(s — et/2)e ™t 2e™™ dtds = ||u||%2(Rn)

e—04

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-
timate |u(z)] < C(1 + |z])™""! imply, with v = u/C,

lu(s +et/2) v(s —et/2)] < (14 |s+et/2)) " (1 +|s+et/2)) "

< (1+|s+et/2]+ |s—et/2]) !
< (1+2lsh™
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Eventually, this proves that
W |2 gony = llull2gn (4.2.9)

1.e.

W L*(R™) — L*(R*™)  with  W*W = idp2(rn). (4.2.10)

Noticing first that [[ Wu(y,n)p,,dydn belongs to L*(R") (with a norm smaller
than ||Wul|z1ger)) and applying Fubini’s theorem, we get from the polarization of
(4.2.9) for u,v € S(R™),

(U ’U)LQ R™) (WU WU)LQ(RQ")
— [ Wts.m @ 0hgserduin

= (/ WU(y, U)Soy,ndydﬁa U)LQ(R”)7

yielding the result of the lemma u = [ Wu(y,n)p,.,dydn. O

4.2.2 Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions
in one dimension.

Lemma 4.2.2. For all complex numbers z, the following series are absolutely con-

verging and
Z 6771' z+m)? Z efrrm2 2@7rmz (4211)

MmEZ meZ

Proof. We set w(z) = Zme% e~"(=+m)? The function w is entire and 1-periodic since
for all m € Z, z — e "*t"™)" is entire and for R > 0

sup |ef7r(z+m)2| < sup ‘677r22|ef7rm262ﬂ'\m\R c ll(z)

l2I<R l2|<R

Consequently, for z € R, we obtain, expanding w in Fourier series’,

E : Qzﬁkz/ 72i7rkzdx

kEZ

5 Note that we use this expansion only for a C* 1-periodic function. The proof is simple and
requires only to compute 1 +2Re ", ., o €2 = sinm(@N+1)a

<k< <o Then one has to show that for a
smooth 1-periodic function w such that w(0) = 0,

L sin Az

lim - w(z)dzr =0,
A—too Jo sinmx
which is obvious since for a smooth v (here we take v(x) = w(z)/sinnmz) |f0 x)sin Axdx| =
O(A\71) by integration by parts.
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We also check, using Fubini’s theorem on L(0,1) x {*(Z)

1 1
/ w(z)e ke dy = Z / o= m(@+m)? —2irke 7.
0 0

meZ

m+1 )
— E / €f7rt 67217rktdt

mez ™

_ 42 _9; 1.2
—/6 7t e 2imkt —e 7k )
R

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation. O

It is now straightforward to get the n-th dimensional version of the previous
lemma: for all z € C", using the notation (4.2.2), we have

Z e—ﬂ(2+m)2 — Z 6—7rm262i7rm~z. (4212)
mezZn mezZn

Theorem 4.2.3 (The Poisson summation formula). Let n be a positive integer and
u be a function in S(R™). Then we have

> ulk) =Y a(k), (4.2.13)

where @ stands for the Fourier transform of u. In other words the tempered distri-
bution Dy = Y, cyn Ox i such that Dy = D.

Proof. We write, according to (4.2.6) and to Fubini’s theorem

Spezrulk) = > / / Wu(y,n)eyn(k)dydn

kez™

= [[ W) 3 o k)dyan
kezZ™
Now, (4.2.12), (4.2.1) give Y, cyn @yn(k) = Y jczm Gyn(k), so that (4.2.6) and Fu-
bini’s theorem imply the result. O]

4.3 Fourier transformation and convolution

4.3.1 Fourier transformation on &'(R")
Theorem 4.3.1. Let u € &' (R™). Then u is an entire function on C".
Proof. We have for ¢ € Z(R"), according to the definition (3.4.14),

(i, ) = (u, §) = (u(x), / e H T p(€)dE) = (u(x) ® P(€), €72 g1 (rany s (r2m)

= (p(&), {ulx), e™™%)),
a(©)
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an identity which implies © = % and moreover the function @ is indeed entire, since
with ¢ € C", and u(¢) = (u(z), e~27¢) the function @ is C*°(C") from the corollary
3.4.2, and we can check that 0@ = 0 (a direct computation of @(¢+h) —u(¢) provides
elementarily the holomorphy of @). O

Definition 4.3.2. The space Oy (R™) of multipliers of #(R™) is the subspace of the
functions f € &(R™) such that,

Va € N* 3C, > 0,IN, €N, Vr € R", [(0%f)(z)] < Co(1 + |z|)>.  (4.3.1)

It is easy to check that, for f € &) (R"™), the operator u — fu is continuous
from . (R™) into itself, and by transposition from .#’(R") into itself: we have for
T e S (R"), f e OyR),

<fT7 90><7’,,7 - <T7 f()D),S’/,,E’a

and if p is a semi-norm of ., the continuity on .# of the multiplication by f implies
that there exists a semi-norm ¢ on .¥ such that for all ¢ € .77, p(fp) < q(p). A
typical example of a function in @, (R") is e'”(*) where P is a real-valued polynomial:
in fact the derivatives of e’”*) are of type Q(z)e’"™® where @ is a polynomial so
that (4.3.1) holds.

