
Chapter 3

Introduction to the Theory of
Distributions

3.1 Test Functions and Distributions

3.1.1 Smooth compactly supported functions

Let Ω be an open subset of Rn; we define C∞
c (Ω) as the vector space of complex-

valued compactly supported functions defined on Ω. Even in the case n = 1 and
Ω = R, it is not completely obvious that this space is not reduced to {0}. We leave
to the reader as an exercise to check that the function

ρ0(t) =

{
e−t

−1
if t > 0,

0 if t ≤ 0,
(3.1.1)

is a C∞ function on R. Starting with ρ0, we may define a function ρ on Rn by

ρ(x) = ρ0(1− ‖x‖2) (3.1.2)

and we see right away that ρ ∈ C∞
c (Rn) with supp ρ = B̄(0, 1). Here we have defined

the support of ρ as the closure of the set {x ∈ Rn, ρ(x) 6= 0}. Although that
definition is fine when we deal with a continuous function, it will produce strange
results if we want to define the support of a function in L1(R): for instance the
characteristic function of Q is 0 a.e. and thus 0 as a function of L1(R), nevertheless
the above set is R. It is better to use the following definition, say for a function in
u ∈ L1

loc(Ω), Ω open subset of Rn:

suppu = {x ∈ Ω, 6 ∃Uopen ∈ Vx, u|U = 0}, (suppu)c = {x ∈ Ω,∃Uopen ∈ Vx, u|U = 0}.
(3.1.3)

The above definition makes sense for an L1
loc function with u|U = 0 meaning u = 0

a.e. in U . The smooth compactly supported functions are very useful as mollifiers,
as shown by the next proposition.

Proposition 3.1.1. Let φ ∈ C∞
c (Rn) with

∫
Rn φ(x)dx = 1. For ε > 0, we define

φε(x) = ε−nφ(xε−1). Then, if f ∈ Cm
c (Rn), limε→0+ φε ∗ f = f (convergence in

Cm
c (Rn)) and if f ∈ Lp(Rn) with 1 ≤ p < +∞, limε→0+ φε ∗ f = f (convergence in

Lp(Rn)). In both cases the function φε ∗ f is C∞.
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Proof. We write

(φε ∗ f)(x)− f(x) =

∫
φε(x− y)f(y)dy − f(x) =

∫
φ(y)

(
f(x− εy)− f(x)

)
dy,

so that, if suppφ ⊂ B̄(0, R0),

|(φε ∗ f)(x)− f(x)| ≤
∫
|φ(y)|dy sup

|x1−x2|≤εR0

|f(x1)− f(x2)|.

The function f is continuous and compactly supported, so is uniformly continuous
on Rn (an easy consequence of the Heine theorem 1.5.10), thus

lim
ε→0+

(
sup
x∈Rn

|(φε ∗ f)(x)− f(x)|
)

= 0,

yielding the uniform convergence of φε ∗ f towards f . If f is Cm
c , a simple dif-

ferentiation under the integral sign (see e.g. the Théorème 3.3.2. in [9]) gives as
well the uniform convergence of the derivatives, up to order m. The smoothness
of φε ∗ f for ε > 0 is due to the same theorem when f ∈ Cm

c (Rn), since we have
(φε ∗ f)(x) =

∫
φε(x− y)f(y)dy.

Remark 3.1.2. We have not defined a topology on the vector space Cm
c (Rn), but at

the moment it will be enough for us to say that a sequence (uk)k∈N of functions in
Cm
c (Rn) is converging if it converges in Cm(Rn) and if there exists a compact set K

such that, for all k ∈ N, suppuk ⊂ K.

We note in particular that these conditions are satisfied by the “sequences”
(φε ∗ f)ε>0 since for ε ≤ 1, supp(φε ∗ f) ⊂ supp f + suppφε ⊂ supp f + suppφ.

Let us now take f ∈ Lp(Rn) with 1 ≤ p <∞. With ψ ∈ C0
c (Rn), we have

f ∗ φε − f = (f − ψ) ∗ φε + ψ ∗ φε − ψ + ψ − f,

so that

‖f ∗ φε − f‖Lp(Rn) ≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn) + ‖ψ ∗ φε − ψ‖Lp(Rn)

≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn) + | suppφ+ ε|︸ ︷︷ ︸
Lebesgue measure

1/p‖ψ ∗ φε − ψ‖L∞(Rn).

Since ψ ∈ C∞
c (Rn), the previous convergence argument implies the inequality

lim sup
ε→0+

‖f ∗ φε − f‖Lp(Rn) ≤ (1 + ‖φ‖L1)‖f − ψ‖Lp(Rn), for all ψ ∈ C∞
c (Rn).

The density of C∞
c (Rn) in Lp(Rn) for 1 ≤ p < ∞ (see e.g. the Théorème 3.4.1 in

[9]) yields the result. For ε > 0, R > 0, all the functions

ψR,ε(y) = sup
|x|≤R

|(∂αxφε)(x− y)f(y)|

belong to L1(Rn
y ) since∫

ψR,ε(y)dy ≤ ‖f‖Lp(Rn)

(∫
sup
|x|≤R

|(∂αxφε)(x− y)|p′dy
)1/p′

,
1

p
+

1

p′
= 1,

and suppφ ⊂ B̄R0 gives that |x − y| ≤ εR0, |x| ≤ R imply |y| ≤ εR0 + R, and the
finiteness of the integral above, proving the smoothness of φε ∗ f for ε > 0.
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N.B. The result of the proposition does not extend to the case p = ∞, since the
uniform convergence of the continuous function f ∗φε would imply the continuity of
the limit.

It will be also useful to use the compactly supported functions to construct some
partitions of unity and, to begin with, to find C∞

c functions identically equal to 1
near a compact set.

Lemma 3.1.3. Let Ω be an open subset of Rn and K be a compact subset of Ω.
Then there exists a function ϕ ∈ C∞

c (Ω; [0, 1]) such that ϕ = 1 on a neighborhood of
K.

Proof. We claim that there exists ε0 > 0 such that K + ε0B1 ⊂ Ω, (B1 is the open
unit ball). First we note that

d(K,Ωc) = inf
x∈K,y∈Ωc

|x− y| > 0, (3.1.4)

otherwise, we could find sequences (xk)k≥1 in K, (yk)k≥1 in Ωc such that limk |xk −
yk| = 0, and since K is compact, we may suppose that (xk) converges with limit
x ∈ K, implying Ωc 3 limk yk = x, which is impossible since K ⊂ Ω. As a result, we
have with ε0 = d(K,Ωc)

K + ε0B1 ⊂ Ω,

otherwise, we could find |t| < 1, x ∈ K such that x + ε0t = y ∈ Ωc, implying
|x − y| < ε0 = d(K,Ωc), which is impossible. With the function ρ defined in 3.1.2,
we define with 0 < ε ≤ ε1

2
< ε0

4
,

ϕ(x) =

∫
1K+ε1B̄1

(y)ρ
(
(x− y)ε−1

)
ε−ndy

(∫
ρ(t)dt

)−1

.

The function ϕ is C∞ and such that

suppϕ ⊂ K + ε1B̄1 + εB̄1 ⊂ K +
3

2
ε1B̄1 ⊂ K +

3

4
ε0B̄1︸ ︷︷ ︸

compact

⊂ K + ε0B1 ⊂ Ω.

Moreover ϕ = 1 on K+ ε1
2
B̄1 (which is a neighborhood of K), since if x ∈ K+ ε1

2
B̄1,

we have, for y satisfying |x − y| ≤ ε, that y ∈ K + ε1
2
B̄1 + εB̄1 ⊂ K + ε1B̄1. As a

result, with ρ̃ = ρ
(∫

ρ(t)dt
)−1

, for x ∈ K + ε1
2
B̄1, we have

1 =

∫
ρ̃((x− y)ε−1)ε−ndy =

∫
ρ̃((x− y)ε−1)ε−n1K+ε1B̄1

(y)dy = ϕ(x).

We note also that, since ρ̃ ≥ 0 with integral 1, 1L(y) ∈ [0, 1], we have, for all x ∈ Rn,
0 ≤ ϕ(x) ≤ 1. The proof of the lemma is complete.
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3.1.2 Distributions

Definition 3.1.4. Let Ω be an open set of Rn and let T : C∞
c (Ω) −→ C be a linear

form with the following continuity property,

∀Kcompact ⊂ Ω,∃CK > 0,∃NK ∈ N,∀ϕ ∈ C∞K (Ω), |〈T, ϕ〉| ≤ CK sup
|α|≤NK

x∈Rn

|(∂αxϕ)(x)|,

(3.1.5)
where C∞

K (Ω) = {ϕ ∈ C∞
c (Ω), suppϕ ⊂ K}.

N.B. We shall use also the notation D(Ω) for the space of test functions C∞
c (Ω) and

D ′(Ω) for the space of distributions on Ω. We have not introduced a topology on
D(Ω) but we have defined a notion of converging sequence with the remark 3.1.2.
It would have been certainly more elegant to start with the display of the natural
topological structure on D(Ω), at the (heavy) cost of having to deal with a non-
metrizable locally convex topology defined by an uncountable family of semi-norms.
The study of inductive limits of increasing sequences of Fréchet spaces is outlined
in the appendix 3.7.2. Anyhow, one should think of D ′(Ω) as the topological dual
of D(Ω), a view supported by the next lemmas and remarks.

Remark 3.1.5. With DK(Ω) = C∞
K (Ω), we have, using the sequence of compact

sets (Kj)j≥1 of the lemma 2.3.1

D(Ω) = ∪j≥1DKj
(Ω)

and it is not difficult to see that each DKj
(Ω) is a Fréchet space with the natural

countable family of semi-norms given by pKj ,m(u) = sup |α|≤m
x∈Kj

|(∂αxu)(x)|. If we want

to use the countable family pKj ,m, we end-up with the topology on the Fréchet space
C∞(Ω) as described in the subsection 2.3.3; the actual topology on D(Ω) is finer
and it is important to understand that, with ρ defined in (3.1.2) (say with n = 1),
the sequence (uk)k∈N, given by

uk(x) = ρ(x− k)

does converge to 0 in the Fréchet space C∞(R) but is not convergent in C∞
c (R),

since the second condition of the remark 3.1.2 is not satisfied: there is no compact
subset K of R such that ∀k ∈ N, suppuk ⊂ K.

Remark 3.1.6. Note that a linear form T on C∞
c (Ω) is a distribution if and only

if, for all compact subsets K of Ω, its restriction to the Fréchet space DK(Ω) is
continuous.

A L1
loc function is a distribution: for Ω open subset of Rn, for f ∈ L1

loc(Ω), we
define for ϕ ∈ D(Ω)

〈T, ϕ〉 =

∫
f(x)ϕ(x)dx =⇒ |〈T, ϕ〉| ≤ ‖ϕ‖L∞(Rn)

∫
suppϕ

|f(x)|dx, (3.1.6)

so that (3.1.5) is satisfied with CK =
∫
K
|f(x)|dx,NK = 0. Moreover the canonical

mapping from L1
loc(Ω) into D ′(Ω) is injective, as shown by the next lemma.
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Lemma 3.1.7. Let Ω be an open subset of Rn, f ∈ L1
loc(Ω) such that, for all ϕ ∈

D(Ω),
∫
f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and χ ∈ D(Ω) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With φ as in the proposition 3.1.1, we get that
limε→0+

φε ∗ (χf) = χf in L1(Rn). We have

(
φε ∗ (χf)

)
(x) =

∫
f(y)χ(y)φ

(
(x− y)ε−1

)
ε−n︸ ︷︷ ︸

=ϕx(y)

dy, suppϕx ⊂ K,ϕx ∈ D(Ω),

and from the assumption of the lemma, we obtain
(
φε ∗ (χf)

)
(x) = 0 for all x,

implying χf = 0 from the convergence result; the conclusion follows.

We note that it makes sense to restrict a distribution T ∈ D ′(Ω) to an open
subset U ⊂ Ω: just define

〈T|U , ϕ〉D ′(U),D(U) = 〈T, ϕ〉D ′(Ω),D(Ω), (3.1.7)

and T|U is obviously a distribution on U . With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Ω be an open subset of Rn and T ∈ D ′(Ω). We define the
support of T as

suppT = {x ∈ Ω,∀Uopen ∈ Vx, T|U 6= 0}. (3.1.8)

We define the C∞ singular support of T as

singsuppT = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ C∞(U)}. (3.1.9)

Note that the support and the singular support are closed subset of Ω since their
complements in Ω are open: we have

(suppT )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U = 0}, (3.1.10)

(singsuppT )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U ∈ C∞(U)}. (3.1.11)

A simple consequence of that definition is that, for T ∈ D ′(Ω), ϕ ∈ D(Ω),

suppϕ ⊂ (suppT )c =⇒ 〈T, ϕ〉 = 0. (3.1.12)

3.1.3 First examples of distributions

The Dirac mass

We define for ϕ ∈ C0
c (Rn), 〈δ0, ϕ〉 = ϕ(0); the property (3.1.5) is satisfied with

CK = 1, NK = 0. We have supp δ0 = {0}. From this, the Dirac mass cannot be an
L1

loc function, otherwise, since it is 0 a.e., it would be 0. Let φ, ε as in the proposition
3.1.1: then we have from that proposition

lim
ε→0+

∫
φε(x)ϕ(x)dx = ϕ(0),

so that the Dirac mass appears as the weak limit of ε−nφ(xε−1).
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The simple layer

We consider in Rn the hypersurface Σ = {(x′, xn) ∈ Rn−1 × R, xn = f(x′)}, where
f ∈ C1(Rn−1). We define for ϕ ∈ C0

c (Rn),

〈δΣ, ϕ〉 =

∫
Rn−1

ϕ
(
x′, f(x′)

)(
1 + |∇f(x′)|2

)1/2
dx′.

The property (3.1.5) is satisfied with CK = area(Σ∩K), NK = 0, supp δΣ = Σ, and
since Σ has Lebesgue measure 0 in Rn, the simple layer potential cannot be an L1

loc

function.

The principal value of 1/x

We define for ϕ ∈ C1
c (R),

〈pv
1

x
, ϕ〉 = lim

ε→0+

∫
|x|≥ε

ϕ(x)

x
dx. (3.1.13)

Let us check that this limit exists. We have for parity reasons,∫
|x|≥ε

ϕ(x)

x
dx =

∫ +∞

ε

(
ϕ(x)− ϕ(−x)

)dx
x

=
[
lnx
(
ϕ(x)− ϕ(−x)

)]x=+∞
x=ε

−
∫ +∞

ε

(
ϕ′(x) + ϕ′(−x)

)
lnxdx

and thus, using that limε→0+ ε ln ε = 0, ln |x| ∈ L1
loc(R), we get

〈pv
1

x
, ϕ〉 = −

∫ +∞

0

(
ϕ′(x) + ϕ′(−x)

)
lnxdx = −

∫
R
ϕ′(x)(ln |x|)dx,

yielding |〈pv 1
x
, ϕ〉| ≤

∫
suppϕ′

| ln |x||dx‖ϕ′‖L∞ .

3.1.4 Continuity properties

Definition 3.1.9. Let Ω be an open subset of Rn and let (ϕj)j≥1 be a sequence of
functions in C∞

c (Ω). We shall say that limj ϕj = 0 in C∞
c (Ω) when the two following

conditions are satisfied:
(1) there exists a compact set K ⊂ Ω, such that ∀j ≥ 1, suppϕj ⊂ K,
(2) limj ϕj = 0 in the Fréchet space C∞K (Ω), i.e. ∀α ∈ Nn, limj

(
supx∈K |(∂αxϕj)(x)|

)
= 0.

Proposition 3.1.10. Let Ω be an open subset of Rn and T be a linear form defined
on C∞

c (Ω). The linear form T is a distribution on Ω if and only if it is sequentially
continuous.

Proof. Assuming |〈T, ϕ〉| ≤ CK max|α|≤NK
‖∂αxϕ‖L∞ for all ϕ ∈ C∞

K (Ω) and all K
compact ⊂ Ω implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

∃K0compact ⊂ Ω,∀k ≥ 1,∀N ∈ N,∃ϕk,N ∈ C∞
K0

(Ω), |〈T, ϕk,N〉| > k max
|α|≤N

‖∂αxϕk,N‖L∞ .
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From the strict inequality, we infer that the function ϕk,N is not identically 0, and
we may define

ψk =
ϕk,k

kmax|α|≤k ‖∂αxϕk,k‖L∞
, so that |〈T, ψk〉| > 1.

But the sequence (ψk)k≥1 converges to 0 since suppψk ⊂ K0 and for |β| ≤ k,
‖∂βxψk‖L∞ ≤ 1/k, implying for each multi-index β that limk ‖∂βxψk‖L∞ = 0. The
sequential continuity is violated since |〈T, ψk〉| > 1 and the converse is proven.

Definition 3.1.11. Let Ω be an open subset of Rn, T ∈ D ′(Ω) and N ∈ N. The
distribution T will be said of finite order N if

∃N ∈ N,∀Kcompact ⊂ Ω,∃CK > 0,∀ϕ ∈ C∞K (Ω), |〈T, ϕ〉| ≤ CK sup
|α|≤N
x∈Rn

|(∂αxϕ)(x)|.

(3.1.14)
The vector space of distributions of order N on Ω will be denoted by D ′N(Ω). The

vector space D ′0(Ω) is called the space of Radon measures on Ω.

Proposition 3.1.12. Let Ω be an open subset of Rn and m ∈ N. The vector
space D ′m(Ω) is equal to the sequentially continuous1 linear forms on Cm

c (Ω): if
T ∈ D ′m(Ω), it can be extended to a sequentially continuous linear form on Cm

c (Ω).
If T is a sequentially continuous linear form on Cm

c (Ω), then T ∈ D ′m(Ω).

Proof. Let us first consider T ∈ D ′m(Ω), ϕ ∈ Cm
c (Ω). Applying the proposition 3.1.1,

we find a sequence (ϕk)k≥1 in C∞
c (Ω), converging in Cm

c (Ω) with limit ϕ. Since we
may assume that all the functions ϕk and ϕ are supported in a fixed compact subset
K of Ω, we have, according to the estimate (3.1.14),

|〈T, ϕk − ϕl〉| ≤ C max
|α|≤m

‖∂αx (ϕk − ϕl)‖L∞ = Cp(ϕk − ϕl),

where p is the norm in the Banach space Cm
K (Ω). Since the sequence (ϕk)k≥1 con-

verges in Cm
K (Ω), we get that the sequence (〈T, ϕk〉)k≥1 is a Cauchy sequence in C,

thus converges; moreover, if for some compact subset L of Ω, (ψk)k≥1 is another
sequence of Cm

L (Ω) converging to ϕ, we have

|〈T, ψk−ϕk〉| ≤ C ′ max
|α|≤m

‖∂αx (ϕk−ψk)‖L∞ = C ′p(ϕk−ψk) ≤ C ′p(ϕk−ϕ)+C ′p(ϕ−ψk)

and limk〈T, ψk−ϕk〉 = 0 so that, we can extend the linear form to Cm
c (Ω) by defining

〈T, ϕ〉 = limk〈T, ϕk〉. We get also immediately that (3.1.14) holds with N = m and
C∞
K (Ω) replaced by Cm

K (Ω), so that T is obviously sequentially continuous.
Let us now consider a sequentially continuous linear form T on Cm

c (Ω); reproduc-
ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T ∈ D ′m(Ω). The proof of the proposition is complete.

Remark 3.1.13. We have already proven directly that functions in L1
loc(Ω)(see

(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pv 1

x

defined in (3.1.13) is of order 1 and not of order 0.

1The convergence of a sequence in Cm
c (Ω) is analogous to the convergence given in the definition

3.1.9, except that (2) is required in the Banach space Cm
K (Ω), i.e. |α| ≤ m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let Ω be an open subset of Rn, K a compact
subset of Ω and Ω1, . . . ,Ωm open subsets of Ω such that K ⊂ Ω1 ∪ · · · ∪ Ωm. Then
for 1 ≤ j ≤ m, there exists ψj ∈ C∞

c (Ωj; [0, 1]) and V open such that

Ω ⊃ V ⊃ K, ∀x ∈ V,
∑

1≤j≤m

ψj(x) = 1,

and for all x ∈ Ω,
∑

1≤j≤m ψj(x) ∈ [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since x ∈ K implies x ∈ one of the Ωj,

K ⊂ ∪x∈KB(x, rx), B̄(x, rx) ⊂ one of the Ωj, rx > 0.

