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Lemma 3.1.7. Let Ω be an open subset of Rn, f ∈ L1
loc(Ω) such that, for all ϕ ∈

D(Ω),
∫
f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and χ ∈ D(Ω) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With φ as in the proposition 3.1.1, we get that
limε→0+

φε ∗ (χf) = χf in L1(Rn). We have

(
φε ∗ (χf)

)
(x) =

∫
f(y)χ(y)φ

(
(x− y)ε−1

)
ε−n︸ ︷︷ ︸

=ϕx(y)

dy, suppϕx ⊂ K,ϕx ∈ D(Ω),

and from the assumption of the lemma, we obtain
(
φε ∗ (χf)

)
(x) = 0 for all x,

implying χf = 0 from the convergence result; the conclusion follows.

We note that it makes sense to restrict a distribution T ∈ D ′(Ω) to an open
subset U ⊂ Ω: just define

〈T|U , ϕ〉D ′(U),D(U) = 〈T, ϕ〉D ′(Ω),D(Ω), (3.1.7)

and T|U is obviously a distribution on U . With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Ω be an open subset of Rn and T ∈ D ′(Ω). We define the
support of T as

suppT = {x ∈ Ω,∀Uopen ∈ Vx, T|U 6= 0}. (3.1.8)

We define the C∞ singular support of T as

singsuppT = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ C∞(U)}. (3.1.9)

Note that the support and the singular support are closed subset of Ω since their
complements in Ω are open: we have

(suppT )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U = 0}, (3.1.10)

(singsuppT )c = {x ∈ Ω,∃Uopen ∈ Vx, T|U ∈ C∞(U)}. (3.1.11)

A simple consequence of that definition is that, for T ∈ D ′(Ω), ϕ ∈ D(Ω),

suppϕ ⊂ (suppT )c =⇒ 〈T, ϕ〉 = 0. (3.1.12)

3.1.3 First examples of distributions

The Dirac mass

We define for ϕ ∈ C0
c (Rn), 〈δ0, ϕ〉 = ϕ(0); the property (3.1.5) is satisfied with

CK = 1, NK = 0. We have supp δ0 = {0}. From this, the Dirac mass cannot be an
L1

loc function, otherwise, since it is 0 a.e., it would be 0. Let φ, ε as in the proposition
3.1.1: then we have from that proposition

lim
ε→0+

∫
φε(x)ϕ(x)dx = ϕ(0),

so that the Dirac mass appears as the weak limit of ε−nφ(xε−1).
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The simple layer

We consider in Rn the hypersurface Σ = {(x′, xn) ∈ Rn−1 × R, xn = f(x′)}, where
f ∈ C1(Rn−1). We define for ϕ ∈ C0

c (Rn),

〈δΣ, ϕ〉 =

∫
Rn−1

ϕ
(
x′, f(x′)

)(
1 + |∇f(x′)|2

)1/2
dx′.

The property (3.1.5) is satisfied with CK = area(Σ∩K), NK = 0, supp δΣ = Σ, and
since Σ has Lebesgue measure 0 in Rn, the simple layer potential cannot be an L1

loc

function.

The principal value of 1/x

We define for ϕ ∈ C1
c (R),

〈pv
1

x
, ϕ〉 = lim

ε→0+

∫
|x|≥ε

ϕ(x)

x
dx. (3.1.13)

Let us check that this limit exists. We have for parity reasons,∫
|x|≥ε

ϕ(x)

x
dx =

∫ +∞

ε

(
ϕ(x)− ϕ(−x)

)dx
x

=
[
lnx
(
ϕ(x)− ϕ(−x)

)]x=+∞
x=ε

−
∫ +∞

ε

(
ϕ′(x) + ϕ′(−x)

)
lnxdx

and thus, using that limε→0+ ε ln ε = 0, ln |x| ∈ L1
loc(R), we get

〈pv
1

x
, ϕ〉 = −

∫ +∞

0

(
ϕ′(x) + ϕ′(−x)

)
lnxdx = −

∫
R
ϕ′(x)(ln |x|)dx,

yielding |〈pv 1
x
, ϕ〉| ≤

∫
suppϕ′

| ln |x||dx‖ϕ′‖L∞ .

3.1.4 Continuity properties

Definition 3.1.9. Let Ω be an open subset of Rn and let (ϕj)j≥1 be a sequence of
functions in C∞

c (Ω). We shall say that limj ϕj = 0 in C∞
c (Ω) when the two following

conditions are satisfied:
(1) there exists a compact set K ⊂ Ω, such that ∀j ≥ 1, suppϕj ⊂ K,
(2) limj ϕj = 0 in the Fréchet space C∞K (Ω), i.e. ∀α ∈ Nn, limj

(
supx∈K |(∂αxϕj)(x)|

)
= 0.

