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Lemma 3.1.7. Let Q be an open subset of R™, f € L (Q) such that, for all ¢ €
2(Q), | f(z)p(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Q and x € Z(2) equal to 1 on a neighbor-
hood of K as in the lemma 3.1.3. With ¢ as in the proposition 3.1.1, we get that
lime, ¢ex(xf)=xfin L'(R™). We have

(0% (@) = [ 1) @l ~ y)e e " dy, suppi © Ko € 2(9),

=0z (y)

and from the assumption of the lemma, we obtain (¢6 * (Xf))(m) = 0 for all z,
implying xf = 0 from the convergence result; the conclusion follows. ]

We note that it makes sense to restrict a distribution 7' € 2'(Q2) to an open
subset U C €2: just define

(Tiv, VYo ), 2(0) = {Ts @) 7 (02),2(90) (3.1.7)

and Tjy is obviously a distribution on U. With this in mind, we can define the
support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Q be an open subset of R™ and T € 2'(Q). We define the
support of T as
suppT = {x € Q,YUopen € ¥, Ty # 0}. (3.1.8)

We define the C* singular support of T' as
singsupp T’ = {z € Q,VUopen € ¥, Tiy ¢ C=(U)}. (3.1.9)

Note that the support and the singular support are closed subset of {2 since their
complements in €2 are open: we have

(suppT)“ = {x € Q,3Vopen € ¥, Ty = 0}, (3.1.10)
(singsupp T')° = {z € Q,3UVopen € ¥, Tiy € C*(U)}. (3.1.11)
A simple consequence of that definition is that, for T' € 2'(Q), ¢ € 2(Q),

supp ¢ C (suppT)¢ = (T, ) = 0. (3.1.12)

3.1.3 First examples of distributions
The Dirac mass

We define for ¢ € CO(R"), (dy, ) = (0); the property (3.1.5) is satisfied with
Ck =1, Nk = 0. We have supp dp = {0}. From this, the Dirac mass cannot be an
L} . function, otherwise, since it is 0 a.e., it would be 0. Let ¢, € as in the proposition
3.1.1: then we have from that proposition

m3/¢wmuMw=wm,

e—04

so that the Dirac mass appears as the weak limit of e "¢ (ze™).
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The simple layer

We consider in R” the hypersurface ¥ = {(2/,z,) € R"! x R, z,, = f(2/)}, where
f e CHR"1). We define for ¢ € C?(R"),

svh = [ ola' F@) (14 94 P)

The property (3.1.5) is satisfied with C'x = area(X N K), N = 0,supp dy = X, and
since 3 has Lebesgue measure 0 in R”, the simple layer potential cannot be an L{ _
function.

The principal value of 1/x
We define for ¢ € C}(R),

(pvi, @) = lim Mdm. (3.1.13)

=0+ |z|>e z

Let us check that this limit exists. We have for parity reasons,

/xee 2 = / T (ple) o) &

— [ln:p(go(x) — cp(—a:))]zzjoo — / Oo(go'(:p) + gp’(—x)) In zdx

and thus, using that lim._o, elne =0, In|z| € L] (R), we get

loc

v == [ (o) + (o) nads = - [ @ a)nfel)de

yielding \(pv%,@)! < fsupwx | In [z||dz ||| o

3.1.4 Continuity properties

Definition 3.1.9. Let Q be an open subset of R™ and let (¢;);>1 be a sequence of
functions in C2°(2). We shall say that lim; p; = 0 in C'°(2) when the two following
conditions are satisfied:

(1) there exists a compact set K C ), such that Vj > 1,supp ¢; C K,

(2) lim; ¢; = 0 in the Fréchet space C52(Q), i.e. Yoo € N, lim; (sup,e g |(050;)(x)]) = 0.

Proposition 3.1.10. Let Q) be an open subset of R™ and T be a linear form defined
on C°(Q). The linear form T is a distribution on Q if and only if it is sequentially
continuous.