From the compactness of K, we get that K ⊂ ∪1≤l≤NB(xl, rxl
) and we may assume

that

B̄(xl, rxl
) ⊂ Ω1, for 1 ≤ l ≤ N1,

B̄(xl, rxl
) ⊂ Ω2, for N1 < l ≤ N2,

. . . . . . . . . . . . . . .

B̄(xl, rxl
) ⊂ Ωm, for Nm−1 < l ≤ Nm = N.

We define then the compact sets

K1 = ∪1≤l≤N1B̄(xl, rxl
), . . . , Km = ∪Nm−1<l≤NmB̄(xl, rxl

),

and we have K ⊂ ∪1≤j≤mKj, and for each j, Kj ⊂ Ωj. Using the lemma 3.1.3, we
find ϕj ∈ C∞

c (Ωj; [0, 1]) such that ϕj = 1 on a neighborhood Vj(⊂ Ωj) of Kj. We
define then

ψ1 = ϕ1,

ψ2 = ϕ2(1− ϕ1),

. . . . . .

ψj = ϕj(1− ϕ1) . . . (1− ϕj−1),

so that ψj ∈ C∞
c (Ωj; [0, 1]) and we have∑

1≤j≤m

ψj =
∑

1≤j≤m

ϕj

( ∏
1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk), (3.1.15)

since the formula (second equality above) is true for m = 1 and inductively,∑
1≤j≤m+1

ϕj

( ∏
1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk) + ϕm+1

∏
1≤k≤m

(1− ϕk)

= 1− (1− ϕm+1)
∏

1≤k≤m

(1− ϕk) = 1−
∏

1≤k≤m+1

(1− ϕk).

We have thus for x ∈ ∪1≤j≤mVj (which is a neighborhood of K in Ω), using (3.1.15)
and ϕj = 1 on Vj,

∑
1≤j≤m ψj(x) = 1. On the other hand, (3.1.15) and ϕj valued in

[0, 1] show that
∑

1≤j≤m ψj(x) ∈ [0, 1] for all x. The proof is complete.



3.1. TEST FUNCTIONS AND DISTRIBUTIONS 75

Theorem 3.1.15. Let Ω be an open set of Rn and (Ωj)j∈J be an open covering of
Ω: each Ωj is open and ∪j∈JΩj = Ω. Let us assume that for each j ∈ J , we are
given Tj ∈ D ′(Ωj) in such a way that

Tj |Ωj∩Ωk
= Tk |Ωj∩Ωk

. (3.1.16)

Then there exists a unique T ∈ D ′(Ω) such that for all j ∈ J , T|Ωj
= Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (T − S)|Ωj
= 0, so

that for all j ∈ J , Ωj ⊂ (supp (T − S))c and thus Ω = ∪j∈JΩj ⊂ (supp (T − S))c,
i.e. T − S = 0.
Existence: let ϕ ∈ D(Ω) and let us consider the compact set K = suppϕ. We
have K ⊂ ∪j∈MΩj with M a finite subset of J . Using the theorem on partitions
of unity, we find some function ψj ∈ C∞

c (Ωj) for j ∈ M such that
∑

j∈M ψj =
1 on a neighborhood of K. As a consequence, we have ϕ =

∑
j∈M ψjϕ and we define

〈T, ϕ〉 =
∑
j∈M

〈Tj, ψjϕ〉.

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ϕ =

∑
k∈N φkϕ, where N is a finite subset of J and φk ∈ C∞

c (Ωk): we have∑
k∈N

〈Tk, φkϕ〉 =
∑

j∈M,k∈N

〈Tk, φkψjϕ〉 =︸︷︷︸
from (3.1.16)

∑
j∈M,k∈N

〈Tj, φkψjϕ〉 =
∑
j∈M

〈Tj, ψjϕ〉,

proving that T is defined independently of the decomposition. The linearity follows
at once. The proof is complete.

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions D(Ω), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the σ(D ′,D) convergence.

Definition 3.1.16. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) and
T ∈ D ′(Ω). We shall say that limj Tj = T in the weak-dual topology if

∀ϕ ∈ D(Ω), lim
j
〈Tj, ϕ〉 = 〈T, ϕ〉. (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for ρ ∈ C∞
c (Rn),

ε > 0, ρε(x) = ε−nρ(xε−1), limε→0+ ρε = δ0
∫
ρ(t)dt. Moreover, on D ′(R), we have

with Tλ(x) = eiλx, limλ→+∞ Tλ = 0 since for ϕ ∈ D(R),∫
R
eiλxϕ(x)dx = (iλ)−1

∫
R

d

dx
(eiλx)ϕ(x)dx = −(iλ)−1

∫
R
eiλxϕ′(x)dx.
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Theorem 3.1.18. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) such
that, for all ϕ ∈ D(Ω), the (numerical) sequence (〈Tj, ϕ〉)j≥1 converges. Defining the
linear form T on D(Ω), by 〈T, ϕ〉 = limj〈Tj, ϕ〉, we obtain that T belongs to D ′(Ω).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of Ω. Then defining Tj,K as the restriction of Tj
to the Fréchet space DK(Ω), we see that the assumptions of the corollary 2.1.8 are
satisfied since Tj,K belongs to the topological dual of DK(Ω), according to the remark
3.1.6. As a consequence the restriction of T to DK(Ω) belongs to the topological
dual of DK(Ω) and from the same remark 3.1.6, it gives that T ∈ D ′(Ω).

N.B. The reader may note that we have used E = D(Ω) = ∪j∈NDKj
(Ω) = ∪jEj,

and that our definition of the topological dual of E as linear forms T on E such that,
for all j, T|Ej

∈ the topological dual of the Fréchet space Ej. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on E; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication

by C∞ functions

3.2.1 Differentiation

Definition 3.2.1. Let Ω be an open set of Rn and T ∈ D ′(Ω). We define the
distributions ∂xj

T and for a multi-index α ∈ Nn (see (2.3.6)), ∂αxT by

〈∂xj
T, ϕ〉 = −〈T, ∂xj

ϕ〉, 〈∂αxT, ϕ〉 = (−1)|α|〈T, ∂αxϕ〉. (3.2.1)

We note that ∂αxT is indeed a distribution on Ω, since the mappings ϕ 7→ ∂αxϕ
are continuous on each Fréchet space DK(Ω).

Remark 3.2.2. If limj Tj = T in the weak-dual topology of D ′(Ω), then, for all
multi-indices α, limj ∂

α
xTj = ∂αxT (in the weak-dual topology): we have, for each

ϕ ∈ D(Ω),

〈∂αxTj, ϕ〉 = (−1)|α|〈Tj, ∂αxϕ〉 −→
j→+∞

(−1)|α|〈T, ∂αxϕ〉 = 〈∂αxT, ϕ〉.

Remark 3.2.3. If u ∈ C1(Ω), its derivative ∂xj
u as a distribution coincides with

the distribution defined by the continuous function ∂u/∂xj: for ϕ ∈ D(Ω),

〈∂xj
u, ϕ〉 = −〈u, ∂xj

ϕ〉 = −
∫
u(x)

∂ϕ

∂xj
(x)dx =

∫
∂u

∂xj
(x)ϕ(x)dx = 〈 ∂u

∂xj
, ϕ〉.

Also, if u, v ∈ C0(Ω) are such that ∂x1u = v in D ′(Ω), then the function u admits v
as a partial derivative with respect to x1. To prove this, we may assume that u, v
are both compactly supported in Ω: in fact it is enough to prove that for χ ∈ C∞

c (Ω)
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identically equal to 1 near a point x0, the function χu (compactly supported) has
a partial derivative with respect to x1 which is χv + u∂x1χ (compactly supported)
and we know that in D ′(Ω) we have

〈∂x1(χu), ϕ〉 = −〈u, χ∂x1ϕ〉 = −〈u, ∂x1(χϕ)〉+ 〈u, ϕ∂x1χ〉 = 〈∂x1u, χϕ〉+ 〈u∂x1χ, ϕ〉

which implies a particular case of Leibniz’ formula ∂x1(χu) = χ∂x1u + u∂x1χ =
χv + u∂x1χ. Assuming then that u, v are compactly supported, we have from the
proposition 3.1.1, u = limε(u ∗ φε) in C0

c (Ω) and the functions u ∗ φε ∈ C∞
c (Ω). Also

we have, with the ordinary differentiation,

(∂x1(u∗φε))(x) =

∫
u(y)(∂x1φε)(x−y)dy = 〈u(·),−∂y1

(
φε(x−·)

)
〉 =

∫
v(y)φε(x−y)dy,

and limε(v ∗ φε) = v in C0
c (Ω). As a result the sequences (u ∗ φε), (∂x1(u ∗ φε)) are

both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x1.

3.2.2 Examples

Defining the Heaviside function H as 1R+ , we get

H ′ = δ0 (3.2.2)

since for ϕ ∈ D(R), we have 〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ +∞

0
ϕ′(t)dt = ϕ(0). Still in

one dimension, we have
〈δ(k)

0 , ϕ〉 = (−1)kϕ(k)(0), (3.2.3)

since it is true for k = 0 and inductively 〈δ(k+1)
0 , ϕ〉 = −〈δ(k)

0 , ϕ′〉 = −(−1)kϕ′(k)(0) =
(−1)k+1ϕ(k+1)(0). Looking at the definition (3.1.13), we see that we have proven

pv (
1

x
) =

d

dx
(ln |x|), (distribution derivative). (3.2.4)

Let f be a finitely-piecewise C1 function defined on R: it means that there is an
increasing finite sequence of real numbers (an)1≤n≤N , so that f is C1 on all closed
intervals [an, an+1] for 1 ≤ n < N and on ] −∞, a1] and [aN ,+∞[. In particular,
the function f has a left-limit f(a−n ) and a right-limit f(a+

n ) which may be different.
Let us compute the distribution derivative of f ; for ϕ ∈ D(R), since f is locally
integrable, we have, setting a0 = −∞, aN+1 = +∞,

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫

R
f(x)ϕ′(x)dx = −

∑
0≤n≤N

∫ an+1

an

f(x)ϕ′(x)dx

=
∑

0≤n≤N

∫ an+1

an

df

dx
(x)ϕ(x)dx+

∑
0≤n≤N

(
f(a+

n )ϕ(an)− f(a−n+1)ϕ(an+1)
)

=

∫
ϕ(x)

( ∑
0≤n≤N

df

dx
(x)1[an,an+1](x)

)
+
∑

1≤n≤N

f(a+
n )ϕ(an)−

∑
1≤n≤N

f(a−n )ϕ(an),
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so that we have obtained the so-called formula of jumps

f ′ =
∑

0≤n≤N

df

dx
1[an,an+1] +

∑
1≤n≤N

(
f(a+

n )− f(a−n )
)
δan , (3.2.5)

where δan is the Dirac mass at an, defined by 〈δan , ϕ〉 = ϕ(an).
We consider now the following determination of the logarithm given for z ∈ C\R−

by

Log z =

∮
[1,z]

dξ

ξ
, (3.2.6)

which makes sense since C\R− is star-shaped with respect to 1, i.e. the segment
[1, z] ⊂ C\R− for z ∈ C\R−. Since the function Log coincides with ln on R∗

+ and is
holomorphic on C\R−, we get by analytic continuation that

eLog z = z, for z ∈ C\R−. (3.2.7)

Also by analytic continuation, we have for | Im z| < π, Log(ez) = z. We want now
to study the distributions on R,

uy(x) = Log(x+ iy), where y 6= 0 is a real parameter.

We leave as an exercise for the reader to prove that

lim
y→0±

Log(x+ iy) = ln |x| ± iπ
(
1−H(x)

)
, (3.2.8)

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1

x± i0
= pv

(1
x

)
∓ iπδ0, (3.2.9)

where we have defined

〈 1

x± i0
, ϕ〉 = lim

ε→0+

∫
ϕ(x)

x± iε
dx (3.2.10)

(part of the exercise is to prove that these limits exist for ϕ ∈ D(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in D ′(I) of u′ = 0
are the constants. The solutions in D ′(I) of u′ = f make a one-dimensional affine
subspace of D ′(I).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u ∈ D ′(I) satisfies u′ = 0. Let χ0 ∈ C∞

c (I) such
that

∫
R χ0(x)dx = 1; then we have for any ϕ ∈ C∞

c (I), with J(ϕ) =
∫

R ϕ(x)dx,
ψ(x) =

∫ x
−∞

(
ϕ(t)− J(ϕ)χ0(t)

)
dt, noting that ψ belongs2 to C∞

c (I),

〈u, ϕ− J(ϕ)χ0〉 = 〈u, ψ′〉 = −〈u′, ψ〉 = 0,

2The function ψ is obviously smooth and if ϕ, χ0 are both supported in {a ≤ x ≤ b}, a, b ∈ I,
so is ψ, thanks to the condition

∫
χ0 = 1.
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which gives 〈u, ϕ〉 = J(ϕ)〈u, χ0〉, i.e. u = 〈u, χ0〉 proving that u is indeed a constant.
We have proven that the solutions u ∈ D ′(I) of u′ = 0 are simply the constants.
If f ∈ D ′(I), we need only to construct a solution v0 of v′0 = f and then use the
previous result to obtain that the set of solutions of u′ = f is v0+R. Let us construct
such a solution v0. For ϕ ∈ D(I), we define with the same ψ as above,

〈v0, ϕ〉 = −〈f, ψ〉. (3.2.11)

It is a distribution since for suppϕ compact ⊂ I, we define (the compact set) K1 =
suppϕ ∪ suppχ0, and we have

|〈v0, ϕ〉| = |〈f, ψ〉| ≤ CK1 max
0≤j≤NK1

‖ψ(j)‖L∞ ≤ C max
0≤j≤(NK1

−1)+
‖ϕ(j)‖L∞ .

Moreover the formula (3.2.11) implies the sought result

〈v′0, ϕ〉 = −〈v0, ϕ
′〉 = 〈f, ψϕ′〉 = 〈f, ϕ〉,

since ψϕ′(x) =
∫ x
−∞

(
ϕ′(t) − J(ϕ′)χ0(t)

)
dt = ϕ(x) because J(ϕ′) = 0. The proof of

the lemma is complete.

3.2.3 Product by smooth functions

We define now the product of a C∞ (resp. CN) function by a distribution (resp. of
order N).

Definition 3.2.5. Let Ω be an open subset of Rn and u ∈ D ′(Ω). For f ∈ C∞(Ω),
we define the product f · u as the distribution defined by

〈f · u, ϕ〉D ′(Ω),D(Ω) = 〈u, fϕ〉D ′(Ω),D(Ω). (3.2.12)

If u is of order N and f ∈ CN(Ω), we define the product f · u as the distribution of
order N defined by

〈f · u, ϕ〉D ′N (Ω),CN
c (Ω) = 〈u, fϕ〉D ′N (Ω),CN

c (Ω). (3.2.13)

Remark 3.2.6. Since the multiplication by a C∞(Ω) (resp. CN(Ω)) function is a
continuous linear operator from C∞

c (Ω) (resp. CN
c (Ω)) into itself, we get that the

above formulas actually define the products as distributions on Ω with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f ∈ C∞

c (Ω) and if u ∈ L1
loc(Ω), f ∈ C0(Ω), the

usual product fu coincides with the f · u defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let Ω be an open set of Rn, u ∈ D ′(Ω), f ∈ C∞(Ω) and α ∈ Nn

be a multi-index (see (2.3.6)). Then we have

∂αx (fu)

α!
=
∑

β,γ∈Nn

β+γ=α

∂βx (f)

β!

∂γx(u)

γ!
. (3.2.14)
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Proof. We get immediately by induction on |α| the formula

∂αx (fu)

α!
=
∑

β,γ∈Nn

β+γ=α

σβ,γ
∂βx (f)

β!

∂γx(u)

γ!
, with σβ,γ ∈ R+.

To find the σβ,γ, we choose f(x) = ex·ξ, u(x) = ex·η, with ξ, η ∈ Rn. We find then
for all ξ, η ∈ Rn, the identity

(ξ + η)α

α!
=
∂αx (ex·(ξ+η))

α! |x=0
=
∑

β,γ∈Nn

β+γ=α

σβ,γ
∂βx (ex·ξ)

β!

∂γx(e
x·η)

γ! |x=0

=
∑

β,γ∈Nn

β+γ=α

σβ,γ
ξβ

β!

ηγ

γ!
,

and the formula (2.3.7) shows that for β, γ such that β + γ = α

σβ,γ = ∂βξ ∂
γ
η

((ξ + η)α

α!

)
|ξ=η=0

= 1,

completing the proof of the theorem.

Examples. Let f be a continuous function on R and δ0 be the Dirac mass at 0.
The product f · δ0 is equal to f(0)δ0: since δ0 is a distribution of order 0, we can
multiply it by a continuous function and if ϕ ∈ C0

c (R), we have

〈f · δ0, ϕ〉 = 〈δ0, fϕ〉 = f(0)ϕ(0) = 〈f(0)δ0, ϕ〉 =⇒ f · δ0 = f(0)δ0. (3.2.15)

On the other hand if f ∈ C1(R) we have

f · δ′0 = f(0)δ′0 − f ′(0)δ0, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)δ′0 = (f · δ0)′ = f ′ · δ0 + f · δ′0 =
f ′(0)δ0 + f · δ′0. In particular xδ′0 = −δ0.

3.2.4 Division of distribution on R by xm

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

x pv(1/x) = 1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant c, we have x

(
pv(1/x)+ cδ0

)
= 1. The next theorem

shows that T = pv(1/x) + cδ0 are the only distributions solutions of the equation
xT = 1.

Theorem 3.2.8. Let m ≥ 1 be an integer.

(1) If u ∈ D ′(R) is such that xmu = 0, then u =
∑

0≤j<m cjδ
(j)
0 .

(2) Let v ∈ D ′(R); there exists u ∈ D ′(R) such that v = xmu.
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Proof. Let us first prove (1). For ϕ, χ0 ∈ C∞
c (R) with χ0 = 1 near 0, we have

ϕ(x) =
∑

0≤j<m

ϕ(j)(0)

j!
xj︸ ︷︷ ︸

pϕ,m(x)

+

∫ 1

0

(1− t)m−1

(m− 1)!
ϕ(m)(tx)dt︸ ︷︷ ︸

ψm,ϕ(x)

xm, ψm,ϕ ∈ C∞(R),

and thus, since xmu = 0,

〈u, ϕ〉 =

=0︷ ︸︸ ︷
〈xmu, x−m(1− χ0)ϕ〉+〈u, χ0ϕ〉 = 〈u, χ0pm,ϕ〉+

=0︷ ︸︸ ︷
〈xmu, χ0ψϕ,m〉

=
∑

0≤j<m

ϕ(j)(0)

j!
〈u, χ0〉 =

∑
0≤j<m

〈cjδ(j)
0 , ϕ〉,

which the sought result. To obtain (2), for ϕ ∈ C∞
c (R), and a given v0 ∈ D ′(R), we

define, using the above notations,

〈u, ϕ〉 = 〈v0, χ0ψm,ϕ〉+ 〈v0, x
−m(1− χ0)ϕ〉.

This defines obviously a distribution on R and 〈xmu, ϕ〉 = 〈u, xmϕ〉; for the func-
tion φ(x) = xmϕ(x), we have pφ,m = 0, xmψm,φ(x) = xmϕ(x), so that the smooth
functions ψm,φ = ϕ,

〈xmu, ϕ〉 = 〈v0, χ0ϕ〉+ 〈v0, x
−m(1− χ0)x

mϕ〉 = 〈v0, ϕ〉.

