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Abstract. We study various statistics related to the eigenvalues and eigenfunctions of random

Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy E in the
localized phase. Assume the density of states function is not too flat near E. Restrict it to
some large cube Λ. Consider now IΛ, a small energy interval centered at E that asymptotically

contains infintely many eigenvalues when the volume of the cube Λ grows to infinity. We prove
that, with probability one in the large volume limit, the eigenvalues of the random Hamiltonian
restricted to the cube inside the interval are given by independent identically distributed random
variables, up to an error of size an arbitrary power of the volume of the cube.

As a consequence, we derive
• uniform Poisson behavior of the locally unfolded eigenvalues,
• a.s. Poisson behavior of the joint distibutions of the unfolded energies and unfolded local-

ization centers in a large range of scales.

• the distribution of the unfolded level spacings, locally and globally,
• the distribution of the unfolded localization centers, locally and globally.

Résumé. Nous étudions différentes statistiques associées aux valeurs propres et vecteurs pro-

pres d’un opérateur aléatoire dans le régime localisé. Considérons un opérateur aléatoire au
voisinage d’une énergie E supposée se trouver dans le régime localisé. On considère la restirc-
tion de l’opérateur à un grand cube Λ. Soit IΛ, un petit intervalle d’énergie centré en E qui,
asymptotiquement, contient une infinité de valeurs propres quand Λ grandit. Nous démontrons

qu’asymptotiquement presque sûrement, les valeurs propres de l’opérateur aléatoire restreint au
cube contenu dans l’intervalle sont très bien approchées par des variables aléatoires indépendantes
identiquement distribuées.

De cette caractérisation, nous déduisons
• que localement, les valeurs propres renormalisées comportement uniformément poissonien,
• que les distibutions jointes des valeurs propres et centres de localisation renormalisés sont

asymptotiquement distribuées selon une loi de Poisson,

• la distribution des espacements de niveaux renormalisés, localement et globalement,
• la distribution des espacements des centres de localisation renormalisés, localement et glob-

alement.

0. Introduction

To introduce our results, we first restrict our exposition to the celebrated the random Anderson
model, that is, on ℓ2(Zd), we consider the operator

Hω = −∆+ Vω
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where −∆ is the free discrete Laplace operator

(−∆u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ ℓ2(Zd)

and Vω is the random potential

(Vωu)n = ωnun for u = (un)n∈Zd ∈ ℓ2(Zd).

We assume that the random variables (ωn)n∈Zd are independent identically distributed and that
their distribution admits a compactly supported smooth density, say g.
It is well known (see e.g. [Kir08]) that, ω almost surely, the spectrum of Hω is equal to a fixed
closed set, say, Σ. Moreover, there exists a Lebesgue almost everywhere bounded density of states,
say λ 7→ ν(λ), such that, for any continuous function ϕ : R → R, one has

∫

R

ϕ(λ)ν(λ)dλ = E(〈δ0, ϕ(Hω)δ0〉).

The function ν is the density of a probability measure on Σ.
For L > 1, consider Λ = [−L,L]d ∩ Z

d, a cube on the lattice and let Hω(Λ) be the random
Hamiltonian Hω restricted to Λ with periodic boundary conditions. It is a finite dimensional
symmetric matrix; let us denote its eigenvalues ordered increasingly and repeated according to
multiplicity by E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ EN (ω,Λ). For x ≥ 0, define the empirical level
spacings distribution of Hω(Λ) as

DLS(x;ω,Λ) =
#{j; (Ej+1(ω,Λ)− Ej(ω,Λ))|Λ| ≥ x}

|Λ|
.

A result that is typical of the results we prove in the present paper is

Theorem 0.1. There exists λ0 > 0 such that, for |λ| > λ0, with probability 1, as |Λ| → +∞,
DLS(x;ω,Λ) converges uniformly to the distribution x 7→ g(x) where

g(x) =

∫

Σ

e−ν(λ)xν(λ)dλ, (0.1)

that is, ω almost surely,
sup
x≥0

|DLS(x;ω,Λ)− g(x)| →
|Λ|→+∞

0.

This result shows that, for the discrete Anderson Hamiltonian with smoothly distributed random
potential at sufficiently large coupling, the limit of the level spacings distribution is that of i.i.d.
random variables distributed according to the density of states of the random Hamiltonian.

To the best of our knowledge, this is the first rigorous study of the level spacings distribution of
random Schrödinger operators.

The purpose of the paper is to study spectral statistics for random Hamiltonians in the localized
regime. The large coupling Anderson Hamiltonian described above is the typical example. Spectral
statistics have been studied in various works, mainly for discrete or continuous Anderson models
(see e.g. [Mol82, Min96, KN07, Wan01]) but up to now, to the best of our knowledge, studies
have only described the local spectral statistics. For a random Hamiltonian restricted to a cube
Λ, the existence of the density of states, that is, of a limit for the number of eigenlevels per unit of
volume (see (1.3)) implies that the average distance between levels is of order |Λ|−1. Local spectral
statistics are the statistics in energy intervals I of the size |Λ|−1. Thus, such intervals contain
typically a number of eigenvalues that is bounded uniformly in the volume of the cube. This, in
particular, prevents the study of the empirical distribution of level spacings.
In the present paper, we go beyond this. Therefore, we introduce a new method of study of the
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eigenlevels and localization centers that is quite close to the physical heuristics (see e.g. [Jan98,
LR85, Mir00]). The method consists in approximating the eigenvalues of the true random operator
(restricted to some finite cube) by a family of i.i.d. random variables that are constructed as eigen-
values of the random operator restricted to smaller cubes. That this is possible is a consequence
of localization: due to their exponential falloff, eigenfunctions only see the random potential sur-
rounding them. This construction is only feasible under some restrictions on the relative size of
the region where one wants to study eigenvalues and the size of the cube on which one restricts
the random operator. If one wants to control, with a good probability, all the eigenvalues in some
interval I, then, one roughly needs I to be of size |Λ|−α, the inverse of the volume of the cube to
some power α smaller than but close to 1 (see Theorem 1.1). If one wants to enlarge the interval
I, one can go up to sizes that are of order a negative power of log |Λ| at the expense of being able
to describe only most of the eigenvalues (see Theorem 1.2).
The basic tools that we use to control the eigenvalues are the so-called “Wegner” and “Minami”
estimates (see (W) and (M) in section 1.1).

Using the approximation described above, we obtain a large deviation estimate for the number
of eigenvalues inside a possibly shrinking interval of a random operator restricted to some large
cube (see Theorem 1.3). This bound shows that, for intervals I that are not too small, with good
probability, the number of eigenvalues in I is given by the weight that the integrated density of
states gives to I times the volume of the cube up to an error of smaller order.
Then, we derive the almost sure level spacings statistics near fixed energies as well as inside non
trivial compact intervals (see Theorems 1.4, 1.6 and 1.7). We also compute the localization center
spacings statistics (see Theorem 1.7).

This is the first time that these statistics are obtained for random Schrödinger operators.

The next result is the uniform local statistic for the eigenvalues and localization centers when they
are rescaled covariantly i.e. the scaling in energy is of order the scaling in space to the power −d
(see Theorem 1.10); we prove that the covariantly scaled local statistics are independent of the
scale (if they are not too small) i.e. one always obtains Poisson statistics. In the non-covariant
scaling case, we obtain almost sure results on the counting function (see Theorem 1.15). In the
case of the standard scale i.e. energies are scaled by |Λ|−1 on a cube of volume Λ, we also study
the asymptotic independence of these local processes (see Theorems 1.11 and 1.12). This extends
known results of [Mol82, Min96, KN07].
We point out that our analysis goes beyond the previous results also in the sense that locally the
images of the eigenvalues by the IDS are shown to exhibit a Poissonian behavior. When the DOS
exists and is non zero, we recover the previous known statements, but a vanishing derivative of the
IDS is allowed in the present work.

We also consider the problem from a different point of view. The usual procedure consists in
restricting the random Hamiltonian to some finite cube and study the statistics for this operator in
the limit when the cube grows to be the whole space. One can also consider the Hamiltonian in the
whole space. In a compact interval in the localized region, say I, the Hamiltonian admits countably
many eigenvalues. We enumerate them using the localization center attached to an associated
eigenfunction (see Proposition 1.2). I.e. we consider the eigenvalues in I having localization in
some finite cube. We derive the almost sure statistics of the level spacings distributions (see
Theorem 1.8); they are the same as the ones obtained for the Hamiltonian restricted to a cube.

Finally let us us conclude this introduction by saying that a number of the results obtained in
the present paper for general random Schrödinger operators were already described for discrete
random operators in [GKl11].
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1. The main results

After this short illustration of what can be obtained from our method, we now turn to the
description of the main results of this paper. Results will be given for general random Schrödinger
operators under a number of assumptions that are known to hold for, e.g. the Anderson model
and some continuous Anderson models.
We shall use the following standard notations: a . b means there exists c < ∞ so that a ≤ cb;

a ≍ b means a . b and b . a; 〈x〉 = (1 + |x|2)
1
2 .

1.1. The random model. Consider Hω = H0 + Vω, a Z
d-ergodic random Schrödinger operator

on H = L2(Rd) or ℓ2(Zd) (see e.g. [PF92, Sto01]). Typically, the background potential H0 is the
Laplacian −∆, possibly perturbed by a periodic potential. Magnetic fields can be considered as
well; in particular, the Landau Hamiltonian is also admissible as a background Hamiltonian. For
the sake of simplicity, we assume that Vω is almost surely bounded; hence, almost surely, Hω share
the same domain H2(Rd) or ℓ2(Zd).
For Λ, a cube in either Rd or Zd, we let Hω(Λ) be the operator Hω restricted to Λ with periodic
boundary conditions. Our analysis stays valid for Dirichlet boundary conditions.
Furthermore, we shall denote by 1J(H) the spectral projector of the operator H on the energy
interval J . E(·) denotes the expectation with respect to ω; Our first assumption will be an inde-
pendence assumption on the local Hamiltonian that is

(IAD): Independence At a Distance: there exists R0 > 0 such that for dist(Λ,Λ′) > R0, the
random Hamiltonians Hω(Λ) and Hω(Λ

′) are independent.

Such an assumption is clearly satisfied by standard models like the Anderson model, the Poisson
model or the random displacement model if the single site potential is compactly supported (see
e.g. [PF92, Sto01]).

Remark 1.1. As will be seen in the course of the proofs, it can be weakened to assuming that the
correlations between the local Hamiltonians decay polynomially at a rate that is faster than the
−d-th power of the distance separating the cubes on which the local Hamiltonians are considered.

Let Σ be the almost sure spectrum of Hω. Pick I a relatively compact open subset of Σ. Assume
the following holds:

(W): a Wegner estimate holds in I, i.e. given I there exists C > 0 such that, for J ⊂ I, and
Λ, a cube in R

d or Zd, one has

E [tr(1J (Hω(Λ)))] ≤ C|J | |Λ|. (1.1)

(M): a Minami estimate holds in I, i.e. given I there exists C > 0 and ρ > 0 such that, for
J ⊂ I, and Λ, a cube in R

d or Zd, one has

E [tr(1J (Hω(Λ))) · [tr(1J (Hω(Λ)))− 1]] ≤ C(|J | |Λ|)1+ρ. (1.2)

Remark 1.2. The Wegner estimate has been proved for many random Schrödinger models both
discrete and continuous Anderson models under rather general conditions on the single site poten-
tial and on the randomness (see e.g. [His08, KM07, Ves08]). The right hand side in (1.1) can be
lower bounded by the probability to have at least one eigenvalue in J (for J small).
As the proofs will show, one can weaken assumption (W) and replace the right hand side with
C|J |α |Λ|β for arbitrary positive α and β. Such Wegner estimates are known to hold also for some
non monotonous models (see e.g. [Kl95, HK02, GHK07]).

On the Minami estimate, much less is known: it holds for the discrete Anderson model with
I = Σ (see [Min96, GV07, BHS07, CGK09]). These proofs yield an optimal exponent ρ = 1.



SPECTRAL STATISTICS IN THE LOCALIZED REGIME 5

In dimension 1, it has been proved recently (see [Kl12]), that, for general random models, the Mi-
nami estimate (for any ρ ∈ (0, 1)) is a consequence of the Wegner estimate within the localization
region (see section 1.2).
In higher dimensions, for continuous Anderson models, proving a Minami estimate is still a chal-
lenging open problem. The right hand side in (1.2) can be lower bounded by the probability to
have at least two eigenvalues in J . For ρ = 1, it behaves as the square of the probability to have
one eigenvalue in J . So, roughly speaking, close by eigenvalues behave as independent random
variables.

The integrated density of states is defined as

N(E) := lim
|Λ|→+∞

#{e.v. of Hω(Λ) less than E}

|Λ|
. (1.3)

By (W), N(E) is the distribution function of a measure that is absolutely continuous with respect
to the Lebesgue measure on R. Let ν be the density of state of Hω i.e. the distributional derivative
of N . In the sequel, for a set I, we will often write N(I) for the mass the measure ν(E)dE puts
on I i.e.

N(I) =

∫

I

ν(E)dE. (1.4)

1.2. The localized regime. For L ≥ 1, ΛL denotes the cube [−L/2, L/2]d in either R
d or Z

d.
Let HΛ be ℓ2(Λ ∩ Z

d) in the discrete case and L2(Λ) in the continuous one. For a vector ϕ ∈ H,
we define

‖ϕ‖x =

{

‖1Λ(x)ϕ‖2 where Λ(x) = {y; |y − x| ≤ 1/2} if H = L2(Rd),

|ϕ(x)| if H = ℓ2(Zd).
(1.5)

In the discrete case, the definition is that given in section 1.8.
Let I be a compact interval. We assume that I lies in the region of complete localization (see
e.g. [GK04, GK06]) for which we use the following finite volume version:

(Loc): for all ξ ∈ (0, 1), one has

sup
L>0

sup
suppf⊂I
|f |≤1

E





∑

γ∈Zd

e|γ|
ξ

‖1Λ(0)f(Hω(ΛL))1Λ(γ)‖2



 < +∞. (1.6)

Whenever the fractional moment method is available, one may replace the factor e|γ|
ξ

by an
exponential one eη|γ|, where η > 0.

Remark 1.3. Assumption (Loc) may be relaxed into asking (1.6) for a single ξ. This will not
change the subsequent results in an essential way, but only modify some constants.

We note that the assumption (Loc) implies in particular that the spectrum of Hω is pure point in
I (see e.g. [GK06, Kir08]). We refer to Appendix 6.2 where, in Theorem 6.1, we provide equivalent
finite volume properties of the region of complete localization, and show it coincides with the
infinite volume one. For the sake of the exposition, from Theorem 6.1, we extract the following
lemma that we shall use intensively in this paper.

Lemma 1.1. Assume (W) and (Loc).
(I) For any p > 0 and ξ ∈ (0, 1), for L ≥ 1 large enough, there exists a set of configuration UΛL

such that P(UΛL
) ≥ 1− L−p and for ω ∈ UΛL

, if

(1) ϕj(ω,ΛL) is a normalized eigenvector of Hω(ΛL) associated to Ej(ω,ΛL) ∈ I,
(2) xj(ω,ΛL) ∈ ΛL is a maximum of x 7→ ‖ϕj(ω,ΛL)‖x in ΛL,
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then, for x ∈ ΛL, one has

‖ϕj(ω,ΛL)‖x ≤ Lp+de−|x−xj(ω,ΛL)|ξ . (1.7)

(II) For any ν, ξ ∈ (0, 1), ν < ξ, for L ≥ 1 large enough, there exists a set of configuration VΛL

such that P(VΛL
) ≥ 1− e−Lν

, and for ω ∈ VΛL
, if

(1) ϕj(ω,ΛL) is a normalized eigenvector of Hω(ΛL) associated to Ej(ω,ΛL) ∈ I,
(2) xj(ω,ΛL) ∈ ΛL is a maximum of x 7→ ‖ϕj(ω,ΛL)‖x in ΛL,

then, for x ∈ ΛL, one has

‖ϕj(ω,ΛL)‖x ≤ e2L
ν

e−|x−xj(ω,ΛL)|ξ . (1.8)

Remark 1.4. Both Part (I) and (II) of Lemma 1.1 are consequences of the localization hypothesis.
We shall use both of these characterizations of localization. Part (I) is relevant for large scales
(typically, powers of the volume of the reference box) and yields a smaller constant in front of the
exponential, while part (II) will be used for smaller scales (typically powers of log of the volume
of the box) and yields a better probability.

Such a result can essentially be found in [GK06] for the continuous case and in [Kl11] for the
discrete case.
Clearly, the function x 7→ ‖ϕj(ω,ΛL)‖x need not have a unique maximum in ΛL. But, as, for any
x ∈ ΛL, one has

∑

γ∈ΛL∩Zd

‖ϕj(ω,ΛL)‖
2
x+γ = ‖ϕj(ω,ΛL)‖

2 = 1,

if xj(ω,ΛL) is a maximum, then ‖ϕj(ω,ΛL)‖
2
xn(ω) ≥ (2L+1)−d. Hence, if xj(ω,ΛL) and x′

j(ω,ΛL)

are two maxima, then (Loc), through Lemma 1.1(I), implies that, for any p, there exists Cp > 0
such that, with a probability larger than 1− L−p, we have

|xj(ω,ΛL)− x′
j(ω,ΛL)| ≤ Cp(logL)

1/ξ.

For ϕ ∈ HΛ, define the set of localization centers for ϕ as

C(ϕ) = {x ∈ Λ; ‖ϕ‖x = max
γ∈Λ

‖ϕ‖γ}. (1.9)

As a consequence of Lemma 1.1, one has

Lemma 1.2. Pick I in the localized regime for Hω. For any p > 0 , there exists Cp > 0, such
that, with probability larger than 1 − L−p, if Ej(ω,ΛL) ∈ I then the diameter of C(ϕj(ω,ΛL)) is

less than Cp log
1/ξ |Λ|.

From now on, a localization center for a function ϕ will denote any point in the set of localization
centers C(ϕ) and let xj(ω,ΛL) be a localization center for ϕj(ω,ΛL). One can e.g. order them
lexicographically and pick the one with largest coefficients.

1.3. The asymptotic description of the eigenvalues. We now state our main results. They
are also the main technical results on which we base all our studies of the spectral statistics.
They consist in a precise approximation of the eigenvalues of Hω(Λ) in IΛ by independent random
variables, that follows in a rather straightforward way from the standard properties of random
Schrödinger operators recalled above ((IAD), (W), (M) and localization). This approximation is
at the heart of the proofs of the new statistical results we present in this paper: from it, we derive
estimations on the number of eigenvalues in small intervals, we provide the first computation of
the level spacings distribution, and we extend the known results about the convergence to Poisson
of rescaled (or unfolded) eigenvalues.
We will give two different descriptions depending on the size of N(IΛ). When this quantity is
sufficiently small with respect to |Λ|−1, our procedure enables us to control all the eigenvalues. If
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it is not, we only control most of the eigenvalues.
Recall that our cube of reference is Λ = ΛL, with center 0 and sidelength L.

1.3.1. Controlling all the eigenvalues. To start, pick ρ̃ such that

0 ≤ ρ̃ <
ρ

1 + dρ
. (1.10)

Assume E0 is such that (1.42) holds. Now, pick IΛ centered at E0 such that N(IΛ) ≍ |Λ|−α for
α ∈ (αd,ρ,ρ̃, 1) where αd,ρ,ρ̃ is defined as

αd,ρ,ρ̃ := (1 + ρ̃)
dρ+ 1

dρ+ 1 + ρ
, (1.11)

where ρ̃ > 0 and ρ is defined in the Minami estimate (M). Assumption (1.10) clearly implies that
αd,ρ,ρ̃ < 1.
Our restriction will enable us to control all the eigenvalues of Hω(Λ) in IΛ.

Theorem 1.1. Assume E0 is such that (1.42) holds for some ρ̃ ∈ [0, ρ/(1+dρ)). Recall that αd,ρ,ρ̃

is defined in (1.11) and pick α ∈ (αd,ρ,ρ̃, 1). Pick IΛ centered at E0 such that N(IΛ) ≍ |Λ|−α. There

exists β > 0 and β′ ∈ (0, β) small so that 1+βρ < α 1+ρ
1+ρ̃ and, for ℓ ≍ Lβ and ℓ′ ≍ Lβ′

, there exists

a decomposition of Λ into disjoint cubes of the form Λℓ(γj) := γj + [0, ℓ]d satisfying:

• ∪jΛℓ(γj) ⊂ Λ,
• dist(Λℓ(γj),Λℓ(γk)) ≥ ℓ′ if j 6= k,
• dist(Λℓ(γj), ∂Λ) ≥ ℓ′

• |Λ \ ∪jΛℓ(γj)| . |Λ|ℓ′/ℓ,

and such that, for L sufficiently large, there exists a set of configurations ZΛ s.t.:

• P(ZΛ) ≥ 1− |Λ|−(α−αd,ρ,ρ̃),
• for ω ∈ ZΛ, each centers of localization associated to Hω(Λ) belong to some Λℓ(γj) and

each box Λℓ(γj) satisfies:
(1) the Hamiltonian Hω(Λℓ(γj)) has at most one eigenvalue in IΛ, say, Ej(ω,Λℓ(γj));
(2) Λℓ(γj) contains at most one center of localization, say xkj

(ω,Λ), of an eigenvalue of
Hω(Λ) in IΛ, say Ekj

(ω,Λ);
(3) Λℓ(γj) contains a center xkj

(ω,Λ) if and only if σ(Hω(Λℓ(γj))) ∩ IΛ 6= ∅; in which
case, one has

|Ekj
(ω,Λ)− Ej(ω,Λℓ(γj))| ≤ e−(ℓ′)ξ and dist(xkj

(ω,Λ),Λ \ Λℓ(γj)) ≥ ℓ′. (1.12)

In particular if ω ∈ ZΛ, all the eigenvalues of Hω(Λ) are described by (1.12).

With a probability tending to 1, Theorem 1.1 describes all the eigenvalues of Hω(Λ) inside a
sufficiently small interval IΛ as i.i.d. random variables defined as the unique eigenvalue of a copy
of the random Hamiltonian Hω(Λℓ(0)) inside IΛ.
As one can easily imagine, this description yields the local statistics for both eigenlevels and
localization center. Actually as the intervals under consideration are larger than |Λ|−1, it yields
uniform local statistics (see sections 1.7.1 and 1.8.1). Theorem 1.1 is at the heart of the proof
the proofs of Theorems 1.9, 1.10, 1.13, 1.14 and 1.15 found in section 1.7 and 1.8. Moreover,
under additional the decorrelations estimates (see assumptions (GM) and (D) in section 1.7.2),
Theorem 1.1 will be sufficient to prove the mutual independence of the local processes at distinct
energies when they are sufficiently far apart, that is, when they are separated by a distance that
is asymptotically infinite with respect to |Λ|−1 (see section 1.7.2).
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1.3.2. Controlling most eigenvalues. Then, we now state a result that works on intervals IΛ such
that N(IΛ) be of size (log |Λ|)−d/ξ but gives the control only on most of the eigenvalues. This
is enough to control the levelspacings on such sets. This is the main tool to obtain Theo-
rems 1.4, 1.6, 1.7 and 1.8. For that purpose we state it in a more axiomatic way than what
we did for Theorems 1.1.