Proposition 3.1.10. Let Ω be an open subset of Rn and T be a linear form defined
on C∞

c (Ω). The linear form T is a distribution on Ω if and only if it is sequentially
continuous.

Proof. Assuming |〈T, ϕ〉| ≤ CK max|α|≤NK
‖∂αxϕ‖L∞ for all ϕ ∈ C∞

K (Ω) and all K
compact ⊂ Ω implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

∃K0compact ⊂ Ω,∀k ≥ 1,∀N ∈ N,∃ϕk,N ∈ C∞
K0

(Ω), |〈T, ϕk,N〉| > k max
|α|≤N

‖∂αxϕk,N‖L∞ .
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From the strict inequality, we infer that the function ϕk,N is not identically 0, and
we may define

ψk =
ϕk,k

kmax|α|≤k ‖∂αxϕk,k‖L∞
, so that |〈T, ψk〉| > 1.

But the sequence (ψk)k≥1 converges to 0 since suppψk ⊂ K0 and for |β| ≤ k,
‖∂βxψk‖L∞ ≤ 1/k, implying for each multi-index β that limk ‖∂βxψk‖L∞ = 0. The
sequential continuity is violated since |〈T, ψk〉| > 1 and the converse is proven.

Definition 3.1.11. Let Ω be an open subset of Rn, T ∈ D ′(Ω) and N ∈ N. The
distribution T will be said of finite order N if

∃N ∈ N,∀Kcompact ⊂ Ω,∃CK > 0,∀ϕ ∈ C∞K (Ω), |〈T, ϕ〉| ≤ CK sup
|α|≤N
x∈Rn

|(∂αxϕ)(x)|.

(3.1.14)
The vector space of distributions of order N on Ω will be denoted by D ′N(Ω). The

vector space D ′0(Ω) is called the space of Radon measures on Ω.

Proposition 3.1.12. Let Ω be an open subset of Rn and m ∈ N. The vector
space D ′m(Ω) is equal to the sequentially continuous1 linear forms on Cm

c (Ω): if
T ∈ D ′m(Ω), it can be extended to a sequentially continuous linear form on Cm

c (Ω).
If T is a sequentially continuous linear form on Cm

c (Ω), then T ∈ D ′m(Ω).

Proof. Let us first consider T ∈ D ′m(Ω), ϕ ∈ Cm
c (Ω). Applying the proposition 3.1.1,

we find a sequence (ϕk)k≥1 in C∞
c (Ω), converging in Cm

c (Ω) with limit ϕ. Since we
may assume that all the functions ϕk and ϕ are supported in a fixed compact subset
K of Ω, we have, according to the estimate (3.1.14),

|〈T, ϕk − ϕl〉| ≤ C max
|α|≤m

‖∂αx (ϕk − ϕl)‖L∞ = Cp(ϕk − ϕl),

where p is the norm in the Banach space Cm
K (Ω). Since the sequence (ϕk)k≥1 con-

verges in Cm
K (Ω), we get that the sequence (〈T, ϕk〉)k≥1 is a Cauchy sequence in C,

thus converges; moreover, if for some compact subset L of Ω, (ψk)k≥1 is another
sequence of Cm

L (Ω) converging to ϕ, we have

|〈T, ψk−ϕk〉| ≤ C ′ max
|α|≤m

‖∂αx (ϕk−ψk)‖L∞ = C ′p(ϕk−ψk) ≤ C ′p(ϕk−ϕ)+C ′p(ϕ−ψk)

and limk〈T, ψk−ϕk〉 = 0 so that, we can extend the linear form to Cm
c (Ω) by defining

〈T, ϕ〉 = limk〈T, ϕk〉. We get also immediately that (3.1.14) holds with N = m and
C∞
K (Ω) replaced by Cm

K (Ω), so that T is obviously sequentially continuous.
Let us now consider a sequentially continuous linear form T on Cm

c (Ω); reproduc-
ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T ∈ D ′m(Ω). The proof of the proposition is complete.

Remark 3.1.13. We have already proven directly that functions in L1
loc(Ω)(see

(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pv 1

x

defined in (3.1.13) is of order 1 and not of order 0.

