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Abstract. We study the cut-off resolvent of semiclassical Schrödinger operators on Rd

with bounded compactly supported potentials V . We prove that for real energies λ2 in
a compact interval in R+ and for any smooth cut-off function χ supported in a ball near
the support of the potential V , for some constant C > 0, one has

‖χ(−h2∆ + V − λ2)−1χ‖L2→H1 ≤ C eCh
−4/3 log 1

h .

This bound shows in particular an upper bound on the imaginary parts of the resonances
λ, defined as a pole of the meromorphic continuation of the resolvent (−h2∆+V −λ2)−1

as an operator L2
comp → H2

loc: any resonance λ with real part in a compact interval away
from 0 has imaginary part at most

Imλ ≤ −C−1 eCh
−4/3 log 1

h .

This is related to a conjecture by Landis: The principal Carleman estimate in our proof
provides as well a lower bound on the decay rate of L2 solutions u to −∆u = V u with
0 6≡ V ∈ L∞(Rd). We show that there exist a constant M > 0 such that for any such u,
for R > 0 sufficiently large, one has∫

B(0,R+1)\B(0,R)

|u(x)|2dx ≥M−1R−4/3e−M‖V ‖
2/3
∞ R4/3

‖u‖22.
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1. Introduction

In quantum mechanics the study of scattering systems naturally leads to the study of
quantum resonances or scattering poles, which can be defined as the complex-valued poles
of the meromorphic continuation of the scattering matrix or of the resolvent of the Hamil-
tonian into the “nonphysical sheet” of the complex plane. They can also be seen as a
generalization of eigenvalues of a bounded system in which energy can scatter to infinity.
A typical associated resonance state has then a rate of oscillation and a rate of decay or
“inverse life-time” which can be associated to the imaginary part of the resonance. In
wave scattering for instance, one can describe the long-time dynamics of a wave, scattered
on an obstacle or a potential, via the resonances and the associated resonant states. It
is then the resonances closest to real axis, i.e. those with the longest “life-time”, whose
contribution in the scattered wave “survives” the longest. Therefore, the study of the
resonances close to the real axis is in some sense the most pertinent one.
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We consider the semiclassical Schrödinger operator on Rd

PV
def
= −h2∆ + V (1.1)

where h ∈ (0, 1] denotes the semiclassical parameter and the potential V ∈ L∞comp(Rd;R)
is real-valued with compact support. The potential V (x) = V (x;h) may depend on h > 0.
However, in this case we suppose that

‖V ‖∞ = CV < +∞ (1.2)

and that the support of V is contained in the ball B(0, R0) b Rd of radius R0 > 0, with
both constants CV > 0 and R0 > 0 independent of h > 0.

1.1. Resolvent bounds. We prove the following resolvent estimate:

Theorem 1. Let I be a compact interval in R\{0}. Let R > R0 and assume that the
dimension d ≥ 2. Then there exists constants C > 0 and h0 ∈ (0, 1], so that for all
0 < h ≤ h0, all v ∈ L2

comp(B(0, R)) and all λ ∈ I

‖(PV − λ2)−1v‖H1(B(0,R)) ≤ C eCh
−4/3 log 1

h ‖v‖2. (1.3)

In dimension d = 1 a stronger result is known: there we have that

‖(PV − λ2)−1v‖H1(B(0,R)) ≤ C eCh
−1‖v‖2, (1.4)

see for instance the proof in [DZ, Theorem 2.29]. From our proof of Theorem 1 in dimension
d ≥ 2 we get actually that the statement holds when we replace H1(B(0, R)) on the left

hand side of (1.3) by H1(B(0, Rh−1/3) for any R > 0.
Equivalently, we can formulate the statement of Theorem 1 as an estimate on the cut-off

resolvent. More precisely, we have for any χ ∈ C∞c (Rd) with 0 ≤ χ ≤ 1 and χ ≡ 1 near
B(0, R0) that there exist constants C > 0 and h0 ∈ (0, 1] such that

‖χ(PV − λ2)−1χ‖L2→H1 ≤ C eCh
−4/3 log 1

h . (1.5)

Shapiro [Sha18] obtained independently from our work a quantitative limiting absorp-
tion principle for PV , with V ∈ L∞comp(Rd;R), in dimension d ≥ 1. Shapiro proved that
for fixed positive energy E > 0 and s > 1/2 one has for h > 0 small enough and any ε > 0
that

‖〈|x|〉−s(PV − E − iε)−1〈|x|〉−s‖L2→H2 ≤ eCh
−4/3 log h−1

, (1.6)

for some constant C > 0 depending only on the L∞ norm of V , the energy E, the dimension
d and s.

For any other resolvent estimates so far, one assumed at least that not only V but also
the radial derivative ∂rV are bounded: Datchev [Dat14] proved a quantitative limiting
absorption principal in dimension d 6= 2 for L∞ potentials V with radial derivative ∂rV ∈
L∞ satisfying the decay conditions V ≤ 〈r〉−δ0 and ∂rV ≤ 〈r〉−1−δ0 , i.e.

‖〈|x|〉−s(PV − E − iε)−1〈|x|〉−s‖L2→L2 ≤ eC1h−1
, (1.7)

for E > 0, any s > 1/2, h > 0 small enough and any ε > 0. In dimension d = 2
Shapiro [Sha16] proved (1.7) replacing the above assumptions on ∂rV with ∇V ∈ L∞

and |∇V | ≤ 〈r〉−1−δ0 . Vodev [Vod14] proved a bound similar to (1.7) for potentials
satisfying the decay conditions supRd〈x〉1+δ|V (x, h)| ≤ Chν and ∂rV ≤ Chν〈r〉−1−δ for
some constants C, ν, δ > 0. Dyatlov and Zworski [DZ] simplified Datchev’s proof for
V, ∂rV ∈ L∞comp in dimension d 6= 2 and showed

‖χ(PV − λ2)−1χ‖L2→L2 ≤ C0 eC1h−1
. (1.8)

Similar results were proven for various cases of short-range and long-range perturbations of
the Laplacian −h2∆ under stronger regularity assumptions. Burq [Bur98, Bur02] proved
(1.8) for smooth V decaying sufficiently quickly near infinity and on domains of type Rd\O
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for some compact obstacle O with smooth boundary. Different proofs of Burq’s theorem,
providing some simplifications and extensions were given by Vodev [Vod00] and Sjöstrand
[Sjö02]. Moreover, Cardoso and Vodev [CV02] provide a version of Burq’s theorem on a
class of infinite volume Riemannian manifolds with cusps.

1.2. Resonance free regions. As a consequence of Theorem 1 we get that there is a
resonance free region below the real axis away from 0.

There are various ways of defining resonances of a quantum Hamiltonian, see for in-
stance [DZ] for an overview. One way is to define them as the poles of the a meromorphic
continuation of the resolvent through the essential spectrum. More precisely, we have the
following well-known result [Sjö02, Proposition 2.1] and [DZ, Theorem 3.6]:

Theorem 2. The meromorphic family of operators

(PV − λ2)−1 : L2
comp(Rd) −→ H2

loc(R
d), Imλ > 0,

has a meromorphic extension from the upper half-plane Imλ > 0 to

(1) λ ∈ C\{0}, when d = 1,
(2) λ ∈ C, when d ≥ 3 is odd,
(3) λ in the logarithmic covering space of C\{0}, when d ≥ 2 is even.

The resonances of PV are then defined as the poles of this extension with possibly the
exception of the L2 eigenvalues of PV situated on the imaginary axis i[0,+∞). See Section
2 below for more details.

We prove the following

Theorem 3. Let I be a compact interval in R\{0} and suppose that d ≥ 2, then there
exists constants C > 0 and h0 ∈ (0, 1] such that for 0 < h ≤ h0 there are no resonances of
PV in the set of λ ∈ C with

Reλ ∈ I, Imλ ≥ −C−1 e−Ch
−4/3 log 1

h .

In the case of dimension one d = 1 we have a stronger result: there exist constants
C0, C1 > 0 and h0 ∈ (0, 1] such that for 0 < h ≤ h0 there are no resonances of PV in the
set of λ ∈ C with

Reλ ∈ I, Imλ ≥ −C−1 e−Ch
−1
,

see for instance [DZ, Theorem 2.29]. This bound is optimal as can be seen for the study
of resonances for cut off random potentials [Klo16].