Lemma 4.3.3. Let u € &' (R™). Then @ belongs to Op(R™).
Proof. We have already seen that 4(¢) = (u(x),e "¢} is a smooth function so that
(Deu)(€) = (ul), e~ 2) (~1)

which implies |(Dgu)(£)] < Cosup sy, |05 (e ™ 2*)| < C1(1+|€])™, proving the
e K,
sought result. ’ O

4.3.2 Convolution and Fourier transformation

Theorem 4.3.4. Let u € ' (R"),v € &' (R"™). Then the convolution u x v belongs
to . (R™) and

—

U* 0 = Uv. (4.3.2)

N.B. We note that both sides of the equality (4.3.2) make sense since the lhs is the
Fourier transform of u v which belongs to .#(this has to be proven) and v belongs
to Oy (R™) so that the product of @ € .’ with v makes sense.

Proof. Let us prove first that u x v belongs to .. We have for ¢ € Z(R") and
X € Z2(R") equal to 1 near the support of v,

(uxv, 90>.@’(R"),.@(R") = (u(r) @ v(y), p(x + y)X(?J»@/(RZn),@(R%)-

Now if ¢ € .#(R") the function (z,y) — @(z+y)x(y) = ®(x,y) belongs to .7 (R*"):
it is a smooth function and z%y%97 00® is a linear combination of terms of type

(4 1) (0" ) (z + y)y* (0"X) (y)
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which are bounded as product of bounded terms. Moreover, if ® € #(R?"), the
function ¢ (x) = (v(y), (z,y)) is smooth (see the corollary 3.4.2(2)) and belongs to
S (R") since 2*(0%)(x) = (v(y), 0P ®(x,y)) and for some compact subset Ky of
Rn

Y

|2*(070) ()] = [(v(y), 207 (x,y))| < C Sup (2070, (2, y)| = p(P),

where p is a semi-norm on . (R?"). As a result, we can extend u* v to a continuous
linear form on .(R™) so that u x v € .%/(R"). Let w € .’ such® that @ = 40. For
v € L(R"), we have

(W, 0) 1. = (G0, D) 51 5 = {11, DD) 157

On the other hand, we have

§OHE) = (vla).e ) [ o)™y = (o(a) @ (), 70 9)

= (v(x), {p(y), ™)) = (v(x), ((y), e WY = (v §)(8),
so that

—

(w, ) = (@, (v* @) = (4,0 *¢g) = (u(—x), (v(x —y), o(=y)))
= (u(x), (v(y — ), p(y))) = ((uxv),¥),
which gives w = u % v and (4.3.2). O

4.3.3 The Riemann-Lebesgue lemma

Lemma 4.3.5. Let u € L*(R"). Then from (4.1.14) @(§) = [ e ?™Sy(z)dx; more-
over U belongs to C?o) (R™), where C(OO) (R™) stands for the space of continuous func-
tions on R™ tending to 0 at infinity. In particular 4 is uniformly continuous.

Proof. This follows from the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in
[9]); moreover,

(€ + h) — i(6)] = / ju(@)je=2" — 1|dz = 0, (h),

and the Lebesgue dominated convergence theorem implies that lim, o 0,(h) = 0,
implying as well the uniform continuity. O]

4.4 Some fundamental solutions

4.4.1 The heat equation

The heat operator is the following constant coefficient differential operator on R; x R”
O — Ay, (4.4.1)

where the Laplace operator A, on R" is defined by (3.6.3).

6Take w = 41 .
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Theorem 4.4.1. We define on R; x R” the L]

loe function

IOCI

E(t,x) = (4mt) ™2 H(t)e . (4.4.2)
The function E is C* on the complement of {(0,0)} in R x R™. The function E is
a fundamental solution of the heat equation, i.e. OLFE — AL E = dp(t) @ do(x).

Proof. To prove that E € L (R"™), we calculate for T' > 0,

T +o0 2 +o0
/ / t2p e T dtdr / / tn/2gn—1y(n= 1)/2,0" Le=p 2t1/2dtd,0
o Jo

2t1/2
+00 )
= 2”T/ P e dp < 4o0.
0

Moreover, the function E is obviously analytic on the open subset of R'*" {(¢,z) €
R x R™ ¢t # 0}. Let us prove that E is C* on R x (R™\{0}). With p, defined in
(3.1.1), the function p; defined by p;(t) = H(t)t™/2py(t) is also C*> on R and
|ZE|2 |{L‘|2 n/2__ el o 2 g 2 4t
E(t, x) :H(E)(E) e i |z ? = Jaf Zpi (| |2)

which is indeed smooth on R; x (R”\{0}). We want to solve the equation dyu—A,u =
80(t)do(z). If u belongs to ./ (R™*!), we can consider its Fourier transform v with
respect to x (well-defined by transposition as the Fourier transform in (4.1.10)), and
we end-up with the simple ODE with parameters on v,