1The convergence of a sequence in Cm
c (Ω) is analogous to the convergence given in the definition

3.1.9, except that (2) is required in the Banach space Cm
K (Ω), i.e. |α| ≤ m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let Ω be an open subset of Rn, K a compact
subset of Ω and Ω1, . . . ,Ωm open subsets of Ω such that K ⊂ Ω1 ∪ · · · ∪ Ωm. Then
for 1 ≤ j ≤ m, there exists ψj ∈ C∞

c (Ωj; [0, 1]) and V open such that

Ω ⊃ V ⊃ K, ∀x ∈ V,
∑

1≤j≤m

ψj(x) = 1,

and for all x ∈ Ω,
∑

1≤j≤m ψj(x) ∈ [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since x ∈ K implies x ∈ one of the Ωj,

K ⊂ ∪x∈KB(x, rx), B̄(x, rx) ⊂ one of the Ωj, rx > 0.

From the compactness of K, we get that K ⊂ ∪1≤l≤NB(xl, rxl
) and we may assume

that

B̄(xl, rxl
) ⊂ Ω1, for 1 ≤ l ≤ N1,

B̄(xl, rxl
) ⊂ Ω2, for N1 < l ≤ N2,

. . . . . . . . . . . . . . .

B̄(xl, rxl
) ⊂ Ωm, for Nm−1 < l ≤ Nm = N.

We define then the compact sets

K1 = ∪1≤l≤N1B̄(xl, rxl
), . . . , Km = ∪Nm−1<l≤NmB̄(xl, rxl

),

and we have K ⊂ ∪1≤j≤mKj, and for each j, Kj ⊂ Ωj. Using the lemma 3.1.3, we
find ϕj ∈ C∞

c (Ωj; [0, 1]) such that ϕj = 1 on a neighborhood Vj(⊂ Ωj) of Kj. We
define then

ψ1 = ϕ1,

ψ2 = ϕ2(1− ϕ1),

. . . . . .

ψj = ϕj(1− ϕ1) . . . (1− ϕj−1),

so that ψj ∈ C∞
c (Ωj; [0, 1]) and we have∑

1≤j≤m

ψj =
∑

1≤j≤m

ϕj

( ∏
1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk), (3.1.15)

since the formula (second equality above) is true for m = 1 and inductively,∑
1≤j≤m+1

ϕj

( ∏
1≤k<j

(1− ϕk)
)

= 1−
∏

1≤k≤m

(1− ϕk) + ϕm+1

∏
1≤k≤m

(1− ϕk)

= 1− (1− ϕm+1)
∏

1≤k≤m

(1− ϕk) = 1−
∏

1≤k≤m+1

(1− ϕk).

We have thus for x ∈ ∪1≤j≤mVj (which is a neighborhood of K in Ω), using (3.1.15)
and ϕj = 1 on Vj,

∑
1≤j≤m ψj(x) = 1. On the other hand, (3.1.15) and ϕj valued in

[0, 1] show that
∑

1≤j≤m ψj(x) ∈ [0, 1] for all x. The proof is complete.
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Theorem 3.1.15. Let Ω be an open set of Rn and (Ωj)j∈J be an open covering of
Ω: each Ωj is open and ∪j∈JΩj = Ω. Let us assume that for each j ∈ J , we are
given Tj ∈ D ′(Ωj) in such a way that

Tj |Ωj∩Ωk
= Tk |Ωj∩Ωk

. (3.1.16)

Then there exists a unique T ∈ D ′(Ω) such that for all j ∈ J , T|Ωj
= Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (T − S)|Ωj
= 0, so

that for all j ∈ J , Ωj ⊂ (supp (T − S))c and thus Ω = ∪j∈JΩj ⊂ (supp (T − S))c,
i.e. T − S = 0.
Existence: let ϕ ∈ D(Ω) and let us consider the compact set K = suppϕ. We
have K ⊂ ∪j∈MΩj with M a finite subset of J . Using the theorem on partitions
of unity, we find some function ψj ∈ C∞

c (Ωj) for j ∈ M such that
∑

j∈M ψj =
1 on a neighborhood of K. As a consequence, we have ϕ =

∑
j∈M ψjϕ and we define

〈T, ϕ〉 =
∑
j∈M

〈Tj, ψjϕ〉.

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ϕ =

∑
k∈N φkϕ, where N is a finite subset of J and φk ∈ C∞

c (Ωk): we have∑
k∈N

〈Tk, φkϕ〉 =
∑

j∈M,k∈N

〈Tk, φkψjϕ〉 =︸︷︷︸
from (3.1.16)

∑
j∈M,k∈N

〈Tj, φkψjϕ〉 =
∑
j∈M

〈Tj, ψjϕ〉,

proving that T is defined independently of the decomposition. The linearity follows
at once. The proof is complete.

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions D(Ω), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the σ(D ′,D) convergence.