3.3 Distributions with compact support

3.3.1 Identification with E ′

Let Ω be an open subset of Rn. We have already seen that the space C∞(Ω) (also
denoted by E (Ω)) is a Fréchet space. Denoting by E ′(Ω) the topological dual of
E (Ω), we can consider T ∈ E ′(Ω) as a distribution T̃ on Ω by defining

〈T̃ , ϕ〉D ′(Ω),D(Ω) = 〈T, ϕ〉E ′(Ω),E (Ω) (this makes sense since D(Ω) ⊂ E (Ω)).

The linearity is obvious and the continuity of T as a linear form on the Fréchet space
E (Ω) implies that there exists C > 0, N ∈ N, K compact subset of Ω such that

∀ϕ ∈ E (Ω), |〈T, ϕ〉E ′(Ω),E (Ω)| ≤ C sup
|α|≤N, x∈K

|(∂αxϕ)(x)|.

This estimates also proves that T̃ belongs to D ′(Ω); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have 〈T̃ , ϕ〉 = 0 for ϕ ∈ C∞

c (Ω),
suppϕ ⊂ Kc, so that T̃|Kc = 0 and thus supp T̃ ⊂ K. The next theorem proves that
we can identify the space E ′(Ω) with the distributions on Ω with compact support,
denoted by D ′

comp(Ω).

Theorem 3.3.1. Let Ω be an open subset of Rn. The mapping ι : E ′(Ω) →
D ′

comp(Ω), defined as above by ι(T ) = T̃ is bijective.
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Proof. The mapping ι is linear and if ι(T ) = 0, we know that T vanishes on all
functions of D(Ω).

Lemma 3.3.2. Let Ω be an open subset of Rn. The space D(Ω) is dense in E (Ω).

Proof of the lemma. We consider a sequence (Kj)j≥1 of compact subsets of Ω such
that the lemma 2.3.1 is satisfied. For each j ≥ 1, we may use the lemma 3.1.3 to
construct a function χj ∈ D(Ω) with χj = 1 near Kj. For a given ϕ ∈ E (Ω), the
sequence (ϕχj)j≥1 of functions in D(Ω) converges in E (Ω) to ϕ, thanks to the last
property of the lemma 2.3.1, proving the lemma.

Since T is continuous on E (Ω), 〈T, ϕ〉E ′(Ω),E (Ω) = limj〈T, ϕχj〉E ′(Ω),E (Ω), = 0 since
T vanishes on D(Ω). Let us consider now T ∈ D ′

comp(Ω) with suppT = L (compact
subset of Ω). Using the lemma 3.1.3, we consider χ0 ∈ D(Ω) such that χ0 = 1 on a
neighborhood of L. For ϕ ∈ E (Ω), we define S ∈ E ′(Ω) by

〈S, ϕ〉E ′(Ω),E (Ω) = 〈T, χ0ϕ〉D ′(Ω),D(Ω) (note that |〈S, ϕ〉| ≤ C sup
|α|≤N, x∈supp χ0

|∂α
xϕ|),

We have ι(S) = T because

〈ι(S), ϕ〉D ′(Ω),D(Ω) = 〈S, ϕ〉E ′(Ω),E (Ω) = 〈T, χ0ϕ〉D ′(Ω),D(Ω) = 〈χ0T, ϕ〉D ′(Ω),D(Ω),

and since for ϕ ∈ D(Ω), the function (1 − χ0)ϕ vanishes on an open neighborhood
V of L implying

supp
(
(1− χ0)ϕ

)
⊂ V c ⊂ Lc =⇒ 〈T, (1− χ0)ϕ〉 = 0,

so that ι(S) = χ0T = χ0T + (1− χ0)T︸ ︷︷ ︸
=0

= T. The proof of the theorem is complete.

Remark 3.3.3. We can then identify D ′
comp(Ω) with E ′(Ω), and we may note that

for T ∈ D ′
comp(Ω) with suppT = L, T is of finite order N , and for all neighborhoods

K of L, there exists C > 0 such that, for all ϕ ∈ E (Ω),

|〈T, ϕ〉| ≤ C sup
|α|≤N, x∈K

|(∂αxϕ)(x)|. (3.3.1)

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Ω be an open subset of Rn, x0 ∈ Ω and let u ∈ D ′(Ω) such

that suppu = {x0}. Then u =
∑

|α|≤N cαδ
(α)
x0 , where the cα are some constants.
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Proof. Let ϕ ∈ C∞(Ω); we have for x ∈ V0 ⊂ open neighborhood of x0 (included in
Ω), N0 the order of u,

ϕ(x) =
∑
|α|≤N0

(∂αxϕ)(x0)

α!
(x−x0)

α+

∫ 1

0

(1− θ)N0

N0!
ϕ(N0+1)(x0 + θ(x− x0))dθ︸ ︷︷ ︸
ψ(x), ψ∈C∞(V0)

(x−x0)
N0+1,

and thus for χ0 ∈ C∞
c (V0), χ0 = 1 near x0,

〈u, ϕ〉 = 〈u, χ0ϕ〉 =
∑
|α|≤N0

(∂αxϕ)(x0)

α!
〈u, χ0(x)(x−x0)

α〉+〈u, χ0(x)ψ(x)(x−x0)
N0+1〉.

(3.3.2)
We have also

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

|∂αx
(
χ0(x)ψ(x)(x− x0)

N0+1
)
|. (3.3.3)

We can take χ0(x) = ρ(x−x0

ε
), where ρ ∈ C∞

c (Rn) is supported in the unit ball B1,
ρ = 1 in 1

2
B1 and ε > 0. We have then

χ0(x)ψ(x)(x− x0)
N0+1 = εN0+1ρ(

x− x0

ε
)ψ
(
x0 + ε

(x− x0)

ε

)(x− x0)
N0+1

εN0+1

= εN0+1ρ1(
x− x0

ε
)

with ρ1(t) = ρ(t)ψ(x0 + εt)tN0+1, so that ρ1 ∈ C∞
c (Rn) is supported in the unit ball

B1 has all its derivatives bounded independently of ε. From (3.3.3), we get for all
ε > 0,

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

εN0+1−|α||(∂αt ρ1)(
x− x0

ε
)| ≤ C1ε,

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for
χ1 ∈ C∞

c (V0), χ1 = 1 near the support of χ0, we have

〈u, χ1(x)(x− x0)
α〉 = 〈u, χ1(x)χ0(x)︸ ︷︷ ︸

=χ0(x)

(x− x0)
α〉+ 〈u, χ1(x)(1− χ0(x))︸ ︷︷ ︸

supported in (suppu)c

(x− x0)
α〉

= 〈u, χ0(x)(x− x0)
α〉

so that the latter does not depend on ε for ε small enough. The result of the theorem
follows from (3.3.2).

3.4 Tensor products

Let X be an open subset of Rm, Y be an open subset of Rn and f ∈ C∞
c (X), g ∈

C∞
c (Y ). The tensor product f⊗g is defined by (f⊗g)(x, y) = f(x)g(y) and belongs
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to C∞
c (X × Y ). Now if T ∈ D ′(X), S ∈ D ′(Y ), we want to define a distribution

T ⊗ S ∈ D ′(X × Y ) such that

〈T ⊗ S, f ⊗ g〉 = 〈T, f〉〈S, g〉.

This triggers several questions: is such a construction possible? Is the definition
above sufficient to determine unambiguously the distribution T⊗S? We shall answer
positively to these questions, but we first address a related question of derivation of
an “integral” depending on a parameter.

3.4.1 Differentiation of a duality product

Theorem 3.4.1. Let Ω be an open subset of Rn, u ∈ D ′(Ω), U an open subset of
Rm and φ ∈ C∞(Ω× U) such that

∀t ∈ U,∃Vt ∈ Vt,∃Kt compact subset of Ω, ∀s ∈ Vt, suppφ(·, s) ⊂ Kt. (3.4.1)

Then the function f defined on U by f(t) = 〈u, φ(·, t)〉 makes sense and belongs to
C∞(U). Moreover we have for all α ∈ Nm, (∂αt f)(t) = 〈u, (∂αt φ)(·, t)〉.

Proof. The function f makes sense since for all t ∈ U , the function φ(·, t) belongs
to C∞

c (Ω). Let t0 ∈ U and B0 be a closed ball with center t0 and positive radius r0
included in Vt0 given by (3.4.1). For |h| ≤ r0, we have

f(t0 + h)− f(t0) = 〈u, φ(·, t0 + h)− φ(·, t0)︸ ︷︷ ︸
supported in Kt0 ,

〉

and using Taylor’s formula with integral remainder, we get

f(t0 + h)− f(t0) = 〈u, (∂tφ)(·, t0)〉h+ 〈u,
∫ 1

0

(1− θ)

support in Kt0︷ ︸︸ ︷
∂2
sφ(·, t0 + θh) dθ〉h2︸ ︷︷ ︸
r(t0,h)

.

We have, since Kt0 ×B0 is a compact subset of Ω× U ,

|r(t0, h)| ≤ |h|2C0 sup
x∈Kt0 ,|α|≤N0

∫ 1

0

(1− θ)|(∂αx∂2
sφ) (x, t0 + θ0h)︸ ︷︷ ︸

∈Kt0×B0

|dθ ≤ C1|h|2,

proving the differentiability of f on U along with df(t) = 〈u, ∂tφ(·, t)〉. Inductively,
we get that f is smooth and the result of the theorem.

Corollary 3.4.2. Let X, Y be open subsets of Rn,Rm, φ ∈ C∞(X × Y ) and u ∈
D ′(X).
(1) If φ is compactly supported in X×Y , the function ψ defined by ψ(y) = 〈u, φ(·, y)〉
belongs to C∞

c (Y ).
(2) If u ∈ E ′(X), the function ψ defined by ψ(y) = 〈u, φ(·, y)〉 belongs to C∞(Y ).
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Proof. To prove (1), we need only to verify (3.4.1): we have indeed for all y ∈ Y

suppφ(·, y) ⊂ projX(suppφ) which is a compact subset of X,

which implies that ψ ∈ C∞(Y ); moreover the function φ(·, y) = 0 on the open subset
of Y ,

(
projY (suppφ)

)c
, and thus suppψ ⊂ projY (suppφ) which is a compact subset

of Y . To obtain (2), we consider χ ∈ C∞
c (X) equal to 1 near the compact support

of u. We have then u = χu and consequently,

〈u, φ(·, y)〉 = 〈u, φ(·, y)χ(·)〉.

The function Φ(x, y) = φ(x, y)χ(x) is smooth on X × Y and supp Φ(·, y) ⊂ suppχ
so that we can apply the theorem 3.4.1 whose assumptions are satisfied.

3.4.2 Pull-back by the affine group

Let us now recall the definition of the affine group of Rn: it is the group of mappings
from Rn into itself of the form x 7→ Ax + t = θA,t(x) where A ∈ Gl(n,R)(n ×
n invertible matrices) and t ∈ Rn. When A is the identity, ΘId,t is simply the
translation of vector t; we have also θ−1

A,t = ΘA−1,−A−1t. If u belongs to L1
loc(Rn) and

ΘA,t is in the affine group of Rn, we can define the pull-back of u by the map Θ by
the identity

Θ∗
A,tu = u ◦ΘA,t, so that (Θ∗

A,tu)(x) = u(Ax+ t). (3.4.2)

As a result for ϕ ∈ C0
c (Rn), we find

〈Θ∗
A,tu, ϕ〉 =

∫
Rn

u(Ax+ t)ϕ(x)dx =

∫
Rn

u(y)ϕ(A−1y − A−1t)| detA|−1dy. (3.4.3)

We want to use that formula to define the pull-back of a distribution on Rn by an
affine transformation.

Definition 3.4.3. Let A ∈ Gl(n,R), t ∈ Rn, ΘA,t the affine transformation defined
above and let u ∈ D ′(Rn). We define the distribution Θ∗

A,tu by the identity

〈Θ∗
A,tu, ϕ〉 = 〈u, ϕ ◦Θ−1

A,t〉| detA|−1. (3.4.4)

Remark 3.4.4. (1) Note that this defines a distribution on Rn, since the mapping
ϕ 7→ ϕ ◦ Θ−1

A,t is an isomorphism of D(Rn). Moreover, if u ∈ L1
loc(Rn), the previous

definition ensures that Θ∗
A,tu = u ◦ΘA,t, thanks to the lemma 3.1.7.

(2) The mapping u 7→ Θ∗
A,tu is sequentially continuous from D ′(Rn) into itself.

(3) A distribution u on Rn is even (resp. odd) if Θ∗
− Id,0u = u (resp. −u). Using the

notation

ǔ = Θ∗
− Id,0u (for a function u, ǔ(x) = u(−x)), (3.4.5)

u is even means ǔ = u, odd means ǔ = −u.
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3.4.3 Homogeneous distributions

Definition 3.4.5. Let u ∈ D ′(Rn) and λ ∈ C. The distribution u is said to be
homogeneous with degree λ if for all t > 0, u(t·) = tλu(·) (here u(t·) = θ∗t Id,0u).

Proposition 3.4.6. Let u ∈ D ′(Rn) and λ ∈ C. The distribution u is homogeneous
of degree λ if and only if the Euler equation is satisfied, namely∑

1≤j≤n

xj∂xj
u = λu. (3.4.6)

Proof. A distribution u on Rn is homogeneous of degree λ means:

∀ϕ ∈ C∞
c (Rn),∀t > 0, 〈u(y), ϕ(y/t)t−n〉 = tλ〈u(x), ϕ(x)〉,

which is equivalent to ∀ϕ ∈ C∞
c (Rn),∀s > 0, 〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉, also

equivalent to

∀ϕ ∈ C∞
c (Rn),

d

ds

(
〈u(y), ϕ(sy)sn+λ〉

)
= 0 on s > 0. (3.4.7)

Note that the differentiability property is due to the theorem 3.4.1 and that

〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉 at s = 1.

As a consequence, applying the theorem 3.4.1, we get that the homogeneity of degree
λ of u is equivalent to

∀s > 0, 〈u(y), sn+λ−1
(
(n+ λ)ϕ(sy) +

∑
1≤j≤n

(∂jϕ)(sy)syj
)
〉 = 0,

also equivalent to 0 = 〈u(y), (n+ λ+
∑

1≤j≤n yj∂j)
(
ϕ(sy)

)
〉 and by the definition of

the differentiation of a distribution, it is equivalent to (n+λ)u−
∑

1≤j≤n ∂j(yju) = 0,
which is (3.4.6) by the Leibniz rule (3.2.14).

Remark 3.4.7. (1) The Dirac mass at 0 in Rn is homogeneous of degree −n: we
have for t > 0

〈δ0(tx), ϕ(x)〉 = 〈δ0(y), ϕ(y/t)t−n〉 = t−nϕ(0) = t−n〈δ0, ϕ〉.

(2) If T is an homogeneous distribution of degree λ, then ∂αxT is also homogeneous
with degree λ− |α|: taking the derivative of the Euler equation (3.4.6), we get

∂xk
u+

∑
1≤j≤k

xj∂xj
∂xk

u− λ∂xk
u = 0,

proving that ∂xk
u is homogeneous of degree λ− 1 and the result by iteration.

(3) It follows immediately from the definition (3.1.13) that the distribution pv( 1
x
) is

homogeneous of degree −1. The same is true for the distributions 1
x±i0 as it is clear

from (3.2.9)and (3.2.10).
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(4) For λ ∈ C with Reλ > −1 we define the L1
loc(R) functions

xλ+ =

{
xλ if x > 0,

0 if x ≤ 0.,
χλ+ =

xλ+
Γ(λ+ 1)

. (3.4.8)

The distributions χλ+ and xλ+ are homogeneous of degree λ and by an analytic con-
tinuation argument, we can prove that χλ+ may be defined for any λ ∈ C, is an
homogeneous distribution of degree λ and satisfies

χλ+ = (
d

dx
)k(χλ+k

+ ), χ−k+ = δ
(k−1)
0 , k ∈ N∗.

Lemma 3.4.8. Let (uj)1≤j≤m be non-zero homogeneous distributions on Rn with
distinct degrees (λj)1≤j≤m (j 6= k implies λj 6= λk). Then they are independent in
the complex vector space D ′(Rn).

Proof. We assume thatm ≥ 2 and that there exists some complex numbers (cj)1≤j≤m
such that

∑
1≤j≤m cjuj = 0. Then applying the operator E =

∑
1≤j≤m xj∂xj

, we get
for all k ∈ N,

0 =
∑

1≤j≤m

cjEk(uj) =
∑

1≤j≤m

cjλ
k
juj.

We consider now the Vandermonde matrix m×m

Vm =


1 1 . . . 1
λ1 λ2 . . . λm
. . . .
λm−1

1 λm−1
2 . . . λm−1

m

 , detVm =
∏

1≤j<k≤m

(λk − λj) 6= 0.

We note that for ϕ ∈ C∞
c (Rn), and X ∈ Cm given by

X =


c1〈u1, ϕ〉
c2〈u2, ϕ〉
. . . . . . . . .
cm〈um, ϕ〉

 ,

we have VmX = 0, so that X = 0, i.e. ∀j,∀ϕ ∈ C∞
c (Rn), cj〈uj, ϕ〉 = 0, i.e. cjuj = 0

and since uj is not the zero distribution, we get the sought conclusion cj = 0 for all
j.

3.4.4 Tensor products of distributions

We begin with a lemma.

Lemma 3.4.9. Let φ ∈ C∞
c (]0, 1[n); one can find a sequence of functions in

Vect(⊗nC∞
c (]0, 1[) (the vector space generated by the tensor products)

converging to φ in C∞
c (]0, 1[n) in the sense of the definition 3.1.9.
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Proof. We define for k ∈ Zn, φ̂(k) =
∫
e−2iπx·kφ(x)dx, and we note that, with

∆ =
∑

1≤j≤n ∂
2
xj

, m ∈ N,

φ̂(k) = (1 + |k|2)−m
∫

(1− 1

4π2
∆)m

(
e−2iπx·k)φ(x)dx

= (1 + |k|2)−m
∫
e−2iπx·k((1− 1

4π2
∆)mφ

)
(x)dx

so that
|φ̂(k)| ≤ (1 + |k|2)−mCm max

|α|≤2m
‖∂αxφ‖L∞ . (3.4.9)

As a result the series Φ(x) =
∑

k∈Zn φ̂(k)e2iπx·k converges and is a smooth function,
periodic with periods Zn: we need only to check that

∑
k∈Zn(1 + |k|)−n−1 < +∞.3

Moreover,
for x ∈ [0, 1]n, Φ(x) = φ(x). (3.4.10)

We verify this first for n = 1. We have in that case

Φ(x) = lim
N→+∞

∫ ∑
|k|≤N

e2iπk(x−y)φ(y)dy,

and since
∑
|k|≤N

e2iπkt = 1 + 2 Re
∑

1≤k≤N

e2iπkt = 1 + 2 Re
(
e2iπt

e2iπNt − 1

e2iπt − 1

)
= 1 + 2 Re

(
eiπ(N+1)t sin(πNt)

sin(πt)

)
=

sin(πt(2N + 1))

sin(πt)
,

we get that, since φ ∈ C∞
c (]0, 1[), and for x ∈]0, 1[,

Φ(x) = lim
N→+∞

∫
sin
(
π(x− y)(2N + 1)

)
sin(π(x− y))

φ(y)dy

= lim
N→+∞

(∫ 1

0

sin
(
π(x− y)(2N + 1)

)
sin(π(x− y))

(
φ(y)− φ(x)

)
dy + φ(x)

∫ 1

0

∑
|k|≤N

e2iπk(x−y)dy
)

= φ(x),

because with ψ ∈ C∞(R2), θ(s) = s
sinπs

(which is in C∞(R\πZ∗) and in particular
on ]− 1,+1[), we have∫ 1

0

sin
(
π(x− y)(2N + 1)

)
sin(π(x− y))

(
φ(y)− φ(x)

)
dy

=

∫ 1

0

sin
(
π(x− y)(2N + 1)

) smooth of y on [0, 1]
since x ∈]0, 1[︷ ︸︸ ︷

ψ(x, y)θ(x− y) dy −→
N→+∞

0,

3In fact, with Qk = k + (0, 1)n we have, replacing the Euclidean norm |k| by the (equivalent)
sup-norm ‖k‖ = max1≤j≤k |kj |, we have for x ∈ Qk, kj < xj < kj + 1 and thus

‖x‖ = max |xj | ≤ 1 + ‖k‖ =⇒ 1 + ‖x‖ ≤ 2 + ‖k‖

and
∑

k∈Zn(2 + ‖k‖)−n−1 ≤
∫ ∑

k∈Zn 1Qk
(x)(1 + ‖x‖)−n−1dx =

∫
(1 + ‖x‖)−n−1dx < +∞.
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since with ω ∈ C∞([0, 1]), we have

∫ 1

0

sin
(
π(x− y)(2N + 1)

)
ω(y)dy =

[cos
(
π(x− y)(2N + 1)

)
π(2N + 1)

ω(y)
]y=1

y=0
−
∫ 1

0

cos
(
π(x− y)(2N + 1)

)
π(2N + 1)

ω′(y)dy.

