Appendix A

Norms of smoothing functions

Our aim here is to give bounds on the norms of some smoothing functions. They are all based on the Gaussian $e^{-t^{2} / 2}$ in one way or the other.

A. 1 THE FUNCTIONS η AND η_{1}

We will work with functions $\eta, \eta_{1}:[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\eta_{1}(x)= \begin{cases}\sqrt{\frac{2}{\pi}} x^{2} e^{-x^{2} / 2} & \text { if } x \geq 0 \tag{A.1}\\ 0 & \text { if } x<0\end{cases}
$$

and

$$
\begin{aligned}
\eta(x) & =\left(2 \cdot 1_{[1 / 2,1]}\right) *_{M} \sqrt{\frac{2}{\pi}} x^{2} e^{-x^{2} / 2}=\int_{x}^{2 x} 2 \sqrt{\frac{2}{\pi}} w^{2} e^{-w^{2} / 2} \frac{d w}{w} \\
& =\sqrt{\frac{8}{\pi}} \cdot\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right)
\end{aligned}
$$

for $x \geq 0$; we let $\eta(x)=0$ for $x<0$.
Since, as is well-known, $\int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=1$, we know that

$$
|\eta|_{1}=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty}\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) d x=\sqrt{\frac{2}{\pi}}(\sqrt{2 \pi}-\sqrt{\pi / 2})=1
$$

Of course, the factor $\sqrt{8 / \pi}$ in the definition of η is there so as to make $|\eta|_{1}$ equal 1. Taking derivatives, we see that $\eta(x)$ has its only local maximum on $[0, \infty)$ at $x=$ $2 \sqrt{(\log 2) / 3}$, and that that $\lim _{x \rightarrow \infty} \eta(x)=\eta(0)=0$. Hence

$$
\begin{aligned}
\left|\eta^{\prime}\right|_{1} & =2 \eta\left(2 \sqrt{\frac{\log 2}{3}}\right)=4 \sqrt{\frac{2}{\pi}}\left(e^{-4 \frac{\log 2}{2 \cdot 3}}-e^{-4 \frac{2 \log 2}{3}}\right) \\
& =4 \sqrt{\frac{2}{\pi}}\left(\frac{1}{2^{2 / 3}}-\frac{1}{2^{8 / 3}}\right)=\frac{3}{2^{1 / 6} \sqrt{\pi}} .
\end{aligned}
$$

By the same token,

$$
|\eta|_{\infty}=\frac{3}{2^{7 / 6} \sqrt{\pi}}
$$

The Fourier transform is a little harder to bound.

Lemma A.1. Let

$$
\eta(x)= \begin{cases}\sqrt{8 / \pi} \cdot\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) & \text { if } x \geq 0 \tag{A.2}\\ 0 & \text { if } x<0\end{cases}
$$

Then

$$
\left|\widehat{\eta^{\prime \prime}}\right|_{\infty}=2.73443691486+O^{*}\left(3 \cdot 10^{-11}\right)
$$

Proof. Let

$$
f_{a}(x)= \begin{cases}e^{-a x^{2}} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then, for $a>0, \widehat{f}_{a}(t)$ equals

$$
\int_{0}^{\infty} e^{-a x^{2}} e^{-2 \pi i x t} d x=e^{-\frac{\pi^{2}}{a} t^{2}} \int_{0}^{\infty} e^{-a(x+i \pi t / a)^{2}} d x=e^{-\frac{\pi^{2}}{a} t^{2}} \int_{\frac{i \pi t}{a}}^{\frac{i \pi t}{a}+\infty} e^{-a z^{2}} d z
$$

We shift the contour of integration, and obtain

$$
\begin{aligned}
& \widehat{f}_{a}(t)=e^{-\frac{\pi^{2}}{a} t^{2}}\left(-\int_{0}^{\frac{i \pi t}{a}} e^{-a z^{2}} d z+\int_{0}^{\infty} e^{-a z^{2}} d z\right) \\
& =e^{-\frac{\pi^{2}}{a} t^{2}}\left(-\frac{1}{\sqrt{a}} \int_{0}^{\frac{i \sqrt{a}}{\sqrt{a}}} e^{-z^{2}} d z+\frac{\sqrt{\pi / a}}{2}\right) \\
& =\frac{\sqrt{\pi}}{2 \sqrt{a}} e^{-\frac{\pi^{2}}{a} t^{2}}\left(1-i \operatorname{erfi}\left(\frac{\pi t}{\sqrt{a}}\right)\right)
\end{aligned}
$$

where erfi is the imaginary error function (4.4) . This formula is of course standard; see [AS64, 7.4.6-7.4.7].