Proof. Assuming [(T, ¢)| < Cx maxja<n, [|05¢| 1~ for all ¢ € CF(Q) and all K
compact C €2 implies readily the sequential continuity. Conversely, if T does not
satisfy (3.1.5), we have

JKocompact C €, Vk > 1,VN € N, Jpx ny € CF; (Q), (T, o, )| > kﬁlg}]\([ 105 or.n || Los -
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From the strict inequality, we infer that the function ¢ y is not identically 0, and
we may define

Pk,k
Yy = : , so that (T, )| > 1.
4 Fmaare [0l T
But the sequence (¢)r>1 converges to 0 since suppy, C Ky and for |G| < k,
1029 || L < 1/k, implying for each multi-index 3 that limy, ||0%4y]|L~ = 0. The
sequential continuity is violated since |[(T,%x)| > 1 and the converse is proven. [

Definition 3.1.11. Let Q be an open subset of R", T € 2'(Q2) and N € N. The
distribution T will be said of finite order N if

IN € N,VK compact C Q,3Ck > 0,Yp € CEF(Q), (T, )| < Ck sup [(0%¢)(z)].
[a|<N
TER™

(3.1.14)
The vector space of distributions of order N on 0 will be denoted by .@’N(Q). The

vector space 9’0(9) is called the space of Radon measures on €.

Proposition 3.1.12. Let Q) be an open subset of R and m € N. The vector
space 9" () is equal to the sequentially continuous' linear forms on CT(Q): if
T € 2'"™(Q), it can be extended to a sequentially continuous linear form on CI*(2).
If T is a sequentially continuous linear form on CI"(Q), then T € 2" (Q).

Proof. Let us first consider T' € 2'™(Q), ¢ € C(Q). Applying the proposition 3.1.1,
we find a sequence (gg)r>1 in C°(Q2), converging in C*(2) with limit ¢. Since we
may assume that all the functions ¢ and ¢ are supported in a fixed compact subset
K of ©, we have, according to the estimate (3.1.14),

T, o1 — @1)| < C‘gfgﬁ 105 (r — @)L = Cp(r — 1),

where p is the norm in the Banach space C72(€2). Since the sequence (¢g)r>1 con-
verges in C(€2), we get that the sequence ((T', px))r>1 is a Cauchy sequence in C,
thus converges; moreover, if for some compact subset L of €2, (¢;)r>1 is another
sequence of C7*(2) converging to ¢, we have

(T, v —r)| < C max 102 (o —tr)|| 2 = C'p(pr—x) < C'plor—)+C'p(p—1r)

and limy (T, ¥, — k) = 0 so that, we can extend the linear form to C*(£2) by defining
(T, ) = lim(T, pr). We get also immediately that (3.1.14) holds with N = m and
CR(Q) replaced by C(2), so that T is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form 7" on C"*(f2); reproduc-
ing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with
N = m, proving that T € 2" (). The proof of the proposition is complete. ]

Remark 3.1.13. We have already proven directly that functions in Li .(Q)(see
(3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions
of order 0. It is an exercise left to the reader to prove that the distribution pv%

defined in (3.1.13) is of order 1 and not of order 0.

!The convergence of a sequence in C*(2) is analogous to the convergence given in the definition
3.1.9, except that (2) is required in the Banach space C2(f), i.e. |a] < m.
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3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let 2 be an open subset of R, K a compact
subset of Q and €y, ..., open subsets of 2 such that K C QU ---U),. Then
for 1 < j <m, there exists ¢; € C*(Q;;[0,1]) and V open such that

QDVOK VoeV, Y tx)=1,

1<j<m

and for all x € O, 37, ¥i(z) € [0, 1].

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider
now m > 1 and we note that, since € K implies x € one of the (2;,

K C UgexB(z,1;), B(x,r;) C one of the Q;, r, > 0.

From the compactness of K, we get that K C Uj<j<yB(x;,7,,) and we may assume
that

B(xl,rxl) CQl, for 1 SZSNl,

B(ﬁl,’l"xl) C QQ, for Nl <1 < NQ,

B(zy,ry,) C Qp,  for Npoy <1< N, = N.