We have proven (3.4.10) for n = 1 and x ∈]0, 1[. Since Φ, φ are both smooth on
[0, 1] the equality holds as well for x ∈ {0, 1}.

N.B. We could have used the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in [9]),
but we have preferred a simple self-contained argument with an integration by parts since
there was no shortage of regularity for the function ω.

To handle the case n ≥ 2, we use an induction and in n+ 1 dimensions, we have
for φ ∈ C∞

c (]0, 1[n+1),

∀x ∈ [0, 1]n, Φ(x, xn+1) =
∑
k∈Zn

∫
(0,1)n

e2iπ(x−y)·kφ(y, xn+1)dy = φ(x, xn+1),

and thus ∀x ∈ [0, 1]n,∀xn+1 ∈ [0, 1],Φ(x, xn+1) =

∑
k∈Zn

∫
(0,1)n

e2iπ(x−y)·k
( ∑
kn+1∈Z

∫ 1

0

e2iπ(xn+1−yn+1)kn+1φ(y, yn+1)dyn+1

)
dy = φ(x, xn+1),

which is (3.4.10) since the series are uniformly converging. Since suppφ ⊂]0, 1[n,
there exists ε0 > 0 such that4 suppφ ⊂ [ε0, 1 − ε0]

n, and with χ ∈ C∞
c (]0, 1[) equal

to 1 on [ε0, 1− ε0], we have

χ(x1) . . . χ(xn)φ(x) = φ(x) =
∑
k∈Zn

e2iπx·kφ̂(k)χ(x1) . . . χ(xn). (3.4.11)

The series is uniformly converging as well as all its derivatives, thanks to the fast
decay of φ̂(k) expressed by (3.4.9), and the functions∑

|k|≤N

e2iπx1k1 . . . e2iπxnknφ̂(k)χ(x1) . . . χ(xn)

belong to Vect(⊗nC∞
c (]0, 1[) with fixed compact support in ]0, 1[n. The proof of the

lemma is complete.

As a consequence, we get the following result.

Proposition 3.4.10. Let X be an open subset of Rm, Y be an open subset of Rn.
VectC∞

c (X)⊗ C∞
c (Y ) is dense in C∞

c (X × Y ).

4In fact, each projection Kj = projj(suppφ) is a compact subset of ]0, 1[, thus 0 < inft∈Kj
t ≤

supt∈Kj
t < 1.
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Proof. Let K be a compact subset of X×Y . For each point (x, y) ∈ K, we can find
some open bounded intervals I1, . . . , Im, J1, . . . , Jn of R such that

(x, y) ∈ Q = I1 × · · · × Im × J1 × · · · × Jn ⊂ X × Y.

As a result, we can cover K with a finite number of open “cubes” (Ql)1≤l≤N included
in X × Y . Using a partition of unity given by the theorem 3.1.14, we can find
ψl ∈ C∞

c (Ql) such that
∑

1≤l≤N ψl(x) = 1 for x ∈ V open such that K ⊂ V ⊂ X×Y .
For ϕ ∈ C∞

c (X × Y ), suppϕ = K compact subset of X × Y , we have

ϕ =
∑

1≤l≤N

ϕψl, ϕψl ∈ C∞
c (Ql).

We can then apply the lemma 3.4.9 for each ϕψl (rescaling the cube Ql to ]0, 1[n)
to obtain the conclusion of the proposition.

Theorem 3.4.11. Let X be an open subset of Rm, Y be an open subset of Rn,
and u ∈ D ′(X), v ∈ D ′(Y ). Then there exists a unique w ∈ D ′(X × Y ) such that,
∀φ ∈ D(X),∀ψ ∈ D(Y ),

〈w, φ⊗ ψ〉D ′(X×Y ),D(X×Y ) = 〈u, φ〉D ′(X),D(X)〈v, ψ〉D ′(Y ),D(Y ), (3.4.12)

where (φ⊗ ψ)(x, y) = φ(x)ψ(y). We shall denote w by u ⊗ v and call it the tensor
product of u and v.

Proof. The uniqueness follows from the proposition 3.4.10. To find such a w, we
define for Φ ∈ C∞

c (X × Y ), with obvious notations,

〈w,Φ〉 =
〈
v(y), 〈u(x),Φ(x, y)〉

〉
. (3.4.13)

As a matter of fact, thanks to the corollary 3.4.2 (1), the function Y 3 y 7→
〈u(·),Φ(·, y)〉 belongs to C∞

c (Y ) so that (3.4.13) makes sense. Using the theorem
3.4.1, we obtain ∂αy 〈u(·),Φ(·, y)〉 = 〈u(·), ∂αy Φ(·, y)〉. If K = supp Φ (compact subset
of X × Y ), both projections projXK, projYK are compact so that

|〈u(·), ∂αy Φ(·, y)〉| ≤ C1 sup
|β|≤N1, x∈projXK

|(∂βx∂αy Φ)(x, y)|

and thus

|
〈
v(y), 〈u(x),Φ(x, y)〉

〉
| ≤ C2 sup

|α|≤N2
y∈projY K

|∂αy 〈u(·),Φ(·, y)〉|

≤ C1C2 sup
|β|≤N1,|α|≤N2

(x,y)∈K

|(∂βx∂αy Φ)(x, y)|,

implying that w is indeed a distribution on X×Y . Since the formula (3.4.12) follows
from (3.4.13), this concludes the proof of the theorem.
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Remark 3.4.12. (1) The uniqueness ensures that w = u⊗ v is also defined by

〈w,Φ〉 =
〈
u(x), 〈v(y),Φ(x, y)〉

〉
, (3.4.14)

a formula for which (3.4.12) also holds.

(2) If u ∈ L1
loc(X), v ∈ L1

loc(Y ), then u⊗ v belongs to L1
loc(X × Y ) and is defined by

u(x)v(y), thanks to the lemma 3.1.7 and to the proposition 3.4.10.

(3) For u ∈ D ′(X), v ∈ D ′(Y ), we have

supp(u⊗ v) = suppu× supp v. (3.4.15)

In fact, if Φ ∈ C∞
c (X×Y ) with supp Φ ⊂ X×(supp v)c or with supp Φ ⊂ (suppu)c×

Y , it follows from (3.4.14) or (3.4.13) that 〈u⊗ v,Φ〉 = 0; this holds as well when

supp Φ ⊂ (suppu× supp v)c =
(
(suppu)c × Y

)
∪
(
X × (supp v)c

)
,

since supp Φ ⊂ Ω1 ∪ Ω2 with Ωj open subset of X × Y and, thanks to the theorem
3.1.14, the compactly supported Φ = Φ1 + Φ2, with supp Φj ⊂ Ωj (it is also a
direct consequence of the theorem 3.1.15 since (u⊗ v)|Ωj

= 0). We have proven that
supp(u ⊗ v) ⊂ suppu × supp v. Conversely, if x0 ∈ suppu, y0 ∈ supp v, and U, V
are respective open neighborhoods of x0, y0 in X, Y , we can find φ0 ∈ C∞

c (U), ψ0 ∈
C∞

c (V ) such that 〈u, φ0〉 6= 0 and 〈v, ψ0〉 6= 0. As a result φ0⊗ψ0 ∈ C∞
c (U ×V ) and

〈u ⊗ v, φ0 ⊗ ψ0〉 = 〈u, φ0〉〈v, ψ0〉 6= 0, so that (u ⊗ v)|U×V is not zero, proving that
(x0, y0) ∈ supp(u⊗ v) and the sought result.

(4) With the notations of the previous theorem, we have obviously from the expres-
sion (3.4.13) and the theorem 3.4.1 that ∂αx∂

β
y (u⊗ v) = (∂αxu)⊗ (∂βy v).

Proposition 3.4.13. Let n ∈ N∗, U be an open subset of Rn−1, I an interval of
R. Let u ∈ D ′(U × I) such that ∂xnu = 0. Then, there exists v ∈ D ′(U) such that
u = v ⊗ 1. In other words, the differential equation ∂xnu = 0 has the only solutions
u(x′, xn) = v(x′).

Proof. From the remark 3.4.12 (3) above, the tensor products v(x′) ⊗ 1 are indeed
solutions of ∂xnu = 0. Conversely the proposition is proven for n = 1 by the lemma
3.2.4. Let us assume n ≥ 2; we consider χ0 ∈ C∞

c (I) such that
∫
χ0(t)dt = 1 and

we define v ∈ D ′(U) by the identity

〈v, ϕ〉D ′(U),D(U) = 〈u, ϕ⊗ χ0〉D ′(U×I),D(U×I).

For ϕ ∈ D(U), ψ ∈ D(I), we have with J(ψ) =
∫
ψ(t)dt,

〈v ⊗ 1, ϕ⊗ ψ〉 = 〈u, ϕ⊗ χ0〉J(ψ).

From the proof of the lemma 3.2.4, we see that ψ−χ0J(ψ) = θ′ with θ ∈ C∞
c (I), and

we get 〈u, ϕ⊗
(
χ0J(ψ)−ψ

)
〉 = 〈u, ∂xn(ϕ⊗θ)〉 = 0 so that 〈v⊗1, ϕ⊗ψ〉 = 〈u, ϕ⊗ψ〉,

which is the sought result.
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3.5 Convolution

We want to define the convolution of two distributions on Rn, provided one of them
has compact support. Assuming first that u ∈ L1

comp(Rn), v ∈ L1
loc(Rn), φ ∈ C∞

c (Rn)
the integral ∫∫

u(x− y)v(y)φ(x)dxdy =

∫∫
u(x)v(y)φ(x+ y)dxdy, (3.5.1)

makes sense since x and x+ y are moving in a compact set in the last integral (and
so is y). This formula allows us to define

(u ∗ v)(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy

and can naturally be extended to u, v ∈ L1(Rn) so that ‖u∗v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn),
making L1(Rn) a Banach algebra (without unit). The inequality of Young (see e.g.
the Théorème 6.2.1 in [9]) is a non-trivial extension of that inequality. Anyhow, at
the moment, we want to use the formula (3.5.1) for our general definition.

3.5.1 Convolution E ′(Rn) ∗D ′(Rn)

Definition 3.5.1. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We define the convolution u ∗ v by
the following bracket of duality

〈u ∗ v, φ〉D ′(Rn),D(Rn) =
〈
u(x), 〈v(y), φ(x+ y)〉

〉
=
〈
v(y), 〈u(x), φ(x+ y)〉

〉
. (3.5.2)

We note that the theorem 3.4.1 shows that the function Rn 3 x 7→ 〈v(y), φ(x+y)〉
is C∞ and thus that the first definition makes sense from the corollary 3.4.2 (2). To
check the second equality above, we note that with χ ∈ C∞

c (Rn) equal to 1 near the
support of u, we have χu = u and thus from the remark 3.4.12(1) and the formula
(3.4.13),〈
u(x), 〈v(y), φ(x+ y)〉

〉
=
〈
u(x), 〈v(y), χ(x)φ(x+ y)〉

〉
= 〈u(x)⊗ v(y), χ(x)φ(x+ y)〉,

which is also equal to
〈
v(y), 〈u(x), χ(x)φ(x + y)〉

〉
=
〈
v(y), 〈u(x), φ(x + y)〉

〉
. This

proves as well that u ∗ v is a distribution on Rn since the mapping C∞
c (Rn) 3 φ 7→

Φ ∈ C∞
c (R2n), with Φ(x, y) = φ(x+ y)χ(x) is continuous.

Remark 3.5.2. We note that whatever is χ ∈ C∞
c (Rn) equal to 1 near the support

of u, we have for u ∈ E ′(Rn), v ∈ D ′(Rn),

〈u ∗ v, φ〉 = 〈u(x)⊗ v(y), χ(x)φ(x+ y)〉. (3.5.3)

Proposition 3.5.3. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We have

supp(u ∗ v) ⊂ suppu+ supp v. (3.5.4)
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Proof. Note first that suppu+supp v is a closed subset of Rn as the sum of a compact
set and a closed set (exercise). Now if φ ∈ C∞

c (Rn) with suppφ ⊂ (suppu+supp v)c,
then

supp
(
(x, y) 7→ φ(x+ y)

)
⊂ (suppu× supp v)c. (3.5.5)

In fact, if (x0, y0) ∈ suppu× supp v, then x0 + y0 ∈ suppu+ supp v ⊂ (suppφ)c, the
latter being open so that there exists U open in V0 with φ(x0 +U + y0 +U) = 0. As
a consequence, the open set (x0 + U)× (y0 + U) ⊂

(
supp((x, y) 7→ φ(x + y))

)c
and

this implies (x0, y0) ∈
(
supp((x, y) 7→ φ(x+ y))

)c
and proves (3.5.5), so that (3.5.3),

(3.4.15) give the conclusion of the proposition.

Remark 3.5.4. For u, v both in E ′(Rn), the formula (3.5.2) ensures that u∗v = v∗u.

3.5.2 Regularization

Proposition 3.5.5. Let u ∈ D ′(Rn), ρ ∈ C∞
c (Rn). Then ρ ∗ u belongs to C∞(Rn).

Proof. We have from the definitions, with χ ∈ C∞
c (Rn) equal to 1 near supp ρ,

φ ∈ C∞
c (Rn),

〈ρ ∗ u, φ〉 = 〈ρ(x)⊗ u(y), χ(x)φ(x+ y)〉 = 〈u(y), 〈ρ(x), χ(x)φ(x+ y)〉〉, (3.5.6)

and we note that 〈ρ(x), χ(x)φ(x + y)〉 =
∫
ρ(x)φ(x + y)dx =

∫
ρ(x− y)φ(x)dx. As

a result, we have

〈ρ ∗ u, φ〉 = 〈u(y),
∫
ρ(x− y)φ(x)︸ ︷︷ ︸

∈C∞c (R2n)

dx〉 =

∫
φ(x)〈u(y), ρ(x− y)〉dx

where the last equality is due to the theorem 3.4.15 which gives also that ψ(x) =
〈u(y), ρ(x − y)〉 is C∞; we have proven ρ ∗ u = ψ and the result. We note also the
formula following from (3.5.6)

〈ρ ∗ u, φ〉 = 〈u, ρ̌ ∗ φ〉. (3.5.7)

Lemma 3.5.6. Let Ω be an open subset of Rn and T ∈ D ′(Ω). There exists a
sequence (ψj)j≥1 in D(Ω) such that limj ψj = T in the weak-dual topology sense of
the definition 3.1.16.

Proof. We consider first a sequence (Kj)j≥1 of compact subsets of Ω as in the lemma
2.3.1 and a sequence (χj)j≥1 such that χj ∈ C∞

c (intKj+1), χj = 1 near Kj (see the
lemma 3.1.3). In the weak-dual topology sense, we have limj χjT = T : let ϕ ∈ D(Ω),
K = suppϕ. From the lemma 2.3.1, there exists j such that suppϕ ⊂ Kj and
thus ϕχj = ϕ, implying 〈Tχj, ϕ〉 = 〈T, χjϕ〉 = 〈T, ϕ〉. We can also consider the
compactly supported distribution χjT and see it as a distribution on Rn. We take
now a function ρ ∈ C∞

c (Rn) such that
∫
ρ(x)dx = 1. According to the first example

5For Φ ∈ C∞c (Rn × Rn), u ∈ D ′(Rn), 〈1⊗ u,Φ〉 = 〈u(y),
∫

Φ(x, y)dx〉 =
∫
〈u(y),Φ(x, y)〉dx.
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in the section 3.1.3, we define ρε (it tends to the Dirac mass at 0 in the weak-dual
topology when ε→ 0+). For ϕ ∈ D(Ω), using (3.5.7), we have

〈ρε ∗ (χjT ), ϕ〉 = 〈χjT, ρ̌ε ∗ ϕ〉. (3.5.8)

Considering now a decreasing sequence of positive numbers (εj) with limit 0 such
that

suppχj + εj supp ρ ⊂ int(Kj+1) ⊂ Ω,

and we define Tj = ρεj ∗ χjT. We have from the proposition 3.5.3 that suppTj is
compact included in Ω and also that Tj ∈ C∞ (proposition 3.5.5). Going back to
(3.5.8), for a fixed ϕ, we can find j such that suppϕ ⊂ Kj−1 for j ≥ j0, implying
that

supp(ρ̌εj ∗ ϕ) ⊂ Kj−1 + εj supp ρ ⊂ suppχj−1 + εj−1 supp ρ ⊂ Kj,

implying that χj(ρ̌εj ∗ ϕ) = ρ̌εj ∗ ϕ and 〈ρεj ∗ (χjT ), ϕ〉 = 〈T, ρ̌εj ∗ ϕ〉. The result
follows from the proposition 3.1.1 (implying limj(ρ̌εj ∗ ϕ) = ϕ in C∞

c (Ω)) and the
(sequential) continuity of the distribution T .

Proposition 3.5.7. Let u ∈ E ′(Rn), v ∈ D ′(Rn). We have

singsupp(u ∗ v) ⊂ singsuppu+ singsupp v. (3.5.9)

Proof. We can choose χ ∈ C∞
c (Rn) equal to 1 near the singsuppu, ψ ∈ C∞ equal to

1 near the singular support of v. We have from the proposition 3.5.5

u ∗ v = (χu) ∗ v + (

∈C∞c (Rn)︷ ︸︸ ︷
(1− χ)u) ∗ v︸ ︷︷ ︸

∈C∞(Rn)

≡ (χu) ∗ (ψv) +

∈E ′(Rn)︷︸︸︷
(χu) ∗(

∈C∞(Rn)︷ ︸︸ ︷
(1− ψ)v)︸ ︷︷ ︸

∈C∞(Rn)

mod C∞(Rn)

and thus we get for all ε > 0

singsupp(u ∗ v) ⊂ suppψ + suppψ ⊂ singsuppu+ εB̄1 + singsupp v + εB̄1,

which gives the result.

3.5.3 Convolution with a proper support condition

Looking at the formula (3.5.1), we see that we can extend it easily for L1
loc(Rn)

functions u, v so that the mapping

suppu× supp v 3 (x, y) 7→ x+ y = σ(x, y) ∈ Rn (3.5.10)

is proper, i.e. such that σ−1(K) is compact for K compact subset of Rn. In fact
if u, v ∈ L1

loc(Rn) are such that the map σ of (3.5.10) is proper, the function u ∗ v
defined by

(u ∗ v)(x) =

∫
u(x− y)v(y)dy
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is also L1
loc(Rn), since for K compact subset of Rn, we have∫∫

|u(x− y)||v(y)|1K(x)dydx =

∫∫
|u(x)||v(y)|1K(x+ y)dxdy

=

∫∫
σ−1(K)

|u(x)||v(y)|dxdy <∞, since σ−1(K) is compact in R2n.

We can extend as well the convolution product of distributions u, v, provided σ in
(3.5.10) is proper. Before doing so, we prove a simple lemma.

Lemma 3.5.8. Let F1, . . . , Fm be closed subsets of Rn such that the mapping σ :
F1 × · · · × Fm → Rn, defined by σ(x1, . . . , xm) = x1 + · · · + xm is proper. Defining
for ε > 0, Fj,ε = {x ∈ Rn, |x − Fj| ≤ ε}, the mapping σε : F1,ε × · · · × Fm,ε → Rn,
defined by σε(x1, . . . , xm) = x1 + · · ·+ xm is also proper.