Now, recalling the standard rule $\widehat{g^{\prime}}(t)=(2 \pi i t) \widehat{g}(t)$ (§in 2.4.1; valid when g and g^{\prime} are both in L^{1}), we see that

$$
\begin{align*}
& \widehat{\eta^{\prime \prime}}(t)=(2 \pi i t)^{2} \widehat{\eta}(t)=-2^{7 / 2} \pi^{3 / 2} t^{2}\left(\widehat{f_{1 / 2}}(t)-\widehat{f_{2}}(t)\right) \\
& =4 \pi^{2} t^{2} e^{-\pi^{2} t^{2} / 2}\left(\left(1-2 e^{-\frac{3}{2} \pi^{2} t^{2}}\right)-i\left(\operatorname{erfi}\left(\frac{\pi t}{\sqrt{2}}\right)-2 e^{-\frac{3}{2} \pi^{2} t^{2}} \operatorname{erfi}(\sqrt{2} \pi t)\right)\right) . \tag{A.3}
\end{align*}
$$

Before we use the expression (A.3), let us give a somewhat crude bound, useful for t large. The function $\eta^{\prime \prime}$ has a jump (from 0 to $3 \sqrt{8 / \pi}$) at the origin, but $\eta^{(3)}$ is integrable and defined outside the origin. Hence

$$
\left|\widehat{\eta^{\prime \prime}}(t)\right| \leq \frac{\widehat{\eta^{(3)}}(t) \mid}{2 \pi|t|} \leq \frac{\left|\eta^{(3)}\right|_{\infty}}{2 \pi|t|}=\frac{1}{2 \pi|t|}\left(3 \sqrt{\frac{8}{\pi}}+\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|\eta^{(3)}(x)\right| d x\right)
$$

Since we are just deriving a crude bound for now, we can use the inequality $\left|\eta^{(3)}(x)\right| \leq$ $\sqrt{8 / \pi}\left(\left|f_{1 / 2}^{(3)}(x)\right|+\left|f_{2}^{(3)}(x)\right|\right)$:
$\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|\eta^{(3)}(x)\right| d x=\sqrt{\frac{8}{\pi}}\left(\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|f_{1 / 2}^{(3)}(x)\right| d x+\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|f_{2}^{(3)}(x)\right| d x\right)$

We can easily see that $f_{a}^{(3)}(x)=\left(-8 a^{3} x^{3}+12 a^{2} x\right) e^{-a x^{2}}$ is positive for $0<x<$ $\sqrt{3 / 2 a}$ and negative for $x>\sqrt{3 / 2 a}$, and that $f_{a}^{\prime \prime}(0)=-2 a$ and $\lim _{x \rightarrow \infty} f_{a}^{\prime \prime}(x)=0$. Hence

$$
\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|f_{a}^{(3)}(x)\right| d x=2 a+2\left|f_{a}^{\prime \prime}(\sqrt{3 / 2 a})\right|=2 a+8 a e^{-3 / 2}
$$

and so

$$
\lim _{x_{0} \rightarrow 0^{+}} \int_{x_{0}}^{\infty}\left|\eta^{(3)}(x)\right| d x=\sqrt{\frac{8}{\pi}}\left(2(1 / 2+2)+8(1 / 2+2) e^{-3 / 2}\right)=\frac{5+20 e^{-3 / 2}}{\sqrt{\pi / 8}} .
$$

We conclude that

$$
\begin{equation*}
\left|\widehat{\eta^{\prime \prime}}(t)\right| \leq \frac{4+10 e^{-3 / 2}}{(\pi / 2)^{3 / 2}|t|} \tag{A.4}
\end{equation*}
$$

We will use this bound for $t>6 / 5$, say.
Now we apply the bisection method as in $\S 4.1 .1$, with 5 initial iterations followed by 35 more iterations, to obtain that the maximum of $\left|\widehat{\eta^{\prime \prime}}(t)\right|$ for $t \in[0,1.2]$ lies in the interval

$$
\begin{equation*}
[2.734436914842,2.734436914882] \tag{A.5}
\end{equation*}
$$