Definition 1.1. Pick ξ ∈ (0, 1), R > 1 large and ρ′ ∈ (0, ρ) where ρ is defined in (M). For a cube

Λ, consider an interval IΛ = [aΛ, bΛ] ⊂ I. Set ℓ′Λ = (R log |Λ|)
1
ξ . We say that the sequence (IΛ)Λ

is (ξ,R, ρ′)-admissible if, for any Λ, one has

|Λ|N(IΛ) ≥ 1, N(IΛ)|IΛ|
−(1+ρ′) ≥ 1, N(IΛ)

1
1+ρ′ (ℓ′Λ)

d ≤ 1. (1.13)

One has

Theorem 1.2. Assume (IAD), (W), (M) and (Loc) hold. Pick ρ′ ∈ [0, ρ/(1 + (ρ + 1)d)) where
ρ is defined in (M). For any q > 0, for L sufficiently large, depending only on ξ,R, ρ′, p, for

any sequence of intervals (IΛ)Λ that is (ξ,R, ρ′)-admissible, and any sequence of scales ℓ̃Λ so that

ℓ′Λ ≪ ℓ̃Λ ≪ L and

N(IΛ)
1

1+ρ′ ℓ̃dΛ →
|Λ|→∞

0, (1.14)

there exists

• a decomposition of Λ into disjoint cubes of the form ΛℓΛ(γj) := γj + [0, ℓΛ]
d, where ℓΛ =

ℓ̃Λ(1 +O(ℓ̃Λ/|Λ|)) = ℓ̃Λ(1 + o(1)) such that
– ∪jΛℓΛ(γj) ⊂ Λ,
– dist(ΛℓΛ(γj),ΛℓΛ(γk)) ≥ ℓ′Λ if j 6= k,
– dist(ΛℓΛ(γj), ∂Λ) ≥ ℓ′Λ
– |Λ \ ∪jΛℓΛ(γj)| . |Λ|ℓ′Λ/ℓΛ,

• a set of configurations ZΛ such that
– ZΛ is large, namely,

P(ZΛ) ≥ 1− |Λ|−q − exp
(

−c|IΛ|
1+ρ|Λ|ℓdρΛ )

)

− exp
(

−c|Λ||IΛ|ℓ
′
Λℓ

−1
Λ

)

(1.15)

so that

• for ω ∈ ZΛ, there exists at least
|Λ|

ℓdΛ

(

1 + o
(

N(IΛ)
1

1+ρ′ ℓdΛ

))

disjoint boxes ΛℓΛ(γj) sat-

isfying the properties (1), (2) and (3) described in Theorem 1.1 with ℓ′Λ = (R log |Λ|)1/ξ

in (1.12); we note that N(IΛ)ℓ
d−1
Λ ℓ′Λ = o(1) as |Λ| → +∞;

• the number of eigenvalues of Hω(Λ) that are not described above is bounded by

CN(IΛ)|Λ|

(

N(IΛ)
ρ−ρ′

1+ρ′ ℓ
d(1+ρ)
Λ +N(IΛ)

− ρ′

1+ρ′ (ℓ′Λ)
d+1ℓ−1

Λ

)

; (1.16)

this number is o(N(IΛ)|Λ|) provided

N(IΛ)
− ρ′

1+ρ′ (ℓ′Λ)
d+1 ≪ ℓΛ ≪ N(IΛ)

− ρ−ρ′

d(1+ρ)(1+ρ′) . (1.17)

Before turning to the description of the statistics global and local, let us make two remarks about
the choice of parameters and length scales for which Theorem 1.2 is useful. First, if N(IΛ)

−1

is of an order much larger that of (ℓ′Λ)
d, then, the condition (1.17) essentially imposes that

ρ− ρ′

(1 + ρ′)(1 + ρ)
>

dρ′

1 + ρ′
which is satisfied if ρ′ ∈ [0, ρ/(1 + (ρ + 1)d)). Condition (1.17) then
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guarantees that the condition (1.14) is met: indeed, ℓ̃Λ ∼ ℓΛ and, as ρ−ρ′ < 1+ρ and N(IΛ) → 0,
one has

N(IΛ)
−1/(1+ρ′) ≪ N(IΛ)

− ρ−ρ′

(1+ρ)(1+ρ′) .

We shall use this in the proof of the large deviation estimate (1.21) in conjunction with a choice
of ℓΛ and N(IΛ)

−1 as large powers of ℓ′Λ, that is, large powers of log |Λ| (see section 2.2).
Note that, if ρ′ ∈ [0, ρ/(1 + d(ρ + 1))), then, (1.17) and (1.14) are satisfied for some choice of
α ∈ (0, 1) and ν ∈ (0, 1/d) if one sets ℓ′Λ ≍ (log |Λ|)1/ξ, ℓΛ ≍ N(IΛ)

−ν and N(IΛ) ≍ |Λ|−α (see
section 4.3.1). This is the choice of parameters we shall use in our study of level spacings.
In [GKl12], for a less general class of models, by improving on the assumptions (W) and (M), we
shall improve on the bound (1.16), which

• will enable us to relax the second condition in (1.13) so as to admit N(IΛ) of size e−|IΛ|−α

for α ∈ (0, 1);
• will provide a better large deviation estimate for the number of eigenvalues of Hω(Λ) in

the interval IΛ than the first rough estimate given in Theorem 1.3.

1.3.3. Comparing various cube sizes. We end this section with a related result we shall use in the
sequel. We prove

Proposition 1.1. Assume (IAD), (Loc) and (W) in J . Fix I ⊂ J a compact interval and C, C ′,

compact cubes in R
d such that C ⊂

◦

C ′. Fix p > 0 and a sequence (ℓΛ)Λ satisfying (1.52). Then,
there exists a set of configurations ZΛ so that P(ZΛ) → 1 as |Λ| → +∞ and, for ω ∈ ZΛ and |Λ|
sufficiently large,

• to every eigenvalue of Hω(Λ) in E0 + ℓ−d
Λ I associated to a localization center in ℓΛC, say

Ej(ω,Λ), one can associate an eigenvalue of Hω(ℓΛC
′), say Ej(ω, ℓΛC

′); moreover, these
eigenvalues satisfy

|Ej(ω, ℓΛC
′)− Ej(ω,Λ)| ≤ |Λ|−p. (1.18)

• to every eigenvalue of Hω(ℓΛC
′) in E0 + ℓ−d

Λ I associated to a localization center in ℓΛC,
say Ej(ω, ℓΛC

′), one can associate an eigenvalue of Hω(Λ), say Ej(ω,Λ) with localization
center in ℓΛC

′; moreover, these eigenvalues satisfy

|Ej(ω, ℓΛC
′)− Ej(ω,Λ)| ≤ |Λ|−p. (1.19)

Proposition 1.1 is a consequence of Lemma 3.1.

Remark 1.5. As the proofs will show, the sizes of the intervals where the control of the eigenvalues
is possible and the probability of the event where this control is possible both depend very much
on the forms of the Wegner and Minami estimates, (W) and (M). In particular, if one replaces
(W) by what is suggested in Remark 1.1, the constants appearing in Theorems 1.1 and 1.2 and
Proposition 1.1 have to be modified.

1.4. The level spacings statistics. Our goal is now to understand the level spacings statistics
for eigenvalues near E0 ∈ I. Pick IΛ a compact interval containing E0 such that its density of
states measure N(IΛ) stays bounded. We note that, by the existence of the density of states and
also Theorem 1.9, the spacing between the image of the eigenvalues of Hω(Λ) through N near E0 is
of size |Λ|−1. Hence, to study the empirical statistics of level spacings in IΛ, N(IΛ) should contain
asymptotically infinitely many images of energy levels of Hω(Λ). Let us first study this number.
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1.4.1. A large deviation principle for the eigenvalue counting function. Define the random numbers

N(IΛ,Λ, ω) := #{j; Ej(ω,Λ) ∈ IΛ}. (1.20)

Write IΛ = [aΛ, bΛ] and recall that N(IΛ) = N(bΛ)−N(aΛ) where N is the integrated density of
states. We show that N(IΛ,Λ, ω) satisfies a large deviation principle, namely,

Theorem 1.3. Assume (IAD), (W), (M) and (Loc) hold. Fix ρ̃ ∈ (0, ρ/(1 + d(ρ + 1))) where ρ
is given by (M), and ν ∈ (0, 1). Then, there exists δ > 0 small such that, if (IΛ)Λ is a sequence of
compact intervals in the localization region I satisfying

• N(IΛ) (log |Λ|)
1/δ → 0 as |Λ| → +∞

• N(IΛ) |Λ|
1−ν → +∞ as |Λ| → +∞

• N(IΛ) |IΛ|
−1−ρ̃ → +∞ as |Λ| → +∞,

then, for any p > 0, for |Λ| sufficiently large (depending on ρ′ and ν but not on the specific sequence
(IΛ)Λ), one has

P
(

|N(IΛ,Λ, ω)−N(IΛ)|Λ|| ≥ N(IΛ)|Λ|(log |Λ|)
−δ
)

≤ |Λ|−p. (1.21)

We note that we do not need that intervals (IΛ)Λ lie near points E0 where (1.42) is satisfied;
the density of states may vanish near E0 though not faster than the rate fixed by the condition
N(IΛ)|IΛ|

−1−ρ → +∞. The large deviation principle (1.21) is meaningful only if N(IΛ)|Λ| → +∞;
as N is Lipschitz continuous as a consequence of (W), this implies that

|Λ| · |IΛ|→+∞ when |Λ| → +∞. (1.22)

For the discrete Anderson model, we improve upon (1.21) in [GKl12] by relaxing N(IΛ)|IΛ|
−1−ρ →

+∞ into N(IΛ)|IΛ|
−ν → +∞ for some arbitrarily large ν > 0 and obtain precise estimates of the

term o(N(IΛ)|Λ|), exploiting an improved Wegner and Minami estimate.

1.4.2. The level spacing statistics near a given energy. Fix E0 ∈ I. Pick IΛ = [aΛ, bΛ] so that
|aΛ|+ |bΛ| → 0. Consider the unfolded eigenvalue spacings, for 1 ≤ j ≤ N ,

δNj(ω,Λ) = |Λ|(N(Ej+1(ω,Λ))−N(Ej(ω,Λ))) ≥ 0. (1.23)

Define the empirical distribution of these spacings to be the random numbers, for x ≥ 0

DLS(x;E0 + IΛ, ω,Λ) =
#{j; Ej(ω,Λ) ∈ E0 + IΛ, δNj(ω,Λ) ≥ x}

N(IΛ,Λ, ω)
. (1.24)

We will now study the spacings distributions of energies inside intervals that shrink to a point but
that asymptotically contain infinitely many eigenvalues.
We prove

Theorem 1.4. Assume (IAD), (W), (M) and (Loc) hold. Fix E0 ∈ I such that, for some ρ̃ ∈
[0, ρ/(1 + d(ρ+ 1))), there exists a neighborhood of E0, say, U such that

∀(x, y) ∈ U2, |N(x)−N(y)| ≥ |x− y|1+ρ̃. (1.25)

Fix (IΛ)Λ a decreasing sequence of intervals such that sup
E∈IΛ

|E| →
|Λ|→+∞

0.

Assume that, for some δ > 0, one has

|Λ|1−δ ·N(E0 + IΛ) →
|Λ|→+∞

+∞ and if ℓ′ = o(L) then
N(E0 + IΛL+ℓ′

)

N(E0 + IΛL
)

→
|Λ|→+∞

1. (1.26)

Then, with probability 1, as |Λ| → +∞, DLS(x;E0 + IΛ, ω,Λ) converges uniformly to the distri-
bution x 7→ e−x, that is, with probability 1,

sup
x≥0

∣

∣DLS(x;E0 + IΛ, ω,Λ)− e−x
∣

∣ →
|Λ|→+∞

0. (1.27)
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Hence, the unfolded level spacings behave as if the images of the eigenvalues by the IDS were i.i.d.
uniformly distributed random variables (see [Wei55] or section 7 of [Pyk65]). The exponential
distribution of the level spacings is the one predicted by physical heuristics in the localized regime
([Jan98, LR85, Mir00, Tho74]). It is also in accordance with Theorem 1.9. In [Mol82, Min96], the
domains in energy where the statistics were studied were much smaller than the ones considered
in Theorem 1.4. Indeed, in these works, the energy interval is of order |Λ|−1 whereas, here, it is
assumed to tend to 0 but to be asymptotically infinite when compared to |Λ|−1.

Remark 1.6. The first condition in (1.26) ensures that IΛ contains sufficiently many eigenvalues
of Hω(Λ). The second condition in (1.26) is a regularity condition of the decay of |IΛ|.
If, in (1.26), one replaces the first condition by |Λ|N(E0 + IΛ) → +∞ or omits the second or does
both, one still gets convergence in probability of DLS(x;E0 + IΛ, ω,Λ) to e−x (see Remark 4.3)
i.e.

P

(

sup
x≥0

∣

∣DLS(x;E0 + IΛ, ω,Λ)− e−x
∣

∣ ≥ ε

)

→
|Λ|→+∞

0.

Condition (1.25) is slightly stronger than (1.42); it requires some uniformity in the lower bound.
Theorem 1.4 can be applied to obtain the levelspacing distribution near regular points of the IDS.
Define E to be the set of energies E such that ν(E) = N ′(E) exists and

lim
|x|+|y|→0

N(E + x)−N(E + y)

x− y
= ν(E). (1.28)

Obviously the set E contains the continuity points of ν(E). We prove in Appendix

Lemma 1.3. The set E is of full Lebesgue measure.

For E0 ∈ E such that ν(E0) > 0, assumption (1.25) holds with ρ̃ = 0. Moreover, one has

δEj(ω,Λ) = ν(E0)|Λ|(Ej+1(ω,Λ)− Ej(ω,Λ))(1 + o(1)).

Then as a corollary of Theorem 1.4, we immediately obtain

Theorem 1.5. Assume (IAD), (W), (M) and (Loc) hold. Fix E0 ∈ I ∩ E such that ν(E0) > 0.
Fix (IΛ)Λ a sequence of intervals such that sup

IΛ

|x| →
|Λ|→+∞

0.

Assume that, for some δ > 0, one has

|Λ|1−δ · |IΛ| →
|Λ|→+∞

+∞ and if ℓ′ = o(L) then
|IΛL+ℓ′

|

|IΛL
|

→
|Λ|→+∞

1.

Then, with probability 1, as |Λ| → +∞, the empirical distribution function

#{j; Ej(ω,Λ) ∈ IΛ, ν(E0) |Λ|(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ x}

N(IΛ,Λ, ω)

converges uniformly to the distribution x 7→ e−x.

1.4.3. The level spacings statistics on macroscopic energy intervals. Theorem 1.5 seems optimal
as the density of states at E0 enters into the correct rescaling to obtain a universal result. Hence,
the distribution of level spacings on larger intervals needs to take into account the variations of
the density of states on these intervals. Indeed, on intervals of non vanishing size, under additional
regularity assumption on ν, one can compute the asymptotic distribution of the level spacings
when one omits the local density of states in the spacing and obtain the
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Theorem 1.6. Assume (IAD), (W), (M) and (Loc) hold. Pick J ⊂ I a compact interval such
λ 7→ ν(λ) be continuous on J and N(J) :=

∫

J
ν(λ)dλ > 0. Define the unfolded eigenvalue spacings,

for 1 ≤ j ≤ N ,

δJEj(ω,Λ) =
N(J)

|J |
|Λ|(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ 0, (1.29)

and the empirical distribution of these spacings to be the random numbers, for x ≥ 0,

DLS′(x; J, ω,Λ) =
#{j; Ej(ω,Λ) ∈ J, δJEj(ω,Λ) ≥ x}

N(J, ω,Λ)
. (1.30)

Then, with probability 1, as |Λ| → +∞, DLS′(x; J, ω,Λ) converges uniformly to the distribution
x 7→ gν,J(x) where

gν,J(x) =

∫

J

e−νJ (λ)|J|xνJ(λ)dλ where νJ =
1

N(J)
ν. (1.31)

We see that, in the large volume limit, the unfolded levelspacings behave as if the eigenvalues were
i.i.d. random variables distributed according to the density 1

N(J)ν(λ) i.e. to the density of states

renormalized to be a probability measure on J (see section 7 of [Pyk65]).

Theorem 0.1 is then an immediate consequence of Theorem 1.6 and the results on the regularity
for the density of states of the discrete Anderson model at large disorder obtained in [BCKP88].
We point out that for random Hamiltonians in the continuum, the continuity of the density of
states is still an open problem.

1.5. The localization center spacings statistics. Pick E0 ∈ I. Inside a large cube Λ, the
number of centers that corresponds to energies in IΛ, N(E0 + IΛ,Λ, ω) (see (1.20)), is asymptotic
to N(E0 + IΛ)|Λ|. Theorem 1.15 states that they are distributed uniformly. Thus, the reference
mean spacing between localization centers is of size (|Λ|/N(E0 + IΛ)|Λ|)

1/d = (N(E0 + IΛ))
−1/d.

This motivates the following definition. Define the empirical distribution of center spacing to be
the random number

DCS(s; IΛ,Λ, ω) =

#







j;
Ej(ω,Λ) ∈ IΛ,

d
√

N(E0 + IΛ)min
i6=j

|xi(ω)− xj(ω)| ≥ s







N(E0 + IΛ,Λ, ω)
. (1.32)

We prove an analogue of Theorem 1.4, namely

Theorem 1.7. Assume (IAD), (W), (M) and (Loc) hold. Pick E0 ∈ I such that, for some
ρ̃ ∈ [0, ρ/(1+ d(ρ+1))) small enough (depending on ρ and d), in U some neighborhood of E0, one
has (1.25). Assume that, for some ν ∈ (0, 1), one has

N(E0 + IΛ) |Λ| →
|Λ|→+∞

+∞ and N(E0 + IΛ) log
d/ν |Λ| →

|Λ|→+∞
0. (1.33)

Then, as |Λ| → +∞, in probability, DCS(s; IΛ,Λ, ω) converges uniformly to the distribution x 7→

e−sd , that is, for any ε > 0,

P

({

ω; sup
s≥0

∣

∣

∣
DCS(s;E0 + IΛ,Λ, ω)− e−sd

∣

∣

∣
≥ ε

})

→
ΛրRd

0. (1.34)

Of course, as Theorem 1.7 is the counterpart of Theorem 1.4, Theorem 1.6 also has its counterpart
for localization centers.
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1.6. Another point of view. In the present section, we want to adopt a different point of view
on the spectral statistics. Instead of discussing the statistics of the eigenvalues of the random
system restricted to some finite box in the large box limit, we will describe the spectral statistics
of the infinite system in the localized phase. Therefore, we first need to explicit what we mean
with the localized phase for the random Hamiltonian on the whole space i.e. state the appropriate
replacement for assumption (Loc) in this setting.
Let I ⊂ R be an interval. We assume

(Loc’): there exists ξ ∈ (0, 1], q > 0 and γ > 0 such that, with probability 1, if E ∈ I∩σ(Hω)
and ϕ is a normalized eigenfunction associated to E then, for some x(E,ω) ∈ R

d or Zd, a
maximum of x 7→ ‖ϕ‖x, for some Cω > 0, one has, for x ∈ R

d,

‖ϕ‖x ≤ Cω(1 + |x(E,ω)|2)q/2e−γ|x−x(E,ω)|ξ ; (1.35)

moreover, one has E(Cω) < +∞.

As above x(E) is called a center of localization for energy E or for the associated eigenfunction ϕ.
It is well established that (Loc’) holds in any interval contained in the region of complete localiza-
tion. The first proof is due to [dRJLS96] for the discrete Anderson model where they show that
(Loc’) is a consequence of the fractional moment method [Aiz94, AM93]; there ξ = 1. The proof
extends to continuous Hamiltonians thanks to [AEN+06]. In [GDB98], the multiscale analysis is
shown to imply (1.35) with ξ = 1 but with no control on E(Cω). That the multiscale analysis
yields (Loc’) for any ξ < 1 follows from [GK06, Corollary 3] and [GK06, Eq. (4.17)] to see that
E(Cω) < ∞.

Pick I an interval where the Hamiltonian Hω is localized i.e. satisfies (Loc’). Assume that,
ω-almost surely, σ(Hω) ∩ I = I. Hence, any subinterval of I contains infinitely many eigenvalues
and to define statistics, we need to enumerate these eigenvalues in a way or another. To do this,
we use the localization centers. First, we prove

Proposition 1.2. Assume (Loc’) for some ξ ∈ (0, 1] and fix q > 2d. Then, there exists γ > 0
such that, ω-almost surely, there exists Cω > 1, E(Cω) < ∞, such that

(1) if x(E,ω) and x′(E,ω) are two centers of localization for E ∈ I then, for some Cd > 0
(depending only on d),

|x(E,ω)− x′(E,ω)| ≤ γ−1/ξ log1/ξ
(

CdCω〈x(E,ω)〉q〈x′(E,ω)〉q
1

γd/ξ

)

. (1.36)

(2) for L ≥ 1, pick (IL)L a sequence of intervals, IL ⊂ I, such that, for some ε > 0, one
has Ld−εN(IL) → +∞ and N(IL)|IL|

−1−ρ → +∞ where ρ is given by (M) and N(IL) by
(1.4); if N(IL, L) denotes the number of eigenvalues of Hω having a center of localization
in ΛL, then

N(IL, L) = N(IL) |ΛL| (1 + o(1)). (1.37)

For L ≥ 1, pick IL ⊂ I such that Ld−εN(IL) → +∞ for some ε > 0. In view of Proposition 1.2,
there are only finitely many eigenvalues of Hω in IL having a localization center in ΛL. Thus,
we can consider their levelspacings: let us enumerate these eigenvalues as E1(ω,L) ≤ E2(ω,L) ≤
· · · ≤ EN (ω,L) where we repeat them according to multiplicity. Define the empirical distributions
DLS and DLS′ as in (1.24) and (1.30) for the eigenvalues of Hω in IL having a localization center
in ΛL. We prove

Theorem 1.8. Assume (IAD), (W), (M), (Loc’) hold. One has
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• if E0 ∈ IL s.t. (1.42) is satisfied for some ρ̃ ∈ [0, ρ/(1 + dρ)) and |IL| → 0 and satis-
fies (1.26), then, ω-almost surely, for x ≥ 0,

lim
L→+∞

DLS(x; IL, ω, L) = e−x; (1.38)

• if, for all L large, |IL| = J such that N(J) > 0 and ν is continuous on J then, ω-almost
surely, one has

lim
L→+∞

DLS′(x; IL, ω, L) = gJ(x), (1.39)

where gJ is defined in (1.31).

We see that the level spacings distribution of the eigenvalues of Hω having center of localization
in ΛL have the same limits as those of the eigenvalues of Hω(Λ). This is a consequence of the
localization assumption (Loc’).

1.7. The local level statistics. We now exploit of approximation of eigenvalues by iid ones to
revisit and extend previous results on the convergence to the Poisson law of rescaled eigenvalues
and centers of localization.
For L ∈ N, recall that Λ = ΛL and that Hω(Λ) is the operator Hω restricted to Λ with periodic
boundary conditions. The notation |Λ| → +∞ is a shorthand for considering Λ = ΛL in the limit
L → +∞.

Denote the eigenvalues of Hω(Λ) ordered increasingly and repeated according to multiplicity by
E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ EN (ω,Λ) ≤ · · · .