We define then the compact sets

Ki = Uic<n, B(x,72,), -, Ky =Un,,_ <i<n,, B2, 745,),

and we have K C Ui<j<,, K, and for each j, K; C ;. Using the lemma 3.1.3, we
find ; € C°(€;;10,1]) such that ¢; = 1 on a neighborhood V;(C ;) of K;. We
define then

wl = ¥1,

V2 = a(1 = 1),

i =il =¢1)... (1= g;-),
so that ¢; € C2°(;;[0,1]) and we have
Sui= Y w([Ta-w)=1- T 01—, (3.1.15)
1<j<m 1<j<m 1<k<j 1<k<m
since the formula (second equality above) is true for m = 1 and inductively,

> ow(IT0-e0)=1- I O—e+emn IT -0

1<j<m+1 1<k<j 1<k<m 1<k<m

=1-(=¢mn) ] O-0)=1- J[ -

1<k<m 1<k<m+1

We have thus for x € Uj<;<,,V; (which is a neighborhood of K in 2), using (3.1.15)
and p; =1onVj, > i, ¥j(x) = 1. On the other hand, (3.1.15) and ¢; valued in
[0, 1] show that >, _,,, ¥;(z) € [0,1] for all z. The proof is complete. O
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Theorem 3.1.15. Let Q be an open set of R™ and (€2;);es be an open covering of
Q2: each Q; is open and Ujc;Q; = ). Let us assume that for each j € J, we are
given T; € 9'(Q;) in such a way that

Then there exists a unique T € 9'(Q) such that for all j € J, Tiq, = Tj.

Proof. Uniqueness: if T, S are such distributions, we get that (1" — S5)q, = 0, so
that for all j € J, Q; C (supp (T'—5))¢ and thus Q = U;c;Q; C (supp (T' - 9))°,
ie. T'—S5=0.

Existence: let ¢ € 2(2) and let us consider the compact set K = suppy. We
have K' C U,en(); with M a finite subset of J. Using the theorem on partitions
of unity, we find some function ¢; € C°(S;) for j € M such that >, ¢; =
1 on a neighborhood of K. As a consequence, we have ¢ = > jenr Yjp and we define

<T7 §0> = Z<TJ7¢J90>

JEM

The required estimates (3.1.5) are easily checked, but the linearity and the indepen-
dence with respect to the decomposition deserve some attention. Assume that we
have ¢ = )", -y ¢rp, where N is a finite subset of J and ¢, € C2°(€2;): we have

Z<Tk7¢k90>: Z UR NN Z <7}7¢k¢j¢>zz<7}>¢j9@>,

keN jEM,KkEN from (3.1.16) JEM,KEN JjEM

proving that T is defined independently of the decomposition. The linearity follows
at once. The proof is complete. O]

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions Z(€2), although we
gave the definition of convergence of a sequence (see the definition 3.1.9); we shall
need also a simple notion of weak-dual convergence of a sequence of distributions,
which is the o(2', Z) convergence.

Definition 3.1.16. Let Q2 be an open set of R", (T});>1 be a sequence of Z'(§2) and
T e 2'(). We shall say that lim; T; = T in the weak-dual topology if

Vo € 2(9), lijm(Tj,gp) = (T, ). (3.1.17)

Remark 3.1.17. We have already seen (see the section 3.1.3) that for p € C2°(R"),
e >0, p(x) = e "p(xet), im0, p = & [ p(t)dt. Moreover, on Z'(R), we have
with Ty(x) = €%, limy_ ;o T = 0 since for ¢ € Z(R),

/Rei’\zgo(x)d:c: (iA)IA%(eiAI)w(x)dx: —(z')\)l/Rengpl(x)dx.
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Theorem 3.1.18. Let Q be an open set of R", (1});>1 be a sequence of Z'(2) such
that, for all o € P(Q2), the (numerical) sequence ({1}, ));>1 converges. Defining the
linear form T on 2(2), by (T, ) =lim; (T}, p), we obtain that T belongs to ' (12).