Since $2.73443 \ldots$ is greater than $\left(4+10 e^{-3 / 2}\right) /\left((6 / 5)(\pi / 2)^{3 / 2}\right)=2.63765 \ldots$, and $\left|\widehat{\eta^{\prime \prime}}(t)\right|=\left|\widehat{\eta^{\prime \prime}}(-t)\right|$, we conclude that the maximum of $\left|\widehat{\eta^{\prime \prime}}(t)\right|$ for all $t \in \mathbb{R}$ lies in (A.5).

We will now bound $\left|\eta^{\prime \prime}\right|_{1}$. Note that it is substantially greater, i.e., worse, than the bound on $\left|\widehat{\eta^{\prime \prime}}\right|_{\infty}$ given by Lemma A.1. Thus we may stand to gain something by using Lemma 3.4 rather than Lemma 3.3.

Lemma A.2. Let η be as in (A.2). Then

$$
\left|\eta^{\prime \prime}\right|_{1}=3.884903382586+O\left(2 \cdot 10^{-12}\right) .
$$

The procedure of proof will be a little simpler than in later lemmas of this kind, such as Lemma A.4.

Proof. Clearly $\lim _{t \rightarrow \infty} \eta^{\prime}(t)=\eta^{\prime}(0)=0$. Since

$$
\frac{\eta^{\prime \prime}(x)}{\sqrt{8 / \pi}}=\left(x^{2}-1\right) e^{-x^{2} / 2}-\left(16 x^{2}-4\right) e^{-2 x^{2}}
$$

$\eta^{\prime}(x)$ can have a local extremum only when $e^{3 x / 2}=16-12 /(1-x)$. Since $\exp (3 x / 2)$ is increasing and $16-12 /(1-x)$ decreases monotonically from 4 to $-\infty$ as x goes from 0 to 1 and decreases monotonically from ∞ to 16 as x goes from 1 to ∞, we see that $e^{3 x / 2}=16-12 /(1-x)$ has exactly two roots, one in $(0,1)$ and one in $(1,3)$, say.

The bisection method shows that $\eta^{\prime}(x)$ does have local extrema in these intervals, and that $\eta^{\prime}(x)$ takes the following values at them:

$$
\begin{align*}
& y_{1}=1.27071184712+O^{*}\left(4 \cdot 10^{-13}\right) \tag{A.6}\\
& y_{2}=0.6717398441732+O^{*}\left(2 \cdot 10^{-13}\right)
\end{align*}
$$

Hence

$$
\begin{aligned}
\left|\eta^{\prime \prime}\right|_{1} & =2\left(1.27071184712+0.6717398441732+O^{*}\left(6 \cdot 10^{-13}\right)\right) \\
& =3.884903382586+O\left(2 \cdot 10^{-12}\right)
\end{aligned}
$$

Let

$$
\eta_{*}(x)=(\log x) \eta(x)= \begin{cases}\sqrt{8 / \pi} \cdot(\log x)\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) & \text { if } x \geq 0 \tag{A.7}\\ 0 & \text { if } x<0\end{cases}
$$

We need to know a couple of norms involving η_{*}. Thanks are due to N. Elkies, K. Conrad and R. Israel for help with several integrals.

Lemma A.3. Let $\eta_{*}(x)$ be as in (A.7). Then

$$
\left|\eta_{*}\right|_{1}=0.415495256376802+O^{*}\left(3 \cdot 10^{-15}\right)
$$

Proof. First of all,

$$
\begin{aligned}
\int_{0}^{\infty} x^{a} e^{-x^{2}} d x & =\int_{0}^{\infty} u^{a / 2} e^{-u} \frac{d u}{2 \sqrt{u}} \\
& =\frac{1}{2} \int_{0}^{\infty} u^{\frac{a+1}{2}-1} e^{-u} d u=\frac{1}{2} \Gamma\left(\frac{a+1}{2}\right)
\end{aligned}
$$