Let E0 be an energy in I. The unfolded local level statistics near E0 is the point process defined
by

Ξ(ξ;E0, ω,Λ) =
∑

j≥1

δξj(E0,ω,Λ)(ξ), (1.40)

where

ξj(E0, ω,Λ) = |Λ|(N(Ej(ω,Λ))−N(E0)). (1.41)

The numbers (|Λ|N(Ej(ω,Λ)))j are called the unfolded eigenvalues of Hω(Λ) (see e.g. [Min07,
Min08] for more details).
The unfolded local level statistics are described by

Theorem 1.9. Assume (IAD), (W), (M) and (Loc) hold. Pick ρ̃ satisfying (1.10) where ρ is
defined by (M).
Pick E0 be an energy in I such that the integrated density of states satisfies

∀a > b, ∃C(a, b) > 0, ∃ε0 > 0, ∀ε ∈ (0, ε0), |N(E0 + aε)−N(E0 + bε)| ≥ C(a, b)ε1+ρ̃. (1.42)

When |Λ| → +∞, the point process Ξ(E0, ω,Λ) converges weakly to a Poisson process on R with
intensity the Lebesgue measure.

If one assume that N is differentiable at E0 and that its derivative ν(E0) is positive i.e.

0 < ν(E0) := lim
E→E0

N(E)−N(E0)

E − E0
, (1.43)

it is easy to check that (1.42) is satisfied with ρ̃ = 0 and that, for Ej − E0 small,

ξj(E0, ω,Λ) = |Λ|ν(E0)(Ej(ω,Λ)− E0)(1 + o(1)).

Thus, one recovers the convergence to a Poisson process when the point process (1.40) is replaced
by the one defined by the points (|Λ|ν(E0)(Ej(ω,Λ)− E0))j .
Theorem 1.9 under the additional assumption (1.43) was first obtained in [Mol82] for a special
one dimensional random Schrödinger model on the real line. For the discrete Anderson model,
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Theorem 1.8 was proved in [Min96] under the assumption (1.43).
Our method of proof is different from that of [Min96] and, in spirit, closer to that of [Mol82] and
to the physical heuristics. Clearly, for (1.42) to be satisfied, we do not need N to be differentiable
at E0 nor its derivative to be positive. E.g. if N satisfies N(E) = N(E0)+ c(E−E0)

1+ρ̃(1+ o(1))
near E0 then (1.42) is satisfied. Condition (1.42) asks that at a given scale, N behaves roughly
uniformly near E0. Note however that, if N is not differentiable at E0, then the local statistics of
the eigenvalues themselves will not be Poissonian anymore.

Our method yields a uniform version of Theorem 1.9 to which we now turn.

1.7.1. Uniform Poisson convergence over small intervals. Fix α ∈ (αd,ρ,ρ̃, 1) (recall that αd,ρ,ρ̃ is
defined in (1.11)). The uniform version of the Poisson process is a version that holds uniformly
over an interval of energy, say, I centered at E0 such that N(I) ≍ |Λ|−α. Such an interval is much
larger than an interval satisfying N(I) ≍ |Λ|−1. This is the main improvement of Theorem 1.10
below over Theorem 1.9 or the statements found in [KN07, Min96, Mol82]. It is natural to wonder
what is the largest size of interval in which a result like Theorem 1.10. We do not know the answer
to that question.
Let IΛ(E0, α) be the interval such that N(IΛ(E0, α)) be centered at N(E0) of length 2|Λ|−α.
Denote by NΛ(ω,E0) := tr1IΛ(E0,α)(Hω(Λ)) the number of eigenvalues of Hω(Λ) in IΛ(E0, α).
For 1 ≤ j ≤ NΛ(ω,E0), define the unfolded local eigenvalues ξj(ω,Λ) by (1.41). Hence, for all
1 ≤ j ≤ NΛ(ω,E0), one has ξj(ω,Λ) ∈ |Λ|1−α · [−1, 1].
We then prove

Theorem 1.10. Assume (IAD), (W), (M) and (Loc) hold. Let E0 be an energy in I such that,
for some ρ̃ such that (1.10) holds true and such that

ρ̃ ≥ ρ
1− dρ

1 + dρ
. (1.44)

the integrated density of states satisfies

∀δ ∈ (0, 1), ∃C(δ) > 0, ∃ε0 > 0, ∀ε ∈ (0, ε0), ∀a ∈ [−1, 1],

|N(E0 + (a+ δ)ε)−N(E0 + aε)| ≥ C(δ) ε1+ρ̃.
(1.45)

Pick α ∈ (αd,ρ,ρ̃, 1). Then, there exists δ > 0 such that, for any sequence of intervals I1 =
IΛ1 , . . . , Ip = IΛp in |Λ|1−α · [−1, 1] (here, p may depend on Λ and be arbitrarily large) satisfying

inf
j 6=k

dist(Ij , Ik) ≥ e−|Λ|δ , (1.46)

we have, for any sequences of integers k1 = kΛ1 , · · · , kp = kΛp ∈ N
p,

lim
|Λ|→+∞

∣

∣

∣

∣

∣

∣

∣

∣

P























ω;

#{j; ξj(ω,Λ) ∈ I1} = k1

...
...

#{j; ξj(ω,Λ) ∈ Ip} = kp























−
|I1|

k1

k1!
e−|I1| · · ·

|Ip|
kp

kp!
e−|Ip|

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (1.47)

In particular, Ξ(ξ;E0, ω,Λ) defined in (1.40) converges weakly to a Poisson point process with
intensity Lebesgue.

Note that, in Theorem 1.10, we do not require the limits

lim
|Λ|→+∞

|I1|
k1

k1!
e−|I1| = lim

|Λ|→+∞

|IΛ1 |
kΛ
1

kΛ1 !
e−|IΛ

1 |, . . . ,

lim
|Λ|→+∞

|Ip|
kp

kp!
e−|Ip| = lim

|Λ|→+∞

|IΛp |
kΛ
p

kΛp !
e−|IΛ

p |
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to exist.
Condition (1.44) imposes no restriction upon condition (1.10) if we know that the Minami estimate
(M) holds for all ρ in (0, 1). This is the case for all the models we know of for which the Minami
estimate is proved (see [Min96, GV07, BHS07, CGK09, Kl12] and refereces therein).

1.7.2. Asymptotic independence of the local processes. Once Theorem 1.9 is known, it is natural to
wonder how the point processes obtained at distinct energies relate to each other. To understand
this, we assume

(GM): for J ⊂ K ⊂ I, one has

E [tr(1J (Hω(Λ))) · tr(1K(Hω(Λ))− 1)] ≤ C|J | |K| |Λ|2. (1.48)

(D): for β ∈ (0, 1) and {E0, E
′
0} ⊂ I s.t. E0 6= E′

0, when L → +∞ and ℓ ≍ Lβ , one has

P

({

σ(Hω(Λℓ)) ∩ (E0 + L−d[−1, 1]) 6= ∅,

σ(Hω(Λℓ)) ∩ (E′
0 + L−d[−1, 1]) 6= ∅

})

= o
(

(ℓ/L)d
)

. (1.49)

In their nature, assumptions (GM) and (D) are similar: they state that the probability to have two
eigenvalues constrained to some intervals is much smaller than that of having a single eigenvalue in
an interval. Note that (ℓ/L)d is the order of magnitude of the right hand side in Wegner’s estimate
(W) for Hω(Λℓ) and the interval E0 + L−d[−1, 1].
Assumption (GM) was proved to hold for the discrete Anderson model in [CGK09]. In [Kl11], it
is proved that assumption (D) holds for the discrete Anderson model in dimension 1 at any two
distinct energies, and, in any dimension, for energies sufficiently far apart from each other.
Under these assumptions, we have

Theorem 1.11. Assume (IAD), (W), (GM), (Loc), and (D) hold. Pick E0 ∈ I and E′
0 ∈ I such

that E0 6= E′
0 and (1.42) is satisfied at E0 and E′

0.
When |Λ| → +∞, the point processes Ξ(E0, ω,Λ) and Ξ(E′

0, ω,Λ), defined in (1.40), converge
weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure.
That is, for U+ ⊂ R and U− ⊂ R compact intervals and {k+, k−} ∈ N× N, one has

P

({

ω;
#{j; ξj(E0, ω,Λ) ∈ U+} = k+

#{j; ξj(E
′
0, ω,Λ) ∈ U−} = k−

})

→
Λ→Zd

(

|U+|
k+

k+!
e−|U+|

)(

|U−|
k−

k−!
e−|U−|

)

.

Theorem 1.11 naturally leads to wonder how far the energies E0 and E′
0 need to be from each other

with respect to the scaling used to renormalize the eigenvalues for such a result to still hold.
We prove

Theorem 1.12. Assume (IAD), (W), (GM), (Loc). Pick E0 ∈ I such that (1.42) is satisfied
Assume moreover that the density of states ν is continuous at E0.
Consider two sequences of energies, say (EΛ)Λ and (E′

Λ)Λ such that

(1) EΛ →
Λ→Zd

E0 and E′
Λ →

Λ→Zd
E0,

(2) |Λ| · |N(EΛ)−N(E′
Λ)| →

Λ→Zd
+∞.

Then, the point processes Ξ(EΛ, ω,Λ) and Ξ(E′
Λ, ω,Λ), defined in (1.40), converge weakly respec-

tively to two independent Poisson processes on R with intensity the Lebesgue measure.

Theorem 1.12 shows that, in the localized regime, eigenvalues that are separated by a distance that
is asymptotically infinite when compared to the mean spacing between the eigenlevels, behave as
independent random variables. There are no interactions except at very short distances.

Assumption (2) can clearly not be omitted in Theorem 1.12; it suffices to consider e.g. EΛ, E
′
Λ

s.t. N(EΛ) = N(E′
Λ) + a|Λ|−1 to see that the two limit random processes are obtained as a shift

from one another.
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1.8. The joint (energy - localization center) statistics. Recall that E1(ω,Λ) ≤ E2(ω,Λ) ≤
· · · ≤ EN (ω,Λ) denote the eigenvalues of Hω(Λ) ordered increasingly and repeated according to
multiplicity. Recall Lemma 1.1 and Lemma 1.2: it states that, to an eigenvector associated to
Ej(ω,Λ), we can associate a center of localization that we denote by xj(ω,Λ).

1.8.1. Uniform Poisson convergence for the joint (energy,center)-distribution. We now place our-
selves in the same setting as in section 1.7.1. We prove

Theorem 1.13. Assume (IAD), (W), (M) and (Loc) hold. Let E0 be an energy in I such
that (1.45) holds for some ρ̃ ∈ [0, ρ/(1 + dρ)). Pick α ∈ (αd,ρ,ρ̃, 1). Then, there exists δ > 0
such that,

• for any sequences of intervals I1 = IΛ1 , . . . , Ip = IΛp in |Λ|1−α · [−1, 1] satisfying (1.46),

• for any sequences of cubes C1 = CΛ
1 , . . . , Cp = CΛ

p in [−1/2, 1/2]d,

one has, for any sequences of integers k1 = kΛ1 , · · · , kp = kΛp ∈ N
p,

lim
|Λ|→+∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P



























































ω;

#

{

j;
ξj(ω,Λ) ∈ I1

xj(ω,Λ)/L ∈ C1

}

= k1

...
...

#

{

j;
ξj(ω,Λ) ∈ Ip

xj(ω,Λ)/L ∈ Cp

}

= kp



























































−

p
∏

n=1

e−|In||Cn|
(|In||Cn|)

kn

kn!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (1.50)

where the ξj(ω,ΛL)’s are defined in (1.41).
In particular the point process defined as

Ξ2
Λ(ξ, x;E0,Λ) =

N
∑

j=1

δξj(ω,ΛL)(ξ)⊗ δxj(ω,Λ)/L(x) (1.51)

converges weakly to a Poisson point process on R× [−1/2, 1/2]d with intensity 1.

The joint (energy,center)-distribution given by Ξ2
Λ(ξ, x;E0,Λ) in (1.51) have been studied in [KN07],

where they prove it converges weakly to a Poisson process.
We point out that in Theorem 1.13 intervals Ij ’s and cubes Cj ’s may depend on Λ. But the limit
only depends on the product |Ij ||Cj |. We shall exploit this fact in the next result.

1.8.2. Covariant scaling joint (energy,center)-distribution. Fix ξ ∈ (0, 1) and an increasing se-
quence of scales ℓ = (ℓΛ)Λ such that

ℓΛ

log1/ξ |Λ|
→

|Λ|→+∞
+∞ and ℓΛ ≤ |Λ|1/d. (1.52)

Pick E0 ∈ I so that ν(E0) > 0. Consider the point process

Ξ2
Λ(ξ, x;E0, ℓ) =

N
∑

j=1

δℓdΛ[N(Ej(ω,Λ))−N(E0)](ξ)⊗ δxj(ω)/ℓΛ(x). (1.53)

The process is valued in R × R
d; actually, if c ℓΛ ≥ |Λ|1/d, it is valued in R × (−c, c)d. Assume it

exists and define the limit

cℓ = lim
|Λ|→+∞

|Λ|1/dℓ−1
Λ ∈ [1,+∞]. (1.54)

Note that if ℓΛ = L, we recover (1.51). We prove



18 FRANÇOIS GERMINET AND FRÉDÉRIC KLOPP

Theorem 1.14. Assume (IAD), (W), (M) and (Loc) hold. Let E0 be an energy in I such
that (1.42) holds for some ρ̃ ∈ [0, ρ/(1 + dρ)). The point process Ξ2

Λ(ξ, x;E0, ℓ) converges weakly
to a Poisson process on R× (−cℓ, cℓ)

d with intensity measure the Lebesgue measure.

As a result, we see that, once the energies and the localization centers are scaled covariantly, the
convergence to a Poisson process is true at any scale that is essentially larger than the localization
width. This covariant scaling is very natural; it is the one prescribed by the Heisenberg uncertainty
principle: the more precision we require in the energy variable, the less we can afford in the space
variable. In this respect, the energies behave like a homogeneous symbol of degree d. This is quite
different from what one obtains in the case of the Laplace operator.

1.8.3. Non-covariant scaling joint (energy,center)-distribution. One can also study what happens
when the energies and localization centers are not scaled covariantly. Consider two increasing
sequences of scales, say ℓ = (ℓΛ)Λ and ℓ̃ = (ℓ̃Λ)Λ. Pick E0 an energy in I such that (1.42) holds
for some ρ̃ ∈ [0, ρ/(1 + dρ)). Consider the point process

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃) =

N
∑

j=1

δℓdΛ[N(Ej(ω,Λ))−N(E0)](ξ)⊗ δxj(ω)/ℓ̃Λ
(x). (1.55)

Then, we prove

Theorem 1.15. Assume (IAD), (W), (M) and (Loc) hold. Let E0 be an energy in I such
that (1.42) holds for some ρ̃ ∈ [0, ρ/(1+ dρ)). Assume the sequences of increasing scales ℓ = (ℓΛ)Λ
and ℓ̃ = (ℓ̃Λ)Λ satisfy (1.52). Assume that

if ℓ′ = o(L) then
ℓΛL+ℓ′

ℓΛL

→
|Λ|→+∞

1 and
ℓ̃ΛL+ℓ′

ℓ̃ΛL

→
|Λ|→+∞

1. (1.56)

Let J and C be bounded measurable sets respectively in R and (−cℓ̃, cℓ̃)
d ⊂ R

d. One has

(1) if, for some δ > 0, one has
ℓ̃Λ
ℓΛ

≤ |Λ|−δ, then ω almost surely, for Λ sufficiently large,

∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx = 0.

(2) if, for some δ > 0, one has
ℓ̃Λ
ℓΛ

≥ |Λ|δ, then ω almost surely,

(

ℓΛ

ℓ̃Λ

)−d ∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx →

|Λ|→+∞
|J | · |C|.

Theorem 1.15 proves that the local energy levels and the localization centers become uniformly
distributed in large energy windows if one conditions the localization centers to a much larger
window. On the other hand, for a typical sample, if one looks for eigenvalues in an energy interval
much smaller than the correctly scaled one with localization center in a cube, then asymptotically
there are none.
If one replaces the polynomial growth or decay conditions of the ratio of scales ℓΛ/ℓ̃Λ by the
condition that they tend to 0 or ∞, or if one omits condition (1.56), the results stays valid except
for the fact that the convergence is not almost sure anymore but simply holds in probability;
actually, one has convergence in some Lp norm (see Remark 4.2 in section 4.2.3).
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1.9. Outline of the article. To complete this section, let us now briefly describe the architecture
of the remaining parts of the paper that consist in the proofs of all the results stated in sections 0
and 1.
We start in section 2 with the computation of two important quantities related to our approximation
scheme. Consider a cube Λ and an energy interval I such that |I| · |Λ| is small. In section 2, we
compute

• the probability that Hω(Λ) has exactly any eigenvalue in I,
• the distribution of this eigenvalue conditioned on the fact that it is unique.

This distribution is used in the sequel to approximate the eigenvalue and localization center pro-
cesses.
Section 3 is devoted to the proof of the approximation theorems, Theorems 1.1 and 1.2, in section 3
Section 4 is devoted to the proof of the results on the spectral statistics. In section 5, we derive
the results for the full Hamiltonian i.e. we develop the other point of view presented in section 1.6.
Finally, the appendix 6 is devoted to various technical results used in the course of the proofs,
included a description of equivalent finite volume localization properties.

2. The local distribution of eigenvalues

In this section, we compute the distribution of unfolded eigenvalues.

2.1. The distribution of unfolded eigenvalues. Pick 1 ≪ ℓ′ ≪ ℓ. Consider a cube Λ of side-
length ℓ i.e. Λ = Λℓ and an interval IΛ = [aΛ, bΛ] ⊂ I (i.e. IΛ is contained in the localization
region). Consider the following random variables:

• X = X(Λ, IΛ) = X(Λ, IΛ, ℓ
′) is the Bernoulli random variable

X = 1Hω(Λ) has exactly one eigenvalue in IΛ with localization center in Λℓ−ℓ′
;

• Ẽ = Ẽ(Λ, IΛ) is the eigenvalue of Hω(Λ) in IΛ conditioned on X = 1;

• ξ̃ = ξ̃(Λ, IΛ) = (Ẽ(Λ, IΛ)− aΛ)/|IΛ|.

Clearly ξ̃ is valued in [0, 1]; let Ξ̃ be its distribution function.
In the present section, we will describe the distribution of these random variables as |Λ| → +∞
and |IΛ| → 0. We prove

Lemma 2.1. Assume (W), (M) and (Loc) hold. For any ν ∈ (0, 1), one has

|P(X = 1)−N(IΛ)|Λ|| . (|Λ||IΛ|)
1+ρ +N(IΛ)|Λ|ℓ

′ℓ−1 + |Λ|e−(ℓ′)ν (2.1)

where N(E) denotes the integrated density of states of Hω.
One has, for all x, y ∈ [0, 1],

∣

∣

∣
(Ξ̃(x)− Ξ̃(y))P(X = 1)

∣

∣

∣
. |x− y||IΛ||Λ|. (2.2)

Moreover, setting N(x, y,Λ) := [N(aΛ + x|IΛ|)−N(aΛ + y|IΛ|)]|Λ|, one has
∣

∣

∣(Ξ̃(x)− Ξ̃(y))P(X = 1)−N(x, y,Λ)
∣

∣

∣ . (|Λ||IΛ|)
1+ρ + |N(x, y,Λ)| ℓ′ℓ−1 + |Λ|e−(ℓ′)ν . (2.3)

This lemma differs from the usual computation of the DOS in the sense that the size of the interval
decays as the thermodynamic limit is taken. A joint limit in the volume and the size of the interval
has to be taken here. The price we pay for this joint limit is that we shall restrict ourselves to the
localization regime, while the IDS exists in a broader region.
First let us note that, when we will use Lemma 2.1 in conjunction with Theorems 1.1 or 1.2, the
role of Λ will be played by the cube Λℓ.
Of course, estimates (2.1) and (2.3) are of interest mainly if their right hand side which is to be
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understood as an error is smaller than the main term. In (2.1), the main restriction comes from the
requirement that N(IΛ)|Λ| ≫ (|Λ||IΛ|)

1+ρ which is essentially a requirement that N(IΛ) should
not be too small with respect to |IΛ| (similar to that found in Theorems 1.1 and 1.2). Lemma 2.1
will be used in conjunction with Theorems 1.1 and 1.2. The cube Λ in Lemma 2.1 will be the cube
Λℓ in Theorems 1.1 and 1.2. Therefore, the requirements induced by the other two terms are less
restrictive.
In (2.3), the main restriction comes from the requirement that N(x, y,Λ) ≫ (|Λ||IΛ|)

1+ρ. This
is essentially a requirement on the size of |x − y|. It should not be too small. On the other
hand, we expect the spacing between the eigenvalues of Hω(ΛL) to be of size |ΛL|

−1 (we keep
the notations of Theorem 1.2 and recall that the cube Λ in Lemma 2.1 will be the cube Λℓ in
Theorem 1.2). So to distinguish between the eigenvalues, one needs to be able to know Ξ̃ up
to resolution |x − y||IΛ| ≍ |ΛL|

−1. This will force us to use Lemma 2.1 on intervals IΛ such
that N(IΛ) ≍ |Λ|−α for some α ∈ (0, 1) close to 1 (see the discussion following Theorem 1.2 and
section 4.3.1).
To prove Lemma 2.1, we will use

Lemma 2.2. Assume (W) and (Loc) hold in I a compact interval. For ν ∈ (0, 1) and 1 ≪ ℓ′ ≪ ℓ,
let N(J, ℓ, ℓ′) be the number of eigenvalues of Hω(Λℓ) in J with localization center in Λℓ−ℓ′ . Then,

there exists C > 0 such that, for J ⊂ I an interval such that |J | ≥ e−(ℓ′)ν , one has

|E(N(J, ℓ, ℓ′))−N(J)|Λℓ|| . N(J)|Λℓ|ℓ
′ℓ−1 + ℓde−(ℓ′)ν (2.4)

We turn to the proofs of Lemma 2.2 and 2.1

Proof of Lemma 2.2. Recall Lemma 1.1 and let VΛℓ
be the set of configurations given in Part (II)

of Lemma 1.1 for some ν ∈ (0, 1) given. Outside VΛℓ
, we bound the number of eigenvalues of

Hω(Λ) by C|Λℓ|. Thus, one has

E(1ω 6∈VΛℓ
N(J, ℓ, ℓ′)) . ℓde−ℓν . (2.5)

Assume now that ω ∈ VΛℓ
. It follows from Lemma 3.1 that for such ω’s, one has

tr(1Λℓ−2ℓ′
1J−

(Hω)) +O
(

ℓde−(ℓ′)ν
)

≤ N(J, ℓ, ℓ′)) ≤ tr(1Λℓ
1J+

(Hω)) +O
(

ℓde−(ℓ′)ν
)

(2.6)

where, for some C > 0, J+ = J + Ce−(ℓ′)ν [−1, 1] and J− = J \ [(R \ J) + Ce−(ℓ′)ν [−1, 1]]. Note

that |J | − 2Ce−(ℓ′)ν ≤ |J−| ≤ |J+| ≤ |J |+ 2Ce−(ℓ′)ν .
Taking the expectation of the right hand side of (2.6), using the covariance for the operator Hω

and the Wegner estimate (W), we compute

E(tr(1Λℓ
1J+

(Hω))) = N(J+)|Λℓ| = N(J)|Λℓ|+O
(

ℓde−(ℓ′)ν
)

. (2.7)

The left hand side is estimated in the same way. Plugging this back into the expectation of (2.6) and

using (2.5), |Λℓ−2ℓ′ | = |Λℓ|(1 + Cℓ′ℓ−1), and the assumption that |J | ≥ e−(ℓ′)ν easily yields (2.4).
This completes the proof of Lemma 2.2. �

Proof of Lemma 2.1. Using the notations of Lemma 2.2, note that P(X = 1) = P {N(IΛ, ℓ, ℓ
′) = 1}.