O + AT €20 = So(t). (4.4.3)

It remains to determine a fundamental solution of that ODE: we have

d A= d et d +A) (e H(t) = (e‘tkietk)(e_t’\ﬂ(t)) = do(t), (4.4.4)

dt dt (dt dt

so that we can take v = H(t)e ™€ which belongs to .#(R, x Rg). Taking
the inverse Fourier transform with respect to £ of both sides of (4.4.3) gives” with
ue S (Ry x RY)

Oru — Ayu = do(t) ® dp(x). (4.4.5)

To compute u, we check with ¢ € Z(R), 1 € Z(R"),

Y oo 2 2
(e h) = (@) = ped) = [ [ pbiee ™ e

We can use the Fubini theorem in that absolutely converging integral and use (4.1.2)
to get

i) = [ olo) [ amy e v ) = (o e d)

where the last equality is due to the Fubini theorem and the local integrability of
E. We have thus E = u and FE satisfies (4.4.5). The proof is complete. O

"The Fourier transformation obviously respects the tensor products.
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Corollary 4.4.2. The heat equation is C™ hypoelliptic (see the definition 3.6.4)
in particular for w € 2'(RY™™),

singsupp w C singsupp(d,w — A, w),
where singsupp stands for the C™ singular support as defined by (3.1.9).

Proof. 1t is an immediate consequence of the theorem 3.6.5, since E is C* outside
zero from the previous theorem. O]

Remark 4.4.3. It is also possible to define the analytic singular support of a dis-
tribution 7" in an open subset €2 of R™: we define

singsupp 41" = {z € Q,VUopen € ¥, Tiy ¢ A(U)}, (4.4.6)

where A(U) stands for the analytic® functions on the open set U. It is a consequence”
of the proof of theorem 4.4.1 that

singsupp 4 £ = {0} x RY. (4.4.7)
In particular this implies that the heat equation is not analytic-hypoelliptic since

{0} x R? = singsupp 4 F ¢ singsupp 4(0:E — A, E) = singsupp 4 dg = {Ogi+n }.

4.4.2 The Schrodinger equation

We move forward now with the Schrédinger equation,

1o

A 4.4,
i Ot * (4.4.8)

which looks similar to the heat equation, but which is in fact drastically different.

Lemma 4.4.4.
oo x |22
PR / eI =DF (4t) 02 ( / @(t,@ewdx) dt = (E,®)  (4.4.9)
0 n

is a distribution in R™! of order < n + 2.

8A function f is said to be analytic on an open subset U of R™ if it is C°°(U), and for each
xo € U there exists r9 > 0 such that B(xg,r9) C U and

Vo € Blaoro), flo)= Y é@g‘f(xo)(x — )

aeN"®

In fact, in the theorem, we have noted the obvious inclusion singsupp 4 £ C {0} x R”, but
since F is C*° in ¢ # 0, vanishes identically on ¢ < 0, is positive ( it means > 0) on ¢ > 0, it cannot
be analytic near any point of {0} x RZ.
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Proof. Let ® € 2(R x R"); for t > 0 we have, using (4.6.7),

e—i(n—Q)% (47Tt)_n/2 /

so that with N 3 72 even > n, using (4.1.7) and (4.1.14),

.l 2 A .
@(t,x)ez%dm = z/ (I)x(t7§)@—4“r2t|€|2d£’

n n

<sup [ |(t,€)|d¢

t>0 JRrRn

sup (e
>0

.xz
—i(n= )%(47#) ”/2/ @(t,x)el%dm

< SHP/(l +1E%) 2] (L4 [€2)™2 @(t, €)|d < Cpmax |95 @] oo (gns)-
t>0 N— lo| <7

polynomial

As a result the mapping

PR - / —=DF (4rt) T2 ( / @(t,x)e’udJE) dt = (E, ®)

is a distribution of order < n + 2. O

Theorem 4.4.5. The distribution E given by (4.4.9) is a fundamental solution of
the Schrodinger equation, i.e. 21O,E — AyE = &(t) ® 6o(x). Moreover, E is smooth
on the open set {t # 0} and equal there to

e—i(n—2)§H(t)<47rt) n/2€ B (4.4.10)

The distribution E is the partial Fourier transform with respect to the variable x of
the L>(R™) function
E(t,&) = iH(t)e ¥ teP, (4.4.11)

Proof. We want to solve the equation —idyu — Au = 6o(t)do(z). If u belongs to
S'(R™1), we can consider its Fourier transform v with respect to = (well-defined by
transposition as the Fourier transform in (4.1.10)), and we end-up with the simple
ODE with parameters on v,

O + 1472 |E v = 00 (t). (4.4.12)
Using the identity (4.4.4), we see that we can take v = i H (t)e "¢ which belongs

to (R x R¢). Taking the inverse Fourier transform with respect to £ of both sides
of (4.4.12) gives with u € /(R x R})

Oru — iAyu = 10p(t) ® do(z) 1i.e. %@u — Ayu = 0p(t) @ do(z). (4.4.13)

To compute u, we check with ¢ € Z(R), 1 € Z(R"),

(e 0) = @ ped) = ped) =i [ o0 ([ dQemita) a
’ - (L4.14)
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We note now that, using (4.6.7) and (4.1.10), for ¢ > 0,

DO g =i [ i) (drt) V2 dre

R

. T .|z 2
= 7= T (4rt) /2 / el%w(x)da:.