Taking the derivative with respect to a at $a=0$, we see that

$$
\begin{equation*}
\int_{0}^{\infty}(\log x) e^{-x^{2}} d x=\frac{1}{4} \Gamma^{\prime}(1 / 2)=\frac{-\sqrt{\pi}(\gamma+\log 4)}{4} \tag{A.8}
\end{equation*}
$$

where we obtain the value of $\Gamma^{\prime}(1 / 2)$ from (3.38) and (3.49). Hence

$$
\begin{aligned}
& \sqrt{\frac{8}{\pi}} \int_{0}^{\infty}(\log x)\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) d x \\
&=\sqrt{\frac{8}{\pi}}\left(\sqrt{2} \int_{0}^{\infty}(\log \sqrt{2} u) e^{-u^{2}} d u-\frac{1}{\sqrt{2}} \int_{0}^{\infty} \log \frac{u}{\sqrt{2}} \cdot e^{-u^{2}} d u\right) \\
& \quad=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty}(\log u) e^{-u^{2}} d u+\frac{2 \cdot \frac{3}{2} \log 2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u^{2}} d u \\
& \quad=-\frac{\gamma+\log 4}{2}+\frac{3 \log 2}{2}=\frac{\log 2-\gamma}{2},
\end{aligned}
$$

where we use (A.8) in the last step.
Now

$$
\begin{aligned}
\left|\eta_{*}\right|_{1} & =-2 \cdot \sqrt{\frac{8}{\pi}} \int_{0}^{1}(\log x)\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) d x \\
& +\sqrt{\frac{8}{\pi}} \int_{0}^{\infty}(\log x)\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) d x
\end{aligned}
$$

For $r>-1$,

$$
\begin{align*}
\int_{0}^{1}(\log x) x^{r} d x & =\int_{0}^{1}(\log x) x^{r+1} d \log x=\int_{-\infty}^{0} u e^{(r+1) u} d u \tag{A.9}\\
& =\left.\left(\left(\frac{u}{r+1}-\frac{1}{(r+1)^{2}}\right) e^{(r+1) u}\right)\right|_{-\infty} ^{0}=-\frac{1}{(r+1)^{2}} .
\end{align*}
$$

Expanding exp into a Taylor series, we see that

$$
\begin{aligned}
\int_{0}^{1} & (\log x)\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) d x=\int_{0}^{1}(\log x)\left(\sum_{k=0}^{\infty} \frac{\left(-x^{2} / 2\right)^{k}-\left(-2 x^{2}\right)^{k}}{k!}\right) d x \\
& =-\sum_{k=0}^{\infty}(-1)^{k} \cdot \frac{2^{k}-2^{-k}}{k!} \int_{0}^{1}(\log x) x^{2 k} d x \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{k}}{k!(2 k+1)^{2}}-\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{-k}}{k!(2 k+1)^{2}} \\
& =\sum_{k=0}^{K}(-1)^{k} \frac{2^{k}}{k!(2 k+1)^{2}}-\sum_{k=0}^{K-1}(-1)^{k} \frac{2^{-k}}{k!(2 k+1)^{2}}+O^{*}\left(\frac{2^{K}+2^{-K}}{K!(2 K+1)^{2}}\right)
\end{aligned}
$$

for any even $K \geq 0$, since these are alternating sums. Setting $K=20$, we obtain

$$
\begin{aligned}
\left|\eta_{*}\right|_{1} & =-2 \cdot \sqrt{\frac{8}{\pi}}\left(-0.112024193759256+O^{*}\left(6 \cdot 10^{-16}\right)\right)+\frac{\log 2-\gamma}{2} \\
& =0.415495256376802+O^{*}\left(3 \cdot 10^{-15}\right) .
\end{aligned}
$$

It ought to be possible to prove results such as Lemma A. 3 by pressing a button: symbolic integration gives an expression involving a generalized hypergeometric function. Generalized hypergeometric functions are now at least partly implemented in ARB [Joh19]. Of course, one can also prove Lemma A. 3 by rigorous numerical integration (§4.1.3), though that feels a little brutal for such a simple integrand.