First, we relate P {N(IΛ, ℓ, ℓ
′) = 1} to E[N(J, ℓ, ℓ′)]. To do so, we follow the ideas used [Kri08,

CGK09] to estimate the probability for Hω(Λ) to have an eigenvalue in J . We notice that, as
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N(J, ℓ, ℓ′) is integer valued

E[N(J, ℓ, ℓ′)]− P(X = 1) = E[N(J, ℓ, ℓ′)]− P {N(IΛ, ℓ, ℓ
′) = 1}

=

∞
∑

k=2

k P{N(IΛ, ℓ, ℓ
′) = k}

≤
∞
∑

k=2

k(k − 1)P{tr1IΛ(Hω(Λ)) = k}

= E {tr1IΛ(Hω(Λ)) (tr1IΛ(Hω(Λ))− 1)} .

Thus, by our assumption (M), we know

0 ≤ E[N(J, ℓ, ℓ′)]− P(X = 1) ≤ C|Λ|1+ρ|IΛ|
1+ρ (2.8)

The evaluation of E[N(J, ℓ, ℓ′)] is then given by Lemma 2.2. This yields (2.1).
The estimate (2.2) is an immediate consequence of the Wegner estimate (W) and the normalization

of Ξ̃.
Set Ix,y,Λ = [aΛ + x|IΛ|, aΛ + y|IΛ|]. To prove (2.3), we write

∣

∣

∣
P{N(Ix,y,Λ, ℓ, ℓ

′) = 1} − (Ξ̃(x)− Ξ̃(y))P(X = 1)
∣

∣

∣
≤ P

{

Hω(Λ) has at least

2 eigenvalues in IΛ

}

. (|Λℓ||IΛ|)
1+ρ

(2.9)

using (M).
Replacing IΛ with the interval Ix,y,Λ in the estimation of P(N(IΛ, ℓ, ℓ

′) = 1) yields the estimation
of the probability P(N(Ix,y,Λ, ℓ, ℓ

′) = 1) and, thus, completes the proof of (2.3).
The proof of Lemma 2.1 is complete. �

Remark 2.1. The gist of Lemma 2.1 is that the local distribution of Ẽ is that of the density of
states i.e., in (2.3), the remainder terms should be negligible with respect to N(x, y,Λ). Clearly,
this will only be the case if N(x, y,Λ) ≫ (|Λ||IΛ|)

1+ρ. This imposes a condition on the size of
|y − x| i.e. y − x can’t be too small. This restriction will be made clear in the following result.
If one uses the improved Minami estimates of [CGK09] in (2.9), one can improve
∣

∣

∣(Ξ̃(x)− Ξ̃(y))P(X = 1)−N(x, y,Λ)
∣

∣

∣

≤ C
(

|x− y|1+ρ|Λ|1+ρ|IΛ|
1+ρ + |Λ|2|IΛ||Ix,y,Λ|+N(x, y,Λ)ℓ′ℓ−1 + |Λ|e−(ℓ′)ν

)

and thus take advantage of the possible smallness of Ix,y,Λ compared to IΛ. So this will lift the above
restriction, at least if for J ⊂ IΛ, one has N(J) & |J |. This can be done in some cases [GKl12].

We now describe the distribution of the unfolded eigenvalues. Therefore we slightly change our
notations to localize the quantities near some energy E0. Let 1 ≪ ℓ′ ≪ ℓ. Pick E0 ∈ I such
that (1.42) be satisfied and IΛ = [aΛ, bΛ]. Recall that

• X = X(Λ, E0 + IΛ) = X(Λ, E0 + IΛ, ℓ
′) is the Bernoulli random variable

X = 1Hω(Λ) has exactly one eigenvalue in E0+IΛ with localization center in Λℓ−ℓ′

• Ẽ = Ẽ(Λ, E0 + IΛ) is this eigenvalue conditioned on X = 1.

Define

ξ =
N(Ẽ)−N(E0 + aΛ)

N(E0 + bΛ)−N(E0 + aΛ)
=

N(Ẽ)−N(E0 + aΛ)

N(E0 + IΛ)
. (2.10)

The random variable ξ is valued in [0, 1]. Let Ξ be its distribution function. We prove
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Lemma 2.3. Assume (W), (M) and (Loc) hold. Pick E0 such that (1.25) holds for ρ′ ∈ (0, ρ).
Fix ν ∈ (0, 1). Assume, moreover, that

e−(ℓ′)ν ≤ N(E0 + IΛ) = o
(

|Λ|−ρ(1+ρ′)/(ρ−ρ′)
)

when |Λ| → +∞. (2.11)

Then, for 1 ≪ ℓ′ ≪ ℓ and (x, y) ∈ [0, 1]2 such that |x− y| ≫ N (IΛ)
(ρ−ρ′)/(1+ρ′) |Λ|ρ, one has

Ξ(x)− Ξ(y) = (x− y)

(

1 +O

(

ℓ′ℓ−1 + e−(ℓ′)ν + |x− y|−1N(E0 + IΛ)
ρ−ρ′

1+ρ′ |Λ|ρ
))

. (2.12)

Recalling the discussion following Lemma 2.1, to be able to perform our analysis of the level spac-
ings, we will need (2.12) to give a good approximation of Ξ(x) − Ξ(y) for |x − y| ≪ (N(E0 +
IΛ)|ΛL|)

−1 (recall that Λ in Lemma 2.3 is Λℓ in Theorem 1.2). Indeed, by Lemma 2.1 and Theo-
rem 1.2, the number of eigenvalues of Hω(ΛL) in IΛ is asymptotic to N(E0 + IΛ)|ΛL| (see Theo-
rem 1.3).

Proof. Recall that the IDS N is monotone by definition and Lipschitz continuous thanks to (W).
Assumption (1.25) and the Wegner estimate (W) guarantee that, for Λ sufficiently large, for [a, b] ⊂
E0 + IΛ, one has

1

C
(b− a) ≤ |N−1([a, b])| ≤ (b− a)1/(1+ρ′). (2.13)

Here, |N−1([a, b])| denotes the Lebesgue measure of the interval N−1([a, b]).

By the definitions of ξ̃ and ξ (see the beginning of section 2.1 and (2.10)), for x ∈ [0, 1], one has

Ξ(x) = Ξ̃
[

N−1(N(E0 + aΛ) + xN(E0 + |IΛ|))
]

. (2.14)

By Lemma 2.1 applied e.g. for ν replaced with (1 + ν)/2, for (x, y) as in (2.12), one has

Ξ(x)− Ξ(y) = (x− y)
1 +A+B + C

1 +A′ +B′ + C ′
(2.15)

where, using (2.13), the assumption on |x−y| in (2.12) and the left hand side of (2.11), we compute

|A| .
(|IΛ||Λ|)

1+ρ

|x− y|N(IΛ)|Λ|
.

N(E0 + IΛ)
(ρ−ρ′)/(1+ρ′)|Λ|ρ

|x− y|
, |B| . ℓ′ℓ−1,

|C| .
e−(ℓ′)(1+ν)/2

N(E0 + IΛ)|x− y|
. e−(ℓ′)ν .

The quantities |A′|, |B′| and |C ′| are respectively bounded by the same bounds as |A| , |B| and
|C| for (x, y) = (0, 1). This completes the proof of Lemma 2.3. �

2.2. The proof of Theorem 1.3. Theorem 1.3 will be a consequence of Theorem 1.2 and
Lemma 2.1. We use the notation of Theorem 1.2. Recall that the number of eigenvalues of
Hω(Λ) in IΛ is denoted by N(IΛ,Λ, ω). The control of N(IΛ,Λ, ω) will be useful in order obtain
the level spacings statistics.
Recall the assumptions of Theorem 1.3:

• N(IΛ) (log |Λ|)
1/δ → 0 as |Λ| → +∞

• N(IΛ) |Λ|
1−ν → +∞ as |Λ| → +∞

• N(IΛ) |IΛ|
−1−ρ̃ → +∞ as |Λ| → +∞,

For δ > 0 sufficiently small, this guarantees that one can pick α > 1 large and ℓ = ℓΛ ≍ (log |Λ|)α

and ℓ′ = ℓ′Λ ≍ (log |Λ|)1/ξ so that they fulfill all the assumptions of Theorem 1.2, in particu-
lar, (1.13), (1.14) and (1.17) for some ξ ∈ (0, 1) (see also the discussion following Theorem 1.2).
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The estimate (1.15) gives the probability of ZΛ, the set of configurations where one has a good de-
scription of most the eigenvalues. Moreover, for δ > 0 sufficiently small,, the number of eigenvalues
of Hω(Λ) in IΛ that are not described by Theorem 1.2 is bounded by

CN(IΛ)|Λ|
(

N(IΛ)
ρ−ρ̃
1+ρ̃ ℓ

d(1+ρ)
Λ + (ℓ′Λ)

d+1ℓ−1
Λ

)

≤ CN(IΛ)|Λ|(log |Λ|)
−δ. (2.16)

Consider the boxes (Λℓ(γj))1≤j≤Ñ given by Theorem 1.2. Their number, say, Ñ satisfies Ñ =

|Λ|/|Λℓ| (1 + o(1)).

For 1 ≤ j ≤ Ñ , let Xj = X(Λℓ(γj), IΛ) i.e. Xj is the Bernoulli random variable equal to 1 if
Hω(Λℓ(γj)) has exactly one eigenvalue in IΛ with localization center at a distance at least ℓ′ from
∂Λ (see Theorem 1.2) and zero otherwise. It follows from Lemma 2.1 and the choice for (ℓ, ℓ′) in
Theorem 1.2 made above that

P(Xj = 1) = N(IΛ) |Λℓ|
[

1 + o
(

(log |Λ|)−δ)
)]

. (2.17)

We have

|N(IΛ,Λ, ω)−N(IΛ)|Λ|| ≤

∣

∣

∣

∣

∣

∣

N(IΛ,Λ, ω)−
Ñ
∑

j=1

Xj

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Ñ
∑

j=1

Xj −N(IΛ)|Λ|

∣

∣

∣

∣

∣

∣

(2.18)

By (2.16), for ω ∈ ZΛ, we have
∣

∣

∣

∣

∣

∣

N(IΛ,Λ, ω)−
∑

j

Xj

∣

∣

∣

∣

∣

∣

. N(IΛ)|Λ|(log |Λ|)
−δ.

The second term in the right hand side of (2.18) is then bounded by a standard large deviation

estimate for i.i.d. Bernoulli variables valued in {0, 1} with expectation p = p(Ñ) s.t. p ∈ (0, 1/2]

and p Ñ ∼ N(IΛ)|Λ| → +∞ (see e.g. [Dur96]); for δ′ ∈ (0, 1/2), it yields, for |Λ| sufficiently large,

P





∣

∣

∣

∣

∣

∣

Ñ
∑

j=1

Xj − pÑ

∣

∣

∣

∣

∣

∣

≥ (pÑ)δ
′



 ≤ e−(pÑ)2δ
′−1/4. (2.19)

Theorem 1.3 follows taking δ′ close to 1/2, using (2.17) and noting that pÑ ≫ log |Λ| by our
assumptions on N(IΛ). �

Remark 2.2. We can get a more precise version of Theorem 1.3 by optimizing in the intermediate
scale ℓ, the number of eigenvalues we miss in the picture of Theorem 1.2, namely by choosing ℓ so
that Kn = K ′n′. Estimates can even be improved by resorting to higher order Minami estimates
in order to bound the missing eigenvalues (replacing the crude deterministic bound given by the
Weyl formula).

Remark 2.3. IfN(I) ≪ |I|1+ρ, Theorem 1.3 still holds if one can improve on the Minami estimate,
replacing one power of the interval length |I| by N(I). This can be done in some cases [GKl12].

3. The proofs of Theorems 1.2 and 1.1

Recall ΛL is a cube of side length L. Let IΛ be an interval inside I the region of localization.
We first prove the useful

Lemma 3.1. Assume (IAD), (W), (M) and (Loc). Consider scales ℓ′, ℓ so that (log |ΛL|)
1/ξ ≪

ℓ′ ≪ ℓ ≪ L, and, for some given γ ∈ ΛL, consider a box Λℓ(γ) such that Λℓ−ℓ′(γ) ⊂ ΛL. Let WΛL

be either the set UΛL
or VΛL

defined in Lemma 1.1. For L large enough, we have:
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(1) for any ω ∈ WΛL
, if E(ω) is an eigenvalue of Hω(ΛL) with a localized eigenfunction in

the sense of (1.7) with a center of localization in Λℓ−ℓ′(γ), then Hω(ΛL ∩ Λℓ(γ)) has an

eigenvalue in a neighborhood of E(ω) of size O(e−(ℓ′)ξ/2); moreover, if ω ∈ WΛℓ(γ), the
corresponding eigenfunction is localized in the sense of (1.7).

(2) Assume now additionally that Λℓ(γ) ⊂ ΛL. Then, conversely, for any ω ∈ WΛℓ(γ), if E(ω)
is eigenvalue of Hω(ΛL) in Hω(Λℓ(γ)) with an eigenfunction exponentially localized, in the
sense of (1.7)with a center of localization in Λℓ−ℓ′(γ), then Hω(ΛL) has an eigenvalue

in a neighborhood of E(ω) of size O(e−(ℓ′)ξ/2); moreover, if ω ∈ WΛL
, the corresponding

eigenfunction is localized in the sense of (1.7).

As a consequence of (1), (W) and (M), given an interval IΛ,

• the probability to have at least one center of localization in Λℓ−ℓ′(γ) corresponding to an

eigenvalue of Hω(ΛL) in IΛ is bounded by C
(

P(Wc
ΛL

) + |IΛ|ℓ
d + ℓde−(ℓ′)ξ/2

)

;

• the probability to have at least two centers of localization in Λℓ−ℓ′(γ) corresponding to two

eigenvalues of Hω(ΛL) in IΛ is bounded by C
(

P(Wc
ΛL

) + (|IΛ|ℓ
d)(1+ρ) + Ld(1+ρ)e−ρ(ℓ′)ξ/2

)

.

Similar results can be found in [Kl11].

Remark 3.1. In the first part of Lemma 3.1, we do not require the small cube Λℓ(γ) to lie entirely
inside the big cube ΛL. This will be used in our analysis to treat the localization centers near the
boundary of ΛL.
If one has Λℓ(γ) ⊂ ΛL, then, using Lemma 2.1, the bound on the probability to have at least one
center of localization in Λℓ−ℓ′(γ) corresponding to an eigenvalue of Hω(ΛL) in IΛ can be improved

into C
(

P(Wc
ΛL

) +N(IΛ)ℓ
d + ℓde−(ℓ′)ξ/2

)

.

Finally, we note that, in the last part of Lemma 3.1, it is of importance that the probability that
appears, namely P(Wc

ΛL
), is the one related to the box ΛL, and not to a small box of size ℓ.

Proof. We start with the point (1). Let ϕ = ϕω,ΛL
be the eigenfunction associated to the center

x(ω), and E(ω) ∈ IΛ the corresponding eigenvalue. Let Ψℓ be a smooth characteristic function
covering the cube Λℓ(γ), i.e. Ψℓ such that suppΨℓ ⊂ Λℓ(γ), Ψℓ = 1 on Λℓ− 1

2 ℓ
′(γ), supp∇Ψℓ ⊂

Λℓ(γ) \ Λℓ− 1
2 ℓ

′(γ).

Since ω ∈ UΛL
, we have ‖Ψℓϕ‖ ≥ 1

2 for ℓ′ large enough. Set ηℓ := Ψℓϕ/‖Ψℓϕ‖. Then, ηℓ is an
approximate eigenvector of the Hamiltonian Hω(Λℓ(γ)), in the sense that ‖ηℓ‖ = 1 and

‖(Hω(Λℓ(γ))− E)ηℓ‖ ≤ 2‖[Hω(Λℓ(γ)),Ψℓ]ϕ‖ . sup
supp∇Ψℓ

|ϕ| . e−(ℓ′)ξ .

It follows that Hω(Λℓ(γ)) has an eigenvalue in the interval [E − ce−(ℓ′)ξ , E + ce−(ℓ′)ξ ].
Let us prove point (2). Recall Ψℓ above. Let ϕ = ϕω,Λℓ(γ) ∈ L2(Λℓ(γ)) be the eigenfunction
associated to x(ω). Set ηℓ = Ψℓϕ on Λℓ(γ) and ηℓ = 0 on ΛL\Λℓ(γ). Since dist(x(ω)), ∂Λℓ(γ)) ≥ ℓ′,
it is immediate to see that ηℓ is an approximate eigenfunction of Hω(ΛL) in the sense that

‖(Hω(ΛL)− E)ηℓ‖ . sup
supp∇Ψℓ

|ϕ| . e−(ℓ′)ξ/2.

The first consequence is immediate. For the second, if the two eigenvalues of Hω(Λ) are at a a

distance at least e−(ℓ′)ξ/2 from each other, by point (2), they give rise to two distinct eigenvalues
of Hω(Λℓ(γ)); thus, we can apply (M). If they are closer, we bound the probability using (M) for
Hω(ΛL).
This completes the proof of Lemma 3.1. �

We now turn to the proofs of Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. For β′ > 0 sufficiently small (this will be defined precisely below) and β > β′

to be chosen later, set ℓ′ = Lβ′

and ℓ so that (ℓ + ℓ′)k + ℓ′ = L, where k = [L1−β ]. Note that
ℓ = O(Lβ) in the large volume limit. With such definitions we can pick equally distributed boxes
of size ℓ in ΛL (with distance ℓ′ between two neighbors) satisfying the conditions of the theorem.
Note that for L large enough ℓ′ > R, so that events based on distinct boxes Λℓ(γj)’s are indepen-
dent.
In this proof, we shall use the localization property described by Lemma 1.1 Part (I).
Up to a probability less than C|ΛL|

(1−β)−βp . |ΛL|
−1 provided p ≥ 2β−1 − 1, we can assume that

all the boxes Λℓ(γ) satisfy Part (I) of Lemma 1.1, since p in Lemma 1.1 can be chosen arbitrary
large. Since α− αd,ρ,ρ̃ < 1 we can neglect this probability.
Recall N(IΛ) ≍ |ΛL|

−α. Since N(IΛ) . |IΛ|, we have P(Uc
ΛL

) . |IΛ|ℓ
d and P(Uc

ΛL
) . |IΛ|

1+ρℓ2d,
provided p > 0 in Lemma 1.1 is large enough.
Let Sℓ,L be the set of boxes Λℓ−ℓ′(γj) ⊂ ΛL containing at least two centers of localization of
Hω(ΛL). It follows from Lemma 3.1 and (1.42) that,

P(#Sℓ,L ≥ 1) . |ΛL|
1−β(|ΛL|

β |IΛ|)
1+ρ ≤ |ΛL|

1+βρN(IΛ)
1+ρ
1+ρ̃ . |ΛL|

1+βρ−α 1+ρ
1+ρ̃ . (3.1)

To insure that all the centers of Hω(ΛL) fall inside one of the Λℓ(γj)’s and actually sufficiently well
inside (by a distance ℓ′), we define Υ ⊂ ΛL as the set ΛL \ ∪jΛℓ(γj) enlarged by a length ℓ′. In

other terms Υ = ΛL \ ∪jΛℓ−ℓ′(γj). One has |Υ| . |ΛL|ℓ
′/ℓ. We consider a partition Υ =

2d−1
⋃

m=1

Υm,

with Υm ∩Υm′ = ∅ if m 6= m′, each Υm being a union of boxes of side length ℓ′ which are two by
two distant by at least ℓ′. For each given m, the distance between two boxes of Υm is larger than
ℓ′, so that we can enlarge each box in Υm by, say, 1

10ℓ
′, except for sides of boxes that coincide with

the boundary of ΛL. It follows from Lemma 3.1 and the Wegner estimate that,

P(Hω(ΛL) has a center of localization in Υ) (3.2)

.
∑

m

P(Hω(ΛL) has a center of localization in Υm) (3.3)

.
∑

m

|Υm||IΛ| . |Υ|N(IΛ)
1

1+ρ̃ . |ΛL|
1− 1

d (β−β′)− α
1+ρ̃ (3.4)

We, thus, require that

α > (1 + ρ̃)max

(

1 + βρ

1 + ρ
, 1−

1

d
(β − β′)

)

.

Optimization yields

β =
dρ+ β′(1 + ρ)

(d+ 1)ρ+ 1
, α > (1 + ρ̃)

(

1−
dρ+ β′(1 + ρ)

(d+ 1)ρ+ 1

)

. (3.5)

We, thus, require αd,ρ,ρ̃ < α where

αd,ρ,ρ̃ = (1 + ρ̃)

(

1−
ρ

ρ(d+ 1) + 1

)

= (1 + ρ̃)
ρd+ 1

ρ(d+ 1) + 1
< 1,

which is our assumption (1.11).
It follows from (3.1) and (3.2) that with probability larger than 1 − c|ΛL|

−(α−αd,ρ,ρ̃), item (2) of
Theorem 1.1 holds, as well as the “only if” part of item (3).
Next, item (2) of Lemma 3.1 implies that item (1) as well as the “if” part of item (3) of Theorem 1.1

hold, with probability at least 1− c|ΛL|
−α+β− 1

d (β−β′) ≥ 1− c|ΛL|
−(α−αd,ρ,ρ̃).

This completes the proof of Theorem 1.1. �



26 FRANÇOIS GERMINET AND FRÉDÉRIC KLOPP

Proof of Theorem 1.2. For a scale ℓΛ given, we set q = [(L−ℓ′)/(ℓΛ+ℓ′)]. Then we may adjust the
scale ℓΛ by enlarging it to a new scale ℓ so that (ℓ+ℓ′)q+ℓ′ = L and 0 ≤ ℓ−ℓΛ . ℓ2Λ/|ΛL| = o(ℓΛ).
As a consequence, we can consider a collection of boxes Λℓ(γj) equally distant to their closest
neighbors by a length ℓ′ and satisfying the description of the theorem. In particular, events based
on different boxes are independent.
In this proof, we shall use the localization property described by Lemma 1.1 Part (II).
For L sufficiently large, up to a probability . |ΛL|

(1−β) exp−ℓν ≤ |ΛL|
−q, with q > 0 arbitrary

large, we can assume that all the boxes Λℓ(γ) satisfy Part (II) of Lemma 1.1.
It follows from (1.13) and Lemma 1.1 that for ℓ large enough, we have P(Vc

ΛL
) . |IΛ|ℓ

d and

P(Vc
ΛL

) . |IΛ|
1+ρℓ2d.

Let Sℓ,L be the set of disjoint boxes Λℓ(γj) ⊂ ΛL containing at least 2 centers of localization of
Hω(ΛL). We set n = ℓd. It follows from Lemma 3.1 (taking into account ℓ′ ≪ ℓ) that, using
independence and Stirling’s formula,

P(♯(Sℓ,L ≥ k) .