Definition 3.1.16. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) and
T ∈ D ′(Ω). We shall say that limj Tj = T in the weak-dual topology if

∀ϕ ∈ D(Ω), lim
j
〈Tj, ϕ〉 = 〈T, ϕ〉. (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for ρ ∈ C∞
c (Rn),

ε > 0, ρε(x) = ε−nρ(xε−1), limε→0+ ρε = δ0
∫
ρ(t)dt. Moreover, on D ′(R), we have

with Tλ(x) = eiλx, limλ→+∞ Tλ = 0 since for ϕ ∈ D(R),∫
R
eiλxϕ(x)dx = (iλ)−1

∫
R

d

dx
(eiλx)ϕ(x)dx = −(iλ)−1

∫
R
eiλxϕ′(x)dx.
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Theorem 3.1.18. Let Ω be an open set of Rn, (Tj)j≥1 be a sequence of D ′(Ω) such
that, for all ϕ ∈ D(Ω), the (numerical) sequence (〈Tj, ϕ〉)j≥1 converges. Defining the
linear form T on D(Ω), by 〈T, ϕ〉 = limj〈Tj, ϕ〉, we obtain that T belongs to D ′(Ω).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of Ω. Then defining Tj,K as the restriction of Tj
to the Fréchet space DK(Ω), we see that the assumptions of the corollary 2.1.8 are
satisfied since Tj,K belongs to the topological dual of DK(Ω), according to the remark
3.1.6. As a consequence the restriction of T to DK(Ω) belongs to the topological
dual of DK(Ω) and from the same remark 3.1.6, it gives that T ∈ D ′(Ω).

N.B. The reader may note that we have used E = D(Ω) = ∪j∈NDKj
(Ω) = ∪jEj,

and that our definition of the topological dual of E as linear forms T on E such that,
for all j, T|Ej

∈ the topological dual of the Fréchet space Ej. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on E; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication

by C∞ functions

3.2.1 Differentiation

Definition 3.2.1. Let Ω be an open set of Rn and T ∈ D ′(Ω). We define the
distributions ∂xj

T and for a multi-index α ∈ Nn (see (2.3.6)), ∂αxT by

〈∂xj
T, ϕ〉 = −〈T, ∂xj

ϕ〉, 〈∂αxT, ϕ〉 = (−1)|α|〈T, ∂αxϕ〉. (3.2.1)

We note that ∂αxT is indeed a distribution on Ω, since the mappings ϕ 7→ ∂αxϕ
are continuous on each Fréchet space DK(Ω).

Remark 3.2.2. If limj Tj = T in the weak-dual topology of D ′(Ω), then, for all
multi-indices α, limj ∂

α
xTj = ∂αxT (in the weak-dual topology): we have, for each

ϕ ∈ D(Ω),

〈∂αxTj, ϕ〉 = (−1)|α|〈Tj, ∂αxϕ〉 −→
j→+∞

(−1)|α|〈T, ∂αxϕ〉 = 〈∂αxT, ϕ〉.

Remark 3.2.3. If u ∈ C1(Ω), its derivative ∂xj
u as a distribution coincides with

the distribution defined by the continuous function ∂u/∂xj: for ϕ ∈ D(Ω),

〈∂xj
u, ϕ〉 = −〈u, ∂xj

ϕ〉 = −
∫
u(x)

∂ϕ

∂xj
(x)dx =

∫
∂u

∂xj
(x)ϕ(x)dx = 〈 ∂u

∂xj
, ϕ〉.

Also, if u, v ∈ C0(Ω) are such that ∂x1u = v in D ′(Ω), then the function u admits v
as a partial derivative with respect to x1. To prove this, we may assume that u, v
are both compactly supported in Ω: in fact it is enough to prove that for χ ∈ C∞

c (Ω)
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identically equal to 1 near a point x0, the function χu (compactly supported) has
a partial derivative with respect to x1 which is χv + u∂x1χ (compactly supported)
and we know that in D ′(Ω) we have

〈∂x1(χu), ϕ〉 = −〈u, χ∂x1ϕ〉 = −〈u, ∂x1(χϕ)〉+ 〈u, ϕ∂x1χ〉 = 〈∂x1u, χϕ〉+ 〈u∂x1χ, ϕ〉

which implies a particular case of Leibniz’ formula ∂x1(χu) = χ∂x1u + u∂x1χ =
χv + u∂x1χ. Assuming then that u, v are compactly supported, we have from the
proposition 3.1.1, u = limε(u ∗ φε) in C0

c (Ω) and the functions u ∗ φε ∈ C∞
c (Ω). Also

we have, with the ordinary differentiation,

(∂x1(u∗φε))(x) =

∫
u(y)(∂x1φε)(x−y)dy = 〈u(·),−∂y1

(
φε(x−·)

)
〉 =

∫
v(y)φε(x−y)dy,

and limε(v ∗ φε) = v in C0
c (Ω). As a result the sequences (u ∗ φε), (∂x1(u ∗ φε)) are

both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x1.