The following kind of procedure also ought to be completely automated.
Lemma A.4. Let η_{*} be as in (A.7). Then

$$
\left|\eta_{*}^{\prime}\right|_{1}=1.02010539081+O^{*}\left(10^{-11}\right)
$$

Proof. It is clear that $\lim _{t \rightarrow 0^{+}} \eta_{*}(x)=\lim _{t \rightarrow \infty} \eta_{*}(x)=0$. It will thus be enough to identify and estimate the local maxima and minima of η_{*} on $(0, \infty)$. We apply the bisection method using interval arithmetic as explained at the end of $\S 4.1 .1$, and obtain η_{*} has two local extrema within $[1 / 3,3]$, and that the values of η_{*} at these extrema are

$$
\begin{align*}
& y_{1}=-0.305340693793+O^{*}\left(2 \cdot 10^{-12}\right), \\
& y_{2}=0.204712001611+O^{*}\left(2 \cdot 10^{-12}\right) \tag{A.10}
\end{align*}
$$

Now, for $x>0$,

$$
\begin{equation*}
\frac{\eta_{*}^{\prime}(x)}{\sqrt{8 / \pi}}=\frac{e^{-x^{2} / 2}-e^{-2 x^{2}}}{x}+(\log x)\left(-x e^{-x^{2} / 2}+4 x e^{-2 x^{2}}\right) . \tag{A.11}
\end{equation*}
$$

For $x \leq 1 / e$ (say), the first two terms add up to an alternating sum

$$
\frac{3}{2} x-\frac{15}{8} x^{3}+\ldots \leq \frac{3}{2} x
$$

In the same way and for the same range of x,

$$
-\exp \left(-x^{2} / 2\right)+4 e^{-2 x^{2}} \geq 3-(15 / 2) x^{2}
$$

Hence, for $x \leq 1 / e$,

$$
\begin{aligned}
\frac{\eta_{*}^{\prime}(x)}{\sqrt{8 / \pi}} & \leq-|\log x|\left(3 x-\frac{15}{2} x^{3}\right)+\frac{3}{2} x \\
& \leq-|\log x|\left(\frac{3 x}{2}-\frac{15}{2} x^{3}\right)<0
\end{aligned}
$$

For $x \geq e$, it is the third term in (A.11) that dominates:

$$
\frac{\eta_{*}^{\prime}(x)}{\sqrt{8 / \pi}} \leq-(\log x) x e^{-x^{2} / 2}\left(1-\frac{1}{x^{2}(\log x)}-\frac{4}{e^{3 x^{2} / 2}}\right)<0
$$

Hence $\eta_{*}(x)$ has no local extrema in $(0,1 / e)$ or (e, ∞).
We conclude that

$$
\begin{aligned}
\left|\eta_{*}^{\prime}\right|_{1} & =2(0.305340693793-0.20471200611)+O^{*}\left(8 \cdot 10^{-12}\right) \\
& =1.020105390808+O^{*}\left(8 \cdot 10^{-12}\right)=1.02010539081+O^{*}\left(10^{-11}\right)
\end{aligned}
$$

We would also like to have a bound for $\left|\widehat{\eta_{*}^{\prime \prime}}\right|_{\infty}$. If we are to proceed as in the proof of Lemma A.1, we need to have an expression for $\widehat{\eta_{*}}(t)$. Since $\log (x)$ is the derivative of x^{ν} with respect to ν at $\nu=0$,

$$
\begin{equation*}
\widehat{\eta}_{*}(t)=\frac{d}{d \nu} \int_{0}^{\infty} x^{\nu} e^{-a x^{2}} e(-t x) d x \tag{A.12}
\end{equation*}
$$

and we do have an expression for the integral in the right side of (A.12) in terms of $\Gamma(\nu / 2), \Gamma\left((\nu+1) / 2\right.$ and two values of a hypergeometric function ${ }_{1} F_{1}$ [GR94, 3.952, 8-9]. The function ${ }_{1} F_{1}$ is now implemented in ARB. (See also [Pea09], [POP17].) The derivative of ${ }_{1} F_{1}$ with respect to the first variable is given by a generalized hypergeometric function. We could leave it to ARB, or implement it ourselves in the range we need by a Taylor series.

Let us not take that route here. It will turn out that we do not actually need an exact value for $\left|\eta_{*}\right|_{1}$. We will actually be happy with the coarse bound $\left|\widehat{\eta_{*}^{\prime \prime}}\right|_{\infty} \leq\left|\eta_{*}^{\prime \prime}\right|_{1}$ and the following estimate, which we will obtain by the same procedure as in Lemma A.4.