As a result, u is a distribution on R™"*! defined by

(1, BY = e~=DF (47) 02 / g2 < / cp(t,x)ezb'tdx) it
O n

and coincides with F, so that E satisfies (4.4.13). The identity (4.4.14) is proving
(4.4.11). The proof of the theorem is complete. O

Remark 4.4.6. The fundamental solution of the Schrodinger equation is unbounded
near t = 0 and, since E is smooth on t # 0, its C* singular support is equal to
{0} x R”. In particular, the Schrédinger equation is not hypoelliptic. We shall see
that it looks like a propagation equation with an infinite speed, or more precisely
with a speed depending on the frequency of the wave.

4.4.3 The wave equation
Presentation

The wave equation in d dimensions with speed of propagation ¢ > 0, is given by the
operator on R; x R4

0. = ¢ 207 — A,. (4.4.15)

We want to solve the equation ¢=20?u — A,u = §y(t)do(x). If u belongs to ./ (RI11),
we can consider its Fourier transform v with respect to z, and we end-up with the
ODE with parameters on v,

20 + A |€Pv = So(t),  OPv +4Am AR E)Pv = 26(t). (4.4.16)

Lemma 4.4.7. Let A, u € C. A fundamental solution of Py, = (& — X)(4 —p) (on
the real line) is

et)\ _ et,u,
(5O ford#p (1.4.17)
te H (t) for A = p.
Proof. If X\ # p, to solve (4 — X)(4£ — p) = &(t), the method of variation of

parameters gives a solution a(t)e + b(t)e* with

e et a\ (0 N ay
e pett J\b) T \& b)
which gives also the result for A = p by differentiation with respect to A of the
identity P, (e — ") = (A — p)é. O

1 0
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Going back to the wave equation, we can take v as the temperate distribution'’

given by
p2imet|é] _ o—2imet€| _ 2 sin(27rct|§|)
dimclé| 2mel¢|

v(t, &) = *H(t) (4.4.18)

Taking the inverse Fourier transform with respect to £ of both sides of (4.4.16) gives
with u € .7/(R; x R{)

207 — Agu = 6o(t) @ do(). (4.4.19)
To compute u, we check with ® € Z(R*?),
Feo . sin(2mct[¢]
(0, BY = (5°(£, €), / / B ( #dfdt. (4.4.20)

We have found an expression for a fundamental solution of the wave equation in d
space dimensions and proven the following proposition.

Proposition 4.4.8. Let E, be the temperate distribution on R such that

sin (2mct[¢])

B (€)= cH(?) el (4.4.21)

Then E. is a fundamental solution of the wave equation (4.4.15), i.e. satisfies
DCE+ = (SU(t) (%9 50(.]7)
Remark 4.4.9. Defining the forward-light-cone I'; . as

Iyo={(t,r) € R xR ct > ||}, (4.4.22)

one can prove more precisely that F, is the only fundamental solution with support
in {t > 0} and that

supp B, =Ty, when d =1 and d > 2 is even, (4.4.23)
supp £, = 0I'y, when d > 3 is odd, (4.4.24)
singsupp £, = 0I',, in any dimension. (4.4.25)

Lemma 4.4.10. Let E,, E5 be fundamental solutions of the wave equation such that
supp By C I'y .,supp By C {t > 0}. Then E, = E».

Proof. Defining u = F1 — E5, we have suppu C {t > 0} and the mapping
{t>0} xTy.3 ((t,2),(s,y) — (t+s,z+y) € R
is proper since
t,s>0,es > |y, [t+s| <T,|Jx+y| < R=t,se[0,T)],|z]| <R+cT,|y|l < T,
so that the section 3.5.3 allows to perform the following calculations

u=ux0g=ux. B, =0ux FE; =0. O

0The function R 3 s +— 528 = Zk>0(—1)k% = S(s?) is a smooth bounded function of

52, so that v(t,&) = 2 H(t)tS(4n%c2t%|¢|?) is continuous and such that |v(t,€)| < CtH(t), thus a
tempered distribution.
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The wave equation in one space dimension

Theorem 4.4.11. On R; x R, the only fundamental solution of the wave equation
supported in I'y . 1s

B (t,z) = gH(ct ~z)). (4.4.26)

where E is defined in (4.4.21). That fundamental solution is bounded and the
properties (4.4.23), (4.4.25) are satisfied.