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let
us consider a compact subset K of 2. Then defining 7} x as the restriction of Tj
to the Fréchet space Pk (1), we see that the assumptions of the corollary 2.1.8 are
satisfied since T} ¢ belongs to the topological dual of 2k (€2), according to the remark
3.1.6. As a consequence the restriction of T' to Zk(€2) belongs to the topological
dual of Zk(2) and from the same remark 3.1.6, it gives that 7" € 2'(2). O

N.B. The reader may note that we have used £ = Z(Q) = U;en%k, () = U; L},
and that our definition of the topological dual of E as linear forms 7" on E such that,
for all j, Ti, € the topological dual of the Fréchet space Ej;. This structure allows
us to use the Banach-Steinhaus theorem, although we have not defined a topology
on E; this observation is a good introduction to the more abstract setting of LF
spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication
by C*° functions

3.2.1 Differentiation

Definition 3.2.1. Let Q@ be an open set of R™ and T € 2'(Q). We define the
distributions 0., T and for a multi-inder o € N (see (2.3.6)), 02T by

(0,1, 0) = —(T,00,0), (05T, ) = (~=1)I*UT, 87¢p). (3.2.1)

We note that 097 is indeed a distribution on €2, since the mappings ¢ — 0%¢
are continuous on each Fréchet space Pk ().

Remark 3.2.2. If lim; 7; = T in the weak-dual topology of 2'(€2), then, for all
multi-indices «, lim; 057; = 09T (in the weak-dual topology): we have, for each

v € D(),

<83Tj790> = (_1>|a|<ij@g¢> - (_1)|a‘<T7 ag@) = <a§T’ 90>'

j—too

Remark 3.2.3. If u € C''(Q), its derivative 0,,u as a distribution coincides with
the distribution defined by the continuous function du/0x;: for ¢ € Z(1),

(Ouyt ) = ~(w.0r0) = [ u(e) 22 (2 = 5—;@)@(@@ - <§—;,so>.

8[[’j
Also, if u,v € CY(Q) are such that d,,u = v in Z2'(Q), then the function u admits v
as a partial derivative with respect to x1. To prove this, we may assume that u,v
are both compactly supported in §2: in fact it is enough to prove that for x € C2°(£2)
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identically equal to 1 near a point xg, the function yu (compactly supported) has
a partial derivative with respect to x; which is xv + ud,, x (compactly supported)
and we know that in 2’(2) we have

(O, (xw), ©) = = (U, X0, ) = — (U, O, (X)) + (U, 902, X) = (O, X©) + (U0, X, @)

which implies a particular case of Leibniz’ formula 0., (xu) = X0 u + u0y, x =
XV + u0,, x. Assuming then that w,v are compactly supported, we have from the
proposition 3.1.1, u = lim(u * ¢.) in C2(2) and the functions u * ¢. € C(2). Also
we have, with the ordinary differentiation,

(O (w6)) () = / w(y) (O 60) (—)dy = (u(-), —0y, (Sela—))) = / o(y)bela—y)dy,

and lim (v * ¢.) = v in C2(Q). As a result the sequences (u * ¢.), (Ox, (u * ¢.)) are
both uniformly converging sequences of (compactly supported) continuous functions
with respective limits u, v, and this implies that the continuous function u has v as
a partial derivative with respect to x;.

3.2.2 Examples

Defining the Heaviside function H as 1g, , we get
H' =4, (3.2.2)

since for ¢ € Z(R), we have (H',p) = —(H,¢') = —f0+oo o' (t)dt = (0). Still in
one dimension, we have .
(0" ¢) = (=1)"™®(0), (3:2.3)

since it is true for k£ = 0 and inductively ((5(()k+1), Q) = —(5ék), ¢ = —(=1)*'®(0) =
(—1)k+1pk+1)(0). Looking at the definition (3.1.13), we see that we have proven

1 d o o

pv (=) = —(n|z|), (distribution derivative). (3.2.4)

x dz
Let f be a finitely-piecewise C! function defined on R: it means that there is an
increasing finite sequence of real numbers (a,)1<n<n, so that f is C* on all closed
intervals [a,, a,41] for 1 < n < N and on | — 00, a4] and [ay, +oo[. In particular,
the function f has a left-limit f(a; ) and a right-limit f(a;") which may be different.
Let us compute the distribution derivative of f; for ¢ € Z(R), since f is locally
integrable, we have, setting ag = —o00, ani1 = 400,

(o) = —(f ) = — / faona == 3 / "

y ant1 df vde+ 3 (f — flag ) e(ans))

0<n<N v @n 0<n<N

~ [e( 3 %@)yan,am(mw > fa)em) = 3 fa)ola)