3.2.2 Examples

Defining the Heaviside function H as 1R+ , we get

H ′ = δ0 (3.2.2)

since for ϕ ∈ D(R), we have 〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ +∞

0
ϕ′(t)dt = ϕ(0). Still in

one dimension, we have
〈δ(k)

0 , ϕ〉 = (−1)kϕ(k)(0), (3.2.3)

since it is true for k = 0 and inductively 〈δ(k+1)
0 , ϕ〉 = −〈δ(k)

0 , ϕ′〉 = −(−1)kϕ′(k)(0) =
(−1)k+1ϕ(k+1)(0). Looking at the definition (3.1.13), we see that we have proven

pv (
1

x
) =

d

dx
(ln |x|), (distribution derivative). (3.2.4)

Let f be a finitely-piecewise C1 function defined on R: it means that there is an
increasing finite sequence of real numbers (an)1≤n≤N , so that f is C1 on all closed
intervals [an, an+1] for 1 ≤ n < N and on ] −∞, a1] and [aN ,+∞[. In particular,
the function f has a left-limit f(a−n ) and a right-limit f(a+

n ) which may be different.
Let us compute the distribution derivative of f ; for ϕ ∈ D(R), since f is locally
integrable, we have, setting a0 = −∞, aN+1 = +∞,

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫

R
f(x)ϕ′(x)dx = −

∑
0≤n≤N

∫ an+1

an

f(x)ϕ′(x)dx

=
∑

0≤n≤N

∫ an+1

an

df

dx
(x)ϕ(x)dx+

∑
0≤n≤N

(
f(a+

n )ϕ(an)− f(a−n+1)ϕ(an+1)
)

=

∫
ϕ(x)

( ∑
0≤n≤N

df

dx
(x)1[an,an+1](x)

)
+
∑

1≤n≤N

f(a+
n )ϕ(an)−

∑
1≤n≤N

f(a−n )ϕ(an),
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so that we have obtained the so-called formula of jumps

f ′ =
∑

0≤n≤N

df

dx
1[an,an+1] +

∑
1≤n≤N

(
f(a+

n )− f(a−n )
)
δan , (3.2.5)

where δan is the Dirac mass at an, defined by 〈δan , ϕ〉 = ϕ(an).
We consider now the following determination of the logarithm given for z ∈ C\R−

by

Log z =

∮
[1,z]

dξ

ξ
, (3.2.6)

which makes sense since C\R− is star-shaped with respect to 1, i.e. the segment
[1, z] ⊂ C\R− for z ∈ C\R−. Since the function Log coincides with ln on R∗

+ and is
holomorphic on C\R−, we get by analytic continuation that

eLog z = z, for z ∈ C\R−. (3.2.7)

Also by analytic continuation, we have for | Im z| < π, Log(ez) = z. We want now
to study the distributions on R,

uy(x) = Log(x+ iy), where y 6= 0 is a real parameter.

We leave as an exercise for the reader to prove that

lim
y→0±

Log(x+ iy) = ln |x| ± iπ
(
1−H(x)

)
, (3.2.8)

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1

x± i0
= pv

(1
x

)
∓ iπδ0, (3.2.9)

where we have defined

〈 1

x± i0
, ϕ〉 = lim

ε→0+

∫
ϕ(x)

x± iε
dx (3.2.10)

(part of the exercise is to prove that these limits exist for ϕ ∈ D(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in D ′(I) of u′ = 0
are the constants. The solutions in D ′(I) of u′ = f make a one-dimensional affine
subspace of D ′(I).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u ∈ D ′(I) satisfies u′ = 0. Let χ0 ∈ C∞

c (I) such
that

∫
R χ0(x)dx = 1; then we have for any ϕ ∈ C∞

c (I), with J(ϕ) =
∫

R ϕ(x)dx,
ψ(x) =

∫ x
−∞

(
ϕ(t)− J(ϕ)χ0(t)

)
dt, noting that ψ belongs2 to C∞

c (I),

〈u, ϕ− J(ϕ)χ0〉 = 〈u, ψ′〉 = −〈u′, ψ〉 = 0,

2The function ψ is obviously smooth and if ϕ, χ0 are both supported in {a ≤ x ≤ b}, a, b ∈ I,
so is ψ, thanks to the condition