Proof. We note first that Fj,ε = Fj + εB̄1 (B̄1 is the closed unit ball of Rn) is
closed as the sum of a compact and a closed set. Let K be compact subset of
Rn; if (x1, . . . , xm) ∈ σ−1

ε (K), then there exists yj ∈ Fj, tj ∈ Rn, |tj| ≤ ε, such
that xj = yj + tj,

∑
1≤j≤m(yj + tj) ∈ K and thus

∑
1≤j≤m yj ∈ K + mεB̄1, so

that (yj)1≤j≤m ∈ σ−1(K + mεB̄1), a compact subset of
∏
Fj. As a consequence,

(xj)1≤j≤m ∈ σ−1(K +mεB̄1) + εB̄1,nm (B̄1,nm is the closed unit ball of Rnm), which
is compact. As a result, σ−1

ε (K) is compact as a closed subset of
∏
Fj,ε (σε is

continuous) included in a compact set.

Definition 3.5.9. Let u1, . . . , um ∈ D ′(Rn) such that the mapping σ∏
1≤j≤m

suppuj 3 (xj)1≤j≤m 7→
∑

1≤j≤m

xj ∈ Rn is proper. (3.5.11)

For ε > 0, we take χj,ε ∈ C∞(Rn) such that suppχj,ε ⊂ suppuj + εB̄1 and suppχj,ε
is 1 on a neighborhood of suppuj. We define then

〈u1 ∗ · · · ∗ um, φ〉D ′(Rn),D(Rn) = 〈u1 ⊗ · · · ⊗ um, φ̃〉D ′(Rnm),D(Rnm) (3.5.12)

with φ̃(x1, . . . , xm) =
∏

1≤j≤m χj,ε(xj)φ(
∑

1≤j≤m xj) : we note that φ̃ is in D(Rnm)
since

supp φ̃ ⊂ {(xj)1≤j≤m ∈
∏

1≤j≤m

suppχj,ε with σ((xj)) ∈ suppφ}

which is compact from the previous lemma and (3.5.11).

It is also easy to prove that this definition does not depend on the choices of the
functions χj,ε having the properties listed above and that this definition coincides
with the definition of convolution in the previous section. In particular, we can prove
the associativity of the convolution using the identity (3.5.12), provided the condition
(3.5.11) is satisfied. As a counterexample we can take u1 = 1, u2 = δ′0, u3 = H and
we have since 1 ∗ δ′0 = 0, δ′0 ∗H = δ0,

(u1 ∗ u2) ∗ u3 = 0, u1 ∗ (u2 ∗ u3) = 1 ∗ δ0 = 1.
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Naturally the hypothesis (3.5.11) is violated here since the mapping σ defined on
R×{0}×R+ is not proper: σ−1({0}) ⊃ {(−N, 0, N)}N∈N. The assumption (3.5.11)
is satisfied for m = 2 if suppu1 is compact and also for distributions on R with
support in R+. We get also that

∀u ∈ D ′(Rn), u ∗ δ = u, since 〈u(x1)⊗ δ(x2), φ(x1 + x2)〉 = 〈u, φ〉. (3.5.13)

and for u, v ∈ D ′(Rn) such that (3.5.11) holds

∂αx (u ∗ v) = (∂αxu) ∗ v = u ∗ (∂αx v), (3.5.14)

since 〈∂αx (u ∗ v), φ〉 = (−1)|α|〈u ∗ v, ∂αxφ〉 = (−1)|α|〈u(x) ⊗ v(y), (∂αφ)(x + y)〉 =
〈(∂αxu)(x)⊗ v(y), φ(x + y)〉 and putting inside the brackets the cut-off functions χε
does not change the outcome of the computation.

3.6 Some fundamental solutions

3.6.1 Definitions

Definition 3.6.1. We consider a constant coefficients differential operator

P = P (D) =
∑
|α|≤m

aαD
α
x , where aα ∈ C, Dα

x =
1

(2iπ)|α|
∂αx . (3.6.1)

A distribution E ∈ D ′(Rn) is called a fundamental solution of P when PE = δ0.

We note that if f ∈ E ′(Rn) and E is a fundamental solution of P , we have from
(3.5.14), (3.5.13),

P (E ∗ f) = PE ∗ f = δ0 ∗ f = f,

which allows to find a solution of the Partial Differential Equation (PDE for short)
P (D)u = f , at least when f is a compactly supported distribution.

Examples. We have on the real line already proven (see (3.2.2)) that dH
dt

= δ0, so
that the Heaviside function is a fundamental solution of d/dt (note that from the
lemma 3.2.4, the other fundamental solutions are C +H(t)). This also implies that

∂x1

(
H(x1)⊗ δ0(x2)⊗ · · · ⊗ δ0(xn)

)
= δ0(x), (the Dirac mass at 0 in Rn).

Let N ∈ N. With xλ+ defined in (3.4.8), we get, since ∂N+1
x1

(xN+1
1,+ ) = H(x1)(N + 1)!,

that

(∂x1 . . . ∂xn)N+2
( ∏

1≤j≤n

( xN+1
j,+

(N + 1)!

)
= δ0(x).

The last example has the following interesting consequence.

Proposition 3.6.2. Let u ∈ D ′(Rn) and Ω a bounded open set. Then u|Ω is a
derivative of finite order of a continuous function.
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Proof. We consider for χ ∈ C∞
c (Rn) equal to 1 on Ω the distribution χu ∈ E ′(Rn)

whose restriction to Ω coincides with u|Ω. The distribution χu has finite order N

(see the remark 3.3.3). We have with E(x) =
∏

1≤j≤n
xN+1

j,+

(N+1)!

χu = χu ∗ δ0 = (∂x1 . . . ∂xn)N+2
(
χu ∗ E

)
. (3.6.2)

Since the function E is CN with Nth derivatives (Lipschitz) continuous, we may
consider the function ψ defined by

ψ(x) = 〈χ(y)u(y), E(x− y)〉.

Since χu is compactly supported with order N , we have with K compact subset of
Rn,

|ψ(x+ h)− ψ(x)| ≤ C sup
|α|≤N,y∈K

|∂αy
(
E(x+ h− y)− E(x− y)

)
|.

Since the function E is CN with Nth derivatives Lipschitz continuous, we find that
ψ is Lipschitz continuous. We have from the definitions, with φ ∈ C∞

c (Rn),

〈E ∗ χu, φ〉 = 〈E(x)⊗ (χu)(y), φ(x+ y)〉 = 〈(χu)(y), 〈E(x), φ(x+ y)〉〉,

and we note that 〈E(x), φ(x+ y)〉 =
∫
E(x− y)φ(x)dx. As a result, we have

〈E ∗ χu, φ〉 = 〈u(y),
∫
χ(y)E(x− y)φ(x)︸ ︷︷ ︸

∈CN
c (R2n)

dx〉 =

∫
φ(x)〈(χu)(y), E(x− y)〉dx

where the last equality is due to the theorem 3.4.16 and gives also that ψ = χu ∗E.
The result follows from the continuity of ψ and (3.6.2).

3.6.2 The Laplace and Cauchy-Riemann equations

We define the Laplace operator ∆ in Rn as

∆ =
∑

1≤j≤n

∂2
xj
. (3.6.3)

In one dimension, we have from (3.2.2) that d2

dt2
(t+) = δ0 and for n ≥ 2 the following

result describes the fundamental solutions of the Laplace operator. In R2
x,y, we define

the operator ∂̄ (a.k.a. the Cauchy-Riemann operator) by

∂̄ =
1

2
(∂x + i∂y). (3.6.4)

Theorem 3.6.3. We have ∆E = δ0 with ‖ · ‖ standing for the Euclidean norm,

E(x) =
1

2π
ln ‖x‖, for n = 2, (3.6.5)

E(x) = ‖x‖2−n 1

(2− n)|Sn−1|
, for n ≥ 3, with |Sn−1| = 2πn/2

Γ(n/2)
, (3.6.6)

∂̄
( 1

πz

)
= δ0, with z = x+ iy (equality in D ′(R2

x,y)). (3.6.7)

6For Φ ∈ CN
c (Rn × Rn), v ∈ D ′(Rn), order(v) ≤ N 〈1 ⊗ v,Φ〉 = 〈v(y),

∫
Φ(x, y)dx〉 =∫

〈v(y),Φ(x, y)〉dx.
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Proof. We start with n ≥ 3, noting that the function ‖x‖2−n is L1
loc and homogeneous

with degree 2−n, so that ∆‖x‖2−n is homogeneous with degree −n (see the remark

3.4.7 (2)). Moreover, the function ‖x‖2−n = f(r2), r2 = ‖x‖2, f(t) = t
1−n

2
+ is smooth

outside 0 and we can compute there

∆(f(r2)) =
∑
j

∂j(f
′(r2)2xj) =

∑
j

f ′′(r2)4x2
j + 2nf ′(r2) = 4r2f ′′(r2) + 2nf ′(r2),

so that with t = r2,

∆(f(r2)) = 4t(1− n

2
)(−n

2
)t−

n
2
−1 + 2n(1− n

2
)t−

n
2 = t−

n
2 (1− n

2
)(−2n+ 2n) = 0.

As a result, ∆‖x‖2−n is homogeneous with degree −n and supported in {0}. From
the theorem 3.3.4, we obtain that

∆‖x‖2−n = cδ0︸ ︷︷ ︸
homogeneous
degree −n

+
∑

1≤j≤m

∑
|α|=j

cj,αδ
(α)
0︸ ︷︷ ︸

homogeneous
degree −n− j

.

The lemma 3.4.8 implies that for 1 ≤ j ≤ m, 0 =
∑

|α|=j cj,αδ
(α)
0 and ∆‖x‖2−n = cδ0.

It remains to determine the constant c. We calculate, using the previous formulas
for the computation of ∆(f(r2)), here with f(t) = e−πt,

c = 〈∆‖x‖2−n, e−π‖x‖
2〉 =

∫
‖x‖2−ne−π‖x‖

2(
4‖x‖2π2 − 2nπ

)
dx

= |Sn−1|
∫ +∞

0

r2−n+n−1e−πr
2

(4π2r2 − 2nπ)dr

= |Sn−1|
( 1

2π
[e−πr

2

(4π2r2 − 2nπ)]0+∞ +
1

2π

∫ +∞

0

e−πr
2

8π2rdr
)

= |Sn−1|(−n+ 2),

giving (3.6.6). For the convenience of the reader, we calculate explicitely |Sn−1|. We
have indeed

1 =

∫
Rn

e−π‖x‖
2

dx = |Sn−1|
∫ +∞

0

rn−1e−πr
2

dr

=︸︷︷︸
r=t1/2π−1/2

|Sn−1|π(1−n)/2

∫ +∞

0

t
n−1

2 e−t
1

2
t−1/2dtπ−1/2 = |Sn−1|π−n/22−1Γ(n/2).

Turning now our attention to the Cauchy-Riemann equation, we see that 1/z is also
L1

loc(R2), homogeneous of degree −1, and satisfies ∂̄(z−1) = 0 on the complement of
{0}, so that the same reasoning as above shows that

∂̄(π−1z−1) = cδ0.

To check the value of c, we write c = 〈∂̄(π−1z−1), e−πzz̄〉 =
∫

R2 e
−πzz̄π−1z−1πzdxdy =

1, which gives (3.6.7). We are left with the Laplace equation in two dimensions and
we note that with ∂

∂z
= 1

2
(∂x − i∂y),

∂
∂z̄

= 1
2
(∂x + i∂y), we have in two dimensions

∆ = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
. (3.6.8)
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Solving the equation 4∂E
∂z

= 1
πz

leads us to try E = 1
2π

ln |z| and we check directly7

that ∂
∂z

(
ln(zz̄)

)
= z−1

∆(
1

2π
ln |z|) = π−12−24

∂

∂z̄

∂

∂z

(
ln(zz̄)

)
= π−1 ∂

∂z̄

(
z−1
)

= δ0.

3.6.3 Hypoellipticity

Definition 3.6.4. Let P be a linear operator of type (3.6.1). We shall say that P
is hypoelliptic when for all open subsets Ω of Rn and all u ∈ D ′(Ω), we have

singsuppu = singsuppPu. (3.6.9)

It is obvious that singsuppPu ⊂ singsuppu, so the hypoellipticity means that
singsuppu ⊂ singsuppPu, which is a very interesting piece of information since we
can then determine the singularities of our (unknown) solution u, which are located
at the same place as the singularities of the source f , which is known when we try
to solve the equation Pu = f.

Theorem 3.6.5. Let P be a linear operator of type (3.6.1) such that P has a fun-
damental solution E satisfying

singsuppE = {0}. (3.6.10)

Then P is hypoelliptic. In particular the Laplace and the Cauchy-Riemann operators
are hypoelliptic.

N.B. The condition (3.6.10) appears as an iff condition for the hypoellipticity of the
operator P since it is also a consequence of the hypoellipticity property.

Proof. Assume that (3.6.10) holds, let Ω be an open subset of Rn and u ∈ D ′(Ω).
We consider f = Pu ∈ D ′(Ω), x0 /∈ singsupp f , χ0 ∈ C∞

c (Ω), χ0 = 1 near x0. We
have from the proposition 3.5.5 that

χu = χu ∗ PE = (Pχu) ∗ E = ([P, χ]u) ∗ E +

∈C∞c (Rn)︷︸︸︷
(χf) ∗E︸ ︷︷ ︸
∈C∞(Rn)

and thus, using the the proposition 3.5.7 for singular supports, we get

singsupp(χu) ⊂ singsupp([P, χ]u) + singsuppE = singsupp([P, χ]u) ⊂ supp(u∇χ),

and since χ is identically 1 near x0, we get that x0 /∈ supp(u∇χ), implying x0 /∈
singsupp(χu), proving that x0 /∈ singsuppu and the result.

7Noting that ln(x2 + y2) and its first derivatives are L1
loc(R2), we have for ϕ ∈ C∞c (R2),

〈 ∂
∂z

(
ln |z|2

)
, ϕ〉 =

1
2

∫∫
R2

(−∂xϕ+i∂yϕ) ln(x2+y2)dxdy =
∫∫

ϕ(x, y)(xr−2−iyr−2)dxdy =
∫∫

(x+iy)−1ϕ(x, y)dxdy.
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3.7 Appendix

3.7.1 The Gamma function

The gamma function Γ is a meromorphic function on C given for Re z > 0 by the
formula

Γ(z) =

∫ +∞

0

e−ttz−1dt. (3.7.1)

For n ∈ N, we have Γ(n + 1) = n!; another interesting value is Γ(1/2) =
√
π. The

functional equation
Γ(z + 1) = zΓ(z) (3.7.2)

is easy to prove for Re z > 0 and can be used to extend the Γ function into a mero-

morphic function with simple poles at −N and Res(Γ,−k) = (−1)k

k!
. For instance, for

−1 < Re z ≤ 0 with z 6= 0 we define

Γ(z) =
Γ(z + 1)

z
, where we can use (3.7.1) to define Γ(z + 1).

More generally for k ∈ N, −1− k < Re z ≤ −k, z 6= −k, we can define

Γ(z) =
Γ(z + k + 1)

z(z + 1) . . . (z + k)
.

There are manifold references on the Gamma function. One of the most compre-
hensive is certainly the chapter VII of the Bourbaki volume Fonctions de variable
réelle [2].

3.7.2 LF spaces

3.7.3 The Schwartz kernel theorem

3.7.4 Coordinate transformations and pullbacks



Chapter 4

Introduction to Fourier Analysis

4.1 Fourier Transform of tempered distributions

4.1.1 The Fourier transformation on S (Rn)

Let n ≥ 1 be an integer. The Schwartz space S (Rn) is defined in the section 2.3.5,
is a Fréchet space, as the space of C∞ functions u from Rn to C such that, for all
multi-indices1 α, β ∈ Nn,

sup
x∈Rn

|xα∂βxu(x)| < +∞.

A simple example of such a function is e−|x|
2
, (|x| is the Euclidean norm of x) and

more generally if A is a symmetric positive definite n× n matrix the function

vA(x) = e−π〈Ax,x〉

belongs to the Schwartz class.

Definition 4.1.1. For u ∈ S (Rn), we define its Fourier transform û as

û(ξ) =

∫
Rn

e−2iπx·ξu(x)dx. (4.1.1)

Lemma 4.1.2. The Fourier transform sends continuously S (Rn) into itself.

Proof. Just notice that ξα∂βξ û(ξ) =
∫
e−2iπxξ∂αx (xβu)(x)dx(2iπ)|β|−|α|(−1)|β|.

Lemma 4.1.3. For a symmetric positive definite n× n matrix A, we have

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉. (4.1.2)

1Here we use the multi-index notation: for α = (α1, . . . , αn) ∈ Nn we define

xα = xα1
1 . . . xαn

n , ∂α
x = ∂α1

x1
. . . ∂αn

xn
, |α| =

∑
1≤j≤n

αj .

101
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Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the
one-dimensional version of (4.1.2), i.e. to check∫

e−2iπxξe−πx
2

dx =

∫
e−π(x+iξ)2dxe−πξ

2

= e−πξ
2

,

where the second equality is obtained by taking the ξ-derivative of
∫
e−π(x+iξ)2dx :

we have indeed

d

dξ

(∫
e−π(x+iξ)2dx

)
=

∫
e−π(x+iξ)2(−2iπ)(x+ iξ)dx = −i

∫
d

dx

(
e−π(x+iξ)2

)
dx = 0.

For a > 0, we obtain
∫

R e
−2iπxξe−πax

2
dx = a−1/2e−πa

−1ξ2 , which is the sought result
in one dimension. If n ≥ 2, and A is a positive definite symmetric matrix, there
exists an orthogonal n× n matrix P (i.e. tPP = Id) such that

D =tPAP, D = diag(λ1, . . . , λn), all λj > 0.

As a consequence, we have, since | detP | = 1,∫
Rn

e−2iπx·ξe−π〈Ax,x〉dx =

∫
Rn

e−2iπ(Py)·ξe−π〈APy,Py〉dy =

∫
Rn

e−2iπy·(tPξ)e−π〈Dy,y〉dy

(with η =tPξ) =
∏

1≤j≤n

∫
R
e−2iπyjηje−πλjy

2
j dyj =

∏
1≤j≤n

λ
−1/2
j e−πλ

−1
j η2

j

= (detA)−1/2e−π〈D
−1η,η〉 = (detA)−1/2e−π〈

tPA−1P tPξ,tPξ〉 = (detA)−1/2e−π〈A
−1ξ,ξ〉.

Proposition 4.1.4. The Fourier transformation is an isomorphism of the Schwartz
class and for u ∈ S (Rn), we have

u(x) =

∫
e2iπxξû(ξ)dξ. (4.1.3)

Proof. Using (4.1.2) we calculate for u ∈ S (Rn) and ε > 0, dealing with absolutely
converging integrals,

uε(x) =

∫
e2iπxξû(ξ)e−πε

2|ξ|2dξ

=

∫∫
e2iπxξe−πε

2|ξ|2u(y)e−2iπyξdydξ

=

∫
u(y)e−πε

−2|x−y|2ε−ndy

=

∫ (
u(x+ εy)− u(x)

)︸ ︷︷ ︸
with absolute value≤ε|y|‖u′‖L∞

e−π|y|
2

dy + u(x).

Taking the limit when ε goes to zero, we get the Fourier inversion formula

u(x) =

∫
e2iπxξû(ξ)dξ. (4.1.4)
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We have also proven for u ∈ S (Rn) and ǔ(x) = u(−x)

u =
ˇ̂
û. (4.1.5)

Since u 7→ û and u 7→ ǔ are continuous homomorphisms of S (Rn), this completes
the proof of the proposition.

Proposition 4.1.5. Using the notation

Dxj
=

1

2iπ

∂

∂xj
, Dα

x =
n∏
j=1

Dαj
xj

with α = (α1, . . . , αn) ∈ Nn, (4.1.6)

we have, for u ∈ S (Rn)

D̂α
xu(ξ) = ξαû(ξ), (Dα

ξ û)(ξ) = (−1)|α|x̂αu(x)(ξ) (4.1.7)

Proof. We have for u ∈ S (Rn), û(ξ) =
∫
e−2iπx·ξu(x)dx and thus

(Dα
ξ û)(ξ) = (−1)|α|

∫
e−2iπx·ξxαu(x)dx,

ξαû(ξ) =

∫
(−2iπ)−|α|∂αx

(
e−2iπx·ξ)u(x)dx =

∫
e−2iπx·ξ(2iπ)−|α|(∂αxu)(x)dx,

proving both formulas.