Proof. We have ¢ 20} — 92 = (¢7'0, — 0,)(c™'0, + 0,) and changing (linearly) the
variables with x; = ¢t + z, 29 = ¢t — x, we have t = 2%(961 + z3),x = %(ml — X3),
using the notation

(x1,22) — (t,x) — u(t,z) = v(xy, z2),

ou v ov Ou Ov v 1 B _1 B
5 = 8xlc+ 95" 95 om  my © Oy — Op = 204,,¢ 0y + 0y = 20,,,

and thus O, = 4%{2%2, so that a fundamental solution is v = }lH(ml)H(xg). We
have now to pull-back this distribution by the linear mapping (¢, z) +— (z1,x2): we
have the formula

0%v

e 4—
©(0,0) <a$la$2

(x1,m2), (21, 22)) = ((Oeu)(t, z), p(ct + z,ct — x))2c

which gives the fundamental solution 2 H (ct+x)H (ct —x) = $H(ct — |z|). Moreover
that fundamental solution is supported in I'; . and since E, is supported in {¢ > 0},
we can apply the lemma 4.4.10 to get their equality. O

The wave equation in two space dimensions
We consider (4.4.15) with d = 2, i.e. O, = ¢7207 — 92, — 92,.

Theorem 4.4.12. On R; x R2, the only fundamental solution of the wave equation
supported in I'y . is

c _
E. (t,z) = %H(ct — |z])(** = |z|?) V2, (4.4.27)

where Ey is defined in (4.4.21). That fundamental solution is L} . and the properties
(4.4.23), (4.4.25) are satisfied.

Proof. From the lemma 4.4.10, it is enough to prove that the rhs of (4.4.27) is
indeed a fundamental solution. The function E(t,z) = = H (ct — |z])(c*t* — |z[?) /2
is locally integrable in R x R? since

T ct T
/ / (Pt — ) VPrdrdt = / (P2 — P27 =0t = ¢T?/2 < +o0.
o Jo 0

Moreover E is homogeneous of degree —1, so that [I.E is homogeneous with degree
—3 and supported in I'y .. We use now the independently proven three-dimensional
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case (theorem 4.4.13). We define with E 3 given by (4.4.29), ¢ € (R}, ..).x €
Z(R) with x(0) =1,

(U, ©) 9 (r3), 9(RS) = 1im(E+ 35 90(15, 71, T2) ® X(€23)) 9 (r2), 2(R4)

= lim — /// vt x3, ik x2)X(€I3)dI’1d$2dl’3
R3

a:'1+:z:2+:r3

71 s xXr .'L'2 Xr1,T
/// VI TG T 00 22) e des (= e\ a2 1 a2)
R2, . x{z3>0} N

T1,T2

t 1
— /// M_(C%Q — 2% — 22)7V22 2t dx daydt
RZ | 2, X{ct>4 /x3+x3} ct 2
/// o(t, x1,29)(c 22 :L’2) 1/2dx1dx2dt
R2 x2x{ct>\/x1+$2}

= <E, @)@’(Rg’),@(ﬂ@% so that F = u.

With 0.4 standing for the wave operator in d dimensions with speed ¢, we have,
since

Oes(p(t, 1, 22) @ x(ex3)) = Oea(p(t, 1, 22)) @ x(ex3) — @(t, 21, 22)€”X" (€x3)
(e, 0) = (B 5, (Le29) (8, 21, 22) © x(exs))
= hm((EJr 3, 0es(@(t, 21, 2) @ x(€e23)))) + (Ey3, (¢, 21, x2)€2x"(ex3)>>

= (10<0’ 07 0)7
which gives [, F = [.ou = dg rs and the result. O

The wave equation in three space dimensions
We consider (4.4.15) with d = 3, i.e. O, = ¢ 207 — 02, — 02, — 02,.

Theorem 4.4.13. On R; x R3, the only fundamental solution of the wave equation
supported in I'y . is

1
B (t,x) = p |50R( —ca|), (4.4.28)
. for @ € DR, x RY), (E.,®) _/ L ol o)de. (4.4.29)
s 4|z

where Ey is defined in (4.4.21). The properties (4.4.24), (4.4.25) are satisfied.

Proof. The formula (4.4.29) is defining a Radon measure F with support oI'; .,
so that the last statements of the lemmas are clear. From the lemma 4.4.10, it is
enough to prove that (4.4.29) defines indeed a fundamental solution. We check for
v € 2(R),% € 2(R%)

(OLE, o(0) © () = {5, Dulip © )
== [l (e o) ~ ol e (Av) @) de
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If we assume that supp ¢ C R7, we get

[ lal et e @w) @) = [ el (e o)) bla)da
- /RB((T_IQO(C_IT))”+27“_1(7“_130(0_17“))/)1/1(@611: (r = |2])
= [ (@) (r e (e r)e 4 2= e e 4 2 (e )
2l (e 27"_1(—7“_2)g0(c_1r)>dx,
which gives (0.E, ¢(t) ® ¥(z)) = 0. As a result,

supp(.F) C OI'y . N {t <0} = {(Og, Ors)},

and since E is homogeneous with degree —2, the distribution [J.£ is homogeneous
with degree —4 with support at the origin of R*: the lemma 3.4.8 and the theorem
3.3.4 imply that O.E = kdogs. To check that k = 1, we calculate for ¢ € Z(R)
(noting that [t| < C' and |z| < c|t| + 1 implies |z] < cC + 1)