Lemma A.5. Let η_{*} be as in (A.7). Then

$$
\left|\eta_{*}^{\prime \prime}\right|_{1}=3.908021634825+O^{*}\left(10^{-11}\right)
$$

Proof. Clearly, $\lim _{t \rightarrow 0^{+}} \eta_{*}^{\prime}(x)=\lim _{t \rightarrow \infty} \eta_{*}^{\prime}(x)=0$. Let us find the local maxima and minima of η_{*}^{\prime} on $(0, \infty)$. We apply the bisection method using interval arithmetic as explained at the end of $\S 4.1 .1$, and obtain that η_{*}^{\prime} has three local extrema with $[0.01,3]$, and that the values of η_{*}^{\prime} at these extrema are

$$
\begin{align*}
& y_{1}=-0.94877018055+O^{*}\left(4 \cdot 10^{-12}\right) \\
& y_{2}=0.815167328066+O^{*}\left(8 \cdot 10^{-13}\right) \tag{A.13}\\
& y_{3}=-0.1900733087965+O^{*}\left(2 \cdot 10^{-13}\right)
\end{align*}
$$

It is easy to see that $\eta_{*}^{\prime \prime}(x) \neq 0$ for $x \in(0,0.01)$ and for $x \in(3, \infty]$, as then one of the terms of

$$
\begin{align*}
\frac{\eta_{*}^{\prime \prime}(\sqrt{x})}{\sqrt{8 / \pi}} & =(\log x)\left(\left(x^{2}-1\right) e^{-x^{2} / 2}-\left(16 x^{2}-4\right) e^{-2 x^{2}}\right) \tag{A.14}\\
& +\frac{2}{x}\left(-x e^{-x^{2} / 2}+4 x e^{-2 x^{2}}\right)-\frac{1}{x^{2}}\left(e^{-x^{2} / 2}-e^{-2 x^{2}}\right) .
\end{align*}
$$

dominates all the others. (For $x \in(0,0.01)$, it is the term $4(\log x) e^{-2 x^{2}}$; for $x \in$ $(3, \infty)$ it is the term $\left(x^{2}-1\right)(\log x) e^{-x^{2} / 2}$.)

Hence, (A.13) is the full list of extrema of η_{*}^{\prime} in $(0, \infty)$. We conclude that

$$
\left|\eta_{*}^{\prime \prime}\right|_{1}=-2 y_{1}+2 y_{2}-2 y_{3}=3.908021634825+O^{*}\left(10^{-11}\right) .
$$

We also need some bounds involving the function η_{1}. First of all,

$$
\left|\eta_{1}\right|_{1}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2} e^{-x^{2} / 2} d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x^{2} / 2} d x=1
$$

Taking derivatives, we see that $x^{2} e^{-x^{2} / 2}$ has one critical point, at $x=\sqrt{2}$; the value of $x^{2} e^{-x^{2} / 2}$ at $x=\sqrt{2}$ equals $2 / e$. Hence

$$
\left|\eta_{1}^{\prime}\right|_{1}=2\left|\eta_{1}(\sqrt{2})\right|_{1}=2 \sqrt{\frac{2}{\pi}} \frac{2}{e}=\frac{\sqrt{32}}{e \sqrt{\pi}}
$$

We gather our results in one place: for η_{1} as in (A.1), η as in (A.2) and η_{*} as in (A.7),

$$
\begin{array}{ll}
|\eta|_{1}=1, & \left|\eta^{\prime}\right|_{1}=\frac{3}{2^{1 / 6} \sqrt{\pi}}=1.5079073303 \ldots \\
\left|\eta^{\prime \prime}\right|_{1}=3.88490338258 \ldots, & \left|\widehat{\eta^{\prime \prime}}\right|_{\infty}=2.7344369148 \ldots \\
\left|\eta_{1}\right|_{1}=1, & \left|\eta_{1}^{\prime}\right|_{1}=\frac{\sqrt{32}}{e \sqrt{\pi}}=1.1741013053 \ldots \\
\left|\eta_{*}\right|_{1}=0.4154952563768 \ldots, & \left|\eta_{*}^{\prime}\right|_{1}=1.0201053908 \ldots \\
\left|\widehat{\eta_{*}^{\prime \prime}}\right|_{\infty} \leq\left|\eta_{*}^{\prime \prime}\right|_{1}=3.9080216348 \ldots, & |\eta|_{\infty}=\frac{3}{2^{7 / 6} \sqrt{\pi}}=0.7539536651 \ldots
\end{array}
$$