1.3. Remark on Landis’ conjecture and decay of eigenfunctions. We do not think
that the bounds in (1.3) and in Theorem 3 are optimal. The h−4/3 in the exponent
comes from a Carleman estimate in a ball B(0, R) with R > R0 which cannot distinguish
between real-valued and complex-valued potentials, see Lemma 9 below. Yet in the proof
of Theorem 1 we crucially use that the potential V is assumed to be real-valued in flux
norm estimate on outgoing solution in Lemma 13. We now present a slightly modified
version of our main Carleman estimate:

Lemma 4. (see Lemma 9) Let PV be as in (1.1) with V ∈ L∞comp(Rd,C) a bounded
(possibly) complex valued potential with compact support satisfying (1.2). Let I b R

be a compact interval. Let R > R0. Then, there exists a real-valued smooth function
φ ∈ C∞(Rd) and a constants C > 0 and h0 ∈ (0, 1], such that for all u ∈ C∞c (B(0, R)), all
λ ∈ I and all 0 < h ≤ h0∫

e2φ/h4/3(|u|2 + |h∇u|2)dx ≤ C

h2/3

∫
e2φ/h4/3 |(PV − λ2)u|2dx.
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Here, the exponent h−4/3 is optimal, since there we can allow for complex-valued poten-
tials. This can be seen from a counter example to Landis conjecture [KL88] by Meshkov
[Mes92]: Landis conjectured that if u is a bounded solution to −∆u + V u = 0 in Rd,
with ‖V ‖∞ = O(1) and |u(x)| ≤ C exp(−c|x|1+), then u ≡ 0. The conjecture holds in
dimension d = 1 which is consistent with the estimate (1.4). However, in general this con-
jecture was disproved by Meshkov [Mes92] who constructed a complex-valued bounded
potential V and a complex-valued function u which solve −∆u+ V u = 0 in R2 such that
|u(x)| ≤ C exp(−c|x|4/3), x ∈ R2. Meshkov [Mes92] also proved a quantitative unique
continuation principal: if u is a bounded solution to −∆u + V u = 0 and decays faster
than exp(−τ |x|4/3) for any τ > 0 as |x| → +∞, then necessarily u ≡ 0.

As a consequence of Lemma 9 we get the following lower bound on the decay of eigen-
functions of Schrödinger operator with L∞ potentials.

Theorem 5. Let ‖V ‖∞ ≤ CV with V 6≡ 0. Then, there exist a constant M > 0 such that
for any solution u to

−∆u+ V u = 0 in Rd (1.9)

satisfying ‖u‖2 = 1, for R > 0 sufficiently large∫
B(0,R,R+1)

|u(x)|2dx ≥M−1R−4/3e−M‖V ‖
2/3
∞ R4/3

, (1.10)

where B(0, R,R + 1) = B(0, R + 1)\B(0, R) b Rd denotes the annulus of inner radius R
and outer radius R+ 1 centered at 0.

If in Lemma 4 we had a weight exp(2φh−4/3+), then this would imply a correspond-

ing lower bound exp(−M‖V ‖2/3∞ R4/3−) in (1.10) which would be in contradiction with
Meshkov’s counter example to Landis’ conjecture.

Let us remark that Bourgain and Kenig [JB05] proved the following more local estimate
for u, a solution to (1.9),∫

B(j,1)
|u(x)|2dx ≥ Ce−c|j|

4/3 log |j|, for |j| → +∞. (1.11)

The lower bound (1.10) is a slight improvement over (1.11) since we loose the logarithm
yet we pay the price of taking averages in a large annulus rather than in a small ball.

In a series of works by Nakić, Táufer, Tautenhahn and Veselić [NTTV15, NTTV18]
a scale free unique continuation principal was proven. The authors consider an equidis-
tributed sequence of balls B(zj , δ) centered at zj ∈ Rd, with j ∈ Zd, and of radius

δ ∈ (0, G/2), for some G > 0, so that B(zj , δ) b (−G/2, G/2)d + j. They showed that
there exists a constant N = N(d) > 0 depending only on the dimension d, such that for all
G > 0, all δ ∈ (0, G/2), all equidistributed sequences of balls as above, all V ∈ L∞(Rd;R),
all L ∈ GN, any energy E0 ≥ 0 and all φ ∈ ran(1(−∞,E0](H|ΛL))

‖φ‖2Sδ∩ΛL
≥
(
δ

G

)N(1+G4/3‖V ‖2/3∞ +G
√
E0)

‖φ‖2ΛL , (1.12)

where Sδ =
⋃
j∈(GZ)d B(zj , δ) and ΛL = (−L/2, L/2)d. This results extends previous

results by Rojas-Molina and Veselić [RMV13], Combes, Hislop and Klopp [CHK07] and
Klein [Kle23].

Tautenhahn and Veselić [TV15] extended the above result to ψ ∈ ran(1I(H)), for any
interval I ⊂ (−∞, E0], i.e.

‖ψ‖2Sδ ≥
1

2

(
δ

G

)N(1+G4/3(2‖V ‖∞+E0)2/3)

‖ψ‖2
Rd
, (1.13)
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In a recent paper by Borsiv, Tautenhahn and Veselić [BTV17] a more general scale free
unique continuation principal was proven for second order elliptic differential operators.

It is striking that in the above results the dependence of the exponent on the potential

is only ‖V ‖2/3∞ . This agrees very well with our results (1.10). However, we do not know
whether this dependence is optimal.

Meshkov’s example uses fundamentally that the potential is complex-valued. Since
Lemma 9 below cannot distinguish between real-valued and complex-valued potentials,
we cannot improve the exponent h−4/3 in Theorem 1 with our method in spite of the fact
that, there, the potential is assumed to be real-valued which is crucial for a flux norm
estimate on outgoing solution in Lemma 13 below.

Finally, let us remark that Landis’ conjecture may still hold true for real-valued bounded
potentials V and real-valued functions u. In fact some recent developments have been made
by Davey, Kenig and Wang [DKW17] in dimension d = 2.

1.4. Notation. Let χ1, χ2 ∈ C∞c (Rd; [0, 1]). When we write χ1 ≺ χ2, we mean that χ2 ≡ 1
in a small neighborhood of the support of χ1. We extend this definition in the obvious
way to include indicator functions of open sets.

Depending on the context we will denote by |x| norm of x as a vector in some Banach
space or the absolute value of x as a complex variable. Similarly, we will denote by (x|y)
the inner product of x, y as elements of some vector space.

Acknowledgments. The second author was supported by the Erwin Schrödinger Fellow-
ship J4039-N35 and by the National Science Foundation grant DMS-1500852. We would
like to thank Maciej Zworski for a very helpful and encouraging discussion.

2. Meromorphic continuation of the resolvent

Let h ∈ (0, 1] be the semiclassical parameter and consider the operator

PV − λ2 = −h2∆ + V (x;h)− λ2 on L2(Rd), (2.1)

where V = V (·;h) ∈ L∞comp(Rd,R) is a bounded real-valued compactly supported potential
which may depend on the semiclassical parameter h > 0. We will often suppress the
dependence on h and simply write V . We assume

‖V ‖∞ ≤ CV < +∞ (2.2)

and that the support of V is contained in the ball B(0, R0) b Rd of radius R0 > 0,

suppV ⊂ B(0, R0) b Rd, (2.3)

where both constants CV > 0 and R0 > 0 are are independent of h > 0. Moreover, we
assume that λ is in a compact interval I away from 0, i.e. we suppose that

λ ∈ I = [a, b] b R\{0}. (2.4)

Since the potential V is bounded and has compact support, it follows that the essential
spectrum of PV is given by [0,+∞) and that in (−∞, 0) are only isolated eigenvalues of
finite multiplicity.

For let λ ∈ C with Imλ > 0 the resolvent

R(λ)
def
= (PV − λ2)−1 : L2(Rd) −→ L2(Rd) (2.5)

is a bounded linear operator. In this notation, we find the negative eigenvalues of PV on
iR+ given by λj = iµj .
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2.1. Holomorphic continuation of the resolvent of the free Laplacian P0. Seen
as an operator L2

comp(Rd) → H2
loc(R

d), it is possible to meromorphically continue the
resolvent across the real axis. In the following we will recall some well-known results. We
begin with the meromorphic continuation of the free resolvent

R0(λ)
def
= (−h2∆− λ2)−1 : L2(Rd) −→ L2(Rd), Imλ > 0. (2.6)

Theorem 6. The family of operators

R0(λ) = (−h2∆− λ2)−1 : L2
comp(Rd) −→ H2

loc(R
d), Imλ > 0,

has a holomorphic extension from the upper half-plane Imλ > 0 to

(1) λ ∈ C\{0}, when d = 1,
(2) λ ∈ C, when d ≥ 3 is odd,
(3) λ in the logarithmic (universal) covering space of C\{0}, when d ≥ 2 is even.