1 [t oo

O.F,0t)®1) = — r e 2" (¢ rtdran = "(rYrdr

2 1 ¥ 2
T™Jo 0

- Wi - [ e = 9l0),

so that k = 1 and the theorem is proven. O]

4.5 Periodic distributions

4.5.1 The Dirichlet kernel
For N € N| the Dirichlet kernel Dy is defined on R by

) ) ) 2itNx __ 1
DN(.I') _ Z 6217714336 —1+42Re Z eQzﬂ'kx — 14+2Re <e2mx€ )

~~~ e?iwx -1
—N<k<N 1<k<N 2z
=142 Re(e%ﬂx—mx-i-me) SH‘I(T( LC) =1+ 2COS(7T(N + 1)1’) SH‘I(T(' :L‘)
sin(mz) sin(mx)
1 . _ sin(wx(?N + 1))
=14+ ——( IN 4+ 1)) — ) = |
" sin(7z) sm(mc( * >) sin(mz) sin(mx)

and extending by continuity at x € Z that 1-periodic function, we find that
sin(mz(2N + 1))

sin(mx)

DN(I) =

(4.5.1)

Now, for a 1-periodic v € C*(R), with

(Dn *xu)(z) = /o Dy (xz — t)u(t)dt, (4.5.2)
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we have

Vi Do — o(t)dt = ofa) + Jim Lsin(rean + 1) 8 S‘irfzw—t)v@))

dt,

and the function 0, given by 0, (t) = 22=9=2@) i continuous on [0, 1], and from the

sin(7rt)
Riemann-Lebesgue lemma 4.3.5, we obtain

1

: 2imkx —27Z7rkrt o

Nl—lg}oo g e /Oe t)dt = Nl—lg-loo/ Dy(z —t)v(t)dt = v(x).
—~N<k<N

On the other hand if v is 1-periodic and C'*!, the Fourier coefficient

I 1 4 1y
cx(v) :/ e~ 2Ry () dt T ,—[e‘katv(t)]EZ?—l—/ ——e 2k (1)dt, (4.5.3)
0 o 2imk

and iterating the integration by parts, we find c,(v) = O(k717!) so that for a 1-
periodic C? function v, we have

Z e e (v) = v(x). (4.5.4)

keZ

4.5.2 Pointwise convergence of Fourier series

Lemma 4.5.1. Let u: R — R be a I-periodic L}, (R) function and let zq € [0, 1].
Let us assume that there exists wy € R such that the Dini condition is satisfied, i.e.

dt < +o0. (4.5.5)

/1/2 |u(zo +t) + u(xg — t) — 2w
t
0

Then, im0 D jp1<n cp(u)e2m™ o =y with ci(u) = fol e 2mtky (t)dt.

Proof. Using the calculations of the previous section 4.5.1, we find

D> cx(w)e™ ™ = (D % u)(wo) = wo + / sin(rt(2N + 1))

: u(xg —t) — wp)dt,
k|<N 0 sin(7t) ( (0 =) 0)

so that, using the periodicity of u and the fact that Dy is an even function , we get

Y2 sin(mt(2N + 1))

sin(7t)

(Dn xu)(zg) —wp = / (u(mo —t) + u(mo + t) — 2wp)dt.
0
u(xg —t) + u(zg +t) — 2wy
sin(7rt)
belongs to L'(R) and the Riemann-Lebesgue lemma 4.3.5 gives the conclusion. [

Thanks to the hypothesis (4.5.5), the function t — 1 11(¢)
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Theorem 4.5.2. Let u: R — R be a I-periodic Lj,, function.

(1) Let zy € [0,1],wy € R. We define wyyw,(t) = |u(xo +t) + u(xo — t) — 2wy| and
we assume that

on,wo(t)T < 4o00. (4.5.6)
0

Then the Fourier series (Dy * u)(zg) converges with limit wy. In particular, if
(4.5.6) is satisfied with wy = u(xy), the Fourier series (Dx x u)(xg) converges with
limit u(xg). If u has a left and right limit at o and is such that (4.5.6) is satisfied
with wy = 1 (u(xg + 0) + u(zg — 0)), the Fourier series (Dy * u)(zo) converges with
limit § (u(zo — 0) + u(zo + 0)).

(2) If the function u is Holder-continuous'', the Fourier series (Dy*u)(x) converges
for all x € R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at each
point, the Fourier series (Dy *u)(z) converges for all x € R with limit 1 (u(z—0)+
u(z +0)).

Proof. (1) follows from the lemma 4.5.1; to obtain (2), we note that for a Holder
continuous function of index 6 €]0, 1], we have for ¢ €]0,1/2]

t  wp ) (t) < Ot e LY([0,1/2)).
If u has a right-derivative at xg, it means that

u(zg + t) = u(zo + 0) + ul(wo)t + teo(t), th%l eo(t) = 0.
—04
As a consequence, for t €]0,1/2], t~Hu(z +t) — u(zo + 0)| < |ul(20) + €0(t)]. Since
limg o, €o(t) = 0, there exists Ty €]0,1/2] such that |eo(t)] < 1 for t € [0,Ty]. As a
result, we have

1/2
/ tHu(wo +t) — u(ze + 0)|dt
0

T 1/2
< / (|ul(z0)| + 1)dt +/ lu(xo +t) — u(zo + 0)|dtTy * < +oo,
0 i
oc- The integral f01/2 tHu(zg — t) — u(zg — 0)|dt is also finite and