(

|ΛL|/n

k

)

(|IΛ|n)
(1+ρ)k

. (e|ΛL|/(nk))
k(|IΛ|n)

(1+ρ)k =

(

e|ΛL|

k
N(IΛ)

1+ρ
1+ρ′ nρ

)k

. 2−k,

if we choose

k ≥ K :=

[

2eN(IΛ)|ΛL|(N(IΛ)
ρ−ρ′

1+ρ′ nρ)

]

+ 1. (3.6)

Note that

K ≍
|ΛL|

n

(

N(IΛ)
1

1+ρ′ n
)1+ρ

= o

(

|ΛL|

n

)

(3.7)

by assumption. As a consequence, we get that

P(#(Sℓ,L) ≥ K) . 2−K .

So that, with probability larger than 1 − 2−K , we can assume that the boxes Λℓ(γj), except at
most K of them, contain at most one center of localization.
We now control the number of centers of localization that may be contained in these K exceptional
boxes. In a box of size ℓ, the deterministic a priori bound on the number of eigenvalues guarantees
that this number is bounded by . ℓd := n (see e.g. [RS78]). Using this crude estimate the number
of eigenvalues we miss with these K boxes is bounded by

Kn . N(IΛ)|ΛL|(N(IΛ)
ρ−ρ′

1+ρ′ n1+ρ) = o(N(IΛ)|ΛL|),

provided

N(IΛ)
ρ−ρ′

1+ρ′ n1+ρ = o(1). (3.8)

We now turn to the complement of the Λℓ(γj)’s, that is

Υ = ΛL \
⋃

j

Λℓ−ℓ′(γj),

and we consider a partition of Υ in terms of 2d−1 sets of boxes of side length ℓ′. More precisely,

Υ =

2d−1
⋃

m=1

Υm, with Υm ∩Υm′ = ∅ if m 6= m′, each Υm is a union of boxes of side length ℓ′ which

are two by two distant by at least ℓ′.
Clearly, one has |Υ| . |ΛL|ℓ

′/ℓ.
Let S ′

ℓ,L be the set of boxes Λℓ′(γj) ∈ Υ containing at least one centers of localization of Hω(ΛL).
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From considerations similar to those above, for each given m, taking into account that boxes in
Υm may be enlarged by, say, 1

10ℓ
′, for the distance between two of them is larger than ℓ′, it follows

from Lemma 3.1 and Wegner estimate that, using independence and Stirling formula,

P(#(S ′
ℓ,L ∩Υm) ≥ K ′) .

∑

k≥K′

(

|Υm|/(ℓ′)d

k

)

(C|IΛ|(ℓ
′)d)k

.

(

C|ΛL|N(IΛ)
1

1+ρ′ ℓ′

kℓ

)k

. 2−K′

,

where C is a constant that varies but only depends on the constant appearing in Wegner and d,
and provided one sets, for C ′ > C,

K ′ :=

[

C ′|ΛL|N(IΛ)
1

1+ρ′ ℓ′

ℓ

]

+ 1. (3.9)

Note that

K ′ ≍
|ΛL|

n

(

N(IΛ)
1

1+ρ′ n
ℓ′

ℓ

)

= o

(

|ΛL|

n

)

(3.10)

by assumption. As a consequence, one computes

P(#S ′
ℓ,L ≥ 2d−1K ′) ≤ P(∃m, #(S ′

ℓ,L ∩Υm) ≥ K ′)

≤
2d−1
∑

m=1

P(#(S ′
ℓ,L ∩Υ′

m) ≥ K ′) . 2−K′

.

Hence, up to 2d−1K ′ boxes, we can assume that boxes of size ℓ′ in Υ′ contain at most one center
of localization.
The maximal number of eigenvalues that can be contained in these 2d−1K ′ bad boxes is . K ′n′ =
o(N(IΛ)|ΛL|) provided

ℓ ≫ (ℓ′)d+1. (3.11)

Combining (3.8) and (3.11), we see that the intermediate scale ℓ has to satisfy (1.17). To summa-
rize, we proved that the picture described by Theorem 1.2 holds with a probability larger than

1− e−cK − e−cK′

≥ 1− exp

(

−cN(IΛ)|ΛL|(N(IΛ)
ρ−ρ′

1+ρ′ ℓdρ)

)

− exp

(

−cN(IΛ)|ΛL|(N(IΛ)
− ρ′

1+ρ′ ℓ′ℓ−1)

)

(3.12)

Moreover, the number of eigenvalues of Hω(ΛL) that are not described by this picture is bounded
by

C(Kn+K ′n′) . N(IΛ)|ΛL|

(

(N(IΛ)
ρ−ρ′

1+ρ′ ℓd(1+ρ) +N(IΛ)
− ρ′

1+ρ′
(ℓ′)d+1

ℓ

)

(3.13)

= o(N(IΛ)|ΛL|), (3.14)

provided (1.17) holds.
This completes the proof of Theorem 1.2. �

4. The spectral statistics

In this section, we prove most of the results on the local spectral statistics described in section 1.
The whole of our analysis relies on Theorems 1.1 and 1.2.
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4.1. Convergence of the local levels statistics. We first prove the uniform Poisson conver-
gence, Theorem 1.10, of which Theorem 1.9 is an immediate consequence if one takes into account
Remark 4.1 to relax assumption (1.45) into assumption (1.42).

4.1.1. Proof of Theorem 1.10. We keep the notations of section 1.7.1. Recall that Λ = ΛL. Under
the assumptions of Theorem 1.10, we can apply Theorem 1.1 to the interval IΛ = N−1(N(E0) +
|Λ|−α[−1, 1]). Let ZΛ be the set of configurations where the conclusions of Theorem 1.1 for this

interval hold and let Ñ be the number of the cubes constructed in Theorem 1.1 and (Λℓ(γj))1≤j≤Ñ

be those cubes. Then, Ñ = |Λ|1−β(1−O(|Λ|−(1−β)/d)).
Recall that ξj(E0, ω,Λ) is defined by (1.41) and consider the event

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

:=

p
⋂

l=1

{ω; #{j; ξj(ω,Λ) ∈ Il} = kl} .

Pick δd < p := β′ξ where β′ is given by Theorem 1.1 and δ by (1.46).
As P(ZΛ) → 1, to prove Theorem 1.10, it suffices to prove that

P

(

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ

)

− e−|I1|
|I1|

k1

k1!
· · · e−|Ip|

|Ip|
kp

kp!
→

|Λ|→+∞
0. (4.1)

Recall that the function N is non decreasing and continuous; thus, for I an interval, the set N−1(I)
is an interval. For a cube Λ and an interval I, define the Bernoulli random variable XΛℓ,I by

XΛℓ,I = 1Hω(Λℓ) has an e.v. in N−1[N(E0)+|Λ|−1I] with localization center in Λℓ−ℓ′
. (4.2)

Here, the length scales ℓ and ℓ′ are taken as in Theorem 1.1 that is ℓ ≍ Lβ and ℓ′ ≍ Lβ′

. Notice
that, using the notations of section 2, one has XΛℓ,I = X(Λℓ, N

−1[N(E0) + |Λ|−1I], ℓ′).
We are first going to eliminate a degenerate case i.e the case when the length of one interval |Ij |
goes to 0. Assume |I1| ≤ ε for some ε small fixed. Let us first assume that k1 6= 0. Then, by the
description given by Theorem 1.1, for some η > 0, for L sufficiently large, one has

P

(

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ

)

≤ P
(

ΩΛ
I1,k1

∩ ZΛ

)

. Ñ P
(

XΛℓ(γ),I1+e−Lη
[−1,1] = 1

)

. Ñ ·N
(

N−1
[

N(E0) + |Λ|−1
(

I1 + e−Lη

[−1, 1]
)])

|Λℓ|

+ Ñ
(

|Λℓ|
∣

∣

∣
N−1

[

N(E0) + |Λ|−1
(

I1 + e−Lη

[−1, 1]
)]∣

∣

∣

)1+ρ

. ε+ |Λ||Λℓ|
ρ|Λ|−(1+ρ)/(1+ρ̃)ε(1+ρ)/(1+ρ̃)

. ε.

To obtain the second inequality, we have used the upper bound provided by (2.1) of Lemma 2.1.
The third inequality is a consequence of assumption (1.42).

On the other hand, if k1 6= 0, clearly, one has e−|I1| |I1|
k1

k1!
. ε; moreover, one always has e−|I| |I|

k

k! ≤

1. Thus, e−|I1|
|I1|

k1

k1!
· · · e−|Ip|

|Ip|
kp

kp!
. ε.

If k1 = 0, then, by the computation made above, we have that

0 ≤ P(ΩΛ
I2,k2;··· ;Ip,kp

∩ ZΛ)− P(ΩΛ
I1,0;I2,k2;··· ;Ip,kp

∩ ZΛ) . ε

and 0 ≤ e−|I2|
|I1|

k2

k2!
· · · e−|Ip|

|Ip|
kp

kp!
− e−|I1|e−|I2|

|I1|
k2

k2!
· · · e−|Ip|

|Ip|
kp

kp!
. ε. Thus we are back to

estimating P

(

ΩΛ
I2,k2;··· ;Ip,kp

)

− e−|I2|
|I2|

k2

k2!
· · · e−|Ip|

|Ip|
kp

kp!
.
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So, from now on, we assume that all the intervals (Ij)j have length large than ε. Define I+j =

Ij∪[−e−Lη

, e−Lη

] and I−j = Ij∩(
cIj+[−e−Lη

, e−Lη

]). Clearly, I−j ⊂ Ij ⊂ I+j . Moreover, by (1.46),

for L sufficiently large, we have that I+j ∩ I+k = I−j ∩ I−k = ∅ for j < k and |I+j | = |Ij |(1+O(e−Lη

))

and |I−j | = |Ij |(1+O(e−Lη

)). For L sufficiently large, one has |I+j | ≥ |I−j | ≥ ε/2 for j ∈ {1, . . . , p}.
By Theorem 1.1, in particular (1.12), and the Wegner estimate (W), we know that

p
⋂

l=1

{

ω; #{j; XΛℓ(γj),I
−
l
= 1} = kl

}

⋂

ZΛ ⊂ ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ,

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ ⊂

p
⋂

l=1

{

ω; #{j; XΛℓ(γj),I
+
l
= 1} = kl

}

⋂

ZΛ.

(4.3)

Let us first use this to upper bound P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) and to show that we may assume

p to be finite (depending on ε). Therefore, we compute

P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) ≤ P

(

p
⋂

l=1

{

ω; #{j; XΛℓ(γj),I
+
l
= 1} = kl

}

∩ ZΛ

)

≤
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),I

+
l
= 1

∀j 6∈ Kl, XΛℓ(γj),I
+
l
= 0

}

∩ ZΛ

)

as, by the definition of ZΛ (see Theorem 1.1), one has P({XΛℓ(γj),I
+
l
= 1, XΛℓ(γj),I

+

l′
= 1}∩ZΛ) = 0

if l 6= l′. As Kl ∩ Kl′ = ∅ if l 6= l′ the random vectors ((XΛℓ(γj),I
+
l
)j∈Kl

)1≤l≤p are independent.

Thus, one estimates

P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) ≤
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

p
∏

l=1

P

({

ω; ∀j ∈ Kl, XΛℓ(γj),I
+
l
= 1
})

× P

({

ω; ∀j 6∈

p
⋃

l=1

Kl,

p
∑

l=1

XΛℓ(γj),I
+
l
= 0

})

≤
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p

p
∏

l=1

P

({

ω; ∀j ∈ Kl, XΛℓ(γj),I
+
l
= 1
})

× P

({

ω; ∀j 6∈

p
⋃

l=1

Kl,

p
∑

l=1

XΛℓ(γj),I
+
l
= 0

})

≤

(

Ñ

k1 + · · ·+ kp

) p
∏

l=1

(

p+l
)kl

× P

({

ω;

p
∑

l=1

XΛℓ(γ1),I
+
l
= 0

})Ñ−(k1+···+kp)

(4.4)

where p±l = P(XΛℓ(γ1),I
±
l
= 1) for 1λ ≤ p. Here, we have used the fact that, as the cubes (Λℓ(γj))j

are at distance at leastR from each other (see (IAD)), the events
({

ω; #{j; XΛℓ(γj),I
−
l
= 1} = kl

})

j
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are two by two independent for 1 ≤ l ≤ p.
To estimate the last term in (4.4), we will use

Lemma 4.1. Set

δ := α
1 + ρ

1 + ρ̃
− 1− βρ. (4.5)

With the choice of (I+l )1≤l≤p made above, under the assumptions of Theorem 1.10, with our choice
of ℓ and ℓ′, possibly reducing β somewhat, for L sufficiently large, one has

P

(

p
∑

l=1

XΛℓ(γ1),I
+
l
= 0

)

= 1−
1−O

(

|Λ|−δ
)

Ñ

p
∑

l=1

|Il|.

Proof. The proof is analogous to that of Lemma 2.1; it also relies on our choice for the intervals
(Il)1≤l≤p. The derivation of (2.8) yields

0 ≤ E



N





p
⋃

j=1

N−1(N(E0) + |Λ|−1I+l ), ℓ, ℓ′







− P

(

p
∑

l=1

XΛℓ(γj),I
+
l
≥ 1

)

≤ C|Λℓ|
1+ρ|IΛ|

1+ρ.

Thus using Lemma 2.2 and assumption (1.42), we obtain

P

(

p
∑

l=1

XΛℓ(γj),I
+
l
≥ 1

)

= N





p
⋃

j=1

N−1(N(E0) + |Λ|−1I+l )



+ |Λℓ|
1+ρ|N(IΛ)|

(1+ρ)/(1+ρ̃)

= |Λ|β−1

p
⋃

j=1

|I+l |+O(|Λ|β(1+ρ)−α(1+ρ)/(1+ρ̃)).

(4.6)

To conclude the statement of Lemma 4.1, it now suffices to recall that |I+l | ≥ ε/2 and that

1 + βρ < α 1+ρ
1+ρ̃ i.e. β − 1 > β(1 + ρ) − α 1+ρ

1+ρ̃ . Moreover, by the definition of the intervals (I+l )l,

the main term in (4.6) is |Λ|β−1
⋃p

j=1 |Il|. �

By (2.1) of Lemma 2.1, the assumption (1.45) and the definition of (I±l )l, we have that

p±l = |Il||Λ|
β−1(1 +O(|Λ|−δ)) = |Il|Ñ

−1(1 +O(|Λ|−δ)). (4.7)

Setting k = k1 + · · · + kp and I+ = |I+1 | + · · · + |I+1 |, we note that by Theorem 1.1, for ω ∈ ZΛ,
we have k . N(IΛ)|Λ| . |Λ|1−α and, by the assumptions of Theorem 1.10, we have I+ ≤ 2|Λ|1−α.
Thus, for L large, we have

k + I+ = o(|Λ|1−β) = o(Ñ). (4.8)

From (4.4), (4.7) and Lemma 4.1, at the possible expense of reducing β somewhat, we, thus, obtain
the following upper bound

P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) ≤

(

Ñ

k

)(

I+

Ñ

)k
(

1−
1−O

(

|Λ|−δ
)

Ñ
I+

)Ñ−k

≤
(I+)k

k!
e−I+

eO(|Λ|−δI+) .
(I+)k

k!
e−I+

(4.9)

where we have used (4.8) as well as the assumption (1.44) to obtain

|Λ|−δI+ ≤ |Λ|−δ+1−α = o(1) (4.10)
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Indeed, by (4.5), the definition of δ, and as αd,ρ,ρ̃ < α (see (1.11)), one computes

−δ + 1− α = −α
1 + ρ

1 + ρ̃
+ 1 + βρ+ 1− α < −

(2 + ρ+ ρ̃)(1 + dρ)

1 + (d+ 1)ρ
+ 2 + βρ

= −
ρ̃(1 + dρ)− ρ(1− dρ)

1 + (d+ 1)ρ
+ βρ

So, under assumption (1.44), at the expense of possibly reducing β, one has −δ+1−α < 0 which,
taking into account (4.10), implies (4.9).
The bound (4.9) proves that if k + I+ → +∞ (as L → +∞) then P(ΩΛ

I1,k1;I2,k2;··· ;Ip,kp
∩ZΛ) → 0.

Note that, for 1 ≤ l ≤ p, one has |I+l | ≥ ε/2, one has P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) → 0 if p → +∞
as L → +∞. On the other hand, 0 is clearly also the limit of the product

|I1|
k1

k1!
e−|I1| · · ·

|Ip|
kp

kp!
e−|Ip|

in any of these cases (as |I+l | ≍ |Il| ≥ ε/2). So we have proved (1.47) if k + I+ + p → +∞ when
L → +∞.
From now on, we assume that k, I+ and p are bounded and that |I−| ≥ ε. Let us prove (1.47) in
this case. As by the definition of ZΛ, each Hω(Λℓ(γj)) has at most one eigenvalue in the interval
IΛ that contains all the intervals (N−1[N(E0) + |Λ|−1I±l ])1≤l≤p, one has

p
⋂

l=1

{

ω; #{j; XΛℓ(γj),I
±
l
= 1} = kl

}

⋂

ZΛ

=
⋃

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

p
⋂

l=1











ω;

∀j ∈ Kl, XΛℓ(γj),I
±
l
= 1

∀j 6∈
⋃

l′ 6=l

Kl′ , XΛℓ(γj),I
±
l
= 0











⋂

ZΛ.

Hence, as 1− P(ZΛ) = o(1), one has

∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),I

−
l
= 1

∀j 6∈ Kl, XΛℓ(γj),I
−
l
= 0

})

+ o(1) ≤ P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ),

P(ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

∩ ZΛ) ≤
∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),I

+
l
= 1

∀j 6∈ Kl, XΛℓ(γj),I
+
l
= 0

})

+ o(1).
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For (Kl)1≤l≤p ∈ {1, · · · , Ñ}p such that (#Kl)1≤l≤p = (kl)1≤l≤p and Kl ∩ Kl′ = ∅ if l 6= l′, one
computes

P







p
⋂

l=1











ω;

∀j ∈ Kl, XΛℓ(γj),I
+
l
= 1

∀j 6∈
⋃

l′ 6=l

Kl′ , XΛℓ(γj),I
+
l
= 0
















≤

∏

j 6∈∪p
l=1Kl

P

(

p
∑

l=1

XΛℓ(γj),I
+
l
= 0

)

p
∏

l=1

∏

j∈Kl

P

(

XΛℓ(γj),I
+
l
= 1
)

≤ P

(

p
∑

l=1

XΛℓ(γ1),I
+
l
= 0

)Ñ−(k1+···+kp) p
∏

l=1

P(XΛℓ(γ1),I
+
l
= 1)kl

≤

(

1−

p
∑

l=1

p+l

)Ñ−(k1+···+kp) p
∏

l=1

(

(p+l
)kl

(1 + o(1))

≤

(

p
∏

l=1

e−|I+
l ||I+l |kl

)

(Ñ)−k1−···−kp(1 + o(1))

and

P

(

p
⋂

l=1

{

ω;
∀j ∈ Kl, XΛℓ(γj),I

−
l
= 1

∀j 6∈ Kl, XΛℓ(γj),I
−
l
= 0

})

≥ P

(

p
∑

l=1

XΛℓ(γ1),I
−
l
= 0

)Ñ−(k1+···+kp)

×
∏

j∈
⋃

l Kl







p
∑

l=1

1j∈Kl
P







XΛℓ(γj),I
−
l
= 1

∑

l′ 6=l

XΛℓ(γj),I
−

l′
= 0













≥ P

(

p
∑

l=1

XΛℓ(γ1),I
−
l
= 0

)Ñ−(k1+···+kp)

×
∏

j∈
⋃

l Kl

(

p
∑

l=1

1j∈Kl

[

P

(

XΛℓ(γj),I
−
l
= 1
)

− P

(

XΛℓ(γj),I
−
l
= 1

XΛℓ(γj),I
−

l′
= 1

)])

≥

(

p
∏

l=1

e−|I−
l ||I−l |kl

)

(Ñ)−k1−···−kp(1 + o(1))

as k1 + ·+ kp is bounded and

P

(

XΛℓ(γj),I
−
l
= 1
)

− P

(

XΛℓ(γj),I
−
l
= 1

XΛℓ(γj),I
−

l′
= 1

)

= p−l
(

1 +O
(

|Λ|−δ
))

.

On the other hand, as k1 + · · ·+ kp is bounded, when N → +∞, one has

∑

Kl⊂{1,··· ,Ñ}
#Kl=kl, 1≤l≤p
Kl∩Kl′=∅ if l 6=l′

1 =

p
∏

l=1

(

Ñ

kl

)

(1 + o(1))

Thus, for L sufficiently large, we obtain

e−|I−
1 | |I

−
1 |k1

k1!
· · · e−|I−

p |
|I−p |kp

kp!
(1 + o(1)) ≤ P(ΩΛ

I1,k1;I2,k2;··· ;Ip,kp
∩ ZΛ)

≤ e−|I+
1 | |I

+
1 |k1

k1!
· · · e−|I+

p |
|I+p |kp

kp!
(1 + o(1))
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Now, recalling that |I±l | = |Il|+O
(

e−Lη)

, we get

lim
|Λ|→+∞

∣

∣

∣

∣

P

(

ΩΛ
I1,k1;I2,k2;··· ;Ip,kp

)

− e−|I1|
|I1|

k1

k1!
· · · e−|Ip|

|Ip|
kp

kp!

∣

∣

∣

∣

= 0

and the proof of Theorem 1.10 is complete. �

Remark 4.1. In the present proof, assumption (1.42) does not suffice to guarantee (4.7): indeed,
as we did not fix the intervals (Ij)j , we want a result uniform over all the intervals of not too
small length in some neighborhood of E0; thus, we use assumption (1.45), a uniform version of
assumption (1.42).
To prove Theorem 1.9 however it suffices to consider fixed intervals (Ij)1≤j≤p; thus, assump-
tion (1.42) suffices to guarantee that (4.7) holds.

4.1.2. The asymptotic independence. We now turn to the proof of Theorem 1.11. Decompose Λ
into the boxes constructed in Theorem 1.1 i.e. Λ = ∪γ∈ΓΛ

Λℓ(γ) ; the scale ℓ is determined by
Theorem 1.1 and N := #ΓΛ ∼ |Λ|ℓ−d. The set of boxes thus obtained are the same for both
energies E and E′. For I ⊂ R a compact set, define the random variables

Xγ(E, I) =

{

1 if Hω(Λℓ(γ)) has an e.v. in N−1[N(E0) + |Λ|−1I],

0 if not.
(4.11)

Then, to prove Theorem 1.11, it suffices to prove that, for (k, k′) ∈ N
2 and I ⊂ R and I ′ ⊂ R two

compact sets, one has

lim
|Λ|→+∞

E











∑

γ∈ΓΛ

Xγ(E, I)





k



∑

γ∈ΓΛ

Xγ(E
′, I ′)





k′





= lim
|Λ|→+∞

E











∑

γ∈ΓΛ

Xγ(E, I)





k





E











∑

γ∈ΓΛ

Xγ(E
′, I ′)





k′




. (4.12)

Therefore, using the independence of the cubes, we expand the sums

SN (k, k′) =E











∑

γ∈ΓΛ

Xγ(E, I)





k



∑

γ∈ΓΛ

Xγ(E
′, I ′)





k′





=
∑

γ1,··· ,γk

∑

γ′
1,··· ,γ

′
k′

E

[

Xγ1
(E, I) · · ·Xγk

(E, I) ·Xγ′
1
(E′, I ′) · · ·Xγ′

k′
(E′, I ′)

]

= GN (k, k′) +RN (k, k′)

where

GN (k, k′) =
∑

{γ1,··· ,γk}∩{γ′
1,··· ,γ

′
k′}=∅

E

[

Xγ1
(E, I) · · ·Xγk

(E, I) ·Xγ′
1
(E′, I ′) · · ·Xγ′

k′
(E′, I ′)

]
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and

RN (k, k′) =
∑

γ

∑

γ1,··· ,γl

γ′
1,··· ,γ

′
l′

E



Xγ(E, I)Xγ(E
′, I ′) ·

k−1
∏

j=1

Xγj
(E, I) ·

k′−1
∏

j′=1

Xγ′
j′
(E′, I ′)





=
∑

γ

k−1
∑

l=1

k′−1
∑

l′=1

(

l

k − 1

)(

l′

k′ − 1

)

∑

γ 6∈{γ1,··· ,γl}
γ 6∈{γ′

1,··· ,γ
′
l′
}

E



Xγ(E, I)Xγ(E
′, I ′) ·

l
∏

j=1

Xγj
(E, I) ·

l′
∏

j′=1

Xγ′
j′
(E′, I ′)





=
∑

γ

E [Xγ(E, I)Xγ(E
′, I ′)]

k−1
∑

l=1

k′−1
∑

l′=1

(

l

k − 1

)(

l′

k′ − 1

)

∑

γ 6∈{γ1,··· ,γl}
γ 6∈{γ′

1,··· ,γ
′
l′
}

E





l
∏

j=1

Xγj
(E, I) ·

l′
∏

j′=1

Xγ′
j′
(E′, I ′)



 .