Moreover, for any Ω b C\{0} and any χ ∈ C∞c (Rd) there exist constants C0, C1 > 0 such
that for all λ ∈ Ω and h > 0 small enough

‖χR0(λ)χ‖L2→H1 ≤ C0 eC1/h. (2.7)

Proof. See for instance [Sjö02, Section 2.1], [DZ, Theorem 3.1]. �

In dimension d = 1 the free resolvent R0(λ) has a simple pole at λ = 0. It can
be extended meromorphically to the entire plane C. However, in this paper we will be
interested in energies away from 0, therefore we will not need this particular result.

2.2. Meromorphic continuation of the resolvent of PV . When adding a bounded
potential V with compact support we can no longer extend the resolvent R(λ) holomor-
phically since poles appear. More precisely, we have the following result.

Theorem 7. The family of operators

RV (λ)
def
= (−h2∆ + V − λ2)−1 : L2

comp(Rd) −→ H2
loc(R

d), Imλ > 0,

has a meromorphic extension from the upper half-plane Imλ > 0 to

(1) λ ∈ C\{0}, when d = 1,
(2) λ ∈ C, when d ≥ 3 is odd,
(3) λ in the logarithmic (universal) covering space of C\{0}, when d ≥ 2 is even.

Proof. See for instance [Sjö02, Proposition 2.1], [DZ, Theorem 3.6]. �

By definition, resonances or scattering poles of PV are the poles of this extension with
exception of the L2 eigenvalues of PV at λ = iµj .

Let Ω be an open set in C or in a covering surface over some open set in C. Then we say
that a function Ω 3 z 7→ P (z) with values in the space of linear operators L2

comp → H2
loc is

holomorphic if χ1P (z)χ2 is holomorphic as a function with values in the space of bounded
linear operators L2 → H2, for all χj ∈ C∞c .

Correspondingly, we say that a function Ω 3 z 7→ P (z) with values in the space of linear
operators L2

comp → H2
loc is meromorphic if it is holomorphic on Ω\S, where S is a discrete

subset of Ω, and such that if z0 ∈ S, then near z0 we have

P (z) =
N∑
j=1

Aj
(z − z0)j

+B(z)

whereN is finite, B(z) is a holomorphic function with values in the space of linear operators
L2

comp → H2
loc and Aj : L2

comp → H2
loc are of finite rank and continuous, in the sense that

χ1Ajχ2 is bounded for all χj ∈ C∞c .
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2.3. Absence of resonances on the real axis. We end this section by recalling the
following result.

Proposition 8. PV has no resonances in R\{0}.

Proof. The proof is based on the fact that λ0 is a resonance of PV if and only if there
exists a solution u to (PV − λ2

0)u = 0 of the form u = R0(λ0)w for some w ∈ L2
comp. Such

solutions are called outgoing solutions. This is then combined with the Paley-Wiener
theorem and the Carleman estimate in Lemma 9 below to conclude the result. One can
follow line by line (using Lemma 9) the standard proof which can be found for instance in
[Sjö02, Theorem 2.4], [DZ, Theorem 3.30]. �

3. Resolvent estimate

In this section we will present the proof of Theorem 1. The global strategy of this proof
was inspired by the approach to Carleman estimates in [Sjö02, Section 4].

3.1. Local Carleman estimate in a ball. From now on we suppose that d ≥ 2 and we
work under the assumption (2.2) and (2.3). The first step in the proof of Theorem 1 is to
give a local Carleman estimate in a ball.

Lemma 9. Let I b R be a compact interval. Then, for any R > 0, there exists a real-
valued smooth function φ ∈ C∞(Rd) and constants C > 0 and h0 ∈ (0, 1], such that for all
u ∈ C∞c (B(0, R)), all λ ∈ I and all 0 < h ≤ h0∫

e2φ/h4/3(|u|2 + |h∇u|2)dx ≤ C

h2/3

∫
e2φ/h4/3 |(PV − λ2)u|2dx.

Proof. The basic Carleman estimate [Sjö02, Lemma 4.2] for the semiclassical Laplacian

−h̃2∆ is as follows: Let R > 0. Then, there exists a smooth real-valued function φ ∈
C∞(Rd), and constants C0 > 0 and h̃0 ∈ (0, 1] such that for all v ∈ C∞c (B(0, R)) and all

0 < h̃ ≤ h̃0

h̃

∫
(|v|2 + |h̃∇v|2)dx ≤ C0‖eφ/h̃(−h̃2∆)e−φ/h̃u‖2. (3.1)

Next, let h ∈ (0, 1] and let C1 > 0 be so that C1 ≥ 4C0 max{‖V − λ2‖2∞, 1} for all λ ∈ I.
Define

PV (h̃)
def
= −h̃2∆ +

(
h̃

C1

)1/2

(V − λ2) (3.2)

with h̃ = h4/3C
−1/3
1 . Notice that

PV (h̃) =

(
h

C1

)2/3

(PV − λ2). (3.3)

Then, by (3.1), (3.2), we have that for all 0 < h̃ ≤ min{h̃0, C
−1/3
1 }, for all v ∈ C∞c (B(0, R))

and any λ ∈ I

‖eφ/h̃PV (h̃)e−φ/h̃v‖2 ≥ ‖eφ/h̃(−h̃2∆)e−φ/h̃v‖2 −
h̃1/2

C
1/2
1

‖(V − λ2)v‖2

≥ h̃1/2

C
1/2
0

(∫
(|v|2 + |h̃∇v|2)dx

)1/2

− h̃1/2

C
1/2
1

‖(V − λ2)‖∞‖v‖2

≥ h̃1/2

2C
1/2
0

(∫
(|v|2 + |h̃∇v|2)dx

)1/2

.

(3.4)
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Setting u = eφ/h̃v, we get by (3.4)∫
e2φ/h̃(|u|2 + |h̃∇u|2)dx ≤ C

h̃

∫
e2φ/h̃|PV (h̃)u|2dx. (3.5)

for some constant C > 0. Set φ̃ = C
1/3
1 φ. Then, by (3.3), (3.5)∫

e2φ̃/h4/3(|u|2 + |h∇u|2)dx ≤ C

h2/3

∫
e2φ̃/h4/3 |(PV − λ2)u|2dx, (3.6)

which concludes the proof of the Lemma. �

Next we will get rid of the assumption of compact support on u in Lemma 9. Suppose
that R0 < R1 < R2, let u ∈ C∞(B(0, R2)), let 1B(0,R1) ≺ χ ∈ C∞c (B(0, R2), [0, 1]) and
apply Lemma 9 to χu to get∫

B(0,R1)
e2φ/h4/3(|u|2 + |h∇u|2)dx ≤ C

h2/3

∫
B(0,R2)

e2φ/h4/3 |(PV − λ)u|2dx

+
C

h2/3

∫
B(0,R2)

e2φ/h4/3 |[−h2∆, χ]u|2dx.
(3.7)

We denote by B(0, R1, R2) ⊂ Rd the open annulus B(0, R2)\B(0, R1). Since

|[−h2∆, χ]u|2 = |(−h2∆χ)u− 2(h∇χ|h∇u)|2

≤ C1(h4|u|2 + h2|h∇u|2),

for some constant C1 > 0, and since supp∇χ ⊂ B(0, R1, R2), we obtain from (3.7)∫
B(0,R1)

e2φ/h4/3(|u|2 + |h∇u|2)dx ≤ C

h2/3

∫
B(0,R2)

e2φ/h4/3 |(PV − λ)u|2dx

+ CC1h
4/3

∫
B(0,R1,R2)

e2φ/h4/3(|u|2 + |h∇u|2)dx.