We still need a few more bounds.
Lemma A.6. Let $\eta_{1}: \mathbb{R} \rightarrow[0, \infty)$ be as in (A.1). Let $\eta_{1, W}(x)=(\log W x) \eta_{1}(x)$. Then, for $W \geq 1$,

$$
\begin{align*}
& \left|\eta_{1, W}\right|_{1}=\log W+\left(1-\frac{\gamma+\log 2}{2}\right)+O^{*}\left(\frac{\sqrt{8 / \pi}}{9 W^{3}}\right) \tag{A.16}\\
& \left|\eta_{1, W}^{\prime}\right|_{1} \leq \sqrt{\frac{2}{\pi}}\left(\frac{4}{e} \log W+\frac{1}{e W^{2}}\right)+0.608238
\end{align*}
$$

In particular, for $W \geq 136$,

$$
\begin{equation*}
\frac{\left|\eta_{1, W}^{\prime}\right|_{1}}{\left|\eta_{1, W}\right|_{1}} \leq \frac{3}{4} e^{0.50136}-\frac{3}{100} \tag{A.17}
\end{equation*}
$$

The form in which we have put the bound (A.17) may seem peculiar, but it will show itself to be convenient.

Proof. Clearly

$$
\begin{aligned}
\left|\eta_{1, W}\right|_{1} & =\int_{0}^{\infty}\left|(\log W x) \eta_{1}(x)\right| d x \\
& =-\int_{0}^{1 / W}(\log W x) \eta_{1}(x) d x+\int_{1 / W}^{\infty}(\log W x) \eta_{1}(x) d x \\
& =-2 \int_{0}^{1 / W}(\log W x) \eta_{1}(x) d x+\int_{0}^{\infty}(\log W x) \eta_{1}(x) d x
\end{aligned}
$$

We can simply bound

$$
\begin{aligned}
-\int_{0}^{1 / W}(\log W x) \eta_{1}(x) d x & \leq \sqrt{\frac{2}{\pi}} \int_{0}^{1 / W}(-\log W-\log x) x^{2} d x \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{1}{9 W^{3}}(3 \log W+1)-\frac{\log W}{3 W^{3}}\right)=\frac{\sqrt{2 / \pi}}{9 W^{3}}
\end{aligned}
$$

Of course, $\int_{0}^{\infty}(\log W) \eta_{1}(x) d x=\log W$. By integration by parts and (A.8),

$$
\begin{align*}
& \int_{0}^{\infty}(\log x) x^{2} e^{-x^{2} / 2} d x=\sqrt{2} \int_{0}^{\infty}(\log \sqrt{2} u) \cdot 2 u^{2} e^{-u^{2}} d u \\
& =\frac{\log 2}{\sqrt{2}} \int_{0}^{\infty} u \cdot 2 u e^{-u^{2}} d u+\sqrt{2} \int_{0}^{\infty}(u \log u) \cdot 2 u e^{-u^{2}} d u \\
& =\frac{\log 2}{\sqrt{2}} \int_{0}^{\infty} e^{-u^{2}} d u+\sqrt{2} \int_{0}^{\infty}(1+\log u) e^{-u^{2}} d u \tag{A.18}\\
& =\frac{2+\log 2}{\sqrt{2}} \cdot \frac{\sqrt{\pi}}{2}+\sqrt{2} \cdot \frac{-\sqrt{\pi}(\gamma+\log 4)}{4}=\sqrt{\frac{\pi}{2}} \cdot\left(1-\frac{\gamma+\log 2}{2}\right),
\end{align*}
$$

where γ is Euler's constant. Thus, the bound on $\left|\eta_{1, W}\right|$ in (A.16) holds.
Since

$$
\begin{aligned}
\left((\log W x) x^{2} e^{-x^{2} / 2}\right)^{\prime} & =(\log W x) x^{2} \cdot(-x) e^{-x^{2} / 2}+(x+2(\log W x) x) e^{-x^{2} / 2} \\
& =\left((\log W x)\left(2-x^{2}\right)+1\right) \cdot x e^{-x^{2} / 2}
\end{aligned}
$$

the function $\eta_{1, W}$ has its critical points at the roots of

$$
\begin{equation*}
(\log W x)\left(2-x^{2}\right)+1=0 \tag{A.19}
\end{equation*}
$$