N.B. The normalization factor 1
2iπ

leads to a simplification in the formulas (4.1.7),
but the most important aspect of these formulas is certainly that the Fourier trans-
formation exchanges the operation of derivation against the operation of multiplica-
tion. For instance if P (D) is given by a formula (3.6.1), we have

P̂ u(ξ) =
∑
|α|≤m

aαξ
αû(ξ) = P (ξ)û(ξ).

Remark 4.1.6. We have the following continuous inclusions2

D(Rn) ↪→ S (Rn) ↪→ E (Rn), (4.1.8)

triggering the (continuous) inclusions of topological duals,

E ′(Rn) ↪→ S ′(Rn) ↪→ D ′(Rn). (4.1.9)

The space S ′(Rn) is the topological dual of the Fréchet space S (Rn) and is called
the space of tempered distributions on Rn. We shall sometimes omit the “Rn” in
S (Rn),S ′(Rn), at least when it is clear that the dimension is fixed equal to n.

The Fourier transformation can be extended to S ′(Rn).

2The first inclusion is certainly sequentially continuous according to the definition 3.1.9 and the
second is an inclusion of Fréchet spaces: for each semi-norm p on E (Rn), there exists a semi-norm
q on S (Rn) such that for all u ∈ S (Rn), p(u) ≤ q(u).
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4.1.2 The Fourier transformation on S ′(Rn)

Definition 4.1.7. Let T be a tempered distribution ; the Fourier transform T̂ of T
is the tempered distibution defined by the formula

〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . (4.1.10)

The linear form T̂ is obviously a tempered distribution since the Fourier transfor-
mation is continuous on S . Thanks to the lemma 3.1.7, if T ∈ S , the present
definition of T̂ and (4.1.1) coincide.

Note that for T, ϕ ∈ S , we have 〈T̂ , ϕ〉 =
∫∫

T (x)e−2iπx·ξϕ(ξ)dxdξ = 〈T, ϕ̂〉.
This definition gives that

δ̂0 = 1, (4.1.11)

since 〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =
∫
ϕ(x)dx = 〈1, ϕ〉.

Theorem 4.1.8. The Fourier transformation is an isomorphism of S ′(Rn). Let T
be a tempered distribution. Then we have3

T =
ˇ̂
T̂. (4.1.12)

With obvious notations, we have the following extensions of (4.1.7),

D̂α
xT (ξ) = ξαT̂ (ξ), (Dα

ξ T̂ )(ξ) = (−1)|α|x̂αT (x)(ξ). (4.1.13)

Proof. Using the notation (ϕ̌)(x) = ϕ(−x) for ϕ ∈ S , we define Š for S ∈ S ′ by
(see the remark 3.4.4), 〈Š, ϕ〉S ′,S = 〈S, ϕ̌〉S ′,S and we obtain for T ∈ S ′

〈
ˇ̂
T̂, ϕ〉S ′,S = 〈 ˆ̂

T , ϕ̌〉S ′,S = 〈T̂ , ˆ̌ϕ〉S ′,S = 〈T, ˆ̌̂ϕ〉S ′,S = 〈T, ϕ〉S ′,S ,

where the last equality is due to the fact that ϕ 7→ ϕ̌ commutes4 with the Fourier

transform and (4.1.4) means
ˇ̂
ϕ̂ = ϕ, a formula also proven true on S ′ by the previous

line of equality. The formula (4.1.7) is true as well for T ∈ S ′ since, with ϕ ∈ S
and ϕα(ξ) = ξαϕ(ξ), we have

〈D̂αT , ϕ〉S ′,S = 〈T, (−1)|α|Dαϕ̂〉S ′,S = 〈T, ϕ̂α〉S ′,S = 〈T̂ , ϕα〉S ′,S ,

and the other part is proven the same way.

The following lemma will be useful.

Lemma 4.1.9. Let T ∈ S ′(Rn) be a homogeneous distribution of degree m. Then
its Fourier transform is a homogeneous distribution of degree −m− n

Proof. We check

(ξ ·Dξ)T̂ = −ξ · x̂T = − ̂(Dx · xT ) = − n

2iπ
T̂ − 1

2iπ
̂(x · ∂xT ) = −(n+m)

2iπ
T̂ ,

so that the Euler equation (3.4.6) ξ∂̇ξT̂ = −(n+m)T̂ is satisfied.

3According to the remark 3.4.4, Ť is the distribution defined by 〈Ť , ϕ〉 = 〈T, ϕ̌〉 and if T ∈ S ′,
Ť is also a tempered distribution since ϕ 7→ ϕ̌ is an involutive isomorphism of S .

4If ϕ ∈ S , we have ̂̌ϕ(ξ) =
∫
e−2iπx·ξϕ(−x)dx =

∫
e2iπx·ξϕ(x)dx = ϕ̂(−ξ) = ˇ̂ϕ(ξ).
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4.1.3 The Fourier transformation on L1(Rn)

Theorem 4.1.10. The Fourier transformation is linear continuous from L1(Rn)
into L∞(Rn) and for u ∈ L1(Rn), we have

û(ξ) =

∫
e−2iπx·ξu(x)dx, ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn). (4.1.14)

Proof. The formula (4.1.1) can be used to define directly the Fourier transform of
a function in L1(Rn) and this gives an L∞(Rn) function which coincides with the
Fourier transform: for a test function ϕ ∈ S (Rn), and u ∈ L1(Rn), we have by the
definition (4.1.10) above and the Fubini theorem

〈û, ϕ〉S ′,S =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ(ξ)e−2iπx·ξdxdξ =

∫
ũ(ξ)ϕ(ξ)dξ

with ũ(ξ) =
∫
e−2iπx·ξu(x)dx which is thus the Fourier transform of u.

4.1.4 The Fourier transformation on L2(Rn)

We refer the reader to the section 5.3 in Chapter 5.

4.1.5 Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(x) = 1 for x > 0, H(x) = 0
for x ≤ 0 ; it is obviously a tempered distribution, so that we can compute its Fourier
transform. With the notation of this section, we have, with δ0 the Dirac mass at 0,
Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ

so that ξ
(
ŝignξ − 1

iπ
pv(1/ξ)

)
= 0 and from the theorem 3.2.8, we get

ŝignξ − 1

iπ
pv(1/ξ) = cδ0,

with c = 0 since the lhs is odd. We obtain

ŝign(ξ) =
1

iπ
pv

1

ξ
, (4.1.15)

̂
pv(

1

πx
) = −i sign ξ, (4.1.16)

Ĥ =
δ0
2

+
1

2iπ
pv(

1

ξ
) =

1

(x− i0)

1

2iπ
. (4.1.17)

Let us consider now for 0 < α < n the L1
loc(Rn) function uα(x) = |x|α−n (|x| is

the Euclidean norm of x); since uα is also bounded for |x| ≥ 1, it is a tempered
distribution. Let us calculate its Fourier transform vα. Since uα is homogeneous of
degree α − n, we get from the lemma 4.1.9 that vα is a homogeneous distribution
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of degree −α. On the other hand, if S ∈ O(Rn) (the orthogonal group), we have in
the distribution sense (see the definition 3.4.3), since uα is a radial function,

vα(Sξ) = vα(ξ). (4.1.18)

The distribution |ξ|αvα(ξ) is homogeneous of degree 0 on Rn\{0} and is also “radial”,
i.e. satisfies (4.1.18). Moreover on Rn\{0}, the distribution vα is a C1 function which
coincides with∫

e−2iπx·ξχ0(x)|x|α−ndx+ |ξ|−2N

∫
e−2iπx·ξ|Dx|2N

(
χ1(x)|x|α−n

)
dx,

where χ0 ∈ C∞
c (Rn) is 1 near 0 and χ1 = 1 − χ0, N ∈ N, α + 1 < 2N . As a result

|ξ|αvα(ξ) = cα on Rn\{0} and the distribution on Rn (note that α < n)

T = vα(ξ)− cα|ξ|−α

is supported in {0} and homogeneous (on Rn) with degree −α. From the theorem
3.3.4 and the lemma 3.4.8, the condition 0 < α < n gives vα = cα|ξ|−α. To find cα,
we compute ∫

|x|α−ne−πx2

dx = 〈uα, e−πx
2〉 = cα

∫
|ξ|−αe−πξ2dξ

which yields

2−1Γ(
α

2
)π−

α
2 =

∫ +∞

0

rα−1e−πr
2

dr = cα

∫ +∞

0

rn−α−1e−πr
2

dr = cα2
−1Γ(

n− α

2
)π−

n−α
2 .

We have proven the following lemma.

Lemma 4.1.11. Let n ∈ N∗ and α ∈]0, n[. The function uα(x) = |x|α−n is L1
loc(Rn)

and also a temperate distribution on Rn. Its Fourier transform vα is also L1
loc(Rn)

and given by

vα(ξ) = |ξ|−απ
n
2
−α Γ(α

2
)

Γ(n−α
2

)
.

4.2 The Poisson summation formula

4.2.1 Wave packets

We define for x ∈ Rn, (y, η) ∈ Rn × Rn

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y)·η = 2n/4e−π(x−y−iη)2e−πη
2

, (4.2.1)

where for ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑

1≤j≤n

ζ2
j . (4.2.2)

We note that the function ϕy,η is in S(Rn) and with L2 norm 1. In fact, ϕy,η appears
as a phase translation of a normalized Gaussian. The following lemma introduces
the wave packets transform as a Gabor wavelet.
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Lemma 4.2.1. Let u be a function in the Schwartz class S(Rn). We define

(Wu)(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
u(x)e−π(x−y)2e−2iπ(x−y)·ηdx (4.2.3)

= 2n/4
∫
u(x)e−π(y−iη−x)2dxe−πη

2

. (4.2.4)

For u ∈ L2(Rn), the function Tu defined by

(Tu)(y + iη) = eπη
2

Wu(y,−η) = 2n/4
∫
u(x)e−π(y+iη−x)2dx (4.2.5)

is an entire function. The mapping u 7→ Wu is continuous from S(Rn) to S(R2n)
and isometric from L2(Rn) to L2(R2n). Moreover, we have the reconstruction for-
mula

u(x) =

∫∫
Rn×Rn

Wu(y, η)ϕy,η(x)dydη. (4.2.6)

Proof. For u in S(Rn), we have

Wu(y, η) = e2iπyηΩ̂
1

(η, y)

where Ω̂
1

is the Fourier transform with respect to the first variable of the S(R2n)
function Ω(x, y) = u(x)e−π(x−y)22n/4. Thus the function Wu belongs to S(R2n). It
makes sense to compute

2−n/2(Wu,Wu)L2(R2n) =

lim
ε→0+

∫
u(x1)u(x2)e

−π[(x1−y)2+(x2−y)2+2i(x1−x2)η+ε2η2]dydηdx1dx2. (4.2.7)

Now the last integral on R4n converges absolutely and we can use the Fubini theorem.
Integrating with respect to η involves the Fourier transform of a Gaussian function
and we get ε−ne−πε

−2(x1−x2)2 . Since

2(x1 − y)2 + 2(x2 − y)2 = (x1 + x2 − 2y)2 + (x1 − x2)
2,

integrating with respect to y yields a factor 2−n/2. We are left with

(Wu,Wu)L2(R2n) = lim
ε→0+

∫
u(x1) u(x2)e

−π(x1−x2)2/2ε−ne−πε
−2(x1−x2)2dx1dx2. (4.2.8)

Changing the variables, the integral is

lim
ε→0+

∫
u(s+ εt/2) u(s− εt/2)e−πε

2t2/2e−πt
2

dtds = ‖u‖2
L2(Rn)

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-
timate |u(x)| ≤ C(1 + |x|)−n−1 imply, with v = u/C,

|v(s+ εt/2) v(s− εt/2)| ≤ (1 + |s+ εt/2|)−n−1(1 + |s+ εt/2|)−n−1

≤ (1 + |s+ εt/2|+ |s− εt/2|)−n−1

≤ (1 + 2|s|)−n−1.
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Eventually, this proves that

‖Wu‖2
L2(R2n) = ‖u‖2

L2(Rn) (4.2.9)

i.e.

W : L2(Rn) → L2(R2n) with W ∗W = idL2(Rn). (4.2.10)

Noticing first that
∫∫

Wu(y, η)ϕy,ηdydη belongs to L2(Rn) (with a norm smaller
than ‖Wu‖L1(R2n)) and applying Fubini’s theorem, we get from the polarization of
(4.2.9) for u, v ∈ S(Rn),

(u, v)L2(Rn) = (Wu,Wv)L2(R2n)

=

∫∫
Wu(y, η)(ϕy,η, v)L2(Rn)dydη

= (

∫∫
Wu(y, η)ϕy,ηdydη, v)L2(Rn),

yielding the result of the lemma u =
∫∫

Wu(y, η)ϕy,ηdydη.

4.2.2 Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions
in one dimension.

Lemma 4.2.2. For all complex numbers z, the following series are absolutely con-
verging and ∑

m∈Z

e−π(z+m)2 =
∑
m∈Z

e−πm
2

e2iπmz. (4.2.11)

Proof. We set ω(z) =
∑

m∈Z e
−π(z+m)2 . The function ω is entire and 1-periodic since

for all m ∈ Z, z 7→ e−π(z+m)2 is entire and for R > 0

sup
|z|≤R

|e−π(z+m)2| ≤ sup
|z|≤R

|e−πz2 |e−πm2

e2π|m|R ∈ l1(Z).

Consequently, for z ∈ R, we obtain, expanding ω in Fourier series5,

ω(z) =
∑
k∈Z

e2iπkz
∫ 1

0

ω(x)e−2iπkxdx.

5 Note that we use this expansion only for a C∞ 1-periodic function. The proof is simple and
requires only to compute 1 + 2 Re

∑
1≤k≤N e2iπkx = sin π(2N+1)x

sin πx . Then one has to show that for a
smooth 1-periodic function ω such that ω(0) = 0,

lim
λ→+∞

∫ 1

0

sinλx
sinπx

ω(x)dx = 0,

which is obvious since for a smooth ν (here we take ν(x) = ω(x)/ sinπx), |
∫ 1

0
ν(x)sinλxdx| =

O(λ−1) by integration by parts.
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We also check, using Fubini’s theorem on L1(0, 1)× l1(Z)∫ 1

0

ω(x)e−2iπkxdx =
∑
m∈Z

∫ 1

0

e−π(x+m)2e−2iπkxdx

=
∑
m∈Z

∫ m+1

m

e−πt
2

e−2iπktdt

=

∫
R
e−πt

2

e−2iπkt = e−πk
2

.

So the lemma is proven for real z and since both sides are entire functions, we
conclude by analytic continuation.

It is now straightforward to get the n-th dimensional version of the previous
lemma: for all z ∈ Cn, using the notation (4.2.2), we have∑

m∈Zn

e−π(z+m)2 =
∑
m∈Zn

e−πm
2

e2iπm·z. (4.2.12)

Theorem 4.2.3 (The Poisson summation formula). Let n be a positive integer and
u be a function in S(Rn). Then we have∑

k∈Zn

u(k) =
∑
k∈Zn

û(k), (4.2.13)

where û stands for the Fourier transform of u. In other words the tempered distri-
bution D0 =

∑
k∈Zn δk is such that D̂0 = D0.

Proof. We write, according to (4.2.6) and to Fubini’s theorem∑
k∈Zn u(k) =

∑
k∈Zn

∫∫
Wu(y, η)ϕy,η(k)dydη

=

∫∫
Wu(y, η)

∑
k∈Zn

ϕy,η(k)dydη.

Now, (4.2.12), (4.2.1) give
∑

k∈Zn ϕy,η(k) =
∑

k∈Zn ϕ̂y,η(k), so that (4.2.6) and Fu-
bini’s theorem imply the result.

4.3 Fourier transformation and convolution

4.3.1 Fourier transformation on E ′(Rn)

Theorem 4.3.1. Let u ∈ E ′(Rn). Then û is an entire function on Cn.

Proof. We have for ϕ ∈ D(Rn), according to the definition (3.4.14),

〈û, ϕ〉 = 〈u, ϕ̂〉 = 〈u(x),
∫
e−2iπx·ξϕ(ξ)dξ〉 = 〈u(x)⊗ ϕ(ξ), e−2iπx·ξ〉E ′(R2n),E (R2n)

= 〈ϕ(ξ), 〈u(x), e−2iπx·ξ〉︸ ︷︷ ︸
ũ(ξ)

〉,
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an identity which implies û = ũ and moreover the function ũ is indeed entire, since
with ζ ∈ Cn, and ũ(ζ) = 〈u(x), e−2iπx·ζ〉 the function ũ is C∞(Cn) from the corollary
3.4.2, and we can check that ∂̄ũ = 0 (a direct computation of ũ(ζ+h)−u(ζ) provides
elementarily the holomorphy of ũ).

Definition 4.3.2. The space OM(Rn) of multipliers of S (Rn) is the subspace of the
functions f ∈ E (Rn) such that,

∀α ∈ Nn,∃Cα > 0,∃Nα ∈ N, ∀x ∈ Rn, |(∂αx f)(x)| ≤ Cα(1 + |x|)Nα . (4.3.1)

It is easy to check that, for f ∈ OM(Rn), the operator u 7→ fu is continuous
from S (Rn) into itself, and by transposition from S ′(Rn) into itself: we have for
T ∈ S ′(Rn), f ∈ OM(Rn),

〈fT, ϕ〉S ′,S = 〈T, fϕ〉S ′,S ,

and if p is a semi-norm of S , the continuity on S of the multiplication by f implies
that there exists a semi-norm q on S such that for all ϕ ∈ S , p(fϕ) ≤ q(ϕ). A
typical example of a function in OM(Rn) is eiP (x) where P is a real-valued polynomial:
in fact the derivatives of eiP (x) are of type Q(x)eiP (x) where Q is a polynomial so
that (4.3.1) holds.

Lemma 4.3.3. Let u ∈ E ′(Rn). Then û belongs to OM(Rn).

Proof. We have already seen that û(ξ) = 〈u(x), e−2iπx·ξ〉 is a smooth function so that

(Dα
ξ u)(ξ) = 〈u(x), e−2iπx·ξxα〉(−1)|α|

which implies |(Dα
ξ u)(ξ)| ≤ C0 sup |β|≤N0

x∈K0

|∂βx (e−2iπx·ξxα)| ≤ C1(1+ |ξ|)N0 , proving the

sought result.

4.3.2 Convolution and Fourier transformation

Theorem 4.3.4. Let u ∈ S ′(Rn), v ∈ E ′(Rn). Then the convolution u ∗ v belongs
to S ′(Rn) and

û ∗ v = ûv̂. (4.3.2)

N.B. We note that both sides of the equality (4.3.2) make sense since the lhs is the
Fourier transform of u ∗ v which belongs to S ′(this has to be proven) and v̂ belongs
to OM(Rn) so that the product of û ∈ S ′ with v̂ makes sense.

Proof. Let us prove first that u ∗ v belongs to S ′. We have for ϕ ∈ D(Rn) and
χ ∈ D(Rn) equal to 1 near the support of v,

〈u ∗ v, ϕ〉D ′(Rn),D(Rn) = 〈u(x)⊗ v(y), ϕ(x+ y)χ(y)〉D ′(R2n),D(R2n).