(3.8)

3.2. Carleman estimate in a shell away from the support of the potential V .
We will begin with the following

Lemma 10. Let w = w(r) = r2 for r ≥ 0. Let I be as in (2.4) and let λ ∈ I. Let A,B > 0
be constants (to be determined later on) and set

Rc = Rc(h) =

√
2A

h1/3|λ|
. (3.9)

Let h > 0 be small enough so that 2R0 ≤ Rc. Then, there exists a smooth real-valued
function φ0 ∈ C∞(]0,+∞[) and a constant Cφ0 > 0 (independent of h > 0) so that
0 ≤ φ′0|[R0,+∞[ ≤ Cφ0 and

φ′0(r) =


(
Ar−2 − h2/3λ2

2

)1/2
, for R0 ≤ r ≤ Rc − 2,

B−1h1/3, for r ≥ Rc − 1.
(3.10)

Moreover, there exists a constant h0 ∈ (0, 1] and C0 > 0, depending only on A,B, I and
R0, so that for any 0 < h ≤ h0

(w(h2/3λ2 + (φ′0)2 − h4/3φ′′0))′ ≥ h2/3λ
2w′

C0
, for r ≥ R0. (3.11)

Proof. Step 1. Set ψ = (φ′0)2. To simplify the notation we will suppose that λ > 0 and

we will work with h̃ = h2/3 with 0 < h ≤ h0 for some h0 ∈ (0, 1]. Then, (3.11) is equivalent
to

G(r)
def
= ψ + h̃λ2 − h̃2φ′′0 +

r

2
(ψ′ − h̃2φ′′′0 ) ≥ h̃ λ

2

C0
, for r ≥ R0. (3.12)
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Let A > 0, let h0 ∈ (0, 1] be small enough so that

2R0 ≤ Rc =

√
2A

h̃1/2λ
, (3.13)

compare with (3.9). Set

ψ0(r)
def
=

A

r2
− h̃λ2

2
, r > 0. (3.14)

Notice that ψ0(r) = 0 precisely at r = Rc. Hence, for h0 ∈ (0, 1] small enough, ψ0 ≥ 0 for
0 < r ≤ Rc.

Next, let B > 0 and set

ψ1
def
=

h̃

B2
. (3.15)

Let χ ∈ C∞([0,+∞[; [0, 1]) be so that χ ≡ 1 on [0, Rc − 2], χ ≡ 0 on [Rc − 1,+∞[ and so

that all derivatives of χ are bounded uniformly in h (and, thus, h̃). We can choose χ such
that χ′ ≤ 0. Then, set

ψ(r)
def
= ψ0(r)χ(r) + ψ1(r)(1− χ(r)), r > 0 (3.16)

Since ψ0(Rc) = 0, we have that for τ ∈ [−2,−1]

ψ0(Rc + τ) = −2Aτ

∫ 1

0
(Rc + tτ)−3dt = −2AτR−3

c (1 +O(R−1
c ))

=
|τ |h̃3/2λ3

(2A)1/2
(1 +O(h̃1/2))

(3.17)

Since ψ0 is a strictly decreasing function, by (3.16), (3.15), there exist constants h0 ∈ (0, 1]
and C > 0 (depending on A,B and I) such that for all 0 < h ≤ h0

ψ(r) ≥ 1

C
h̃3/2, r > 0 (3.18)

Step 2. We estimate φ′′0. Assume first that R0 ≤ r ≤ Rc − 2. Then,

φ′′0(r) =
ψ′0(r)

2
√
ψ0(r)

=
−
√

2A√
2Ar4 − h̃λ2r6

def
=
−
√

2A

m(r)1/2
< 0. (3.19)

Notice that m′(r) = r3(8A− h̃λ26r2). Thus, m(r) has its unique critical point at

r1 =
2
√
A

λ
√

3h̃
=

√
2

3
Rc < Rc

where by (3.13) we have that r1 >
√

2R0. Hence, for h0 ∈ (0, 1] small enough, m′(r) > 0

on [R0, r1[ and m′(r) < 0 on ]r1,+∞[. This implies that m(r)−1/2 is decreasing on [R0, r1]
and increasing on [r1, Rc − 2]. Therefore, |φ′′0| is bounded by the maximum of |φ′′0(R0)|,
|φ′′0(r1)| and |φ′′0(Rc − 2)|.

By (3.19), for h0 ∈ (0, 1] small enough there exists a constant C > 0 (depending as well
on I, A and R0) such that

|φ′′0(R0)| ≤ C
A straight forward computation shows that

φ′′0(r1) = −3
√

3A

2R2
c

= −3
√

3 h̃λ2

4
√
A

= OA,I(h̃)

and Taylor expansion shows that

φ′′0(Rc − 2) = OA,I(h̃1/4)

for all 0 < h ≤ h0 with h0 ∈ (0, 1] small enough.
9



Remark 11. If the constant in the big O notation depends on one of the parameters
mentioned in the hypotheses of Lemma 10, then we add them as subscripts to keep track
of the dependencies.

In conclusion, we have that for all 0 < h ≤ h0, with h0 ∈ (0, 1] small enough,

φ′′0(r) = OA,I,R0(1), for R0 ≤ r ≤ Rc − 2. (3.20)

Next, suppose that r ∈ [Rc − 2, Rc − 1]. There,

φ′′0 =
ψ′0χ+ (ψ0 − ψ1)χ′

2
√
ψ

. (3.21)

By (3.14),

|ψ′0(r)| ≤ 2A

R3
c

(1 +O(R−1
c )) ≤ OA,I(h̃3/2).

Since χ′ ≤ 0, by (3.17) for all h > 0, sufficiently small, we have

0 ≤ (ψ0 − ψ1)χ′ ≤ OA,B,I(h̃). (3.22)

Combining the above two estimates with (3.21) and (3.18), we get that

φ′′0(r) = O(h̃1/4), r ∈ [Rc − 2, Rc − 1]. (3.23)

Notice that φ′′0(r) = 0 for r ≥ Rc − 1. Then, putting this together (3.20) and (3.23), we
that for all 0 < h ≤ h0, with h0 ∈ (0, 1] small enough,

φ′′0(r) =


OA,I,R0(1), R0 ≤ r ≤ Rc − 2,

OA,B,I(h̃1/4), Rc − 2 ≤ r ≤ Rc − 1,

0, r ≥ Rc − 1.

(3.24)

Step 3. Recall that ψ = (φ′0)2. Hence, by (3.18)

− rφ′′′0 = −r ψ′′

2
√
ψ

+
r(ψ′)2

4ψ3/2
≥ −r ψ′′

2
√
ψ

def
= −f. (3.25)

We will show that f is bounded. Suppose first that r ∈ [R0, Rc − 2]. There, by (3.16)

f(r) =
rψ′′0

2
√
ψ0

=
3
√

2A

m(r)1/2
≥ 0,

withm as in (3.19). Considering the critical point of f , as in the discussion following (3.19),
we get that f(r) is bounded by the maximum of f(R0), f(r1) and f(Rc − 2). Performing
similar computations as for (3.20), we get that for all 0 < h ≤ h0, with h0 ∈ (0, 1] small
enough,

0 ≤ f(r) ≤ OA,I,R0(1) for r ∈ [R0, Rc − 2].

Next, suppose that r ∈ [Rc − 2, Rc − 1]. By (3.16),

rψ′′ = r(ψ′′0χ+ 2χ′ψ′0 + (ψ0 − ψ1)χ′′).

We will estimate each term separately. First, using (3.14) and Taylor expansion, we see
that

|rψ′′0 | =
6A

R3
c

(1 +O(R−1
c )) = OA,I(h̃3/2)

and

|rψ′0| =
6A

R2
c

(1 +O(R−1
c )) = OA,I(h̃).

By (3.17), we get that for all 0 < h ≤ h0, with h0 ∈ (0, 1] small enough,

r|(ψ0 − ψ1)χ′′| ≤ rOI,B(h̃) ≤ OA,B,I(h̃1/2).
10



Combining the above three estimates with (3.18) and (3.25), we have that for all 0 < h ≤
h0, with h0 ∈ (0, 1] small enough,

|f(r)| ≤ OA,B,I(h̃−1/4), for r ∈ [Rc − 2, Rc − 1].

Finally notice that φ′′′0 (r) = 0 for r ≥ Rc − 1. Therefore,

− h̃rφ′′′0 (r) ≥


OA,I,R0(h̃), R0 ≤ r ≤ Rc − 2,

OA,I,B(h̃3/4), Rc − 2 ≤ r ≤ Rc − 1,

0, r ≥ Rc − 1.

(3.26)

Step 4. We check that ψ, see (3.16), with ψ = (φ′0)2 satisfies (3.12). Suppose first that
r ∈ [R0, Rc − 2]. By (3.14),

ψ0 +
r

2
ψ′0 = − h̃λ

2

2
.