0<n<N 1<n<N 1<n<N
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so that we have obtained the so-called formula of jumps
! df —+ —
f'=2 2 Hanana] T > (fah) = fan))da,, (3.2.5)
0<n<N 1<n<N

where ,, is the Dirac mass at a,, defined by (d,,, @) = @(a,).
We consider now the following determination of the logarithm given for z € C\R_

by
d
Log = :7{ —g, (3.2.6)
e €
which makes sense since C\R_ is star-shaped with respect to 1, i.e. the segment

[1,2z] € C\R_ for z € C\RR_. Since the function Log coincides with In on R* and is
holomorphic on C\R_, we get by analytic continuation that

e8% = 2 for z € C\R_. (3.2.7)

Also by analytic continuation, we have for |Im z| < 7, Log(e*) = z. We want now
to study the distributions on R,

uy(x) = Log(z 4+ 1y), where y # 0 is a real parameter.
We leave as an exercise for the reader to prove that

lim Log(z + iy) = In|z| £ ir (1 — H(z)), (3.2.8)

y—0+

where the limits are taken in the sense of the definition 3.1.16; also the reader can
check

1 1
— Z ; 2.
T pv(x) F imdo, (3.2.9)
where we have defined
1 : o(z)
=1 —2d 3.2.10
A el (3.2.10)

(part of the exercise is to prove that these limits exist for ¢ € Z(R)). We conclude
that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of R. The solutions in 2'(I) of ' = 0
are the constants. The solutions in P'(I) of u' = f make a one-dimensional affine

subspace of 2'(1).

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution.
Conversely, let us assume that u € 2'(I) satisfies v’ = 0. Let xo € C(I) such
that [, xo(z)dx = 1; then we have for any ¢ € C*(I), with J(¢) = [; ¢(z)dz,
P(z) = ffoo (ap(t) — J((p)XO(t))dt, noting that 1) belongs® to C°(I),

(u, 0 = J(@)x0) = (u, ¥) = = (', ¢) =0,

2The function 9 is obviously smooth and if ¢, xo are both supported in {a < x < b},a,b € I,
so is 1), thanks to the condition [ xo = 1.
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which gives (u, ) = J(¢)(u, xo), i.e. u= (u, xo) proving that u is indeed a constant.
We have proven that the solutions u € Z'(I) of v = 0 are simply the constants.
If f e 2'(I), we need only to construct a solution vy of vj = f and then use the
previous result to obtain that the set of solutions of v’ = f is vo+R. Let us construct
such a solution vg. For ¢ € Z(I), we define with the same ¢ as above,

(vo, ) = —=(f, ). (3.2.11)

It is a distribution since for supp ¢ compact C I, we define (the compact set) K; =
supp ¢ U supp xo, and we have

- < D, < D .
(o, o) = {9l < Oy amax (9Pl < € mnax el

Moreover the formula (3.2.11) implies the sought result

(U5, 0) = —(vo, @) = (f,vbr) = ([, 0,

since ¢y (2) = [*__(/(t) — J(¢')xo(t))dt = ¢(x) because J(¢') = 0. The proof of
the lemma is complete. O

—————
3.2.3 Product by smooth functions

We define now the product of a C* (resp. C'V) function by a distribution (resp. of
order N).

Definition 3.2.5. Let Q be an open subset of R™ and u € 2'(Q). For f € C*(Q),
we define the product f - u as the distribution defined by

(f - u,0) 91,200 = (U fO)o@),20)- (3.2.12)

If u is of order N and f € C™(Q), we define the product f - u as the distribution of
order N defined by

(f - u,0) g ). ) = (U [P g ) ov ) (3.2.13)

Remark 3.2.6. Since the multiplication by a C*(Q) (resp. CN(Q)) function is a
continuous linear operator from C°(Q) (resp. CN(€)) into itself, we get that the
above formulas actually define the products as distributions on €2 with the right order
(see the proposition 3.1.12). Also the product defined in the second part coincides
with the first definition whenever f € C°(Q) and if u € L .(Q), f € C°(Q), the

usual product fu coincides with the f - wu defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz’ formula for
the derivatives of a product.

Theorem 3.2.7. Let S be an open set of R*, u € 2'(Y), f € C*(2) and o € N"
be a multi-index (see (2.3.6)). Then we have

O (fu) _ 3 02 (f) 03 (w) (3.2.14)
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Proof. We get immediately by induction on |«| the formula

) _ 5, 0200

al 78T B T A

,  with o5, € R..

