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In this talk, we discuss the one-dimensional differ-
ence Schrödinger equation in the complex plane. To
study its solutions in the complex plane in the quasi-
classical limit, V.Buslaev, A.Fedotov and E.Shchetka
developed an analog of the complex WKB method.
We assume that the potential has a simple pole and
study the behavior of solutions in its neighborhood.

1 Introduction

Consider the difference equation

ψ(z + h) + ψ(z − h) + v(z)ψ(z) = 0, (1)

where z is the complex variable, z ∈ C, v is a given
analytic or meromorphic function, and h > 0 is a
constant translation parameter.

One encounters such equations, for example, in
solid state physics when studying, say, an electron
in a crystal in a weak magnetic field. The transla-
tion parameter h is proportional to the magnetic
flux through the periodicity cell. In solid state
physics, one has v(z) = w(z) − E, where the func-
tion w is called the potential and the parameter
E is called the spectral parameter. When v(z) =
cos(z) − E, The equation becomes the famous
Harper equation, see, e.g., [1]; when v(z) = tan(z)−
E, it is a close relative of the well-known Maryland
equation introduced by D.Grempel, S.Fishman and
R.Prange in [2].

Difference equations with a small translation pa-
rameter arise also in the study of the scattering of
waves on wedge-shaped domains in the framework
of the Sommerfeld-Malyuzhinets method. In this
case, the translation parameter appears to be pro-
portional to the angle of the wedge, see [6].

We study the asymptotics of solutions to (1) as
h → 0. Since formally exp

(
h d
dz

)
Ψ(z) = Ψ(z +

h), the parameter h in (1) can be regarded as a

small parameter in front of the derivative and, thus,
appears to be a standard quasiclassical parameter.

To study the one-dimensional differential
Schrödinger equations in the quasiclassical limit,
one uses the classical complex WKB method,
see [3]. In [4, 5] the authors developed an analog
of the complex WKB method to study one-
dimensional difference Schrödinger equations with
analytic coefficients.

In this paper, we consider the case of meromor-
phic v. To be more precise, we assume that B0

is a neighborhood of z = 0 (here and below a
neighborhood of a point is an open disc centered
at this point), and that v is analytic in B0 \ {0}
and has a simple pole at zero. Let ψ be a so-
lution to (1) analytic in B0 to the left of zero,
i.e., when Re z < 0. Equation (1) implies that
ψ(z) = −ψ(z − 2h) − v(z − h)ψ(z − h). There-
fore, ψ can be meromorphic in B0 and can have
poles at the points z = h, 2h, 3h . . . .

When h is small, these points become close one
to another. We describe the quasiclassical asymp-
totics in B0 of solutions to (1) having poles at
z = h, 2h, 3h . . . .

2 A brief introduction to the complex
WKB method

Let us briefly describe the main construction of
the complex WKB method for the difference equa-
tion (1) with an analytic coefficient v. We note that
formally this equation can be written in the form

(2 cos p̂+ v(z))ψ(z) = 0, (2)

p̂ = −ihd/dz.

We define the complex momentum p by the formula

2 cos p(z) + v(z) = 0.
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It is an analytic multivalued function. Its branch
points satisfy the relations ±2+v(z) = 0. We call a
subset D of the domain of analyticity of v regular,
if v(z) 6= ±2 in D.

Let D be a simply connected regular domain, and
let p be a branch of the complex momentum ana-
lytic in D. All the other branches of p that are
analytic in D are of the form ±p(z) + 2πm, m ∈ Z.

The complex momentum is the main analytic ob-
ject of the complex WKB method. In terms of the
complex momentum, one defines canonical domain
that are the main geometric objects of the method.
The precise definition of a canonical domain can be
found in [4, 5]. Here, we note that canonical do-
mains are regular and simply connected, and that
one has

Theorem 1 Any regular point is contained in a
canonical domain.

This statement is an analog of Lemma 5.3 from [7].
The principle result of the method is

Theorem 2 ([5]) Let K ⊂ C be a canonical do-
main, and let p be a branch of the complex momen-
tum analytic in K. For sufficiently small h, there
exist ψ, a solution to (1) analytic in K and such
that in K as h→ 0

ψ(z) =
1√

sin(p(z))
e

i
h

∫ z p(z) dz. (3)

The asymptotic is locally uniform in z.

In the case of meromorphic potentials, when saying
that a set D is regular, we additionally assume that
the potential is analytic in D.

3 A continuation principle

We now continue to discuss the case of analytic
v. Let z0 be a regular point, and let V0 be its
regular neighborhood. Assume that there exists ψ,
a solution to (1) that, in V0, is analytic and admits
the uniform asymptotic representation (3).

There exist general statements (Continuation
principles) allowing to describe the asymptotics of
ψ outside of V0. One of them is

Theorem 3 (The rectangle lemma) Consider
the straight line L = {z ∈ C : Im z = Im z0}. Let
z1 be a point of L such that (1) Re z1 > Re z0;
(2) the segment [z0, z1] = {z ∈ L : Re z0 ≤
Re z ≤ Re z1} is regular. If Im p (z) < 0 along
[z0, z1], then the asymptotic representation (3) is

Figure 1: B0, V0, the δ-neighborhood of R+

valid and uniform in an independent of h regular
neighborhood of [z0, z1].

This theorem is an analog of Lemma 5.1 from [7]. It
roughly says that the asymptotic of a solution stays
valid along a horizontal line as long as its leading
term grows.

4 Typical quasiclassical formulation of
the problem

For the sake of simplicity, we additionally assume
that v(z) ∈ R for z ∈ R.