Then, by (3.12) (3.26), (3.24) and (3.14) there exist constants h0 ∈ (0, 1] and C1 > 0
(depending on A, I, R0 and B) such that for all 0 < h ≤ h0

G(r) = ψ0(r) + h̃λ2 − h̃2φ′′0(r) +
r

2
(ψ′0(r)− h̃2φ′′′0 (r))

≥ h̃λ2

2
+OA,I,R0(h̃2)

≥ λ2h̃

C1
.

(3.27)

Next, assume that r ∈ [Rc − 2, Rc − 1]. Then, by (3.12), (3.26), (3.24), (3.18), (3.22)
and (3.16) there exist constants h0 ∈ (0, 1] and C2 > 0 (depending on A, I, R0 and B)
such that for all 0 < h ≤ h0

G ≥ ψ0χ+ ψ1(1− χ) + h̃λ2 +
r

2
ψ′0χ+

r

2
(ψ0 − ψ1)χ′

+OA,B,I(h̃2+1/4) +OA,B,I(h̃3/2+1/4)

≥ 1

C
h̃3/2 +

h̃λ2

2
+OA,B,I(h̃1+3/4)

≥ λ2h̃

C2
.

(3.28)

Finally, suppose that r ≥ Rc − 1. Then, by (3.26), (3.24) and (3.16),

G(r) =
h̃

B2
+ h̃λ2 (3.29)

In conclusion, ψ is a positive smooth function on ]0,+∞[ and satisfies (3.12). �

Lemma 12. Let I be as in (2.4). Let R3 > R2 and let P0 = −h2∆. Let φ0, Cφ0 > 0, A > 0
and B > 0 be as in Lemma 10. Then, there exists a constant C = C(I,R0, A,B,Cφ0) > 0
and an h0 ∈ (0, 1] such that for all u ∈ C∞c (B(0, R0, R3)) and all 0 < h ≤ h0∫

e2φ0/h4/3(|u|2 + |h∇u|2)dx ≤ CR3
3

h2+2/3

∫
e2φ0/h4/3 |(P0 − λ2)u|2dx, (3.30)

where we write φ0 = φ0(|x|).

Proof. The proof is an adaption of the proof of a global Carleman estimate by Datchev
[Dat14]. We begin by passing to spherical coordinates, where

−h2∆ = −h2∂2
r −

d− 1

2r
h2∂r − r−2h2∆Sd−1 ,
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where −∆Sd−1 ≥ 0 denotes the Laplace-Beltrami operator on the (d − 1)-dimensional
sphere Sd−1. Set

Pφ0
def
= eφ0/h

4/3
r
d−1
2 (P0 − λ2)r−

d−1
2 e−φ0/h

4/3
. (3.31)

A straight forward computation shows that

Pφ0 = −h2∂2
r + 2φ′0h

2/3∂r + Vφ0 + Λ− λ2, (3.32)

where φ′0 = ∂rφ0 and

Vφ0
def
= h2/3φ′′0 − h−2/3(φ′0)2 (3.33)

and

Λ = h2r−2

(
−∆Sd−1 +

d− 1

2

d− 3

2

)
(3.34)

which is a positive semidefinite operator for d ≥ 3, and ≥ − h2

4r2
for d = 2. Next, set w =

w(r) = r2 and let f ′ = ∂rf denote the radial derivative, and write for v ∈ C∞c (B(0, R0, R3))

F (r)
def
= ‖hv′(r·)‖2Sd−1 − ((Λ + Vφ0 − λ2)v(r·)|v(r·))Sd−1 , r > 0, (3.35)

where the norm and the scalar product are the norm and scalar product of L2(Sd−1).
Since the support of v is compact, we have that∫ ∞

0
(w(r)F (r))′dr = 0. (3.36)

Since Λ is self-adjoint, we get by (3.32),

F ′ = 2Re (h2∂2
rv|v′)Sd−1 − 2Re ((Λ + Vφ0 − λ2)v|v′)Sd−1

+ 2r−1(Λv|v)Sd−1 − (V ′φ0v|v)Sd−1

= −2Re (Pφ0v|v′)Sd−1 + 4h−4/3φ′0‖hv′‖2Sd−1

+ 2r−1(Λv|v)Sd−1 − (V ′φ0v|v)Sd−1 .

(3.37)

Recall that we are working in 0 < R0 ≤ r ≤ R3 and that w = r2. Therefore, wφ′0 ≥ 0 and
2r−1w−w′ = 0. Then, using as well the elementary inequality ‖a‖2−2Re (a|b)+‖b‖2 ≥ 0,
we get that

(wF )′ = −2wRe (Pφ0v|v′)Sd−1 + (4h−4/3wφ′0 + w′)‖hv′‖2Sd−1

+ (2wr−1 − w′)(Λv|v)Sd−1 + ((w(λ2 − Vφ0))′v|v)Sd−1

≥ − r3

2h2
‖Pφ0v‖2Sd−1 + ((w(λ2 − Vφ0))′v|v)Sd−1 .

(3.38)

Integrating (3.38) with respect to r, we get by (3.36), (3.11) and (3.33)∫ ∞
0

∫
Sd−1

|v|2drdσ ≤ C0R
3
3

4R0λ2h2

∫ ∞
0

∫
Sd−1

|Pφ0v|2drdσ. (3.39)

Here, we used as well that supp v ⊂ B(0, R0, R3). Moreover, recall from Lemma 10 that
the constant C0 depends only on the energy interval I and the constants A,B,R0.

Setting u = eφ0/h
4/3
r(d−1)/2v, we get by (3.31) that∫

e2φ0/h4/3 |u|2dx ≤ C0R
3
3

4R0λ2h2

∫
e2φ0/h4/3 |(P0 − λ2)u|2dx (3.40)

Integration by parts yields that∫
e2φ0/h4/3 |h∇u|2dx = −Re

∫
hdiv(e2φ0/h4/3h∇u)udx. (3.41)
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The right hand side is bounded from above by

−
∫

e2φ0/h4/32Re

(√
2φ′0(|x|)uh−1/3 x

|x|

∣∣∣∣ h√2
∇u
)
dx

+

∫
eφ0/h

4/3 |(P0 − λ2)u| |u|dx+ λ2

∫
eφ0/h

4/3 |u|2dx.
(3.42)

Using the elementary inequality 2Re (a|b) ≤ |a|2 + |b|2, we get by (3.41), (3.42) that∫
e2φ0/h4/3 |h∇u|2dx ≤ (2λ2 + 1 + 4‖φ′‖2∞h−2/3)

∫
e2φ0/h4/3 |u|2dx

+

∫
e2φ0/h4/3 |(P0 − λ2)u|2dx.

(3.43)

Let λ∞ denote the minimum of the absolute value of the supremum and infimum of the
interval I. Then, by (3.43), (3.40), we have that, for h > 0 small enough,∫

e2φ0/h4/3(|u|2 + |h∇u|2)dx ≤ 4C0R
3
3‖φ′0‖2∞

R0λ2
∞h

2+2/3

∫
e2φ0/h4/3 |(P0 − λ2)u|2dx. (3.44)

Recall from Lemma 10 that ‖φ′0|[R0,+∞[‖∞ ≤ Cφ0 . This concludes the proof of Lemma
12. �

3.3. Combining Carleman estimates. Next, let R3 = R3(h) � h−1/3 and let u ∈
C∞(B(0, R3)) so that

(PV − λ2)u = v ∈ C∞c (B(0, R)) (3.45)

and suppose that R0 < R < R1 − 2. Recall (3.8) and set M = φ(R2). Then,∫
B(0,R1)

(|u|2 + |h∇u|2)dx ≤ Ce2M/h4/3

h2/3

∫
|v|2dx

+ Ch4/3e2M/h4/3
∫
B(0,R1,R2)

(|u|2 + |h∇u|2)dx.

(3.46)

Let 1B(0,R1−1,R3−1) ≺ χ ∈ C∞c (B(0, R1 − 2, R3); [0, 1]) so that all derivatives of χ are
bounded (uniformly in h). Applying (3.30) to χu, we obtain similar to (3.8) that∫
B(0,R1,R3−1)

e2φ0/h4/3(|u|2 + |h∇u|2)dx ≤ CR3
3

h2/3

∫
B(0,R1−2,R1−1)

e2φ0/h4/3(|u|2 + |h∇u|2)dx

+
CR3

3

h2/3

∫
B(0,R3−1,R3)

e2φ0/h4/3(|u|2 + |h∇u|2)dx.