∫
χ0 = 1.
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which gives 〈u, ϕ〉 = J(ϕ)〈u, χ0〉, i.e. u = 〈u, χ0〉 proving that u is indeed a constant.
We have proven that the solutions u ∈ D ′(I) of u′ = 0 are simply the constants.
If f ∈ D ′(I), we need only to construct a solution v0 of v′0 = f and then use the
previous result to obtain that the set of solutions of u′ = f is v0+R. Let us construct
such a solution v0. For ϕ ∈ D(I), we define with the same ψ as above,

〈v0, ϕ〉 = −〈f, ψ〉. (3.2.11)

It is a distribution since for suppϕ compact ⊂ I, we define (the compact set) K1 =
suppϕ ∪ suppχ0, and we have

|〈v0, ϕ〉| = |〈f, ψ〉| ≤ CK1 max
0≤j≤NK1

‖ψ(j)‖L∞ ≤ C max
0≤j≤(NK1

−1)+
‖ϕ(j)‖L∞ .

Moreover the formula (3.2.11) implies the sought result

〈v′0, ϕ〉 = −〈v0, ϕ
′〉 = 〈f, ψϕ′〉 = 〈f, ϕ〉,

since ψϕ′(x) =
∫ x
−∞

(
ϕ′(t) − J(ϕ′)χ0(t)

)
dt = ϕ(x) because J(ϕ′) = 0. The proof of

the lemma is complete.

3.2.3 Product by smooth functions

We define now the product of a C∞ (resp. CN) function by a distribution (resp. of
order N).

Definition 3.2.5. Let Ω be an open subset of Rn and u ∈ D ′(Ω). For f ∈ C∞(Ω),
we define the product f · u as the distribution defined by

〈f · u, ϕ〉D ′(Ω),D(Ω) = 〈u, fϕ〉D ′(Ω),D(Ω). (3.2.12)

If u is of order N and f ∈ CN(Ω), we define the product f · u as the distribution of
order N defined by

〈f · u, ϕ〉D ′N (Ω),CN
c (Ω) = 〈u, fϕ〉D ′N (Ω),CN

c (Ω). (3.2.13)

Remark 3.2.6. Since the multiplication by a C∞(Ω) (resp. CN(Ω)) function is a
continuous linear operator from C∞

c (Ω) (resp. CN
c (Ω)) into itself, we get that the

above formulas actually define the products as distributions on Ω with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f ∈ C∞

c (Ω) and if u ∈ L1
loc(Ω), f ∈ C0(Ω), the

usual product fu coincides with the f · u defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let Ω be an open set of Rn, u ∈ D ′(Ω), f ∈ C∞(Ω) and α ∈ Nn

be a multi-index (see (2.3.6)). Then we have

∂αx (fu)

α!
=
∑

β,γ∈Nn

β+γ=α

∂βx (f)

β!

∂γx(u)

γ!
. (3.2.14)
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Proof. We get immediately by induction on |α| the formula

∂αx (fu)

α!
=
∑

β,γ∈Nn

β+γ=α

σβ,γ
∂βx (f)

β!

∂γx(u)

γ!
, with σβ,γ ∈ R+.

To find the σβ,γ, we choose f(x) = ex·ξ, u(x) = ex·η, with ξ, η ∈ Rn. We find then
for all ξ, η ∈ Rn, the identity

(ξ + η)α

α!
=
∂αx (ex·(ξ+η))

α! |x=0
=
∑

β,γ∈Nn

β+γ=α

σβ,γ
∂βx (ex·ξ)

β!

∂γx(e
x·η)

γ! |x=0

=
∑

β,γ∈Nn

β+γ=α

σβ,γ
ξβ

β!

ηγ

γ!
,

and the formula (2.3.7) shows that for β, γ such that β + γ = α

σβ,γ = ∂βξ ∂
γ
η

((ξ + η)α

α!

)
|ξ=η=0

= 1,

completing the proof of the theorem.

Examples. Let f be a continuous function on R and δ0 be the Dirac mass at 0.
The product f · δ0 is equal to f(0)δ0: since δ0 is a distribution of order 0, we can
multiply it by a continuous function and if ϕ ∈ C0

c (R), we have

〈f · δ0, ϕ〉 = 〈δ0, fϕ〉 = f(0)ϕ(0) = 〈f(0)δ0, ϕ〉 =⇒ f · δ0 = f(0)δ0. (3.2.15)

On the other hand if f ∈ C1(R) we have

f · δ′0 = f(0)δ′0 − f ′(0)δ0, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)δ′0 = (f · δ0)′ = f ′ · δ0 + f · δ′0 =
f ′(0)δ0 + f · δ′0. In particular xδ′0 = −δ0.

3.2.4 Division of distribution on R by xm

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

x pv(1/x) = 1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant c, we have x

(
pv(1/x)+ cδ0

)
= 1. The next theorem

shows that T = pv(1/x) + cδ0 are the only distributions solutions of the equation
xT = 1.