Note that if B0 is sufficiently small then
(1) in B0 v(z) ∈ R only for z ∈ R;
(2) the set B0 \ {0} is regular.
Below, we assume that B0 possesses these two prop-
erties.

We denote by B′0 the domain B0 cut along R+,
the positive part of the real line. Let p be a branch
of the complex momentum analytic in B′0. For B0

that we consider, the imaginary part of p(z) does
not vanish in B′0. For the sake of definiteness, we
assume that it is negative.

In B0 we pick z0 < 0, see Fig. 1. In view of The-
orem 1, there is a regular neighborhood V0 ⊂ B0

of z0 such that there exists a solution ψ to equa-
tion (1) that, in V0, is analytic and satisfies (3).

Let δ > 0 be sufficiently small. Let B′δ be the
domain B0 without the δ-neighborhood of R+. As
Im p(z) < 0 in B′0, by Theorem 3 the asymptotic
representation (3) for ψ is valid and uniform in B′δ
to the right from V0. The problem is to describe
the asymptotics of ψ in the δ-neighborhood of R+.

5 The main result

It can be easily checked that the complex momen-
tum p has a logarithmic branch point at zero. More
precisely, one has

Lemma 1 In B′0 fix an analytic branch of ln. The
function z 7→ p(z) + i ln z is analytic in B0. The
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function z 7→ z sin p(z) is analytic and does not
vanish in B0.

For z ∈ B0 we set

U0(z) =

√
h

−2πz sin p(z)
×

exp

(
z

h
ln

1

h
+
i

h

∫ z

0

(p(z)− i ln(−z)) dz
)
,

where p and
√
p are the functions used in (3) to

describe ψ, z 7→ ln(−z) and z 7→
√
−z denote

branches analytic in B′0 satisfying ln(−z)|z=−1 = 0
and
√
−z|z=−1 = 1. By Lemma 1, U0 is analytic in

B0. Our main result is

Theorem 4 Let δ > 0 be sufficiently small. In the
δ-neighborhood of R+, the solution ψ+ admits the
following uniform asymptotic representation

ψ(z) = Γ
(

1− z

h

)
U0(z) (1 + o(1)), h→ 0. (4)

So, the special function describing the asymptotic
behavior of ψ+ near the small poles generated by
the pole of the potential at z = 0 is the Euler Γ-
function.

Close to the point z = 0 the formula (4) can
not be simplified. For large values of |z/h| the Γ-
function in (4) can be replaced with its asymptotics.
To be more precise, let us pick ε > 0. By means of
the asymptotic formula

Γ(1 + ζ) =
√

2πζ eζ(ln ζ−1)+o(1), |ζ| → ∞ (5)

that is uniform in the sector | arg ζ| ≤ π − ε, one
easily checks that for | arg z − π| ≤ π − ε and, say,
|z| ≥ δ/2 representation (4) turns into (3).

Now let us discuss the case where |z| ≥ δ/2 and
| arg z| ≤ ε. In this case, to simplify (4), first we
use the relation Γ(1 − ζ) = π

sin(πζ)
1

Γ(ζ) and, next,

the asymptotic representation (5). This leads to
the uniform asymptotic representation

ψ(z) =
1

1− e−2πiz/h

e
i
h

∫ z p(z) dz+o(1)√
sin(p(z))

, h→ 0,

where p and
√

sin(p) are the branches obtained by
analytic continuation ( in the anticlockwise direc-
tion) from the sector | arg z − π| ≤ π − ε to the
sector under consideration.

5.1 The ideas of the proof

Let us note that the function z 7→ f(z) =
ψ(z)/(Γ(1− z/h)U0(z)) is analytic in z in a neigh-
borhood of zero independent of h, e.g., a disc
of radius δ > 0. Therefore, to prove (4), by
the maximum principle, it suffices to check that
f(z) = 1 + o(1) for, say, |z| = δ/2. This is done
by means of a rather standard asymptotic compu-
tation made using the complex WKB method for
difference equations.

6 Acknowledgments

This work was supported by the CNRS and the
Russian foundation of basic research under the
French-Russian grant 17-51-150008.

References

[1] Wilkinson, M., 1984, Critical properties of elec-
tron eigenstates in incommensurate systems,
Proc. Roy. Soc. London Ser. A,, Vol. 391,
pp. 305–350.

[2] D. Grempel, D., Fishman, S., Prange R., 1982,
Localization in an incommensurate potential:
An exactly solvable model, Physical Review Let-
ters, Vol. 49, pp. 833–836.

[3] Fedoryuk, M. V., 2009, Asymptotic Analy-
sis. Linear Ordinary Differential Equations,
Springer-Verlag, Berlin-Heidelberg GmbH.

[4] Buslaev, V., Fedotov, A., 1995, The complex
WKB method for Harpers equation, St. Peters-
burg Math. J., Vol. 6, pp. 495-517.

[5] Fedotov, A., Shchetka, E., 2017, Complex WKB
method for the difference Schrödinger equa-
tions with the potentials being trigonometric
polynomials. Algebra and Analyz (In Russian;
to be translated into English in St.Petersburg
Math.J.), Vol. 29, pp. 188-214.

[6] Babich, V., Lyalinov, M. and Grikurov, V.,
2008, Diffraction theory: the Sommerfeld-
Malyuzhinets technique, Alpha Science, Oxford.

[7] Fedotov, A., Klopp, F., 2005, On the abso-
lutely continuous spectrum of one dimensional
quasi-periodic Schrödinger operators in the adi-
abatic limit, Transactions of the AMS, Vol. 357,
pp. 4481–4516.