Hence,

RN (k, k′) =
∑

γ

E [Xγ(E, I)Xγ(E
′, I ′)]

k−1
∑

l=1

k′−1
∑

l′=1

(

l

k − 1

)(

l′

k′ − 1

)

SN−1(l, l
′). (4.13)

On the other hand, one computes

SN (k)SN (k′) = E











∑

γ∈ΓΛ

Xγ(E, I)





k





E











∑

γ∈ΓΛ

Xγ(E
′, I ′)





k′





=
∑

γ1,··· ,γk

E [Xγ1
(E, I) · · ·Xγk

(E, I)]
∑

γ′
1,··· ,γ

′
k′

E

[

Xγ′
1
(E′, I ′) · · ·Xγ′

k′
(E′, I ′)

]

= GN (k, k′) +QN (k, k′)

where

QN (k, k′) =
∑

γ

∑

γ1,··· ,γk−1

E
[

Xγ(E, I)Xγ1
(E, I) · · ·Xγk−1

(E, I)
]

·
∑

γ′
1,··· ,γ

′
k′−1

E

[

Xγ(E
′, I ′)Xγ′

1
(E′, I ′) · · ·Xγ′

k′−1
(E′, I ′)

]

=
∑

γ

E [Xγ(E, I)]E [Xγ(E
′, I ′)]

[

k−1
∑

l=1

(

l

k − 1

)

SN−1(l)

]2

.

(4.14)

Hence,

SN (k, k′)− SN (k)SN (k′) = RN (k, k′)−QN (k, k′). (4.15)

By Cauchy-Schwartz, one has

SN (k, k′) ≤
√

SN (2k)SN (2k′).
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On the other hand, as P(Xγ = 1) ≤ C/N by Lemma 2.1, one computes

SN (k) ≤
N
∑

j=0

(

j

N

)(

C

N

)j

jk ≤ Ck

N
∑

j=0

(

j

N

) (

Ck

N

)j

≤ Ck e
N log(1+Ck/N) ≤ Ck e

Ck < +∞

where Ck = ek(log k−1−log log k) for k ≥ 2.
So, for any k and k′, one has

sup
N≥1

|SN (k)|+ |SN (k, k′)| < +∞,

Thus, using (4.13), (4.14) and (4.15), one obtains

|SN (k, k′)− SN (k)SN (k′)|

≤ Ck,k′ max

(

∑

γ

E [Xγ(E, I)]E [Xγ(E
′, I ′)] ,

∑

γ

E [Xγ(E, I)Xγ(E
′, I ′)]

)

Hence, (4.12) and thus Theorem 1.11 and 1.12 follow from the following two properties
∑

γ

E [Xγ(E, I)]E [Xγ(E
′, I ′)] →

|Λ|→+∞
0 and

∑

γ

E [Xγ(E, I)Xγ(E
′, I ′)] →

|Λ|→+∞
0.

As the operators (Hω(Λℓ(γ)))γ are i.i.d, this will be proved if we prove that

(

L

ℓ

)d

E [X0(E, I)]E [X0(E
′, I ′)] →

|Λ|→+∞
0 and

(

L

ℓ

)d

E [X0(E, I)X0(E
′, I ′)] →

|Λ|→+∞
0. (4.16)

The first limit in (4.16) is an immediate consequence of the Wegner estimate as ℓ/L → 0. The
second limit in (4.16) clearly is a consequence of (D) if E 6= E′ are fixed energies, and of (GM) if
E = EΛ and E′ = E′

Λ satisfy the assumptions of Theorem 1.12.
This completes the proof of Theorem 1.11 and 1.12. �

4.2. Study of the (levels, centers) statistics. In this section, we will prove Theorems 1.13, 1.14
and 1.15. To control the eigenvalues, as in the previous section, we use Theorem 1.1. So we keep
the same notations here.

4.2.1. The proof of Theorem 1.13. The proof of Theorem 1.13 is very similar to that of Theo-
rem 1.10. One deals with the case when the length of some interval (Ik)k tend to 0 or ∞ as in the
proof of Theorem 1.10; we will not repeat this here. We only indicate the differences and keep the
same notations. We need to estimate the probability of the event

ΩΛ
(Il,Cl,kl)1≤l≤p

:=

p
⋂

l=1

{

ω; #

{

j;
ξj(ω,Λ) ∈ Il

xj(ω,Λ)/L ∈ Cl

}

= kl

}

.

Let us first deal with the case when the volume of one of the cubes (Ck)k tends to 0; assume now
that |C1| ≤ ε, |I1| ≥ ε and that k1 ≥ 1. Then, we have that

P

(

ΩΛ
(Il,Cl,kl)1≤l≤p

∩ ZΛ

)

≤ P
(

ΩΛ
I1,C1,k1

∩ ZΛ

)

. #{γ ∈ LC1; Λℓ(γ) in decomposition}P
(

XΛℓ(γ),I1+e−Lη
[−1,1] = 1

)

. Ld|C1|Ñ · ℓd

. ε.
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The case when k1 = 0 is then dealt with as in the proof of Theorem 1.10.
As in the proof of Theorem 1.10, one shows that if

p+ (k1 + · · ·+ kp) + (|I1|+ · · ·+ |Ip|) + (|C1|+ · · ·+ |Cp|) → +∞

as L → +∞, then, both terms in (1.50) converge to 0 in the large L limit.
The degenerate cases having been removed, the same reasoning as in the proof of Theorem 1.10
yields

p
∏

l=1

P({ω; #{j; γj/L ∈ C−
l and XΛℓ(γj),I

−
l
= 1} = kl})− (1− P(ZΛ))

≤ P(ΩΛ
(Il,Cl,kl)1≤l≤p

∩ ZΛ)

≤

p
∏

l=1

P({ω; #{j; γj/L ∈ C+
l and XΛℓ(γj),I

+
l
= 1} = kl}) + (1− P(ZΛ))

where C+
l = Cl + [−ℓ/L, ℓ/L]d and R

d \ C−
l = R

d \ (Cl + (−ℓ/L, ℓ/L)d).
Hence, the same computations as in the proof of Theorem 1.10 also yields

p
∏

l=1

(

Ñ−
l

kl

)

(p−l )
kl(1− p−l )

Ñ−
l −kl + o(1) ≤ P(ΩΛ

(Il,Cl,kl)1≤l≤p
∩ ZΛ)

≤

p
∏

l=1

(

Ñ+
l

kl

)

(p+l )
kl(1− p+l )

Ñ+
l −kl + o(1)

where

N+
l = |Cl|Ñ(1 +O(L−1+β)), N−

l = |Cl|Ñ(1 +O(L−1+β)).

One concludes in the same way as in the proof of Theorem 1.10. This completes the proof of
Theorem 1.13. �

4.2.2. The proof of Theorem 1.14. Let ℓΛ be the scale defined in section 1.8 satisfying (1.52). To
prove Theorem 1.14, it is sufficient to prove that, for (Ij)1≤j≤l disjoint segments of R and (Cj)1≤j≤l

disjoint compact cubes in [−cℓ, cℓ] (see (1.54)), one has

P

(

∀1 ≤ j ≤ l, #

{

n;
N(En(ω,Λ)) ∈ N(E0) + ℓ−d

Λ Ij

xn(ω) ∈ ℓΛCj

}

≥ kj

)

→
|Λ|→+∞

l
∏

j=1





∑

k≥kj

e−|Ij ||Cj |
(|Ij ||Cj |)

k

k!



 . (4.17)

This is a consequence of Proposition 1.1 and Theorem 1.13. Indeed, we first pick (C±
j ) cubes s.t.

C−
j ⊂

◦
Cj ⊂ Cj ⊂

◦

C+
j and C+

j ∩ C+
k = ∅ for j 6= k. For ℓΛ large, the cubes

(

ℓΛC
+
j

)

1≤j≤l
are

at distance at least R from one another (see (IAD)), thus, the (Hω(ℓΛCj))1≤j≤l are two by two
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independent so as (Hω(ℓΛC
−
j ))1≤j≤l and (Hω(ℓΛC

+
j ))1≤j≤l. Using Proposition 1.1, we have that

l
∏

j=1

P
(

#
{

n; N(En(ω, ℓΛC
−
j )) ∈ N(E0) + ℓ−d

Λ I−j
}

≥ kj
)

− (1− P(ZΛ))− P−

≤ P

(

∀1 ≤ j ≤ l, #

{

n;
N(En(ω,Λ)) ∈ N(E0) + ℓ−d

Λ Ij

xn(ω) ∈ ℓΛCj

}

≥ kj

)

≤
l
∏

j=1

P
(

#
{

n; N(En(ω, ℓΛC
+
j )) ∈ N(E0) + ℓ−d

Λ I+j
}

≥ kj
)

+ (1− P(ZΛ)) + P+

where

P± := P

{

∃j;
Hω(ℓΛCj) has an eigenvalue in ℓ−d

Λ Ij

with a localiz. center in ℓΛ(C
±
j ∆Cj)

}

.

l
∑

j=1

|C±
j ∆Cj |,

the last bound being a consequence of the Wegner estimate (W).
Now, using Theorem 1.13, we compute the asymptotics of P(#{n; N(En(ω, ℓΛC

±
j )) ∈ N(E0) +

ℓ−d
Λ I±j }); then, we let C±

j tend to Cj and I±j tend to Ij to get the desired result. This completes
the proof of Theorem 1.14. �

4.2.3. The proof of Theorem 1.15. It is sufficient to consider the case of J a (non empty) segment
and C a (non empty) cube. As the operators we considered are defined with periodic boundary
conditions, we can restrict ourselves to cubes containing 0. We can also assume J is of the form
[0, a] or [−a, 0] for some a > 0. Hence, the sets ℓ̃ΛC are increasing and the sets E0 + ℓΛJ are
decreasing.
Pick ℓ± = (ℓ±Λ )Λ and ℓ̃± = (ℓ̃±Λ )Λ such that

±
ℓ±Λ − ℓΛ

log1/ξ |Λ|
→ +∞,

ℓ±Λ
ℓΛ

→ 1, ±
ℓ̃±Λ − ℓ̃Λ

log1/ξ |Λ|
→ +∞,

ℓ̃±Λ
ℓ̃Λ

→ 1. (4.18)

Let χA be the characteristic function of A. Compute

tr(χℓ̃ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ))) =
∑

En(ω,Λ)∈σ(Hω(Λ))

N(En(ω,Λ))∈N(E0)+ℓ−d
Λ J

‖χℓ̃ΛCϕn(ω,Λ)‖
2.

If ϕn(ω,Λ) has its localization center in ℓ̃ΛC, by (4.18) and (1.7), one has

‖χℓ̃+ΛCϕn(ω,Λ)‖
2 = 1 +O(|Λ|−∞),

and if it has its localization center outside ℓ̃ΛC, then

‖χℓ̃−ΛCϕn(ω,Λ)‖
2 = O(|Λ|−∞).

Hence, as the number of eigenvalues of Hω(Λ) in N−1[N(E0) + (ℓΛ)
−dJ ] is bounded by C|Λ| for

some C > 0, by Lemma 1.2, we get that, for any p > 0, for Λ sufficiently large, with a probability
at least 1− |Λ|−p, one has
∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx− |Λ|−p ≤ tr(χℓ̃+ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))

≤

∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx+ |Λ|−p.

(4.19)
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Partitioning ℓ̃±ΛC into cubes of side length 1 and using the covariance and (4.18), for χ0 taken as
in section 2, we get that

(ℓ̃Λ)
d |C|EℓΛ(1 + o(1)) ≤ E(tr(χℓ̃−ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ))))

≤ E(tr(χℓ̃+ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))) ≤ (ℓ̃Λ)
d |C|EℓΛ(1 + o(1)).

where EℓΛ = E(tr(χ01N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))). The computations done in section 2 show that

EℓΛ = (ℓΛ)
−d|J |(1 + o(1)).

Taking the expectation in (4.19), we immediately obtain

E

(∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξ

)

≤ C

(

ℓ̃Λ
ℓΛ

)d

if
ℓ̃Λ
ℓΛ

→
|Λ|→+∞

0, (4.20)

(

ℓΛ

ℓ̃Λ

)d

E

(∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξ

)

→
|Λ|→+∞

|J | · |C| if
ℓ̃Λ
ℓΛ

→
|Λ|→+∞

+∞. (4.21)

Assume now that ℓ̃Λ
ℓΛ

≥ |Λ|ρ. Pick two scales (ℓ′Λ)Λ and (ℓ′′Λ)Λ such that, for some ρ′ > 0

ℓ′Λ ≥ |Λ|ρ
′

,
ℓ̃Λ
ℓ′Λ

≥ |Λ|ρ
′

and
ℓ′Λ
ℓΛ

≥ |Λ|ρ
′

. (4.22)

Partition the cubes ℓ̃±ΛC into cubes of side length asymptotic to ℓ′Λ: let Γ
±
Λ = (ℓ′ΛZ

d) ∩ (ℓ̃±ΛC) and

ℓ̃±ΛC =
⋃

γ∈ΓΛ

Cγ,ℓ′Λ
where C±

γ,ℓ′Λ
= γ + ℓ′Λ[−1/2, 1/2]d.

Then, we have

tr(χℓ̃±ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ))) =
∑

γ∈Γ±
Λ

tr(χC±

γ,ℓ′
Λ

1E0+(ℓΛ)−dJ(Hω(Λ)))

Thus

tr2(χℓ̃±ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ))) =
∑

γ∈ΓΛ

∑

γ′∈ΓΛ

T (γ, J, ℓ′Λ, ℓΛ,Λ)T (γ
′, J, ℓ′Λ, ℓΛ,Λ)

where

T (γ) = T (γ, J, ℓ′Λ, ℓΛ,Λ) = tr(χC±

γ,ℓ′
Λ

1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ))).

We prove

Lemma 4.2. If |γ − γ′| ≥ 2ℓ′Λ then

|E (T (γ) · T (γ′))− E (T (γ)) · E (T (γ′))| ≤ Ce−(ℓ′Λ)1/ξ/C .

Hence, we have

E

∣

∣

∣
tr(χℓ̃±ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))− E

(

tr(χℓ̃±ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))
)∣

∣

∣

2

≤ C(ℓ′Λ)
d

By (4.22) and (4.21), we get, for some ρ > 0,

E

∣

∣

∣

∣

∣

(

ℓΛ

ℓ̃Λ

)d

tr(χℓ̃±ΛC1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))− |J | · |C|

∣

∣

∣

∣

∣

2

≤ C|Λ|−ρ (4.23)
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If ℓ̃Λ/ℓ
′
Λ ≤ |Λ|−ρ, (4.20) becomes

E

(∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξ

)

≤ C|Λ|−dρ. (4.24)

Now choose the scales ℓ̃+ΛLp
= ℓ̃Λ(L+1)p

and ℓ+ΛLp
= ℓΛ(L+1)p

. By (1.56), ℓ̃+ΛLp
/ℓ̃ΛLp → 1 and

ℓ+ΛLp
/ℓΛLp → 1. Moreover, the estimates (4.24) and (4.23) hold for the pairs of scales (ℓ̃+ΛLp

, ℓΛLp ),

and (ℓ̃ΛLp , ℓ
+
ΛLp

). Moreover, for p large enough, they are summable. Thus, we have proved that

• in case (1) of Theorem 1.15, ω almost surely, for L sufficiently large,
∫

J×C

Ξ2
ΛLp (ξ, x;E0, ℓ, ℓ̃

+)dξdx = 0.

• in case (2) of Theorem 1.15, ω almost surely,
(

ℓ+ΛLp

ℓ̃ΛLp

)−d
∫

J×C

Ξ2
ΛLp (ξ, x;E0, ℓ, ℓ̃

+)dξdx →
|Λ|→+∞

|J | · |C|,

(

ℓΛLp

ℓ̃+ΛLp

)−d
∫

J×C

Ξ2
ΛLp (ξ, x;E0, ℓ

+, ℓ̃)dξdx →
|Λ|→+∞

|J | · |C|

For Lp ≤ k ≤ (L+ 1)p, as the sequences (ℓΛ)Λ and (ℓ̃Λ)Λ are increasing, one has
∫

J×C

Ξ2
ΛLp (ξ, x;E0, ℓ, ℓ̃

+)dξdx ≥

∫

J×C

Ξ2
Λk

(ξ, x;E0, ℓ, ℓ̃)dξdx

≥

∫

J×C

Ξ2
ΛLp (ξ, x;E0, ℓ

+, ℓ̃)dξdx.

By (1.56), for Lp ≤ k ≤ (L+ 1)p, ℓ̃+ΛLp
∼ ℓ̃+Λk

∼ ℓ̃ΛLp and ℓ+ΛLp
∼ ℓ+Λk

∼ ℓΛLp . Hence, we get

• in case (1) of Theorem 1.15, ω almost surely, for L sufficiently large,
∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃

+)dξdx = 0.

As
∫

J×C
Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃

+)dξdx is an integer, this implies that this integer is 0.

• in case (2) of Theorem 1.15, ω almost surely,

(

ℓΛ

ℓ̃Λ

)−d ∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξdx →

|Λ|→+∞
|J | · |C|.

This completes the proof of Theorem 1.15. �

Remark 4.2. If we don’t assume that either ℓ̃Λ/ℓ
′
Λ ≤ |Λ|−ρ or ℓ̃Λ/ℓ

′
Λ ≤ |Λ|−ρ, but merely that

either tends to 0, or we do not assume condition (1.56) then, (4.20), (4.19) and (4.23) show
nevertheless that

E

(∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξ

)

→ 0 if
ℓ̃Λ
ℓΛ

→
|Λ|→+∞

0,

E

∣

∣

∣

∣

∣

(

ℓΛ

ℓ̃Λ

)d ∫

J×C

Ξ2
Λ(ξ, x;E0, ℓ, ℓ̃)dξ − |J | · |C|

∣

∣

∣

∣

∣

2

→ 0 if
ℓ̃Λ
ℓΛ

→
|Λ|→+∞

+∞.

This implies convergence in probability.
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Proof of Lemma 4.2. Define C̃±
γ,ℓ′Λ

= C±
γ,ℓ′Λ

+ ℓ′Λ[−1/2, 1/2]d; hence, in view of the computations

done in the proof of Lemma 2.2 and in section 5.1, there exists C > 0 such that, for δ > 0, we have

E

∣

∣

∣

∣

tr(χCγ,ℓ′
Λ
1N−1[N(E0)+(ℓΛ)−dJ](Hω(Λ)))− tr(χC±

γ,ℓ′
Λ

1N−1[N(E0)+(ℓΛ)−dJ](Hω(C̃
±
γ,ℓ′Λ

)))

∣

∣

∣

∣

≤ C
(

δ(ℓΛ)
d + δ−C(ℓΛ)

dCe−(ℓ′Λ)1/ξ/C
)

(4.25)

Pick δ = e−(ℓ′Λ)1/ξ/C′

for some C ′ > C. As |γ−γ′| ≥ 2ℓ′Λ, the operators Hω(C̃
±
γ,ℓ′Λ

) and Hω(C̃
±
γ′,ℓ′Λ

)

are stochastically independent of each other. Now, as by standard arguments of Schrödinger
operator theory (see e.g. [RS79]), T (γ) and T (γ′) are bounded by C(ℓ′Λ)

d, (4.25) yields the result
of Lemma 4.2 and completes its proof. �

4.3. Study of the level spacings statistics. We will first prove Theorem 1.4. To do so, we
first use a the reduction constructed in Theorem 1.2 and study the spacings for the approximated
eigenvalues given by Theorem 1.2. Then, we derive the statistics described in Theorem 1.4 from
those computations. Using the estimates obtained in the proof of Theorem 1.4, we will prove
Theorem 1.6.

4.3.1. Some preliminary considerations. We now use Theorem 1.2. The length scale ℓ′Λ (the local-

ization radius) is determined by Theorem 1.2 i.e. ℓ′ = ℓ′Λ = (R log |Λ|)1/ξ where ξ ∈ (0, 1) can be
chosen arbitrary by (Loc). Recall that ρ′ ∈ [0, ρ/(1 + d(ρ+ 1))) is fixed by assumption (1.25).
We first assume that the integrated density of states of the interval E0 + IΛ, that is, N(E0 + IΛ)
satisfies

N(E0 + IΛ) ≍ |Λ|−α (4.26)

for some α ∈ (0, 1). When this is not the case, then by assumption (1.26), we know that N(E0 +
IΛ) ≫ |Λ|−α for any α ∈ (0, 1); thus, we can partition E0 + IΛ into intervals satisfying (4.26) for
some α ∈ (0, 1).
We pick the scale ℓ = ℓΛ and so that,

ℓΛ ≍ N(E0 + IΛ)
−ν . (4.27)

We now show that ν can be chosen in (0, 1/d) so that all the assumptions of Theorem 1.2 (in
particular (1.13) and (1.17)) and Lemmas 2.1 and 2.3 (in particular (2.11)) are satisfied. Note
that, when applying Lemmas 2.1 or 2.3, in (2.11), the cube Λ is the cube Λℓ.
These requirements yield the following conditions on the exponents

1

1 + ρ′
> dν, 0 < 1−

1

α
+

ρ− ρ′

1 + ρ′
− νdρ,

ρ− ρ′

1 + ρ′
> νd(1 + ρ), 0 < 1−

1

α
+ ν −

ρ′

1 + ρ′
.

(4.28)

As
1 + ρ

1 + ρ′
> 1 >

ρ− ρ′

1 + ρ′
, to obtain (4.28) for some ν ∈ (0, 1/d) and α ∈ (0, 1), it suffices that

ρ− ρ′

(1 + ρ′)(1 + ρ)
>

dρ′

1 + ρ′
.

This is satisfied as ρ′ ∈ [0, ρ/(1 + d(ρ+ 1))).
Moreover, recalling the discussion following Lemma 2.1, we want IΛ and ℓΛ to be such that

(N(IΛ)|ΛL|)
−1 ≫ N (IΛ)

(ρ−ρ′)/(1+ρ′) |ΛℓΛ |
ρ that is, using (4.26) and (4.27), we need that

1

α
< 1 +

ρ− ρ′

1 + ρ′
− dνρ.
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This condition is fulfilled by (4.28). From now on, we assume that ℓ = ℓΛ and N(E0 + IΛ)
satisfy (4.26) and (4.27) for such α and ν. Pick β ∈ (0, 1/2) be such that

(

1

α
− 1

)

(1 + 2β) =
ρ− ρ′

1 + ρ′
− dνρ. (4.29)

Let ZΛ be the set of realizations for which the conclusions of Theorem 1.2 hold. We know that,
for any p > 0, if L is sufficiently large, one has P(ZΛ) ≥ 1−O(|Λ|−p) (see (1.15)).