(3.47)

Here we used as well that

(P0 − λ2)u = (PV − λ2)u = v = 0, on B(0, R1 − 2, R3),

which follows from (3.45) and the assumption that suppV b B(0, R0), see the discussion
after (1.2).

Recall (3.10) and let η > 0. Then, by shifting φ0 by a constant and by choosing A > 0
large enough, we can arrange that, for h > 0 small enough,

φ0(|x|) ≤ −η, for |x| ≤ R1 − 1,

φ0(|x|) ≥M, for |x| ≥ R1.

Thus,

• the second term on the right hand side of (3.46) is bounded by the a constant
times the left hand side of (3.47);

• the first term on the right hand side of (3.47) is bounded by a factor O(e−1/Ch)
times the left hand side of (3.46).
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Therefore, adding (3.46) and (3.47) we get for h > 0 small enough∫
B(0,R3−1)

e2ψ/h4/3(|u|2 + |h∇u|2)dx ≤ e2M/h4/3 C

h2/3

∫
|v|2dx

+
CR3

3

h2/3

∫
B(0,R3−1,R3)

e2ψ/h4/3(|u|2 + |h∇u|2)dx,

(3.48)

with

ψ(x) =

{
0, for |x| ≤ R1,

φ0(x), for |x| ≥ R1.
(3.49)

3.4. Outgoing solutions and flux norm. Now assume that

u = RV (λ)v (3.50)

with v ∈ L2
comp(B(0, R)) is an outgoing solution with R > 0 as above. By Theorem 7

and analytic continuation we see that u satisfies (PV − λ2)u = v. Moreover, by a density
argument, we see that u and v satisfy (3.48). In particular, since u is outgoing, there
exists a w ∈ L2

comp(B(0, R)) so that

u(x) = R0(λ)w(x), for |x| ≥ R1.

Hence, u is a solution to the free Helmholtz equation (−h2∆− λ2)u = 0 outside the ball
B(0, R1).

Let Rc
def
= R̃c(λ)h−1/3 be as in Lemma 10. Recall (2.4), let Cr > 1 be a constant and

set

R3
def
= R̃3h

−1/3 def
= CrR̃c(a)h−1/3. (3.51)

Recall (3.10) and write for r ≥ Rc

φ0(r) = A1/2

∫ Rc−2

R0

(t−2 −R−2
c )1/2dt+

∫ Rc−1

Rc−2
φ′0(t)dt+

∫ r

Rc−1
B−1h1/3dt

def
= I1 + I2 + I3.

(3.52)

The first integral in (3.52) is bounded by

|I1| ≤
A1/2

3
log

1

h
+A1/2 log

√
2A− 2|λ|h1/3

|λ|R0
.

The second integral |I2| ≤ Cφ0 , see Lemma 10, and the third integral I3 = h1/3B−1(r −
Rc + 1). Hence,

φ0(|x|) = C0(h) +
h1/3

B
|x|, for |x| ≥ Rc (3.53)

where C0(h) depends on A, I,B,R0, Cφ0 and h > 0 satisfying

|C0(h)| ≤ A1/2

3
log

1

h
+OA,I,B,R0(1) (3.54)

for h > 0 small enough. Using Lemma 13 below and (3.51), we see that for Cr > 1 large
enough, the second term on the right hand side of (3.48) is bounded from above by

O(h−5/3)e2ψ(R3)/h4/3
∫
B(0,R3−1,R3)

(|u|2 + |h∇u|2)dx

≤ O(h−3)e2ψ(R3)/h4/3Im (v|u)

+O(h−5/3)e(2ψ(R3)−δ)/h4/3
∫
A(R̃3/4,1,h)

(|u|2 + |h∇u|2) dx.

(3.55)
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for some δ > 0. Using (3.53) and (3.51) we get that

2ψ(R3)− δ = 2C0 +
1

B
(2R̃3 −Bδ) ≤ 2ψ(|x|)− δ1

B
, for |x| ≥ (R̃3/4− 1)h−1/3.

where in the second to the last inequality we chose B > 0 to be large enough so that

2R̃3 − δB ≤ 2(R̃3/4 − 1) − δ1 for some δ1 > 0. Hence, for h > 0 small enough, we can
absorb the second term on the right hand side of (3.48) into the term on the left hand
side of (3.48). Hence,∫

B(0,R3−1)
e2ψ/h4/3(|u|2 + |h∇u|2)dx ≤ e2M/h4/3 C

h2/3

∫
|v|2dx

+O(h−3)e2ψ(R3)/h4/3Im (v|u).

(3.56)

By the Cauchy-Schwartz inequality and (3.50) we get that

Im (v|u) ≤ ‖v‖ ‖u‖L2(B(0,R))

≤ h3

C
e−2ψ(R3)/h4/3‖u‖2L2(B(0,R)) + Ch−3e2ψ(R3)/h4/3‖v‖2.

(3.57)

In view of (3.49),(3.53), (3.54) by (3.56) and (3.57) there exists constant C,C ′ > 0 such
that ∫

B(0,R3−1)
(|u|2 + |h∇u|2)dx ≤ C ′eCh−4/3 log 1

h

∫
|v|2dx

which together with (3.50) concludes the proof of Theorem 1.

Lemma 13. Assume (3.50). Then, for any R̃ > 0 (independent of h > 0) and any

0 < η < 3R̃/16 there exist constants C,C ′, δ, h0 > 0 such that for any λ ∈ I and any
0 < h < h0∫

A(R̃,η,h)
(|u|2 + |h∇u|2) dx ≤ Ch−4/3Im (v|u)

+ C ′e−δ/h
4/3

∫
A(R̃/4,η,h)

(|u|2 + |h∇u|2) dx,

where A(R̃, η, h)
def
= B(0, (R̃− η)h−1/3, (R̃+ η)h−1/3).

Proof. Let Uh : L2(Rd)→ L2(Rd) be the unitary map defined by

(Uhφ)(x) = h−d/6φ(h−1/3x). (3.58)

Using (2.1) we rescale the operator PV − λ2 by h−1/3, i.e.

Uh(PV − λ2)U∗h = −h2+2/3∆ + V (h−1/3x;h)− λ2

def
= −h̃2∆ + Ṽ (x;h)− λ2

def
= (P̃

Ṽ
− λ2).

(3.59)

Let u be as in (3.50). As discussed there, u is a solution to the free Helmholtz equation

(−h2∆ − λ2)u = 0 outside the ball B(0, R1). Set ũ
def
= Uhu. Then, we have that outside

the ball B(0, R1h
1/3)

(P̃0 − λ2)ũ = 0. (3.60)

Hence, by [Bur98, Proposition 2.2], it follows that for any R̃2 > R̃1 > 0 (constants
independent of h > 0) there exist C,C ′, δ, h0 > 0 such that for any λ ∈ I and any
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0 < h ≤ h0

−Im

∫
r=R̃2

h̃∂rũ · ũ dσ ≥ Cλ

∫
r=R̃2

(|ũ|2 + λ−2|h̃∇ũ|2) dσ

− C ′e−δ|λ|/h̃
∫
r=R̃1

(|ũ|2 + λ−2|h̃∇ũ|2) dσ,

(3.61)

where dσ is the surface measure on ∂B(0, R̃2), respectively on ∂B(0, R̃1), induced from

the Lebesgue measure on Rd. Let η > 0 be as in the hypothesis, then R̃/4 + η < R̃/2− η.

The mean value theorem implies that there exists a R̃2 ∈ [R̃− η, R̃+ η] such that∫
r=R̃2

(|ũ|2 + |h̃∇ũ|2) dσ =
1

2

∫
B(0,R̃−η,R̃+η)

(|ũ|2 + |h̃∇ũ|2) dx. (3.62)

Next, set R̃1 = R̃/4 and let 1
B(0,R̃1−η/2,R̃1+η/2)

≺ χ ∈ C∞c (B(0, R̃1 − η, R̃1 + η); [0, 1]).