Now if ϕ ∈ S (Rn) the function (x, y) 7→ ϕ(x+y)χ(y) = Φ(x, y) belongs to S (R2n):
it is a smooth function and xαyβ∂γx∂

ρ
yΦ is a linear combination of terms of type

(x+ y)ω(∂νϕ)(x+ y)yλ(∂µχ)(y)
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which are bounded as product of bounded terms. Moreover, if Φ ∈ S (R2n), the
function ψ(x) = 〈v(y),Φ(x, y)〉 is smooth (see the corollary 3.4.2(2)) and belongs to
S (Rn) since xα(∂βxψ)(x) = 〈v(y), xα∂βxΦ(x, y)〉 and for some compact subset K0 of
Rn,

|xα(∂βxψ)(x)| = |〈v(y), xα∂βxΦ(x, y)〉| ≤ C sup
|γ|≤N0
y∈K0

|xα∂βx∂γyΦ(x, y)| = p(Φ),

where p is a semi-norm on S (R2n). As a result, we can extend u ∗ v to a continuous
linear form on S (Rn) so that u ∗ v ∈ S ′(Rn). Let w ∈ S ′ such6 that ŵ = ûv̂. For
ϕ ∈ S (Rn), we have

〈w,ϕ〉S ′,S = 〈ûv̂, ˇ̂ϕ〉S ′,S = 〈û, v̂ ˇ̂ϕ〉S ′,S .

On the other hand, we have

v̂(ξ) ˇ̂ϕ(ξ) = 〈v(x), e−2iπx·ξ〉
∫
ϕ(y)e2iπy·ξdy = 〈v(x)⊗ ϕ(y), e2iπ(y−x)·ξ〉

= 〈v(x), 〈ϕ(y), e2iπ(y−x)·ξ〉〉 = 〈v(x), 〈ϕ̌(y), e−2iπ(y+x)·ξ〉〉 = (̂v ∗ ϕ̌)(ξ),

so that

〈w,ϕ〉 = 〈û, (̂v ∗ ϕ̌)〉 = 〈ǔ, v ∗ ϕ̌〉 = 〈u(−x), 〈v(x− y), ϕ(−y)〉〉
= 〈u(x), 〈v(y − x), ϕ(y)〉〉 = 〈(u ∗ v), ϕ〉,

which gives w = u ∗ v and (4.3.2).

4.3.3 The Riemann-Lebesgue lemma

Lemma 4.3.5. Let u ∈ L1(Rn). Then from (4.1.14) û(ξ) =
∫
e−2iπx·ξu(x)dx; more-

over û belongs to C0
(0)(Rn), where C0

(0)(Rn) stands for the space of continuous func-
tions on Rn tending to 0 at infinity. In particular û is uniformly continuous.

Proof. This follows from the Riemann-Lebesgue lemma (see e.g. the lemma 3.4.4 in
[9]); moreover,

|û(ξ + h)− û(ξ)| =
∫
|u(x)||e−2iπx·h − 1|dx = σu(h),

and the Lebesgue dominated convergence theorem implies that limh→0 σu(h) = 0,
implying as well the uniform continuity.

4.4 Some fundamental solutions

4.4.1 The heat equation

The heat operator is the following constant coefficient differential operator on Rt×Rn
x

∂t −∆x, (4.4.1)

where the Laplace operator ∆x on Rn is defined by (3.6.3).

6Take w = ˇ̂̂
uv̂ .
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Theorem 4.4.1. We define on Rt × Rn
x the L1

loc function

E(t, x) = (4πt)−n/2H(t)e−
|x|2
4t . (4.4.2)

The function E is C∞ on the complement of {(0, 0)} in R×Rn. The function E is
a fundamental solution of the heat equation, i.e. ∂tE −∆xE = δ0(t)⊗ δ0(x).

Proof. To prove that E ∈ L1
loc(Rn+1), we calculate for T ≥ 0,∫ T

0

∫ +∞

0

t−n/2rn−1e−
r2

4t dtdr =︸︷︷︸
r=2t1/2ρ

∫ T

0

∫ +∞

0

t−n/22n−1t(n−1)/2ρn−1e−ρ
2

2t1/2dtdρ

= 2nT

∫ +∞

0

ρn−1e−ρ
2

dρ < +∞.

Moreover, the function E is obviously analytic on the open subset of R1+n {(t, x) ∈
R × Rn, t 6= 0}. Let us prove that E is C∞ on R × (Rn\{0}). With ρ0 defined in
(3.1.1), the function ρ1 defined by ρ1(t) = H(t)t−n/2ρ0(t) is also C∞ on R and

E(t, x) = H(
|x|2

4t
)
( |x|2

4t

)n/2
e−

|x|2
4t |x|−nπ−n/2 = |x|−nπ−n/2ρ1

( 4t

|x|2
)
,

which is indeed smooth on Rt×(Rn
x\{0}). We want to solve the equation ∂tu−∆xu =

δ0(t)δ0(x). If u belongs to S ′(Rn+1), we can consider its Fourier transform v with
respect to x (well-defined by transposition as the Fourier transform in (4.1.10)), and
we end-up with the simple ODE with parameters on v,

∂tv + 4π2|ξ|2v = δ0(t). (4.4.3)

It remains to determine a fundamental solution of that ODE: we have

d

dt
+ λ = e−tλ

d

dt
etλ,

( d
dt

+ λ
)
(e−tλH(t)) =

(
e−tλ

d

dt
etλ
)
(e−tλH(t)) = δ0(t), (4.4.4)

so that we can take v = H(t)e−4π2t|ξ|2 , which belongs to S ′(Rt × Rn
ξ ). Taking

the inverse Fourier transform with respect to ξ of both sides of (4.4.3) gives7 with
u ∈ S ′(Rt × Rn

ξ )
∂tu−∆xu = δ0(t)⊗ δ0(x). (4.4.5)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ̌〉 = 〈v̂x, ϕ⊗ ψ〉 = 〈v, ϕ⊗ ψ̂〉 =

∫ +∞

0

∫
Rn

ϕ(t)ψ̂(ξ)e−4π2t|ξ|2dtdξ.

We can use the Fubini theorem in that absolutely converging integral and use (4.1.2)
to get

〈u, ϕ⊗ ψ̌〉 =

∫ +∞

0

ϕ(t)

(∫
Rn

(4πt)−n/2e−π
|x|2
4πt ψ(x)dx

)
dt = 〈E,ϕ⊗ ψ̌〉,

where the last equality is due to the Fubini theorem and the local integrability of
E. We have thus E = u and E satisfies (4.4.5). The proof is complete.

7The Fourier transformation obviously respects the tensor products.
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Corollary 4.4.2. The heat equation is C∞ hypoelliptic (see the definition 3.6.4) ,
in particular for w ∈ D ′(R1+n),

singsuppw ⊂ singsupp(∂tw −∆xw),

where singsupp stands for the C∞ singular support as defined by (3.1.9).

Proof. It is an immediate consequence of the theorem 3.6.5, since E is C∞ outside
zero from the previous theorem.

Remark 4.4.3. It is also possible to define the analytic singular support of a dis-
tribution T in an open subset Ω of Rn: we define

singsuppA T = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ A(U)}, (4.4.6)

whereA(U) stands for the analytic8 functions on the open set U . It is a consequence9

of the proof of theorem 4.4.1 that

singsuppAE = {0} × Rn
x. (4.4.7)

In particular this implies that the heat equation is not analytic-hypoelliptic since

{0} × Rn
x = singsuppAE 6⊂ singsuppA(∂tE −∆xE) = singsuppA δ0 = {0R1+n}.

4.4.2 The Schrödinger equation

We move forward now with the Schrödinger equation,

1

i

∂

∂t
−∆x (4.4.8)

which looks similar to the heat equation, but which is in fact drastically different.

Lemma 4.4.4.

D(Rn+1) 7→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫
Rn

Φ(t, x)ei
|x|2
4t dx

)
dt = 〈E,Φ〉 (4.4.9)

is a distribution in Rn+1 of order ≤ n+ 2.

8A function f is said to be analytic on an open subset U of Rn if it is C∞(U), and for each
x0 ∈ U there exists r0 > 0 such that B̄(x0, r0) ⊂ U and

∀x ∈ B̄(x0, r0), f(x) =
∑

α∈Nn

1
α!
∂α

x f(x0)(x− x0)α.

9In fact, in the theorem, we have noted the obvious inclusion singsuppAE ⊂ {0} × Rn
x , but

since E is C∞ in t 6= 0, vanishes identically on t < 0, is positive ( it means > 0) on t > 0, it cannot
be analytic near any point of {0} × Rn

x .
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Proof. Let Φ ∈ D(R× Rn); for t > 0 we have, using (4.6.7),

e−i(n−2)π
4 (4πt)−n/2

∫
Rn

Φ(t, x)ei
|x|2
4t dx = i

∫
Rn

Φ̂x(t, ξ)e−4iπ2t|ξ|2dξ,

so that with N 3 ñ even > n, using (4.1.7) and (4.1.14),

sup
t>0

∣∣∣∣e−i(n−2)π
4 (4πt)−n/2

∫
Rn

Φ(t, x)ei
|x|2
4t dx

∣∣∣∣ ≤ sup
t>0

∫
Rn

|Φ̂x(t, ξ)|dξ

≤ sup
t>0

∫
(1 + |ξ|2)−ñ/2| (1 + |ξ|2)ñ/2︸ ︷︷ ︸

polynomial

Φ̂(t, ξ)|dξ ≤ Cn max
|α|≤ñ

‖∂αxΦ‖L∞(Rn+1).

As a result the mapping

D(Rn+1) 7→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫
Rn

Φ(t, x)ei
|x|2
4t dx

)
dt = 〈E,Φ〉

is a distribution of order ≤ n+ 2.

Theorem 4.4.5. The distribution E given by (4.4.9) is a fundamental solution of
the Schrödinger equation, i.e. 1

i
∂tE −∆xE = δ0(t)⊗ δ0(x). Moreover, E is smooth

on the open set {t 6= 0} and equal there to

e−i(n−2)π
4H(t)(4πt)−n/2ei

|x|2
4t . (4.4.10)

The distribution E is the partial Fourier transform with respect to the variable x of
the L∞(Rn+1) function

Ẽ(t, ξ) = iH(t)e−4iπ2t|ξ|2 . (4.4.11)

Proof. We want to solve the equation −i∂tu − ∆xu = δ0(t)δ0(x). If u belongs to
S ′(Rn+1), we can consider its Fourier transform v with respect to x (well-defined by
transposition as the Fourier transform in (4.1.10)), and we end-up with the simple
ODE with parameters on v,

∂tv + i4π2|ξ|2v = iδ0(t). (4.4.12)

Using the identity (4.4.4), we see that we can take v = iH(t)e−i4π
2t|ξ|2 , which belongs

to S ′(Rt×Rn
ξ ). Taking the inverse Fourier transform with respect to ξ of both sides

of (4.4.12) gives with u ∈ S ′(Rt × Rn
ξ )

∂tu− i∆xu = iδ0(t)⊗ δ0(x) i.e.
1

i
∂tu−∆xu = δ0(t)⊗ δ0(x). (4.4.13)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ〉 = 〈v̂x, ϕ⊗ ψ̌〉 = 〈v, ϕ⊗ ˇ̂
ψ〉 = i

∫ +∞

0

ϕ(t)

(∫
Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ

)
dt.

(4.4.14)
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We note now that, using (4.6.7) and (4.1.10), for t > 0,

i

∫
Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ = i

∫
Rn

ψ(x)(4πt)−n/2ei
|x|2
4t dxe−n

iπ
4

= e−i(n−2)π
4 (4πt)−n/2

∫
Rn

ei
|x|2
4t ψ(x)dx.

As a result, u is a distribution on Rn+1 defined by

〈u,Φ〉 = e−i(n−2)π
4 (4π)−n/2

∫ +∞

0

t−n/2
(∫

Rn

Φ(t, x)ei
|x|2
4t dx

)
dt

and coincides with E, so that E satisfies (4.4.13). The identity (4.4.14) is proving
(4.4.11). The proof of the theorem is complete.

Remark 4.4.6. The fundamental solution of the Schrödinger equation is unbounded
near t = 0 and, since E is smooth on t 6= 0, its C∞ singular support is equal to
{0} × Rn

x. In particular, the Schrödinger equation is not hypoelliptic. We shall see
that it looks like a propagation equation with an infinite speed, or more precisely
with a speed depending on the frequency of the wave.

4.4.3 The wave equation

Presentation

The wave equation in d dimensions with speed of propagation c > 0, is given by the
operator on Rt × Rd

x

�c = c−2∂2
t −∆x. (4.4.15)

We want to solve the equation c−2∂2
t u−∆xu = δ0(t)δ0(x). If u belongs to S ′(Rd+1),

we can consider its Fourier transform v with respect to x, and we end-up with the
ODE with parameters on v,

c−2∂2
t v + 4π2|ξ|2v = δ0(t), ∂2

t v + 4π2c2|ξ|2v = c2δ0(t). (4.4.16)

Lemma 4.4.7. Let λ, µ ∈ C. A fundamental solution of Pλ,µ = ( d
dt
−λ)( d

dt
−µ) (on

the real line) is 
(etλ − etµ

λ− µ

)
H(t) for λ 6= µ,

tetλH(t) for λ = µ.
(4.4.17)

Proof. If λ 6= µ, to solve ( d
dt
− λ)( d

dt
− µ) = δ0(t), the method of variation of

parameters gives a solution a(t)eλt + b(t)eµt with(
etλ etµ

λetλ µetµ

)(
ȧ

ḃ

)
=

(
0
δ

)
=⇒

(
ȧ

ḃ

)
=

1

λ− µ

(
δ
−δ

)
=⇒ (4.4.17) for λ 6= µ,

which gives also the result for λ = µ by differentiation with respect to λ of the
identity Pλ,µ

(
etλ − etµ

)
= (λ− µ)δ.
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Going back to the wave equation, we can take v as the temperate distribution10

given by

v(t, ξ) = c2H(t)
e2iπct|ξ| − e−2iπct|ξ|

4iπc|ξ|
= c2H(t)

sin
(
2πct|ξ|

)
2πc|ξ|

. (4.4.18)

Taking the inverse Fourier transform with respect to ξ of both sides of (4.4.16) gives
with u ∈ S ′(Rt × Rd

ξ)

c−2∂2
t u−∆xu = δ0(t)⊗ δ0(x). (4.4.19)

To compute u, we check with Φ ∈ D(R1+d),

〈u,Φ〉 = 〈v̂x(t, ξ),Φ(t,−ξ)〉 =

∫ +∞

0

∫
Rn

Φ̂x(t, ξ)c
sin
(
2πct|ξ|

)
2π|ξ|

dξdt. (4.4.20)

We have found an expression for a fundamental solution of the wave equation in d
space dimensions and proven the following proposition.

Proposition 4.4.8. Let E+ be the temperate distribution on Rd+1 such that

Ê+

x
(t, ξ) = cH(t)

sin
(
2πct|ξ|

)
2π|ξ|

. (4.4.21)

Then E+ is a fundamental solution of the wave equation (4.4.15), i.e. satisfies
�cE+ = δ0(t)⊗ δ0(x).

Remark 4.4.9. Defining the forward-light-cone Γ+,c as

Γ+,c = {(t, x) ∈ R× Rd, ct ≥ |x|}, (4.4.22)

one can prove more precisely that E+ is the only fundamental solution with support
in {t ≥ 0} and that

suppE+ = Γ+, when d = 1 and d ≥ 2 is even, (4.4.23)

suppE+ = ∂Γ+, when d ≥ 3 is odd, (4.4.24)

singsuppE+ = ∂Γ+, in any dimension. (4.4.25)

Lemma 4.4.10. Let E1, E2 be fundamental solutions of the wave equation such that
suppE1 ⊂ Γ+,c, suppE2 ⊂ {t ≥ 0}. Then E1 = E2.

Proof. Defining u = E1 − E2, we have suppu ⊂ {t ≥ 0} and the mapping

{t ≥ 0} × Γ+,c 3
(
(t, x), (s, y)

)
7→ (t+ s, x+ y) ∈ Rd+1

is proper since

t, s ≥ 0, cs ≥ |y|, |t+ s| ≤ T, |x+ y| ≤ R =⇒ t, s ∈ [0, T ], |x| ≤ R + cT, |y| ≤ cT,

so that the section 3.5.3 allows to perform the following calculations

u = u ∗ δ0 = u ∗�cE1 = �cu ∗ E1 = 0.

10The function R 3 s 7→ sin s
s =

∑
k≥0(−1)k s2k

(2k+1)! = S(s2) is a smooth bounded function of
s2, so that v(t, ξ) = c2H(t)tS(4π2c2t2|ξ|2) is continuous and such that |v(t, ξ)| ≤ CtH(t), thus a
tempered distribution.



4.4. SOME FUNDAMENTAL SOLUTIONS 117

The wave equation in one space dimension

Theorem 4.4.11. On Rt×Rx, the only fundamental solution of the wave equation
supported in Γ+,c is

E+(t, x) =
c

2
H(ct− |x|). (4.4.26)

where E+ is defined in (4.4.21). That fundamental solution is bounded and the
properties (4.4.23), (4.4.25) are satisfied.

Proof. We have c−2∂2
t − ∂2

x = (c−1∂t − ∂x)(c
−1∂t + ∂x) and changing (linearly) the

variables with x1 = ct + x, x2 = ct − x, we have t = 1
2c

(x1 + x2), x = 1
2
(x1 − x2),

using the notation

(x1, x2) 7→ (t, x) 7→ u(t, x) = v(x1, x2),

∂u

∂t
=

∂v

∂x1

c+
∂v

∂x2

c,
∂u

∂x
=

∂v

∂x1

− ∂v

∂x2

, c−1∂t − ∂x = 2∂x2 , c
−1∂t + ∂x = 2∂x1 ,

and thus �c = 4 ∂2

∂x1∂x2
, so that a fundamental solution is v = 1

4
H(x1)H(x2). We

have now to pull-back this distribution by the linear mapping (t, x) 7→ (x1, x2): we
have the formula

ϕ(0, 0) = 〈4 ∂2v

∂x1∂x2

(x1, x2), ϕ(x1, x2)〉 = 〈(�cu)(t, x), ϕ(ct+ x, ct− x)〉2c

which gives the fundamental solution 2c
4
H(ct+x)H(ct−x) = c

2
H(ct−|x|). Moreover

that fundamental solution is supported in Γ+,c and since E+ is supported in {t ≥ 0},
we can apply the lemma 4.4.10 to get their equality.

The wave equation in two space dimensions

We consider (4.4.15) with d = 2, i.e. �c = c−2∂2
t − ∂2

x1
− ∂2

x2
.

Theorem 4.4.12. On Rt×R2
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
c

2π
H(ct− |x|)(c2t2 − |x|2)−1/2, (4.4.27)

where E+ is defined in (4.4.21). That fundamental solution is L1
loc and the properties

(4.4.23), (4.4.25) are satisfied.

Proof. From the lemma 4.4.10, it is enough to prove that the rhs of (4.4.27) is
indeed a fundamental solution. The function E(t, x) = c

2π
H(ct−|x|)(c2t2−|x|2)−1/2

is locally integrable in R× R2 since∫ T

0

∫ ct

0

(c2t2 − r2)−1/2rdrdt =

∫ T

0

[(c2t2 − r2)1/2]r=0
r=ctdt = cT 2/2 < +∞.

Moreover E is homogeneous of degree −1, so that �cE is homogeneous with degree
−3 and supported in Γ+,c. We use now the independently proven three-dimensional



118 CHAPTER 4. INTRODUCTION TO FOURIER ANALYSIS

case (theorem 4.4.13). We define with E+,3 given by (4.4.29), ϕ ∈ D(R3
t,x1,x2

), χ ∈
D(R) with χ(0) = 1,

〈u, ϕ〉D ′(R3),D(R3) = lim
ε→0
〈E+,3, ϕ(t, x1, x2)⊗ χ(εx3)〉D ′(R4),D(R4)

= lim
ε→0

1

4π

∫∫∫
R3

ϕ(c−1
√
x2

1 + x2
2 + x2

3, x1, x2)√
x2

1 + x2
2 + x2

3

χ(εx3)dx1dx2dx3

=
1

4π
2

∫∫∫
R2

x1,x2
×{x3≥0}

ϕ(c−1
√
x2

1 + x2
2 + x2

3, x1, x2)√
x2

1 + x2
2 + x2

3

dx1dx2dx3 (t = c−1
√
x2

1 + x2
2 + x2

3)

=
1

2π

∫∫∫
R2

x1,x2
×{ct≥

√
x2
1+x2

2}

ϕ(t, x1, x2)

ct

1

2
(c2t2 − x2

1 − x2
2)
−1/22c2tdx1dx2dt

=
c

2π

∫∫∫
R2

x1,x2
×{ct≥

√
x2
1+x2

2}
ϕ(t, x1, x2)(c

2t2 − x2
1 − x2

2)
−1/2dx1dx2dt

= 〈E,ϕ〉D ′(R3),D(R3), so that E = u.