Theorem 3.2.8. Let m ≥ 1 be an integer.

(1) If u ∈ D ′(R) is such that xmu = 0, then u =
∑

0≤j<m cjδ
(j)
0 .

(2) Let v ∈ D ′(R); there exists u ∈ D ′(R) such that v = xmu.
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Proof. Let us first prove (1). For ϕ, χ0 ∈ C∞
c (R) with χ0 = 1 near 0, we have

ϕ(x) =
∑

0≤j<m

ϕ(j)(0)

j!
xj︸ ︷︷ ︸

pϕ,m(x)

+

∫ 1

0

(1− t)m−1

(m− 1)!
ϕ(m)(tx)dt︸ ︷︷ ︸

ψm,ϕ(x)

xm, ψm,ϕ ∈ C∞(R),

and thus, since xmu = 0,

〈u, ϕ〉 =

=0︷ ︸︸ ︷
〈xmu, x−m(1− χ0)ϕ〉+〈u, χ0ϕ〉 = 〈u, χ0pm,ϕ〉+

=0︷ ︸︸ ︷
〈xmu, χ0ψϕ,m〉

=
∑

0≤j<m

ϕ(j)(0)

j!
〈u, χ0〉 =

∑
0≤j<m

〈cjδ(j)
0 , ϕ〉,

which the sought result. To obtain (2), for ϕ ∈ C∞
c (R), and a given v0 ∈ D ′(R), we

define, using the above notations,

〈u, ϕ〉 = 〈v0, χ0ψm,ϕ〉+ 〈v0, x
−m(1− χ0)ϕ〉.

This defines obviously a distribution on R and 〈xmu, ϕ〉 = 〈u, xmϕ〉; for the func-
tion φ(x) = xmϕ(x), we have pφ,m = 0, xmψm,φ(x) = xmϕ(x), so that the smooth
functions ψm,φ = ϕ,

〈xmu, ϕ〉 = 〈v0, χ0ϕ〉+ 〈v0, x
−m(1− χ0)x

mϕ〉 = 〈v0, ϕ〉.

3.3 Distributions with compact support

3.3.1 Identification with E ′

Let Ω be an open subset of Rn. We have already seen that the space C∞(Ω) (also
denoted by E (Ω)) is a Fréchet space. Denoting by E ′(Ω) the topological dual of
E (Ω), we can consider T ∈ E ′(Ω) as a distribution T̃ on Ω by defining

〈T̃ , ϕ〉D ′(Ω),D(Ω) = 〈T, ϕ〉E ′(Ω),E (Ω) (this makes sense since D(Ω) ⊂ E (Ω)).

The linearity is obvious and the continuity of T as a linear form on the Fréchet space
E (Ω) implies that there exists C > 0, N ∈ N, K compact subset of Ω such that

∀ϕ ∈ E (Ω), |〈T, ϕ〉E ′(Ω),E (Ω)| ≤ C sup
|α|≤N, x∈K

|(∂αxϕ)(x)|.

This estimates also proves that T̃ belongs to D ′(Ω); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have 〈T̃ , ϕ〉 = 0 for ϕ ∈ C∞

c (Ω),
suppϕ ⊂ Kc, so that T̃|Kc = 0 and thus supp T̃ ⊂ K. The next theorem proves that
we can identify the space E ′(Ω) with the distributions on Ω with compact support,
denoted by D ′

comp(Ω).

Theorem 3.3.1. Let Ω be an open subset of Rn. The mapping ι : E ′(Ω) →
D ′

comp(Ω), defined as above by ι(T ) = T̃ is bijective.
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Proof. The mapping ι is linear and if ι(T ) = 0, we know that T vanishes on all
functions of D(Ω).

Lemma 3.3.2. Let Ω be an open subset of Rn. The space D(Ω) is dense in E (Ω).

Proof of the lemma. We consider a sequence (Kj)j≥1 of compact subsets of Ω such
that the lemma 2.3.1 is satisfied. For each j ≥ 1, we may use the lemma 3.1.3 to
construct a function χj ∈ D(Ω) with χj = 1 near Kj. For a given ϕ ∈ E (Ω), the
sequence (ϕχj)j≥1 of functions in D(Ω) converges in E (Ω) to ϕ, thanks to the last
property of the lemma 2.3.1, proving the lemma.