the condition (4.5.6) holds with wy = (u(zo — 0) + u(zy + 0)). The proof of the
lemma is complete. [

since w is also Ll

4.5.3 Periodic distributions

We consider now a distribution u on R™ which is periodic with periods Z". Let
X € C*(R™) such that y =1 on [0,1]™. Then the function y; defined by

xi(x) =Y x(@—k)

keZn

11 Hélder-continuity of index 6 €]0, 1] means that 3C > 0,Vt, s, |u(t) — u(s)| < C|t — s|°.
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is C* periodic'? with periods Z". Moreover since R" > x € [[,;, [E(x;), E(x;)+1],
the bounded function x; is also bounded from below and such that 1 < y;(z). With
Xo = X/X1, we have

Y o xolz—k) =1, xo€CZR).

kezZm™

For ¢ € C2°(R™), we have from the periodicity of u

() = 3 (@), ple)vole — k) = S {u(), (@ + k)xo()),

kezn keZmn

where the sums are finite. Now if ¢ € (R"™), we have, since o is compactly
supported in |z| < Ry,

(u(@), p(@ +k)xo(@)| < Co  sup [ (z + k)

|| <No,|z|<Ro

<Co sup |(1+Ro+|z+k)" o (@ +k)|(1+ k)"
|a|<No,|z|<Ro

< pol) (1 + k)

where py is a semi-norm of ¢ (independent of k). As a result u is a tempered
distribution and we have for ¢ € ./ (R"™),

—,_/
kezr ) kezr
Now we see that i, (k) = = [ano(z 4+ t)xo(z)e 2™ dt = xo(z)e*™ o (k), so that

(U, ) = D pezn (u(z), Xo( )e2mRey o (k )Whlch means

u(x) = Z <u(t)7 Xo(t)em‘wkt>e—2i7rkx _ Z (u(t), XO(t)e‘””“}e”””.

kEZ" keZn

Theorem 4.5.3. Let u be a periodic distribution on R™ with periods Z". Then u is a
tempered distribution and if xo is a C°(R") function such that ), ;. Xo(r—k) =1,
we have

u= Z cp(u)e* ™, (4.5.7)

i=> cp(u)dp, with cp(u) = (ult), xo(t)e > ™), (4.5.8)

and convergence in ' (R™). If u is in C™(R™) with m > n, the previous formulas
hold with uniform convergence for (4.5.7) and

cx(u) :/ u(t)e 2 dt (4.5.9)
[0 l]n

12Note that the sum is locally finite since for K compact subset of R", (K — k) N supp xo = 0
except for a finite subset of k € Z™.
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Proof. The first statements are already proven and the calculation of % is immediate.
If u belongs to Li,, we can redo the calculations above choosing xo = 1j1» and get
(4.5.7) with ¢ given by (4.5.9). Moreover, if u is in C™ with m > n, we get by
integration by parts that cg(u) is O(|k|™™) so that the series (4.5.7) is uniformly

converging. O

Theorem 4.5.4. Let u be a periodic distribution on R™ with periods Z™. If u € L?
(i.e. w € L*(T™) with T" = (R/Z)"), then

u(zx) = Z cr(u)e® ™ with ¢ (u) :/ u(t)e 2 qt, (4.5.10)

and convergence in L*(T™). Moreover ||u||%2(w) = > ez lce(w)|?. Conversely, if the

coefficients ci(u) defined by (4.5.8) are in (*(Z"), the distribution u is L*(T")

Proof. As said above the formula for the ¢ (u) follows from changing the choice of
Xo to 1j1» in the discussion preceding the theorem 4.5.3. The formula (4.5.7) gives
the convergence in .”/(R™) to u. Now, since f[0,1]n e2im(k=t gt — Ox,; we see from the
theorem 4.5.3 that for u € C"*H(T"), (u, u)p2(tn) = Y pezn |cr(w)]?. As a consequence
the mapping L*(T") > u +— (cx(u))pezn € (*(Z™) is isometric with a range containing
the dense subset (1(Z") (if (cx(u))rezn € €*(Z™), u is a continuous function); since
the range is closed, the mapping is onto and is an isometric isomorphism from the
open mapping theorem. O

4.6 Appendix

4.6.1 The logarithm of a nonsingular symmetric matrix

The set C\R_ is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z € C\R_ by the formula

Y
Logz = j[{,z] C (4.6.1)

The function Log is holomorphic on C\R_ and we have Logz = Inz for z € R,
and by analytic continuation e°6* = z for 2 € C\R_. We get also by analytic
continuation, that Loge® = z for | Im 2| < 7.