Let Ñ be the number of the good cubes (i.e. cubes that determine eigenvalues of Hω(Λ)) con-

structed in Theorem 1.2 and (Λℓ(γj))1≤j≤Ñ be those cubes. Then, Ñ = |Λ|ℓ−d
Λ (1 + o(1)). As

before, define the following random variables:

• Xj = Xj(ℓ, E0 + IΛ) is the Bernoulli random variable

Xj = 1Hω(Λℓ(γj)) has exactly one eigenvalue in E0+IΛ with localization center in Λℓ−ℓ′
;

here, ℓ′ ≍ (log |Λ|)1/ξ ≪ ℓ = ℓΛ (see the discussion above);

• Ẽj = Ẽj(ℓ, E0 + IΛ) is this eigenvalue conditioned on Xj = 1.

Assume IΛ = [aΛ, bΛ] and define

ξj =
N(Ẽj)−N(E0 + aΛ)

N(E0 + bΛ)−N(E0 + aΛ)
. (4.30)

Note that ξj is valued in [0, 1]. Let Ξ denote the common distribution function of the (ξj)1≤j≤k. It
was studied in Lemma 2.3, the assumptions of which are satisfied (note that the set Λ in (2.11) in
Lemma 2.3 is the set Λℓ(γj)). The error term in (2.12) is then of order (log |Λ|)−β for some β > 0.

We first study the spacings for i.i.d. copies of the random variables (ξj)1≤j≤k. Let (ξj)1≤j≤k

denote the (ξj)1≤j≤k ordered increasingly and define

DLSξ(x, k;E0 + IΛ, ω,Λ) =
1

k − 1
#{1 ≤ j ≤ k; ξj+1 − ξj > x/k}. (4.31)

Our main technical result is

Lemma 4.3. Pick E0 ∈ I such that (1.25) be satisfied. Pick (IΛ)Λ be intervals and (ℓΛ) length
scales such that (4.26) and (4.27) be satisfied for (ν, α) satisfying (4.28). Define β by (4.29) and

let NΛ := N(E0 + IΛ)|Λ| and KΛ = Nβ
Λ .

Then, there exists C > 0 such that, for |Λ| sufficiently large, for NΛK
−1
Λ ≤ k ≤ NΛKΛ, one

sup
K−1

Λ ≤x≤KΛ

E

(

|DLSξ(x, k;E0 + IΛ, ω,Λ)−D(k,E0 + IΛ,Λ)|
2
)

≤
C

k
. (4.32)

where we have defined

D(k,E0 + IΛ,Λ) :=

∫ 1

0

(1− Ξ(y + x/k) + Ξ(y))k−1dΞ(y). (4.33)

Let (JΛ)Λ be a sequence of intervals such that sup
E∈JΛ

|E| → 0 as |Λ| → +∞. Then

sup
NΛK−1

Λ ≤k≤NΛKΛ

sup
IΛ⊂JΛ

IΛ as in Lemma 4.3

∣

∣D(k,E0 + IΛ,Λ)− e−x
∣

∣ →
|Λ‖→+∞

0. (4.34)

Proof. To analyze the spacings of the (ξj)1≤j≤k, we use the computations of section 7 in [Pyk65]
(see in particular (7.3)) that yield

∫ 1

0

(1− Ξ(y + x/k) + Ξ(y))k−1dΞ(y) = E(DLSξ(x, k;E0 + IΛ, ω,Λ)) = D(k,E0 + IΛ,Λ)
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and

E
(

[DLSξ(x, k;E0 + IΛ, ω,Λ)]
2
)

= O

(

1

k

)

+

+ 2

∫

R

∫ +∞

y+x/k

(1− Ξ(y + x/k) + Ξ(y)− Ξ(z + x/k) + Ξ(z))k−2dΞ(z)dΞ(y).

Fix ν ∈ (ξ, 1). By (4.26) and (4.27) as ℓ′ = ℓ′Λ ≍ (log |Λ|)1/ξ, one has K−1
Λ ≫ ℓdΛe

−(ℓ′Λ)ν for |Λ|
large. Thus, Lemma 2.3 and (4.29) yield that, for y − x ≥ (NΛKΛ)

−1, one has

Ξ(y)− Ξ(x) = (y − x)
(

1 + o
(

K−1
Λ

))

(4.35)

Hence, for K−1
Λ ≤ x ≤ KΛ and NΛK

−1
Λ ≤ k ≤ NΛKΛ, one has

E(DLS2
ξ (x, k; IΛ, ω,Λ))

=

∫ 1

0

∫ 1

0

(1− Ξ(y + x/k) + Ξ(y)− Ξ(z + x/k) + Ξ(z))k−2dΞ(z)dΞ(y)

− 2

∫

R

∫ y+x/k

y

(1− Ξ(y + x/k) + Ξ(y)− Ξ(z + x/k) + Ξ(z))k−2dΞ(z)dΞ(y) +O

(

1

k

)

=

∫ 1

0

∫ 1

0

(1− Ξ(y + x/k) + Ξ(y)− Ξ(z + x/k) + Ξ(z))k−2dΞ(z)dΞ(y) +O

(

1

k

)

.

Compute

(1− Ξ(y + x/k) + Ξ(y)− Ξ(z + x/k) + Ξ(z))

= (1− Ξ(y + x/k) + Ξ(y))(1− Ξ(z + x/k) + Ξ(z))

− (Ξ(z + x/k)− Ξ(z))(Ξ(y + x/k)− Ξ(y))

= (1− Ξ(y + x/k) + Ξ(y))(1− Ξ(z + x/k) + Ξ(z)) +O(k−2).

Hence, plugging this into the previous formula, we get

E(DLS2
ξ (x, k; IΛ, ω,Λ)) =

[∫ 1

0

(1− Ξ(y + x/k) + Ξ(y))k−2dΞ(y)

]2

+O

(

1

k

)

=

[∫ 1

0

(1− Ξ(y + x/k) + Ξ(y))k−1

(

1 +O

(

1

k

))

dΞ(y)

]2

+O

(

1

k

)

= D(k,E0 + IΛ,Λ)
2 +O

(

1

k

)

This completes the proof of (4.32).
Fix E0 such that (1.25) be satisfied and let us prove (4.34). For IΛ ⊂ JΛ, by Lemma 2.3, for
x ∈ [0, 1], we have,

sup
y∈[0,1−x/k]

∣

∣

∣Ξ(y + x/k)− Ξ(y)−
x

k

∣

∣

∣ ≤
x

k
αk and sup

y∈[1−x/k,1]

|Ξ(y + x/k)− Ξ(y)| ≤
x(1 + αk)

k

where sup
NΛK−1

Λ ≤k≤NΛKΛ

sup
IΛ⊂JΛ

IΛ as in Lemma 4.3

|αk| → 0 as |Λ| → +∞.

Hence, for k large,

∣

∣D(k,E0 + IΛ,Λ)− e−x
∣

∣ ≤

∫ 1−x/k

0

∣

∣eCαk − 1
∣

∣ dΞ(y) +

∫ 1

1−x/k

eCx(1+αk)/kdΞ(y) ≤ C

(

αk +
1

k

)

.

This completes the proof of (4.34) and, thus, of Lemma 4.3. �
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4.3.2. The proof of Theorem 1.4. By a classical result (see e.g. [PS98]), as the functions we are
considering are monotonous and as x 7→ e−x is continuous on [0,+∞), it suffices to prove the
almost sure pointwise convergence of DLS(x;E0 + IΛ, ω,Λ) to e−x (for x > 0).
Fix ξ′ < ξ. Pick IΛ as in Theorem 1.4. We distinguish two cases:

(1) if IΛ satisfies (4.26) for α chosen as in section 4.3.1 (see the discussion in the beginning of
that section), we can apply Theorem 1.2 and Lemma 4.3 to IΛ itself. We then set KΛ = 1
and I1,Λ = IΛ;

(2) if not, as already mentioned, we cover IΛ with disjoint intervals (Ik,Λ)1≤k≤KΛ
satisfy-

ing (4.26) of such that, for each Ik,Λ, we can apply Theorem 1.2 and Lemma 4.3; as there
are at most o(|Λ|α) such intervals (recall that N is the distribution function of an abso-
lutely continuous measure), the probability estimate for the set of good configurations ZΛ

(i.e. those for which one has the description given by Theorem 1.2 and Lemma 4.3 for all
the intervals (Ik,Λ)1≤k≤KΛ

) still satisfies P(ZΛ) ≥ 1−O(|Λ|−p) for some arbitrary p > 0.

This yields
∣

∣

∣

∣

∣

DLS(x;E0 + IΛ, ω,Λ)−
KΛ
∑

k=1

DLS(x;E0 + Ik,Λ, ω,Λ)
NΛ(E0 + Ik,Λ)

NΛ(IΛ)

∣

∣

∣

∣

∣

≤
KΛ

NΛ(IΛ)
(4.36)

where we recall that NΛ(I) is the (random) number of eigenvalues of Hω(Λ) in I.
We first study DLS(x;E0 + Ik,Λ, ω,Λ).
By (1.24), (1.20) and the approximation of the eigenvalues given by Theorem 1.2, for ω ∈ ZΛ, if

J = #{1 ≤ j ≤ Ñ ;Xj = 1} then we have

D−(ω,E0 + Ik,Λ,Λ) + αΛ ≥ DLS(x;E0 + Ik,Λ, ω,Λ) ≥ D+(ω,E0 + Ik,Λ,Λ)− αΛ (4.37)

where

• D±(ω,E0 + Ik,Λ,Λ; J) :=
#{1 ≤ j ≤ J ; ξj+1 − ξj ≥ x/Nk,Λ ± |Λ|−2}

Nk,Λ
;

• (ξj)j are the renormalized eigenvalues defined in (4.30) at the beginning of section 4.3 for
the energy interval E0 + Ik,Λ;

• Nk,Λ = N(E0 + Ik,Λ) |Λ| and αΛ → 0 as |Λ| → +∞.

Define the random variables

D±(ω,E0 + Ik,Λ,Λ) = D±(ω,E0 + Ik,Λ,Λ;#{1 ≤ j ≤ Ñ ;Xj = 1})1ZΛ
.

We prove

Lemma 4.4. One has

sup
1≤k≤KΛ

[

(Nk
Λ)

1/4 · E
(

|D±(ω,E0 + Ik,Λ,Λ)−D(Nk,Λ, E0 + Ik,Λ,Λ)|
2
)

]

≤ C. (4.38)

Before proving Lemma 4.4, let us use it to complete the proof of Theorem 1.4. We first prove the
almost sure convergence for a subsequence.
For Λ = ΛL5/ρ , by the first condition in (1.26), summing the estimate of Lemma 4.4 for 1 ≤ k ≤
KΛ

L5/ρ
, we get that

KΛ
L5/ρ
∑

k=1

∑

L≥1

E

(

∣

∣

∣
D±(ω,E0 + Ik,Λ

L5/ρ
,ΛL5/ρ)−D(NΛ

L5/ρ
, E0 + Ik,Λ

L5/ρ
,ΛL5/ρ)

∣

∣

∣

2
)

< +∞.

By (4.34) of Lemma 4.3, as E0 ∈ I satisfying (1.25), we know that

sup
1≤k≤KΛ

|D(NΛ, E0 + Ik,Λ,Λ)− e−x| →
|Λ|→+∞

0. (4.39)
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Hence, ω-almost surely,

sup
1≤k≤KΛ

L5/ρ

|D±(ω,E0 + Ik,Λ
L5/ρ

,ΛL5/ρ)− e−x| →
L→+∞

0.

Thus, by (4.37), ω-almost surely

sup
1≤k≤KΛ

L5/ρ

|DLS(x;E0 + Ik,Λ, ω,Λ)− e−x| →
L→+∞

0. (4.40)

Plugging this into (4.36), we obtain that, ω-almost surely

DLS(x;E0 + IΛ
L5/ρ

, ω,ΛL5/ρ) →
L→+∞

e−x.

To derive the almost sure convergence of (DLS(x;E0 + IΛ, ω,Λ))Λ, we use

Lemma 4.5. Fix p > 0 and r > 0. Let (IΛ)Λ be as Theorem 1.4 or IΛ = J , J as in Theorem 1.6.
Recall that NΛL

= NΛL
(IL).

Then, ω-almost surely, for L sufficiently large, if L′ ∈ [Lp, (L+1)p], except for at most o(NΛLp ) of
them, all the eigenvalues of Hω(ΛL′) in E0 + IΛL′ are at a distance less than L−r to an eigenvalue
of Hω(ΛLp) in E0 + IΛLp .

Pick p = 5/ρ and r > d. For Lp ≤ L′ ≤ (L + 1)p, by assumption (1.26) on IΛ, one has N(E0 +
IΛL′ ) = N(E0+IΛLp )(1+o(1)); so NΛL′ = NΛLp (1+o(1)). Lemma 4.5 then implies that, ω-almost
surely, for Lp ≤ L′ ≤ (L+ 1)p and L sufficiently large, one has

DLS(x; IΛL′ , ω,ΛL′) = DLS(x; IΛLp , ω,ΛLp) + o(1).

Hence, ω-almost surely, DLS(x; IΛ, ω,Λ) converges to e−x when |Λ| → +∞. This completes the
proof of Theorem 1.4. �

Remark 4.3. If one does not assume one of the conditions in (1.26), the estimate (4.38) and
Lemma 4.5 are not sufficient anymore to obtain the almost sure convergence for DLS(x; IΛ, ω,Λ).
Nevertheless, plugging the estimates (4.39), (4.38) and (4.37) into (4.36), we see that

E(|DLS(x; IΛ, ω,Λ)− e−x|) →
|Λ|→+∞

0.

This guarantees the convergence in probability.

Proof of Lemma 4.4. We now fix 1 ≤ k ≤ KΛ and, to alleviate the notations, we will write
IΛ := Ik,Λ and NΛ = Nk,Λ = N(IΛ)|Λ|. The interval IΛ satisfies the requirements to apply
Theorem 1.2 and Lemma 4.3 (see the discussion in the beginning of section 4.3.1).
As D± is bounded by C|Λ|, as the (Xj)j are i.i.d. and as P(ZΛ) ≤ |Λ|−p for any p > 0, we compute

E
(

|D±(ω, IΛ,Λ)−D(NΛ, E0 + IΛ,Λ)|
2
)

≤
1

|Λ|p
+

Ñ
∑

k=0

(

Ñ

k

)

P(X1 = 1)k(1− P(X1 = 1))Ñ−k·

· E
(

|DLSξ(x± |Λ|−2, k;E0 + IΛ, ω,Λ)−D(NΛ, E0 + IΛ,Λ)|
2
)

.

Recall that NΛ = N(IΛ)|Λ|. As P(X1 = 1) = N(IΛ)ℓ
d
Λ(1+ o(1)) and Ñ = |Λ|ℓ−d

Λ (1+ o(1)), for any
ε > 0, there exists δ > 0 such that

∑

|k−NΛ|≥N
1/2+ε
Λ

(

Ñ

k

)

P(X1 = 1)k(1− P(X1 = 1))Ñ−k ≤ e−Nδ
Λ . (4.41)
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Hence, by the first condition in (1.26), one gets

E
(

|D±(ω, IΛ,Λ)−D(NΛ, E0 + IΛ,Λ)|
2
)

≤
1

|Λ|p
+ e−Nδ

Λ/2 + 2
∑

|k−NΛ|<N
1/2+ε
Λ

|D(k,E0,Λ)−D(NΛ, E0 + IΛ,Λ)|
2

+ 2
∑

|k−NΛ|<N
1/2+ε
Λ

E
(

|DLSξ(x± |Λ|−2, k;E0 + IΛ, ω,Λ)−D(k,E0,Λ)|
2
)

. (4.42)

For |k −NΛ| < N
1/2+ε
Λ , let us estimate D(k,E0,Λ)−D(NΛ, E0 + IΛ,Λ) that is

D(k,E0,Λ)−D(NΛ, E0 + IΛ,Λ)

=

∫ 1

0

(

(1− Ξ(y + x/k) + Ξ(y))k−1 − (1− Ξ(y + x/NΛ) + Ξ(y))NΛ−1
)

dΞ(y). (4.43)

Using (4.35), for |k −NΛ| < N
1/2+ε
Λ , compute

∣

∣(1− Ξ(y + x/k) + Ξ(y))k−1 − (1− Ξ(y + x/NΛ) + Ξ(y))NΛ−1
∣

∣

= (1− Ξ(y + x/k) + Ξ(y))k−1·

·

∣

∣

∣

∣

∣

1−

(

1− Ξ(y + x/NΛ) + Ξ(y)

1− Ξ(y + x/k) + Ξ(y)

)NΛ

(1− Ξ(y + x/NΛ) + Ξ(y))NΛ−k

∣

∣

∣

∣

∣

≤ C
(

1− e−C(NΛ−k)/NΛe−C(NΛ−k)/k
)

≤ CN
−1/2+ε
Λ .

Hence, plugging this into (4.43), one obtains

|D(k,E0,Λ)−D(NΛ, E0 + IΛ,Λ)| ≤ CN
−1/2+ε
Λ .

Plugging this and the result of Lemma 4.3 into (4.42), we obtain

E
(

|D±(ω, IΛ,Λ)−D(NΛ, E0 + IΛ,Λ)|
2
)

≤ CN
−1/2+3ε
Λ .

We pick ε = 1/12 to completes the proof of Lemma 4.4. �

Proof of Lemma 4.5. Pick α ∈ (0, 1) and q > 1. By Lemma 3.1, with a probability at least 1−L−q,
the eigenvalues of Hω(ΛL′) in E0 + IΛL′ that are at a distance more than L−r to an eigenvalue of
Hω(ΛLp) in E0 + IΛLp fall into two categories:

(1) either they belong to E0 + (IΛLp \ IΛL′ ) which may be empty,
(2) or they have a localization center that belongs e.g. to the annulus ΛL′ \ ΛLp−Lα .

The numbers of eigenvalues in the first category is bounded by o(NΛLp ) as a consequence of the
second part of assumption (1.26). The numbers of eigenvalues in the second category is bounded
by o(NΛLp ). The Borel-Cantelli lemma then implies Lemma 4.5. �

4.3.3. The proof of Theorem 1.6. The proof is analogous to that of Theorem 1.4. As in that proof,
it suffices to prove the almost sure pointwise convergence of DLS′(x; J, ω,Λ) to gν,J(x) for x > 0.
Fix ξ′ < ξ. Pick J = [a, b] as in Theorem 1.6. We can then cover it with disjoint intervals
(Ij,Λ)1≤j≤JΛ

of length |J ||Λ|−α (here α is chosen as in the beginning of section 4.3.1) and containing
the point ej,Λ := a + (j − 1/2)|J ||Λ|−α (so that JΛ ≍ |Λ|α) and such that, for each Ij,Λ, we can
apply Lemma 4.3. This yields

∣

∣

∣

∣

∣

∣

DLS′(x; J, ω,Λ)−
JΛ
∑

j=1

DLS (ν(ej,Λ)x/N(J); Ij,Λ, ω,Λ)
NΛ(Ij,Λ)

NΛ(J)

∣

∣

∣

∣

∣

∣

≤
CJΛ
|Λ|

(4.44)
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where DLS′ is defined in (1.30).
Using the uniform continuity of ν, the same computations as in the proof of Theorem 1.4 yield the
following analogue of (4.40): for all ε > 0,

sup
1≤j≤JΛ

ν(ej,Λ)≥ε
Λ=Λ

L5/ρ

∣

∣

∣DLS (ν(ej,Λ)x/N(J); Ij,Λ, ω,Λ)− e−ν(ej,Λ)x/N(J)
∣

∣

∣ →
L→+∞

0, ω − a.s..

The large deviation principle for the eigenvalue counting function, Theorem 1.3, ensures that, ω
almost surely, for |Λ| large, NΛ(J) ≥ |Λ||J |/2 and

lim
L→+∞

sup
1≤j≤JΛ

ν(ej,Λ)≥ε

∣

∣

∣

∣

NΛ(Ij,Λ)

NΛ(J)
·

N(J)

ν(ej,Λ)|Ij,Λ|
− 1

∣

∣

∣

∣

= 0.

Moreover, using the uniform continuity of ν on J , we have that for any δ > 0, there exists ε > 0
such that, for L sufficiently large, one has

sup
1≤j≤JΛ

ν(ej,Λ)≤ε

∣

∣

∣

∣

NΛ(Ij,Λ)

|Ij,Λ|NΛ(J)

∣

∣

∣

∣

≤ δ.

Hence, by (4.44), ω-almost surely, there exists C > 0 such that ε > 0, one has

∑

1≤j≤JΛ

ν(ej,Λ)≤ε
Λ=Λ

L5/ρ

DLS (ν(ej,Λ)x/N(J); Ij,Λ, ω,Λ)
NΛ(Ij,Λ)

NΛ(J)
≤ δ

∑

1≤j≤JΛ

ν(ej,Λ)≤ε
Λ=Λ

L5/ρ

|Ij,Λ| ≤ Cδ,

thus

lim sup
L→+∞
Λ=Λ

L5/ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

DLS′(x; J, ω,Λ)−
∑

1≤j≤JΛ

ν(ej,Λ)≥ε
Λ=Λ

L5/ρ

ν(ej,Λ)|Ij,Λ|

N(J)
e−ν(ej,Λ)x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cδ.

On the other hand, as ν is continuous, non negative on J and x > 0, one has, for any δ > 0, taking
ε > 0 sufficiently small, one has

∣

∣

∣

∣

∣

∣

∣

∣

∑

1≤j≤JΛ

ν(ej,Λ)<ε

ν(ej,Λ)|Ij,Λ|

N(J)
e−ν(ej,Λ)x/N(J)

∣

∣

∣

∣

∣

∣

∣

∣

≤ δ

and

lim
L→+∞

∑

1≤j≤JΛ
Λ=Λ

L5/ρ

ν(ej,Λ)|Ij,Λ|

N(J)
e−ν(ej,Λ) x/N(J) =

|J |

N(J)

∫ 1

0

e−ν(a+|J|y) x/N(J)ν(a+ |J |y)dy

=
1

N(J)

∫

J

e−ν(λ) x/N(J)ν(λ)dλ.

Thus, for δ > 0, we get

lim sup
L→+∞
Λ=Λ

L5/ρ

∣

∣

∣

∣

DLS′(x; J, ω,Λ)−

∫

J

e−νJ (λ)xνJ(λ)dλ

∣

∣

∣

∣

≤ δ.
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Hence, letting δ tend to 0, we get that, ω almost surely,

lim
L→+∞
Λ=Λ

L5/ρ

DLS′(x; J, ω,Λ) =

∫

J

e−νJ (λ)xνJ(λ)dλ.