Since T is continuous on E (Ω), 〈T, ϕ〉E ′(Ω),E (Ω) = limj〈T, ϕχj〉E ′(Ω),E (Ω), = 0 since
T vanishes on D(Ω). Let us consider now T ∈ D ′

comp(Ω) with suppT = L (compact
subset of Ω). Using the lemma 3.1.3, we consider χ0 ∈ D(Ω) such that χ0 = 1 on a
neighborhood of L. For ϕ ∈ E (Ω), we define S ∈ E ′(Ω) by

〈S, ϕ〉E ′(Ω),E (Ω) = 〈T, χ0ϕ〉D ′(Ω),D(Ω) (note that |〈S, ϕ〉| ≤ C sup
|α|≤N, x∈supp χ0

|∂α
xϕ|),

We have ι(S) = T because

〈ι(S), ϕ〉D ′(Ω),D(Ω) = 〈S, ϕ〉E ′(Ω),E (Ω) = 〈T, χ0ϕ〉D ′(Ω),D(Ω) = 〈χ0T, ϕ〉D ′(Ω),D(Ω),

and since for ϕ ∈ D(Ω), the function (1 − χ0)ϕ vanishes on an open neighborhood
V of L implying

supp
(
(1− χ0)ϕ

)
⊂ V c ⊂ Lc =⇒ 〈T, (1− χ0)ϕ〉 = 0,

so that ι(S) = χ0T = χ0T + (1− χ0)T︸ ︷︷ ︸
=0

= T. The proof of the theorem is complete.

Remark 3.3.3. We can then identify D ′
comp(Ω) with E ′(Ω), and we may note that

for T ∈ D ′
comp(Ω) with suppT = L, T is of finite order N , and for all neighborhoods

K of L, there exists C > 0 such that, for all ϕ ∈ E (Ω),

|〈T, ϕ〉| ≤ C sup
|α|≤N, x∈K

|(∂αxϕ)(x)|. (3.3.1)

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Ω be an open subset of Rn, x0 ∈ Ω and let u ∈ D ′(Ω) such

that suppu = {x0}. Then u =
∑

|α|≤N cαδ
(α)
x0 , where the cα are some constants.
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Proof. Let ϕ ∈ C∞(Ω); we have for x ∈ V0 ⊂ open neighborhood of x0 (included in
Ω), N0 the order of u,

ϕ(x) =
∑
|α|≤N0

(∂αxϕ)(x0)

α!
(x−x0)

α+

∫ 1

0

(1− θ)N0

N0!
ϕ(N0+1)(x0 + θ(x− x0))dθ︸ ︷︷ ︸
ψ(x), ψ∈C∞(V0)

(x−x0)
N0+1,

and thus for χ0 ∈ C∞
c (V0), χ0 = 1 near x0,

〈u, ϕ〉 = 〈u, χ0ϕ〉 =
∑
|α|≤N0

(∂αxϕ)(x0)

α!
〈u, χ0(x)(x−x0)

α〉+〈u, χ0(x)ψ(x)(x−x0)
N0+1〉.

(3.3.2)
We have also

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

|∂αx
(
χ0(x)ψ(x)(x− x0)

N0+1
)
|. (3.3.3)

We can take χ0(x) = ρ(x−x0

ε
), where ρ ∈ C∞

c (Rn) is supported in the unit ball B1,
ρ = 1 in 1

2
B1 and ε > 0. We have then

χ0(x)ψ(x)(x− x0)
N0+1 = εN0+1ρ(

x− x0

ε
)ψ
(
x0 + ε

(x− x0)

ε

)(x− x0)
N0+1

εN0+1

= εN0+1ρ1(
x− x0

ε
)

with ρ1(t) = ρ(t)ψ(x0 + εt)tN0+1, so that ρ1 ∈ C∞
c (Rn) is supported in the unit ball

B1 has all its derivatives bounded independently of ε. From (3.3.3), we get for all
ε > 0,

|〈u, χ0(x)ψ(x)(x− x0)
N0+1〉| ≤ C0 sup

|α|≤N0

εN0+1−|α||(∂αt ρ1)(
x− x0

ε
)| ≤ C1ε,

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for
χ1 ∈ C∞

c (V0), χ1 = 1 near the support of χ0, we have

〈u, χ1(x)(x− x0)
α〉 = 〈u, χ1(x)χ0(x)︸ ︷︷ ︸

=χ0(x)

(x− x0)
α〉+ 〈u, χ1(x)(1− χ0(x))︸ ︷︷ ︸

supported in (suppu)c

(x− x0)
α〉

= 〈u, χ0(x)(x− x0)
α〉

so that the latter does not depend on ε for ε small enough. The result of the theorem
follows from (3.3.2).

3.4 Tensor products

Let X be an open subset of Rm, Y be an open subset of Rn and f ∈ C∞
c (X), g ∈

C∞
c (Y ). The tensor product f⊗g is defined by (f⊗g)(x, y) = f(x)g(y) and belongs