Let T be the set of symmetric nonsingular n X n matrices with complex entries
and nonnegative real part. The set T, is star-shaped with respect to the Id: for
A€ Ty, thesegment [1,A] = ((1—¢)1d —|—tA)t€[071} is obviously made with symmetric
matrices with nonnegative real part which are invertible'?, since for 0 < t < 1,
Re ((1 —¢)Id+tA) > (1 —¢)Id > 0 and for t = 1, A is assumed to be invertible.
We can now define for A € T

Log A = /1(,4 — (I +#A-1))""dt, (4.6.2)

3Note that a symmetric matrix B with a positive-definite real part is indeed invertible since for
u € C", Bu = 0 implies 0 = Re(Bu,u) = ((Re B)u, @) > co||u||? with ¢y > 0 and thus u = 0.
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We note that A commutes with (I + sA) (and thus with Log A), so that, for 6 > 0,

1
d% Log(A+0I) = / (I+t(A+01—1))""dt
0

1
—/ (A+ 01— I)t(I+t(A+0I — 1)) "dt,
0
and since < {(I—i—t(A—i—G[ 0)" 1}:—([+t(A+9[—I))_2(A+«9[—[),Weobtain

by integration by parts - Log(A + 6I) = (A + 6I)~". As a result, we find that for
0 >0,A € T, since all the matrices involved are commuting,

d
do

so that, using the limit § — 400, we get that VA € Y, ,V0 > 0, elos(A+0D) — (A407),
and by continuity

VAeY,, "4 =A  whichimplies detA = eracclos4 (4.6.3)
Using (4.6.3), we can define for A € T, using (4.6.2)
(detA)—l/Q e 1traceLogA |detA| 1/2 7Im(traceLogA)‘ (464)

((A—f—gl) 1 Log(A—I—@I)) _ 0,

e When A is a positive definite matrix, Log A4 is real-valued and (det A)~/2 =
| det A|71/2.

e When A = —iB where B is a real nonsingular symmetric matrix, we note that
B = PD'P with P € O(n) and D diagonal. We see directly on the formulas
(4.6.2),(4.6.1) that

Log A = Log(—iB) = P(Log(—iD))'P, traceLog A = trace Log(—iD)

and thus, with (p;) the (real) eigenvalues of B, we have Im (trace Log A) =
Im )", i, Log(—ip;), where the last Log is given by (4.6.1). Finally we get,

Im (trace Log A) = —— Z sign p1; = ——s1gnB
1<]<n
where sign B is the signature of B. As a result, we have when A = —iB, B
real symmetric nonsingular matrix
(det A)~Y/2 = | det A| 7125518004 — | det B| /26 15180 B, (4.6.5)

4.6.2 Fourier transform of Gaussian functions

Proposition 4.6.1. Let A be a symmetric nonsingular n X n matriz with complex
entries such that Re A > 0. We define the Gaussian function vq on R™ by va(z) =

e~™A%2)  The Fourier transform of va is

Ta(€) = (det A)"V/2emmATED), (4.6.6)
where (det A)~Y/2 is defined according to the formula (4.6.4). In particular, when
A = —iB with a symmetric real nonsingular matriz B, we get

Fourier(¢™ B> (&) = 05(¢) = | det B| /26 sign Be—im(B7168) (4.6.7)
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Proof. Let us define T7 as the set of symmetric n X n complex matrices with a
positive definite real part (naturally these matrices are nonsingular since Az = 0 for
x € C" implies 0 = Re(Az,7) = ((Re A)x, z), so that T3 C T,).

Let us assume first that A € T7; then the function v, is in the Schwartz class
(and so is its Fourier transform). The set Y% is an open convex subset of C"("1)/2
and the function Y% 3 A — v;(¢) is holomorphic and given on T* N R"+D/2 by
(4.6.6). On the other hand the function T% 3 A r e 3 tracelogAe—m(ATI60) g g0
holomorphic and coincides with previous one on R™™*1/2 By analytic continuation
this proves (4.6.6) for A € T7.

If Ae T, and ¢ € S(R"), we have (U4, )9 .» = [va(z)p(x)dz so that
T, > A (Ua,¢p) is continuous and thus (note that the mapping A — A~! is an
homeomorphism of T ), using the previous result on 1%,

— . — . —LtraceLo € —T el)™
(U, 0) = Jim (T, p) = Jim [ e stmeetostitele e, (¢)dg

1 —
(by continuity of Log on YT, and domin. cv.) = /6_2traceLogA€_7r<A lf@gp({)d{,

which is the sought result. O]
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