To complete the proof of Theorem 1.6, we use Lemma 4.5 as in the proof of Theorem 1.4. �

4.4. Study of the localization centers statistics. We prove Theorems 1.7.
As in the proofs of Theorems 1.4 and 1.6, it suffices to prove the simple convergence in (1.34) to
obtain the uniform convergence as we are dealing with non increasing functions and the limit is
continuous. Thus, pick s > 0 and to prove (1.34), it suffices to prove

E

(

∣

∣

∣DCS(s; IΛ,Λ, ω)− e−sd
∣

∣

∣

2
)

→
ΛրRd

0. (4.45)

We apply Theorem 1.2 to the cube Λ and the interval IΛ satisfying (1.33). We keep the same
notations as in Theorem 1.2. Let Γ denote the set of centers γi constructed in Theorem 1.2. Let
Γb denote the set of γ ∈ Γ that do not not satisfy (1), (2) and (3) of Theorem 1.1. Theorem 1.2
states that, for ω ∈ ZΛ, one has

#Γb = |Λ|ℓ−dO
[

(|IΛ|ℓ
d)1+ρ +N(E0 + IΛ)ℓ

d−1ℓ′
]

where ℓ and ℓ′ are defined in Theorem 1.2.
By (1.33), one has

N(E0 + IΛ)
−1/d ≫ ℓ. (4.46)

Thus, if we define

Γ′ = {γ ∈ Γ; dist(γ,Γb) ≥ 10s(N(E0 + IΛ))
−1/d}

then

#Γ′ = O(#Γb ·N(E0 + IΛ)
−1ℓ−d) = o(|Λ|ℓ−d). (4.47)

For γ ∈ Γ, define the random variable Xγ to be equal

• to 1 if Hω(Λℓ(γ)) has an eigenvalue in IΛ, and, for all γ
′ ∈ Γ such that |γ′ − γ| ≤ (N(E0 +

IΛ))
−1/ds, Hω(Λℓ(γ)) has no eigenvalue in IΛ,

• to 0 if not.

Then, by (4.46), (4.47) and the estimate given in Theorem 1.2 on the number of eigenvalues of
Hω(Λ) not associated to an eigenvalue for a cube (Λℓ(γ))γ∈Γ, we get that, for any ε > 0, for |Λ|
sufficiently large, one has

sup
ω∈ZΛ

(DCS′(s− ε; IΛ,Λ, ω)−DCS(s; IΛ,Λ, ω))

+ sup
ω∈ZΛ

(DCS(s; IΛ,Λ, ω)−DCS′(s+ ε; IΛ,Λ, ω)) ≤ ε (4.48)

where DCS(s; IΛ,Λ, ω) is defined in (1.32) and

DCS′(s; IΛ,Λ, ω) =
1

N(E0 + IΛ,Λ, ω)

∑

γ∈Γ

Xγ .

As 0 ≤ DCS(s; IΛ,Λ, ω) ≤ 1 and 0 ≤ DCS′(s; IΛ,Λ, ω) ≤ 2 (for Λ large), in view of (4.48), to
prove (4.45), it suffices to prove

E

(

∣

∣

∣DCS′(s; IΛ,Λ, ω)− e−sd
∣

∣

∣

2
)

→
ΛրRd

0. (4.49)
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As the Hamiltonians Hω(Λℓ(γ)) and Hω(Λℓ(γ)) are independent when γ 6= γ′, (γ, γ′) ∈ Γ2, using
Lemma 2.1, we compute

E(Xγ) = (1−N(E0 + IΛ)ℓ
d)(N(E0+IΛ)ℓd)−1sd−1N(E0 + IΛ)ℓ

d + o(|IΛ|ℓ
d)

= e−sdN(E0 + IΛ)ℓ
d + o(|IΛ|ℓ

d).

Thus, using Theorem 1.3, one computes

E(DCS′(s; IΛ,Λ, ω)) = E





1

N(E0 + IΛ,Λ, ω)

∑

γ∈Γ

Xγ





=
1

N(E0 + IΛ)|Λ|

|Λ|

ℓd
e−sdN(E0 + IΛ)ℓ

d + o(1) = e−sd + o(1).

(4.50)

On the other hand, by (4.46) and their definition, Xγ and Xγ′ are independent when |γ′ − γ| ≤
2(N(E0 + IΛ))

−1s+ 1. Hence, using Theorem 1.3, one computes

∆V := E(DCS′(s; IΛ,Λ, ω)
2)− E(DCS′(s; IΛ,Λ, ω))

2

=
1 + o(1)

(N(E0 + IΛ)|Λ|)2

∑

γ∈Γ

∑

γ′∈Γ
|γ′−γ|≤2(N(E0+IΛ))−1s+1

(E(XγXγ′)− E(Xγ)E(Xγ′)).

Thus, as #Γ ≤ C|Λ|/ℓd, by Lemma 2.1, one has

∆V ≤
2

(N(E0 + IΛ)|Λ|)2
|Λ|

ℓd
1

ℓdN(E0 + IΛ)
N(E0 + IΛ)ℓ

d =
2

N2(E0 + IΛ)|Λ|ℓd
. (4.51)

Condition (1.33) then ensures that the choice of the length ℓ in Theorem 1.2 can be made such
that N2(E0 + IΛ)|Λ|ℓ

d → +∞ as |Λ| → +∞.
Thus, (4.50) and (4.51) imply (4.49). This completes the proof of Theorem 1.7. �

5. Proof of Proposition 1.2 and Theorem 1.8

We start with the proof of Proposition 1.2 then we prove Theorem 1.8.

5.1. The proof of Proposition 1.2. Let us prove point (1). Consider x(E) and x′(E) two centers
of localization for some energy E ∈ I. Let ϕ be a normalized eigenstate associated to E. Then,
by the assumption (Loc’), we know that, for all x,

‖ϕ‖2x ≤ Cω〈x(E)〉qe−γ|x−x(E)|ξ〈x′(E)〉qe−γ|x−x′(E)|ξ .

Hence, summing over x, we get that

1 ≤ Cd Cω 〈x(E)〉q〈x′(E)〉q
1

γd/ξ
e−γ|x(E)−x′(E)|ξ .

Taking the logarithm, we immediately get (1.36).
Let us now prove point (2). First, note that, by the Wegner estimate (W), the conditionN(IL)L

d →
+∞ implies that |IL| & L−d for L large. Hence, if J is an interval centered at 0 such that
|J | = o(L−d), then N(IL + J) = N(IL)(1 + o(1)).
By definition, one has

N(IL, L) =
∑

n; En∈IL
γn∈ΛL

‖ϕn‖
2.

where, for n, En is an eigenvalues of Hω, ϕn an associated eigenfunction and γn a localization
center of ϕn in ΛL.
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Fix α ∈ (0, 1). Using the estimate (1.35) in the same way as the estimates (Loc) was used in the
proof of Lemma 3.1, we get that

∣

∣

∣

∣

∣

∣

∣

∣

N(IL, L)−
∑

n; En∈IL
γn∈ΛL

‖ϕn‖
2
ΛL+Lα

∣

∣

∣

∣

∣

∣

∣

∣

≤ CωL
q+de−2γLαξ

where ‖ · ‖ΛL+Lα denotes the L2-norm on the cube ΛL+Lα .
Hence, we have

N(IL, L) ≤
∑

n; En∈IL
γn∈ΛL

‖ϕn‖
2
ΛL+Lα + CωL

q+de−2γLαξ

≤ tr(1IL(Hω)1ΛL+Lα ) + CωL
q+de−2γLαξ

.

By standard estimates on Schrödinger operators (see e.g. [Sim05]), we know that

0 ≤ tr(1IL(Hω)1ΛL+Lα ) ≤ CLd. (5.1)

Pick χ a smooth cut-off function with gradient vanishing outside ΛL+Lα \ ΛL+Lα/2. Then, using
the localization estimate (Loc’), one easily checks that, for L sufficiently large

• for n such that En ∈ IL and γn ∈ ΛL, χϕn satisfies

‖(Hω(ΛL+Lα)− En)(χϕn)‖ ≤ e−Lαξ/C ; (5.2)

• the Gram matrix for the family (χϕn)En∈IL, γn∈ΛL
satisfies

((〈χϕn, χϕm〉))En∈IL, γn∈ΛL
Em∈IL, γm∈ΛL

= Id+O
(

e−Lαξ/C
)

. (5.3)

As (5.1) implies that the number of n such that En ∈ IL and γn ∈ ΛL is bounded by CLd, we get
that

N(IL, L) ≤ tr(1ĨL
(Hω(ΛL+2Lα))) + CωL

q+de−2γLαξ

where ĨL = IL + [−eL
αξ/C , eL

αξ/C ].
Hence, if, as in section 3, N(ω,ΛL+Lα , , IL) denotes the number of eigenvalues of Hω(ΛL+Lα) in
IL, we have

N(IL, L) ≤ N(ω,ΛL+Lα , , IL) + CωL
q+de−2γLαξ

. (5.4)

Recall that we assumed N(IL)|IL|
−1−ρ → +∞ where ρ is given by (M). The proof of Theorem 1.3

then also shows that, if N(ω,ΛL+Lα ,ΛL, IL) denotes the number of eigenvalues of Hω(ΛL+Lα) in
IL having a localization center in ΛL, then, for any q,

P {|N(ω,ΛL+Lα ,ΛL, IL)−N(IΛ)|Λ|| = o(N(IΛ)|Λ|)} ≥ 1− Cq(N(IΛ)|Λ|)
−q

≥ 1− CqL
−2

as N(IL)L
d−ε → +∞ for some ε > 0.

So, by the Borel-Cantelli Lemma and Theorem 1.3, we know that, ω-almost surely,

N(ω,ΛL+Lα ,ΛL, IL) = N(ω,ΛL+Lα , , IL)(1 + o(1)) = N(IL)L
d(1 + o(1)). (5.5)

One has
N(IL, L) ≥

∑

n; En∈IL
γn∈ΛL

‖ϕn‖
2
ΛL+Lα .

Using the same cut-off of the eigenfunctions as above, we then see that

N(IL, L) ≥ N(ω,ΛL+Lα ,ΛL, IL).
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Using this estimate, (5.5), (5.4) and Theorem 1.3, we get (1.37) and complete the proof of Propo-
sition 1.2. �

5.2. The proof of Theorem 1.8. Let us now consider consider ω in the full measure set where the
statements of Theorems 1.4, 1.6 and Proposition 1.2 hold. As in section 5.1, ω-almost surely, for L
large, if E is an eigenvalue of Hω with localization center in ΛL, then there exists E′ an eigenvalue
of Hω(ΛL+Lα) such that |E−E′| ≤ e−Lα/C . To avoid confusion, rename DLS(x; IL, ω, L) defined
by (1.24) to DLSf (x; IL, ω, L). Hence, for ε > 0 fixed, we have, for L large enough,

• when |IL| → 0 satisfying the assumptions of Theorem 1.8, we have

DLS(ν(E0)x− ε; IL, ω, L) ≥
N(IL, L)

N(IL, ω,ΛL)
·DLSf (x; IL, ω, L)

≥ DLS(ν(E0)x+ ε; IL, ω, L);

• when IL = J a fixed interval satisfying the assumptions of Theorem 1.8, we have

DLS′(x− ε; J, ω, L) ≥
N(IL, L)

N(J, ω,ΛL)
DLSf (x; J, ω, L) ≥ DLS′(x+ ε; J, ω, L).

Thus, Theorem 1.8 is an immediate corollary of Theorems 1.4 and 1.6, and the second point of
Proposition 1.2. �

6. Appendix

6.1. The proof of Lemma 1.3. Compute

∫

R

∣

∣

∣

∣

N(E + x)−N(E + y)

x− y
− ν(E)

∣

∣

∣

∣

=

∫

R

∣

∣

∣

∣

∣

1

x− y

∫ E+x

E+y

(ν(e)− ν(E))de

∣

∣

∣

∣

∣

≤

∫ 1

0

(∫

R

|ν(E + y + (x− y)e)− ν(E)|dE

)

de.

As ν ∈ L1(R), Lebesgue’s dominated convergence theorem ensures that the last integral converges
to 0 when x and y tend to 0. Hence, the quotient in the first integral converges to 0 for almost
every E. This completes the proof of Lemma 1.3. �

6.2. Local control on the exponential decay of eigenfunctions. In this section, we estab-
lish SUDEC and SULE estimates for the eigenfunctions assciated to an eigenvalue in the localized
regime of a random operator restricted to a finite volume. These are the analogues of the infinite
volume estimates introduced in [dRJLS96] and proved in [dRJLS96, GK06]. We denote by ΣCL

the region of complete localization for the random operator Hω. It is defined as the set of energies
E ∈ I where we have all the conclusions of the bootstrap multiscale analysis of [GK01] or the
fractional moment method of [AM93, Aiz94]. These conclusions turn out to be equivalent proper-
ties describing the localized regime [GK04, GK06]. In Theorem 6.1, we provided new equivalent
characterizations of the region of complete localization, involving this time finite volume operators,
rather than the infinite volume one. We prove

Theorem 6.1. Let I ⊂ Σ be a compact interval and assume that Wegner’s estimate (W) holds
in I. For L given, consider Λ = ΛL(0) a cube of side length L centered at 0, and denote by ϕω,Λ,j,
j = 1, · · · , tr1I(Hω(Λ)), the normalized eigenvectors of Hω(Λ) with corresponding eigenvalue in I.
The following are equivalent

(1) I ⊂ ΣCL
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(2) For all E ∈ I, there exists θ > 3d− 1,

lim sup
L→∞

P

{

∀x, y ∈ Λ, |x− y| ≥
L

2
, ‖χx(Hω(Λ)− E)−1χy‖ ≤ L−θ

}

= 1. (6.1)

(3) For all ξ ∈ (0, 1),

sup
y∈Λ

E

{

∑

x∈Λ

e|x−y|ξ sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

}

< ∞. (6.2)

(4) There exists ξ ∈ (0, 1),

sup
y∈Λ

E

{

∑

x∈Λ

e|x−y|ξ sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

}

< ∞. (6.3)

(5) For all ξ ∈ (0, 1),

sup
y∈Λ

E











∑

x∈Λ

e|x−y|ξ sup
supp f⊂I
|f |≤1

‖χxf(Hω(Λ))χy‖2











< ∞. (6.4)

(6) There exists ξ ∈ (0, 1),

sup
y∈Λ

E











∑

x∈Λ

e|x−y|ξ sup
supp f⊂I
|f |≤1

‖χxf(Hω(Λ))χy‖2











< ∞. (6.5)

(7) There exists ξ ∈ (0, 1),

sup
y∈Λ

sup
supp f⊂I
|f |≤1

E

{

∑

x∈Λ

e|x−y|ξ‖χxf(Hω(Λ))χy‖2

}

< ∞. (6.6)

(8) (SUDEC for finite volume with polynomial probability) For all p > d, there is q = qp,d so
that for all ξ ∈ (0, 1), for any L large enough, the following holds with probability at least
1−L−p: for any eigenvector ϕω,Λ,j of Hω,Λ, with energy in I, for any (x, y) ∈ Λ2, one has

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ Lqe−|x−y|ξ . (6.7)

(9) (SULE for finite volume with polynomial probability) For all p > d, there is q = qp,d so that
ξ ∈ (0, 1), for any L large enough, the following holds with probability at least 1−L−p: for
any eigenvector ϕω,Λ,j of Hω,Λ, with energy in I, there is a center of localization xω,Λ,j ∈ Λ,
so that for any x ∈ Λ, one has

‖ϕω,Λ,j‖x ≤ Lqe−|x−xω,Λ,j |
ξ

. (6.8)

(10) (SUDEC for finite volume with subexponential probability) For all ν, ξ ∈ (0, 1), ν < ξ,
for any L large enough, the following holds with probability at least 1 − e−Lν

: for any
eigenvector ϕω,Λ,j of Hω,Λ, with energy in I, for any (x, y) ∈ Λ2, one has

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ e2L
ν

e−|x−y|ξ . (6.9)

(11) (SULE for finite volume with subexponential probability)For all ν, ξ ∈ (0, 1), ν < ξ, for any
L large enough, the following holds with probability at least 1− e−Lν

: for any eigenvector
ϕω,Λ,j of Hω,Λ, with energy in I, there is a center of localization xω,Λ,j ∈ Λ, so that for
any x ∈ Λ, one has

‖ϕω,Λ,j‖x ≤ e2L
ν

e−|x−xω,Λ,j |
ξ

. (6.10)
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Moreover one can pick q = p+ d in (8) and q = p+ 3
2d in (9).

Remark 6.1. Theorem 6.1 provides a finite volume analog of [GK06, Theorem 1 and Corollary 3].
If generalized eigenfunctions are needed in the infinite volume case, the normalized eigenfunctions
are good enough in the finite volume one for the spectrum intersected with the interval I is discrete.
For discrete models, using e.g. the finite volume fractional moment criteria of [ASFH01], one can
derive bounds of the same type as (6.8) where ξ = 1. This has been done in [Kl11].

Proof of Theorem 6.1. We start by describing precisely ΣCL, which is the set of energies where the
conclusion of the bootstrap multiscale analysis of [GK01] is valid: ΣCL for the random operator Hω

is defined as the set of E ∈ I for which there exists some open interval I(E) ⊂ I, with E ∈ I(E),
such that, given any ζ ∈ (0, 1) and α ∈ (1, ζ−1), there exists a length scale L0 ∈ 6N and a mass
m > 0, so that if we set Lk+1 = [Lα

k ]6N for k = 0, 1, . . . , we have

P {R (m,Lk, I(E), x, y)} ≥ 1− e−Lζ
k (6.11)

for all k = 0, 1, . . ., and x, y ∈ Z
d with |x− y| > Lk +R0, where

R(m,L, I, x, y) =

{

ω;
for every E′ ∈ I , either ΛL(x)

or ΛL(y) is (ω,m,E′)-regular

}

. (6.12)

Here [K]6N = max{L ∈ 6N; L ≤ K}; we work with scales in 6N for convenience; R0 > 0 is given
in Assumption (IAD).
Given E ∈ R, x ∈ Z

d and L ∈ 6N, we say that the box ΛL(x) is (ω,m,E)-regular for a given
m > 0 if E /∈ σ(Hω(ΛL(x)) and

‖Γx,LRω,x,L(E)χx,L3
‖ ≤ e−mL, (6.13)

where Rω,x,L(E) = (Hω(ΛL(x)) − E)−1 and Γx,L denotes the charateristic function of the “belt”

ΛL−1(x)\ΛL−3(x) when H = L2(Rd, dx) (the arguments can be easily modified for H = ℓ2(Zd)).
The interval I in Theorem 6.1 being compact, we can extract from ∪E∈II(E) ⊃ I a finite number
of intervals I(E) that cover I. Thus, with no loss, we may assume that (6.11) is valid for the
interval I itself.
We turn to the proof of Theorem 6.1 per se. That (1) ⇐⇒ (2) is due to [GK04]. Note that if (6.1)
holds, then

lim sup
L→∞

P

{

‖Γ0,LRω,0,L(E)χ0,L3
‖ ≤ L−θ−2d+1

}

= 1.

Assume (2), that is (6.11) holds for the interval I. We show that (3) holds. A standard com-
putation (see [GK04, (EDI)], [Kir08, Eq.(8.10)]) shows that if ΛL(x) is (ω,m,E)-regular, then, if

Hω(ΛL(x))ϕω,Λ,j = Ẽϕω,Λ,j and ‖ϕω,Λ,j‖ = 1, then

‖ϕω,Λ,j‖x . Ld−1‖Γx,LRω,x,L(Ẽ)χx,L3
‖ ≤ e−

m
2 L, (6.14)

whenever L is large enough, depending only on d,m.
It follows that for any (x, y) ∈ Λ2, if k is so that Lk ≤ |x − y| < Lk+1, then for any ω ∈
R(m,L, I, x, y), for any normalized ϕω,Λ,j ,

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ e−
m
2 Lk ≤ e−

m
2 |x−y|

1
α . (6.15)

As a consequence,

E

{

sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

}

≤ e−
m
2 |x−y|

1
α + e−|x−y|

ζ
α ≤ 2e−|x−y|

ζ
α , (6.16)

for |x − y| large enough. Thus, (6.2) follows for any ξ < ζα−1. Since ζ < 1 < α can be chosen
arbitrarily close to 1, (3) follows.
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(3) clearly implies (4).
To see that (3) implies (5), it is enough to decompose the operator f(Hω(Λ)) over the eigenvectors
(ϕω,Λ,j)j and note that ‖χxΠϕω,Λ,j

χy‖2 = ‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y, when Πϕω,Λ,j
is the orthogonal

projection on ϕω,Λ,j .
That (5) =⇒ (6) =⇒ (7) is immediate.
Assume (3). We prove (8). We have

P

(

∃(x, y) ∈ Λ2, e|x−y|ξ sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≥ Lp+d

)

(6.17)

≤ Ld sup
y∈Λ

∑

x∈Λ

P

(

e|x−y|ξ sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≥ Lp+d

)

(6.18)

≤ L−p sup
y∈Λ

∑

x∈Λ

E

(

e|x−y|ξ sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

)

(6.19)

. L−p. (6.20)

In other terms, with probability at least 1 − L−p, we have ‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y‖ ≤ Lp+de−|x−y|ξ ,
for any j and (x, y) ∈ Λ2, and (8) holds.
We show that (8) and (9) are equivalent. Assume (8) and let xω,Λ,j be a center of localization for

ϕω,Λ,j . Since ‖ϕω,Λ,j‖ = 1, note that ‖ϕω,Λ,j‖x & L−d/2. We write (6.7) with y = xω,Λ,j and (6.8)

follows from the last observation with a constant q′ = q+ d
2 . Conversely, if (9) holds, then it follows

from (6.8) that

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ L2qe−|x−xω,Λ,j |
ξ

e−|y−xω,Λ,j |
ξ

≤ L2qe−|x−y|ξ . (6.21)

We show that (8) =⇒ (2). Assume (8). For any given E ∈ I, thanks to (W), we may assume that
d(E, σ(Hω(Λ))) ≥ L−p, with probability at least 1 − L−p+d. As a consequence, for any L large
enough, for any (x, y) ∈ Λ2, |x− y| ≥ L/2,

‖χx(Hω(Λ)− E)−1χy‖ ≤ Lp
∑

j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y (6.22)

≤ Lp+qe−Lξ

. (6.23)

The estimate (2) follows, regardless of the values of p, q, ξ.
The proofs related to (10) and (11) are similar.
It remains to show (7) =⇒ (2). Assume (7) and pick E ∈ I. Set δ = L−p. By (W), with probability
at least 1− L−p, we have

(Hω(Λ)− E)−1 = (Hω(Λ)− E)−11Σ\[E−δ,E+δ](Hω(Λ)). (6.24)
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Define the function fE,δ(λ) = δ(λ− E)−11Σ\[E−δ,E+δ](λ). Note that |fE,δ| ≤ 1. It follows that

P

(

∃(x, y) ∈ Λ2, |x− y| ≥
L

2
, ‖χx(Hω(Λ)− E)−1χy‖ ≥ L−θ

)

(6.25)

≤ L−p +
∑

(x,y)∈Λ2

|x−y|≥L/2

P
(

‖χxfE,δ(Hω(Λ))χy‖ ≥ L−θ−p
)

(6.26)

≤ L−p + L−p sup
y∈Λ

∑

x∈Λ
|x−y|≥L/2

Lθ+2p+d
E (‖χxfE,δ(Hω(Λ))χy‖) (6.27)

≤ L−p + L−p sup
y∈Λ

∑

x∈Λ

(2|x− y|)θ+2p+d
E (‖χxfE,δ(Hω(Λ))χy‖2) . L−p. (6.28)

The last observation stated in the theorem follows from the proof above. �
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