B,yENT
By=a

To find the o4, we choose f(x) = €% u(z) = ", with £,n € R". We find then
for all £,n € R”, the identity

a9 (£+77 aﬂ aff a7 (e B Y
GBI, e N o L TC R s
a: B,yENT fy |£E:0 B,yENT : fy

Bty=c B+y=a

and the formula (2.3.7) shows that for 3,~ such that § 4+ v = «

al )lgznzo
completing the proof of the theorem. O

Examples. Let f be a continuous function on R and dy be the Dirac mass at 0.
The product f - dq is equal to f(0)dg: since dy is a distribution of order 0, we can
multiply it by a continuous function and if p € C(R), we have

{f 00, ) = (00, fo) = F(0)p(0) = (f(0)bo, ¥) = [ - 0o = f(0)dp.  (3.2.15)

On the other hand if f € C*(R) we have

f -8 = f(0)dg — f'(0)do, (3.2.16)

since the Leibniz’ formula (3.2.14) gives f(0)o; = (f - do) = f 0o+ [ - 0 =
f(0)dg + f - 6. In particular xdy = —dy.

3.2.4 Division of distribution on R by 2™

We want now to address the question of division of a function (or a distribution) by a
polynomial; a typical example is the division of 1 by the linear function x expressed
by the identity

zpv(l/z)=1 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous
examples that, for any constant ¢, we have x(pv( 1/z)+ 050) = 1. The next theorem
shows that T' = pv(1/x) + ¢dy are the only distributions solutions of the equation
T = 1.

Theorem 3.2.8. Let m > 1 be an integer.
(1) If u € Z'(R) is such that 2™u =0, then u =} i, cjé( ),
(2) Let v e Z'(R); there exists u € Z'(R) such that v = x™u.
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Proof. Let us first prove (1). For ¢, xo € C2°(R) with yo = 1 near 0, we have

(4) . L1 - pym-1
plr)= > Ld ,(O)xﬂ+ /O %w(m)(m)dtmm, Vmp € CP(R),

e Ymp (@)

and thus, since z™u = 0,

=0 =0

A

- ~N

——
(u, ) = (@™ u, x7™(1 — x0)p) +{u, Xow) = (U, X0Pm.p) + (U, X0Vp,m)

(4) ;
_ Z 80].|(0)<U,X0>: Z <C],5(()J)’g0>7

0<j<m ’ 0<j<m

which the sought result. To obtain (2), for ¢ € C°(R), and a given vy € Z'(R), we
define, using the above notations,

<u7 S0> = <U07 Xowm,go> + <U07 xim(l - X0)90>-

This defines obviously a distribution on R and (x™u,
tion ¢(x) = 2™p(x), we have pym = 0,27y, 4(z) =
functions ¥, 4 = ¢,

) = (u,x™yp); for the func-
x™p(z), so that the smooth

(x™u, @) = (vo, Xop) + (vo, 2™ (L — x0)z™ ) = (vo, ¥)- O

3.3 Distributions with compact support

3.3.1 Identification with &’

Let © be an open subset of R". We have already seen that the space C*>°(Q2) (also
denoted by &(€2)) is a Fréchet space. Denoting by &"(€2) the topological dual of
&(Q), we can consider T' € &”(Q2) as a distribution 7" on by defining

(T, @>@/(Q)7@(Q) = (T, QO>(§/(Q)7(§(Q) (this makes sense since Z(Q2) C &(£2)).

The linearity is obvious and the continuity of 7" as a linear form on the Fréchet space
&(Q) implies that there exists C' > 0, N € N, K compact subset of {2 such that

Vo e &(Q), [T ple@ew| <C  sup  [(07¢)(x)]

|a|<N, zeK

This estimates also proves that T' belongs to 2’ (€2); moreover, it has compact sup-
port in the sense of the definition (3.1.8): we have (T, ) = 0 for ¢ € C®(Q),
supp ¢ C K¢, so that T| ke = 0 and thus suppT C K. The next theorem proves that
we can identify the space &”(€2) with the distributions on 2 with compact support,
denoted by 2!

comp(Q)'

Theorem 3.3.1. Let 2 be an open subset of R". The mapping ¢ : &'(Q) —
D (), defined as above by «(T) =T is bijective.

comp
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Proof. The mapping ¢ is linear and if «(T") = 0, we know that 7" vanishes on all
functions of 2(12).