Then, there exist constants c, c̃ > 0 such that∫
B(0,R̃1−η,R̃1+η)

(|ũ|2 + |h̃∇ũ|2)dx ≥ c
∫
B(0,R̃1)

(|χũ|2 + |h̃∇χũ|2)dx

≥ c̃
∫
r=R̃1

|ũ|2 dσ,

where in the last inequality we use that the trace map τ : H1(B(0, R̃1))→ L2(∂B(0, R̃1))
is continuous. Similarly, using (3.60), we get that∫

r=R̃1

(|ũ|2 + |h̃∇ũ|2) dσ ≤ O(1)

∫
B(0,R̃1−η,R̃1+η)

(|ũ|2 + |h̃∇ũ|2)dx. (3.63)

Recall that λ ∈ [a, b] b R\{0}, see (2.4), and assume for simplicity that a > 0. Hence

a−2 ≥ λ−2 ≥ b−2 > 0. Then, applying (3.61) with R̃2 and R̃1 as in (3.62) and (3.63) yields
that there exist constants C,C ′, δ, h0 > 0 such that for any λ ∈ I and any 0 < h ≤ h0

−Im

∫
r=R̃2

h̃∂rũ · ũ dσ ≥ Cλmin{1, b−2}
∫
r=R̃2

(|ũ|2 + |h̃∇ũ|2) dσ

−max{1, a−2}C ′e−δ|λ|/h̃
∫
r=R̃1

(|ũ|2 + |h̃∇ũ|2) dσ

≥ Ca

2
min{1, b−2}

∫
B(0,R̃−η,R̃+η)

(|ũ|2 + |h̃∇ũ|2) dx

−max{1, a−2}C ′e−δa/h̃
∫
B(0,R̃1−η,R̃1+η)

(|ũ|2 + |h̃∇ũ|2)dx.

Then scaling back yields

−h−1/3Im

∫
r=R̃2h−1/3

h∂ru · u dσ ≥ C1

∫
A(R̃,η,h)

(|u|2 + |h∇u|2) dx

− C2e−δa/h
4/3

∫
A(R̃1,η,h)

(|u|2 + |h∇u|2) dx,

(3.64)

for some constants C1, C2 > 0. By (3.50) we get that∫
B(0,R̃2h−1/3)

vudx =

∫
B(0,R̃2h−1/3)

(PV − λ2)u · udx

=

∫
B(0,R̃2h−1/3)

((V − λ2)|u|2 + |h∇u|2)dx−
∫
r=R̃2h−1/3

h2∂ru · u dσ.
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Taking the imaginary part yields that

−Im

∫
r=R̃2h−1/3

h∂ru · u dσ = h−1Im (v|u).

This together with (3.64) yields the statement of Lemma 13. �

4. Resonance free region

In this section we give a proof of Theorem 3 and show that away from 0 there are no
resonances super-exponentially close to the real axis. The proof is standard and can be
found for instance in [Sjö02]. We will present it here for the reader’s sake. The principal
idea is that assuming (1.3) we can extend the resolvent (PV −µ2)−1 holomorphically to µ
in an exponentially small disc centered at λ as an operator L2

comp → H2
loc.

Here, we are only interested in the poles of the resolvent close to the real axis. Therefore,
let λ ∈ I b R\{0} so that (1.3) is valid and let Ω ⊂ C\iR be a complex open neighborhood
of I such that the resolvent

RV (µ)
def
= (PV − µ2)−1, µ ∈ Ω

is holomorphic for Imµ > 0 and continues meromorphically to Ω, see Theorem 7. Next,
notice that for µ ∈ Ω

RV (µ) = R0(µ)(1 +Q(µ))−1, (4.1)

where Q(µ) = V R0(µ). This expression makes sense since it holds for Imµ > 0 and by
analytic Fredholm theory (1+Q(µ))−1 continues meromorphically from Imµ > 0 to µ ∈ Ω.
To see this let first Imµ > 0. Since Ω does not contain any discrete spectrum of PV -
which is situated on iR+ in the µ variable - we have that Q(µ) is a holomorphic family
compact operator L2 → L2 for Imµ > 0. Recall (2.3), let R > R0 and let 1B(0,R0) ≺ χ ≺
1B(0,R). Recall from Theorem 7 that χR0(µ)χ : L2(Rd) → H2

0 (B(0, R)) is a holomorphic
family of operators for µ ∈ Ω. Hence, by the Rellich-Kondrachov theorem χR0(µ)χ is a
holomorphic family of compact operators L2 → L2. Since V = V χ it follows that 1 +Qχ
is a holomorphic family of Fredholm operators L2 → L2 for µ ∈ Ω. Since (1 +Qχ)−1 for
Imµ � 1 exists by a Neumann series argument, it follows by analytic Fredholm theory
that (1 + Qχ)−1 : L2 → L2 extends to a meromorphic family of Fredholm operators to
µ ∈ Ω.

Next, notice that (1 + Q) = (1 + Q(1 − χ))(1 + Qχ) and that (1 + Q(1 − χ))−1 =
(1 − Q(1 − χ)) has a holomorphic extension from Imµ > 0 to µ ∈ Ω as an operator
L2

comp(Rd)→ L2
comp(Rd). Hence, (1+Q(µ))−1 has a meromorphic extension from Imµ > 0

to µ ∈ Ω as an operator L2
comp(Rd)→ L2

comp(Rd) and, thus, (4.1) holds.

Let us now turn to the proof of Theorem 3. Suppose that Ω b C\iR is a relatively
compact open complex neighborhood of the interval I. Let µ ∈ Ω, suppose that Imµ ≥ 0
and assume that R > R0 + 1 and let 1B(0,R−1) ≺ χ0 ≺ χ1 ≺ χ2 ≺ χ3 ≺ 1B(0,R) with

χj ∈ C∞c (Rd). We approximate the interior part of the resolvent RV (µ)χ1 by

A(µ)
def
= χ2RV (λ)χ1 −R0(µ)[P0, χ2]RV (λ)χ1.

Then,

(PV−µ2)A(µ)

= χ1 + [P0, χ2]RV (λ)χ1 + χ2(λ2 − µ2)RV (λ)χ1 − (1 + V R0(µ))[P0, χ2]RV (λ)χ1

= χ1 + χ2(λ2 − µ2)RV (λ)χ1 − V R0(µ)[P0, χ2]RV (λ)χ1.
(4.2)
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Next, set u = RV (λ)χ1. Then, since 1suppV ≺ 1B(0,R−1) ≺ χ0 ≺ χ1 ≺ χ2 ≺ χ3 ≺ 1B(0,R),
we see that

(P0 − λ2)(1− χ2)u = (1− χ2)χ1 − [P0, χ2]u

= −[P0, χ2]RV (λ)χ1,

which implies that

(1− χ2)u = −R0(λ)[P0, χ2]RV (λ)χ1. (4.3)

A priori the above two expressions make sense for Imλ > 0, however, by analytic contin-
uation, they hold as well for λ ∈ I.

Next, notice that the support of the term on the right hand side of (4.3) is contained in
supp (1− χ2) which has empty intersection with the support of the potential V . Hence,

V R0(λ)[P0, χ2]RV (λ)χ1 = 0.

Thus, by (4.2), we deduce that

(PV − µ2)A(µ) = χ1 + χ2(λ2 − µ2)RV (λ)χ1 + T

with T
def
= −V χ3(R0(µ)−R0(λ))χ3[P0, χ2]RV (λ)χ1.

(4.4)

By (2.7), we have that χ3R0(µ)χ3, as an operator from L2(Rd) → L2(Rd), is of norm

O(eC/h) uniformly for µ ∈ Ω. Then, the Cauchy inequalities imply that

‖∂µ(χ3R0(µ)χ3)‖L2→L2 = O(eC/h)

uniformly for µ ∈ Ω̃, where Ω̃ b Ω is a slightly smaller complex open neighborhood of I

strictly contained in Ω. Thus, for any λ ∈ I and any µ ∈ Ω̃,

‖χ3R0(µ)χ3 − χ3R0(λ)χ3‖L2→L2 = O(|µ− λ|eC/h). (4.5)

By (1.5), we see that

‖[P0, χ2]RV (λ)χ1‖L2→L2 = O
(

eCh
−4/3 log 1

h

)
,

which in combination with (4.4), (4.5) and (1.2) gives that

‖T‖L2→L2 = O
(
|µ− λ|eCh−4/3 log 1

h

)
. (4.6)

Notice that suppT ⊂ suppV ⊂ B(0, R0), which yields that T maps L2(Rd)→ L2
comp(B(0, R)).