With �c,d standing for the wave operator in d dimensions with speed c, we have,
since

�c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
= �c,2

(
ϕ(t, x1, x2)

)
⊗ χ(εx3)− ϕ(t, x1, x2)ε

2χ′′(εx3)

〈�c,2u, ϕ〉 = lim
ε→0
〈E+,3, (�c,2ϕ)(t, x1, x2)⊗ χ(εx3)〉

= lim
ε→0

(
〈E+,3,�c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
)〉+ 〈E+,3, ϕ(t, x1, x2)ε

2χ′′(εx3)〉
)

= ϕ(0, 0, 0),

which gives �c,2E = �c,2u = δ0,R3 and the result.

The wave equation in three space dimensions

We consider (4.4.15) with d = 3, i.e. �c = c−2∂2
t − ∂2

x1
− ∂2

x2
− ∂2

x3
.

Theorem 4.4.13. On Rt×R3
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
1

4π|x|
δ0,R(t− c−1|x|), (4.4.28)

i.e. for Φ ∈ D(Rt × R3
x), 〈E+,Φ〉 =

∫
R3

1

4π|x|
Φ(c−1|x|, x)dx. (4.4.29)

where E+ is defined in (4.4.21). The properties (4.4.24), (4.4.25) are satisfied.

Proof. The formula (4.4.29) is defining a Radon measure E with support ∂Γ+,c,
so that the last statements of the lemmas are clear. From the lemma 4.4.10, it is
enough to prove that (4.4.29) defines indeed a fundamental solution. We check for
ϕ ∈ D(R), ψ ∈ D(R3)

〈�cE,ϕ(t)⊗ ψ(x)〉 = 〈E,�c(ϕ⊗ ψ)〉

=
1

4π

∫
R3

|x|−1
(
c−2ϕ′′(c−1|x|)ψ(x)− ϕ(c−1|x|)(∆ψ)(x)

)
dx.



4.5. PERIODIC DISTRIBUTIONS 119

If we assume that suppϕ ⊂ R∗
+, we get∫

R3

|x|−1ϕ(c−1|x|)(∆ψ)(x)dx =

∫
R3

∆
(
|x|−1ϕ(c−1|x|)

)
ψ(x)dx

=

∫
R3

((
r−1ϕ(c−1r)

)′′
+ 2r−1

(
r−1ϕ(c−1r)

)′)
ψ(x)dx (r = |x|)

=

∫
ψ(x)

(
r−1ϕ′′(c−1r)c−2 + 2(−r−2)ϕ′(c−1r)c−1 + 2r−3ϕ(c−1r)

+ 2r−1r−1ϕ′(c−1r)c−1 + 2r−1(−r−2)ϕ(c−1r)
)
dx,

which gives 〈�cE,ϕ(t)⊗ ψ(x)〉 = 0. As a result,

supp(�cE) ⊂ ∂Γ+,c ∩ {t ≤ 0} = {(0R, 0R3)},

and since E is homogeneous with degree −2, the distribution �cE is homogeneous
with degree −4 with support at the origin of R4: the lemma 3.4.8 and the theorem
3.3.4 imply that �cE = κδ0,R4 . To check that κ = 1, we calculate for ϕ ∈ D(R)
(noting that |t| ≤ C and |x| ≤ c|t|+ 1 implies |x| ≤ cC + 1)

〈�cE,ϕ(t)⊗ 1〉 =
1

4π

∫ +∞

0

r−1c−2ϕ′′(c−1r)r2dr4π =

∫ +∞

0

ϕ′′(r)rdr

= [ϕ′(r)r]+∞0 −
∫ +∞

0

ϕ′(r)dr = ϕ(0),

so that κ = 1 and the theorem is proven.

4.5 Periodic distributions

4.5.1 The Dirichlet kernel

For N ∈ N, the Dirichlet kernel DN is defined on R by

DN(x) =
∑

−N≤k≤N

e2iπkx = 1 + 2 Re
∑

1≤k≤N

e2iπkx =︸︷︷︸
x/∈Z

1 + 2 Re

(
e2iπx

e2iπNx − 1

e2iπx − 1

)
= 1 + 2 Re

(
e2iπx−iπx+iπNx

)sin(πNx)

sin(πx)
= 1 + 2 cos(π(N + 1)x)

sin(πNx)

sin(πx)

= 1 +
1

sin(πx)

(
sin
(
πx(2N + 1)

)
− sin(πx)

)
=

sin
(
πx(2N + 1)

)
sin(πx)

,

and extending by continuity at x ∈ Z that 1-periodic function, we find that

DN(x) =
sin
(
πx(2N + 1)

)
sin(πx)

. (4.5.1)

Now, for a 1-periodic v ∈ C1(R), with

(DN ? u)(x) =

∫ 1

0

DN(x− t)u(t)dt, (4.5.2)
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we have

lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x) + lim
N→+∞

∫ 1

0

sin(πt(2N + 1))

(
v(x− t)− v(x)

)
sin(πt)

dt,

and the function θx given by θx(t) = v(x−t)−v(x)
sin(πt)

is continuous on [0, 1], and from the
Riemann-Lebesgue lemma 4.3.5, we obtain

lim
N→+∞

∑
−N≤k≤N

e2iπkx
∫ 1

0

e−2iπktv(t)dt = lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x).

On the other hand if v is 1-periodic and C1+l, the Fourier coefficient

ck(v) =

∫ 1

0

e−2iπktv(t)dt
for k 6= 0︷︸︸︷

=
1

2iπk
[e−2iπktv(t)]t=0

t=1+

∫ 1

0

1

2iπk
e−2iπktv′(t)dt, (4.5.3)

and iterating the integration by parts, we find ck(v) = O(k−1−l) so that for a 1-
periodic C2 function v, we have∑

k∈Z

e2iπkxck(v) = v(x). (4.5.4)

4.5.2 Pointwise convergence of Fourier series

Lemma 4.5.1. Let u : R −→ R be a 1-periodic L1
loc(R) function and let x0 ∈ [0, 1].

Let us assume that there exists w0 ∈ R such that the Dini condition is satisfied, i.e.∫ 1/2

0

|u(x0 + t) + u(x0 − t)− 2w0|
t

dt < +∞. (4.5.5)

Then, limN→+∞
∑

|k|≤N ck(u)e
2iπkx0 = w0 with ck(u) =

∫ 1

0
e−2iπtku(t)dt.

Proof. Using the calculations of the previous section 4.5.1, we find

∑
|k|≤N

ck(u)e
2iπkx0 = (DN ∗ u)(x0) = w0 +

∫ 1

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t)− w0

)
dt,

so that, using the periodicity of u and the fact that DN is an even function , we get

(DN ∗ u)(x0)− w0 =

∫ 1/2

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t) + u(x0 + t)− 2w0

)
dt.

Thanks to the hypothesis (4.5.5), the function t 7→ 1[0,1](t)
u(x0 − t) + u(x0 + t)− 2w0

sin(πt)
belongs to L1(R) and the Riemann-Lebesgue lemma 4.3.5 gives the conclusion.
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Theorem 4.5.2. Let u : R −→ R be a 1-periodic L1
loc function.

(1) Let x0 ∈ [0, 1], w0 ∈ R. We define ωx0,w0(t) = |u(x0 + t) + u(x0 − t)− 2w0| and
we assume that ∫ 1/2

0

ωx0,w0(t)
dt

t
< +∞. (4.5.6)

Then the Fourier series (DN ∗ u)(x0) converges with limit w0. In particular, if
(4.5.6) is satisfied with w0 = u(x0), the Fourier series (DN ∗ u)(x0) converges with
limit u(x0). If u has a left and right limit at x0 and is such that (4.5.6) is satisfied
with w0 = 1

2

(
u(x0 + 0) + u(x0 − 0)

)
, the Fourier series (DN ∗ u)(x0) converges with

limit 1
2

(
u(x0 − 0) + u(x0 + 0)

)
.

(2) If the function u is Hölder-continuous11, the Fourier series (DN ∗u)(x) converges
for all x ∈ R with limit u(x).
(3) If u has a left and right limit at each point and a left and right derivative at each
point, the Fourier series (DN ∗u)(x) converges for all x ∈ R with limit 1

2

(
u(x− 0)+

u(x+ 0)
)
.

Proof. (1) follows from the lemma 4.5.1; to obtain (2), we note that for a Hölder
continuous function of index θ ∈]0, 1], we have for t ∈]0, 1/2]

t−1ωx,u(x)(t) ≤ Ctθ−1 ∈ L1([0, 1/2]).

If u has a right-derivative at x0, it means that

u(x0 + t) = u(x0 + 0) + u′r(x0)t+ tε0(t), lim
t→0+

ε0(t) = 0.

As a consequence, for t ∈]0, 1/2], t−1|u(x0 + t)− u(x0 + 0)| ≤ |u′r(x0) + ε0(t)|. Since
limt→0+ ε0(t) = 0, there exists T0 ∈]0, 1/2] such that |ε0(t)| ≤ 1 for t ∈ [0, T0]. As a
result, we have∫ 1/2

0

t−1|u(x0 + t)− u(x0 + 0)|dt

≤
∫ T0

0

(|u′r(x0)|+ 1)dt+

∫ 1/2

T0

|u(x0 + t)− u(x0 + 0)|dtT−1
0 < +∞,

since u is also L1
loc. The integral

∫ 1/2

0
t−1|u(x0 − t) − u(x0 − 0)|dt is also finite and

the condition (4.5.6) holds with w0 = 1
2

(
u(x0 − 0) + u(x0 + 0)

)
. The proof of the

lemma is complete.

4.5.3 Periodic distributions

We consider now a distribution u on Rn which is periodic with periods Zn. Let
χ ∈ C∞

c (Rn) such that χ = 1 on [0, 1]n. Then the function χ1 defined by

χ1(x) =
∑
k∈Zn

χ(x− k)

11 Hölder-continuity of index θ ∈]0, 1] means that ∃C > 0,∀t, s, |u(t)− u(s)| ≤ C|t− s|θ.
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is C∞ periodic12 with periods Zn. Moreover since Rn 3 x ∈
∏

1≤j≤n[E(xj), E(xj)+1[,
the bounded function χ1 is also bounded from below and such that 1 ≤ χ1(x). With
χ0 = χ/χ1, we have ∑

k∈Zn

χ0(x− k) = 1, χ0 ∈ C∞
c (Rn).

For ϕ ∈ C∞
c (Rn), we have from the periodicity of u

〈u, ϕ〉 =
∑
k∈Zn

〈u(x), ϕ(x)χ0(x− k)〉 =
∑
k∈Zn

〈u(x), ϕ(x+ k)χ0(x)〉,

where the sums are finite. Now if ϕ ∈ S (Rn), we have, since χ0 is compactly
supported in |x| ≤ R0,

|〈u(x), ϕ(x+ k)χ0(x)〉| ≤ C0 sup
|α|≤N0,|x|≤R0

|ϕ(α)(x+ k)|

≤ C0 sup
|α|≤N0,|x|≤R0

|(1 +R0 + |x+ k|)n+1ϕ(α)(x+ k)|(1 + |k|)−n−1

≤ p0(ϕ)(1 + |k|)−n−1,

where p0 is a semi-norm of ϕ (independent of k). As a result u is a tempered
distribution and we have for ϕ ∈ S (Rn),

〈u, ϕ〉 = 〈u(x),
∑
k∈Zn

ϕ(x+ k)χ0(x)︸ ︷︷ ︸
ψx(k)

〉 = 〈u(x),
∑
k∈Zn

ψ̂x(k)〉.

Now we see that ψ̂x(k) =
∫

Rn ϕ(x + t)χ0(x)e
−2iπktdt = χ0(x)e

2iπkxϕ̂(k), so that
〈u, ϕ〉 =

∑
k∈Zn〈u(x), χ0(x)e

2iπkx〉ϕ̂(k) which means

u(x) =
∑
k∈Zn

〈u(t), χ0(t)e
2iπkt〉e−2iπkx =

∑
k∈Zn

〈u(t), χ0(t)e
−2iπkt〉e2iπkx.

Theorem 4.5.3. Let u be a periodic distribution on Rn with periods Zn. Then u is a
tempered distribution and if χ0 is a C∞

c (Rn) function such that
∑

k∈Zn χ0(x−k) = 1,
we have

u =
∑
k∈Zn

ck(u)e
2iπkx, (4.5.7)

û =
∑
k∈Zn

ck(u)δk, with ck(u) = 〈u(t), χ0(t)e
−2iπkt〉, (4.5.8)

and convergence in S ′(Rn). If u is in Cm(Rn) with m > n, the previous formulas
hold with uniform convergence for (4.5.7) and

ck(u) =

∫
[0,1]n

u(t)e−2iπktdt. (4.5.9)

12Note that the sum is locally finite since for K compact subset of Rn, (K − k) ∩ suppχ0 = ∅
except for a finite subset of k ∈ Zn.
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Proof. The first statements are already proven and the calculation of û is immediate.
If u belongs to L1

loc we can redo the calculations above choosing χ0 = 1[0,1]n and get
(4.5.7) with ck given by (4.5.9). Moreover, if u is in Cm with m > n, we get by
integration by parts that ck(u) is O(|k|−m) so that the series (4.5.7) is uniformly
converging.

Theorem 4.5.4. Let u be a periodic distribution on Rn with periods Zn. If u ∈ L2
loc

(i.e. u ∈ L2(Tn) with Tn = (R/Z)n), then

u(x) =
∑
k∈Zn

ck(u)e
2iπkx, with ck(u) =

∫
[0,1]n

u(t)e−2iπktdt, (4.5.10)

and convergence in L2(Tn). Moreover ‖u‖2
L2(Tn) =

∑
k∈Zn |ck(u)|2. Conversely, if the

coefficients ck(u) defined by (4.5.8) are in `2(Zn), the distribution u is L2(Tn)

Proof. As said above the formula for the ck(u) follows from changing the choice of
χ0 to 1[0,1]n in the discussion preceding the theorem 4.5.3. The formula (4.5.7) gives
the convergence in S ′(Rn) to u. Now, since

∫
[0,1]n

e2iπ(k−l)tdt = δk,l we see from the

theorem 4.5.3 that for u ∈ Cn+1(Tn), 〈u, u〉L2(Tn) =
∑

k∈Zn |ck(u)|2. As a consequence
the mapping L2(Tn) 3 u 7→ (ck(u))k∈Zn ∈ `2(Zn) is isometric with a range containing
the dense subset `1(Zn) (if (ck(u))k∈Zn ∈ `1(Zn), u is a continuous function); since
the range is closed, the mapping is onto and is an isometric isomorphism from the
open mapping theorem.

4.6 Appendix

4.6.1 The logarithm of a nonsingular symmetric matrix

The set C\R− is star-shaped with respect to 1, so that we can define the principal
determination of the logarithm for z ∈ C\R− by the formula

Log z =

∮
[1,z]

dζ

ζ
. (4.6.1)

The function Log is holomorphic on C\R− and we have Log z = ln z for z ∈ R∗
+

and by analytic continuation eLog z = z for z ∈ C\R−. We get also by analytic
continuation, that Log ez = z for | Im z| < π.

Let Υ+ be the set of symmetric nonsingular n×n matrices with complex entries
and nonnegative real part. The set Υ+ is star-shaped with respect to the Id: for
A ∈ Υ+, the segment [1, A] =

(
(1−t) Id +tA

)
t∈[0,1]

is obviously made with symmetric

matrices with nonnegative real part which are invertible13, since for 0 ≤ t < 1,
Re
(
(1− t) Id +tA

)
≥ (1 − t) Id > 0 and for t = 1, A is assumed to be invertible.

We can now define for A ∈ Υ+

LogA =

∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt. (4.6.2)

13Note that a symmetric matrix B with a positive-definite real part is indeed invertible since for
u ∈ Cn, Bu = 0 implies 0 = Re〈Bu, ū〉 = 〈(ReB)u, ū〉 ≥ c0‖u‖2 with c0 > 0 and thus u = 0.
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We note that A commutes with (I + sA) (and thus with LogA), so that, for θ > 0,

d

dθ
Log(A+ θI) =

∫ 1

0

(
I + t(A+ θI − I)

)−1
dt

−
∫ 1

0

(
A+ θI − I

)
t
(
I + t(A+ θI − I)

)−2
dt,

and since d
dt

{(
I+ t(A+θI−I)

)−1
}

= −
(
I+ t(A+θI−I)

)−2
(A+θI−I), we obtain

by integration by parts d
dθ

Log(A + θI) = (A + θI)−1. As a result, we find that for
θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A+ θI)−1eLog(A+θI)

)
= 0,

so that, using the limit θ → +∞, we get that ∀A ∈ Υ+,∀θ > 0, eLog(A+θI) = (A+θI),
and by continuity

∀A ∈ Υ+, eLogA = A, which implies detA = etrace LogA. (4.6.3)

Using (4.6.3), we can define for A ∈ Υ+, using (4.6.2)

(detA)−1/2 = e−
1
2

trace LogA = | detA|−1/2e−
i
2

Im(trace LogA). (4.6.4)

• When A is a positive definite matrix, LogA is real-valued and (detA)−1/2 =
| detA|−1/2.

• When A = −iB where B is a real nonsingular symmetric matrix, we note that
B = PDtP with P ∈ O(n) and D diagonal. We see directly on the formulas
(4.6.2),(4.6.1) that

LogA = Log(−iB) = P (Log(−iD))tP, trace LogA = trace Log(−iD)

and thus, with (µj) the (real) eigenvalues of B, we have Im (trace LogA) =
Im
∑

1≤j≤n Log(−iµj), where the last Log is given by (4.6.1). Finally we get,

Im (trace LogA) = −π
2

∑
1≤j≤n

signµj = −π
2

signB

where signB is the signature of B. As a result, we have when A = −iB, B
real symmetric nonsingular matrix

(detA)−1/2 = | detA|−1/2ei
π
4

sign(iA) = | detB|−1/2ei
π
4

signB. (4.6.5)

4.6.2 Fourier transform of Gaussian functions

Proposition 4.6.1. Let A be a symmetric nonsingular n × n matrix with complex
entries such that ReA ≥ 0. We define the Gaussian function vA on Rn by vA(x) =
e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉, (4.6.6)

where (detA)−1/2 is defined according to the formula (4.6.4). In particular, when
A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | detB|−1/2ei
π
4

signBe−iπ〈B
−1ξ,ξ〉. (4.6.7)
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Proof. Let us define Υ∗
+ as the set of symmetric n × n complex matrices with a

positive definite real part (naturally these matrices are nonsingular since Ax = 0 for
x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(ReA)x, x̄〉, so that Υ∗

+ ⊂ Υ+).
Let us assume first that A ∈ Υ∗

+; then the function vA is in the Schwartz class
(and so is its Fourier transform). The set Υ∗

+ is an open convex subset of Cn(n+1)/2

and the function Υ∗
+ 3 A 7→ v̂A(ξ) is holomorphic and given on Υ∗

+ ∩ Rn(n+1)/2 by

(4.6.6). On the other hand the function Υ∗
+ 3 A 7→ e−

1
2

trace LogAe−π〈A
−1ξ,ξ〉 is also

holomorphic and coincides with previous one on Rn(n+1)/2. By analytic continuation
this proves (4.6.6) for A ∈ Υ∗

+.
If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =

∫
vA(x)ϕ̂(x)dx so that

Υ+ 3 A 7→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A 7→ A−1 is an
homeomorphism of Υ+), using the previous result on Υ∗

+,

〈v̂A, ϕ〉 = lim
ε→0+

〈v̂A+εI , ϕ〉 = lim
ε→0+

∫
e−

1
2

trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ

(by continuity of Log on Υ+ and domin. cv.) =

∫
e−

1
2

trace LogAe−π〈A
−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result.
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