Lemma 3.3.2. Let Q2 be an open subset of R". The space 2(X2) is dense in &(€2).

Proof of the lemma. We consider a sequence (K);>1 of compact subsets of 2 such
that the lemma 2.3.1 is satisfied. For each j > 1, we may use the lemma 3.1.3 to
construct a function y; € Z(Q2) with x; = 1 near K. For a given ¢ € &(Q), the
sequence (pyx;);>1 of functions in Z(Q) converges in &(2) to ¢, thanks to the last
property of the lemma 2.3.1, proving the lemma. O]

Since T is continuous on & (), (T, @) e ().e) = Im(T, ©x;) e @)e), = 0 since
T vanishes on Z(2). Let us consider now 7' € 2/ () with suppT = L (compact

comp

subset of Q). Using the lemma 3.1.3, we consider yo € Z(2) such that yo =1 on a
neighborhood of L. For ¢ € &(€2), we define S € £’(§2) by

(S, @) er)e) = (T, X0p) 7 (2),2(0) (note that [(S,¢)| < C sup 05¢]),

|a|<N, z€supp xo

We have ¢(S) = T because

(L(S),; @) 2@),2(0 = (S, )en.e) = (T) X00) 29),2(0 = (XoT ©)9(9),2(2)

and since for ¢ € (), the function (1 — xo)¢ vanishes on an open neighborhood
V of L implying

supp((l — Xg)go) cCVeC L= (T,(1 —xo0)p) =0,
so that ¢(S) = x0T = x0T + (1 — x0)T = T. The proof of the theorem is complete.
~—————

=0

O

Remark 3.3.3. We can then identify 2! () with &’(€2), and we may note that

comp

for T' € Dgomp(2) with suppT' = L, T is of finite order N, and for all neighborhoods
K of L, there exists C' > 0 such that, for all ¢ € &(12),
(Too) <C sup [(07¢)(x)]. (3.3.1)
|a|<N, zeK

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in {0}.

Theorem 3.3.4. Let Q2 be an open subset of R™, o € Q and let u € P'(Y) such
that suppu = {xo}. Thenu =73,y a0 where the co are some constants.
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Proof. Let ¢ € C*°(£2); we have for x € V C open neighborhood of z (included in
), Ny the order of u,

o N()'

loe| <No ) < ~ -
YP(z), PeC=(W)

o) = 32 D) (e / L= O 004 (3 1 0 — 0)) A0 —m0) o+,

and thus for xo € C(Vy), xo = 1 near x,

.0) = (o) = 30 B ) an)) + o)) e — ) o).

|| <No
(3.3.2)
We have also

[{u, xo(@)v (@) (@ — 20) ™) < Co sup [0 (xo(@)v(z) (@ —z0)™ )] (3.3.3)

|a[<No

We can take xo(v) = p(*=), where p € C°(R") is supported in the unit ball By,
p=1in %Bl and € > 0. We have then

T — Io)NO+1
€N0+1

X))o — 20) 7 = (I g 4 LT 0

r—T
:ENOHM(—E %)

with p1(t) = p(t)(zo + €t)tNo so that p; € C(R™) is supported in the unit ball
By has all its derivatives bounded independently of €. From (3.3.3), we get for all
e >0,

r — 29

[(u, Xo(2)¥ () (z — 2)N )| < Cy s N1l (97 p1 ) (

)| S CIE)

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for
X1 € C(Vh), x1 = 1 near the support of xo, we have

{u, xa(2)(x —20)%) = {u, xa(@)xo0 (@) (2 = 20)) + (u, x1(2) (1 — xo(2))(x = x0)%)
_— ~

=xo(z) supported in (supp u)®

= (u, Xo(7) (7 — x0)")

so that the latter does not depend on ¢ for € small enough. The result of the theorem
follows from (3.3.2). O

3.4 Tensor products

Let X be an open subset of R™, Y be an open subset of R" and f € C®(X),g €
C(Y). The tensor product f® g is defined by (f®g)(x,y) = f(x)g(y) and belongs