For the exterior part of the resolvent RV (µ)(1− χ1) we use the approximation

B(µ)
def
= (1− χ0)R0(µ)(1− χ1) +A(µ)[P0, χ0]R0(µ)(1− χ1).

Then,

(PV − µ2)B(µ) = 1− χ1 − [P0, χ0]R0(µ)(1− χ1)

+ (χ1 + χ2(λ2 − µ2)RV (λ)χ1 + T )[P0, χ0]R0(µ)(1− χ1)

= (1− χ1) + (χ2(λ2 − µ2)RV (λ) + T )[P0, χ0]R0(µ)(1− χ1).

(4.7)

Here, we used as well that χ0 ≺ χ1.

Put R̃(µ)
def
= A(µ) + B(µ) : L2

comp(Rd) → H2
loc(R

d). Then, combining (4.4) and (4.7)
gives

(PV − µ2)R̃ = 1 +K (4.8)

with

K = χ2(λ2 − µ2)RV (λ)(χ1 + [P0, χ0]R0(µ)(1− χ1)) + T [P0, χ0]R0(µ)(1− χ1). (4.9)
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Using (2.7) we have that [P0, χ0]R0(µ) as an operator from L2
comp(B(0, R))→ L2

comp(B(0, R))

is of norm O(eC/h) uniformly for µ ∈ Ω. It then follows by (1.3) and (4.6) that

K : L2
comp(B(0, R)) −→ L2

comp(B(0, R)) (4.10)

has operator norm ≤ O(|λ − µ| eCh−4/3 log h−1
) for some constant C > 0. Therefore, if

|λ− µ| ≤ e−2Ch−4/3 log h−1
, for h > 0 small enough, it follows that (1 +K) has a bounded

inverse

(1 +K)−1 : L2
comp(B(0, R)) −→ L2

comp(B(0, R)) (4.11)

and we get that

RV (µ) = R̃(µ)(1 +K)−1 : L2
comp(B(0, R)) −→ H2

loc(R
d) (4.12)

is holomorphic for |λ − µ| ≤ e−2Ch−4/3 log h−1
for h > 0 small enough. For µ still in the

same set, it follows by (4.1) that

RV (µ) = R0(µ)−RV (µ)Q(µ)

= R0(µ)−RV (µ)χ3Q(µ).

Since both Q(µ) : L2
comp(Rd) → L2

comp(Rd) and R0(µ) : L2
comp(Rd) → H2

loc(R
d) are

holomorphic families of operators, it follows by (4.12) that

RV (µ) : L2
comp(Rd) −→ H2

loc(R
d) (4.13)

is holomorphic for |λ−µ| ≤ e−2Ch−4/3 log h−1
, for h > 0 small enough, which completes the

proof of Theorem 3.

5. Decay of eigenfunctions of Schrödinger operators with bounded
potentials

In this section we prove Theorem 5. Let d ≥ 2, let 0 6≡W ∈ L∞(Rd) with ‖W‖∞ ≤ CW
and let u be a bounded solution to

−∆u+Wu = 0 in Rd (5.1)

and suppose that u admits the estimate |u(x)| ≤ C exp(−c|x|) for |x| > 1 and some
constants C, c > 0. Notice that in particular u ∈ H2

h(Rd), the semiclassical Sobolev space.

Let h ∈ (0, 1] and let Uh : L2(Rd)→ L2(Rd) be the unitary map defined by

(Uhφ)(x) = hd/2φ(hx). (5.2)

Then,

U∗h(−∆ +W )Uh = −h2∆ +W (h−1x). (5.3)

Let ψ ∈ C∞c (R; [0, 1]) be such that suppψ ⊂ (1 + 1/4, 1 + 1/2) and
∫
ψdx = 1. Then, set

χh(x)
def
= χh(|x|) def

= 1−
∫ |x|

0
ψ

(
1 +

t− 1

h

)
dt.

Notice that χh ∈ C∞c (Rd; [0, 1]) with support contained in the ball B(0, 2) independently of

h > 0. Moreover, χh ≡ 1 on B(0, 1 + h/4) and χh = 0 outside B(0, 1 + h/2). For any α ∈
Nd\{0} we have that the support of ∂αχh is contained in the annulus B(0, 1+h/4, 1+h/2)
with inner radius 1 +h/4 and outer radius 1 +h/2 and all derivatives satisfy the estimate

‖∂αχh‖∞ = O(h1−|α|) for α 6= 0. Similarly, we can construct a χ̃h ∈ C∞c (Rd; [0, 1]) so that
χ̃h ≡ 1 on supp∇χh and χ̃h = 0 outside the annulus B(0, 1, 1 + h). Moreover, we can

arrange so that all derivatives satisfy the estimate ‖∂αχ̃h‖∞ = O(h1−|α|), for α 6= 0.
Set

ũ(x) = (U∗hu)(x).
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Then, by (5.1), (5.3)

(−h2∆ +W (h−1x)1B(0,2)(x))χh(x)ũ(x)

= χh(x)(−h2∆ +W (h−1x))ũ(x) + [−h2∆, χh(x)]ũ(x)

= [−h2∆, χh(x)]ũ(x).

(5.4)

Notice that

|[−h2∆, χh]ũ|2 = |(−h2∆χh)ũ− 2h∇χh · h∇ũ|2

≤ 2|(−h2∆χh)ũ|2 + 8|h∇χh|2|h∇ũ|2.

Using that that χ̃h ≡ 1 on supp∇χh ⊂ B(0, 1 + h/4, 1 + h/2) and the estimate on its
derivatives, we see by integration by parts shows that∫

|[−h2∆, χh]ũ|2dx ≤ O(h2)

∫
B(0,1,1+h)

|ũ|2dx+O(h2)

∫
supp∇χh

|h∇ũ|2 dx

≤ O(h2)

∫
B(0,1,1+h)

|ũ|2dx+O(h2)

∫
B(0,1,1+h)

|h2∆ũ|2 dx

≤ O(h2)

∫
B(0,1,1+h)

|ũ|2dx,

(5.5)

where in the last line we used as well that −h2∆ũ = −W (h−1x)ũ by (5.1), (5.3). Hence,
setting V (x;h) = W (h−1x)1B(0,2)(x) ∈ L∞(Rd) with suppV ⊂ B(0, 2), we get by (5.4),
(5.5) and (5.2) that

‖(−h2∆ + V )χhũ‖2 = O(h2)

∫
B(0,h−1,h−1+1)

|u|2dx def
= ε(h) (5.6)

Next, we apply Lemma 9 with R = 3: there exists a real-valued smooth function φ ∈
C∞(Rd) and constants C > 0 and h0 ∈ (0, 1] such that for any v ∈ C∞c (B(0, 3)) and all
0 < h ≤ h0 ∫

e2φ/h4/3(|v|2 + |h∇v|2)dx ≤ C

h2/3

∫
e2φ/h4/3 |(−h2∆ + V )v|2dx. (5.7)

Notice in particular from the proof of Lemma 9 that φ = max{‖V ‖∞, 1}2/3φ0 where
φ0 is a smooth real-valued function which does not depend on the potential V as it
stems from the Carleman estimate for the free Laplacian. In fact φ0 is a non-constant
function since one requires |dφ0| 6= 0 for the Carleman estimate to work, see for instance
[Sjö02]. Furthermore, since we assume that W 6≡ 0 we obtain by an easy modification

of the proof of Lemma 9 that we can take φ = ‖V ‖2/3∞ φ0 for h > 0 small enough. Let

M
def
= maxB(0,3) φ0 −minB(0,3) φ0 > 0, then, applying (5.7) to χhũ, we get in combination

with (5.6) that∫
B(0,h−1)

|u|2dx ≤ Ch4/3e2M‖V ‖2/3∞ /h4/3
∫
B(0,h−1,h−1+1)

|u|2dx. (5.8)

Since we assumed that u that ‖u‖2 = 1, we get that for h > 0 small enough∫
B(0,h−1,h−1+1)

|u|2dx ≥ 2Ch−4/3e−2M‖V ‖2/3∞ /h4/3 . (5.9)

Setting R = h−1, we conclude formula (1.10) and hence the proof of Theorem 5.
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[BTV17] D. Borisov, M. Tautenhahn, and I. Veselić, Scale-free quantitative unique continuation and
equidistribution estimates for solutions of elliptic differential equations, J. Math. Phys. 58
(2017), no. 12.
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[Sjö02] J. Sjöstrand, Lectures on resonances, 2002.
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