Now,

$$
\left((\log W x)\left(2-x^{2}\right)\right)^{\prime}=\frac{2-x^{2}}{x}-2 x(\log W x)>0
$$

for $x \leq 1 / W$. Since the left side of (A.19) equals 1 for $x=1 / W$ and tends to $-\infty$ as $x \rightarrow 0^{+}$, we see that (A.19) has exactly one root x_{0} in $[0,1 / W]$, and that $\eta_{1, W}$ is decreasing on $\left[0, x_{0}\right]$. Since $\log W x>0$ for $x>1 / W$, we also see that (A.19) has no roots on $[1 / W, \sqrt{2}]$. It is also to see that $(\log W x)\left(2-x^{2}\right)$ decreases from 0 to $-\infty$ as x ranges from $\sqrt{2}$ to ∞. Thus, (A.19) has exactly one root x_{1} greater than $\sqrt{2}$; the function $\eta_{1, W}$ is increasing on $\left[x_{0}, x_{1}\right]$ and decreasing on $\left[x_{1}, \infty\right)$. Since $x_{0}<1 / W<x_{1}, \eta_{1, W}\left(x_{0}\right)<0<\eta_{1, W}\left(x_{1}\right)$. Hence

$$
\left|\eta_{1, W}^{\prime}\right|_{1}=-2 \eta_{1, W}\left(x_{0}\right)+2 \eta_{1, W}\left(x_{1}\right)=-2 \eta_{1, W}\left(x_{0}\right)+\max _{x \geq 0} 2 \eta_{1, W}(x) .
$$

Since $-\eta_{1, W}\left(x_{0}\right)=-\sqrt{2 / \pi}(\log W x) x^{2} e^{-x^{2} / 2} \leq-\sqrt{2 / \pi}(\log W x) x^{2}$ and since $\left((\log W x) x^{2}\right)^{\prime}=-x(1+2 \log W x)$, which is 0 for $x=1 / \sqrt{e} W$, we see that

$$
-2 \eta_{1, W}\left(x_{0}\right) \leq 2 \sqrt{\frac{2}{\pi}} \cdot \frac{1}{2} \cdot \frac{1}{e W^{2}}=\frac{\sqrt{2 / \pi}}{e W^{2}}
$$

Recall that $\eta_{1, W}(x)=\sqrt{2 / \pi}\left((\log W) x^{2} e^{-x^{2} / 2}+(\log x) x^{2} e^{-x^{2} / 2}\right)$ and that the maximum of $x \mapsto \sqrt{2 / \pi} \cdot x^{2} e^{-x^{2} / 2}$ equals $\sqrt{2 / \pi} \cdot 2 / e$. We bound the maximum of $x \mapsto(\log x) x^{2} e^{-x^{2} / 2}$ on $[\sqrt{2}, \infty)$ by the bisection method (applied to the interval $(1.41,5)$, with 30 iterations). We obtain that the bound on $\left|\eta_{1, W}^{\prime}\right|_{1}$ in (A.16) holds.

Lastly, let us bound $\left|\eta_{1, W}^{\prime}\right|_{1} /\left|\eta_{1, W}\right|_{1}$, using the bounds we have just proved. Since $0.608238 /((4 / e) \sqrt{2 / \pi})=0.51804 \ldots>0.36481 \ldots=1-(\gamma+\log 2) / 2$, the function

$$
W \mapsto \frac{\sqrt{\frac{2}{\pi}}\left(\frac{4}{e} \log W+\frac{1}{e W^{2}}\right)+0.608238}{\log W+\left(1-\frac{\gamma+\log 2}{2}\right)-\frac{\sqrt{8 / \pi}}{9 W^{3}}}
$$

is decreasing for $W \geq 1$. Thus, its value for $W \geq 136$ is at most its value at 5 , viz., $1.208193 \ldots$. Note, finally, that $(3 / 4) \cdot e^{0.50136}-3 / 100=1.208223 \ldots$ 1.208193....

A. 2 THE FUNCTIONS η_{\circ}, η_{+}, h AND h_{H}

A.2.1 Definitions and basic properties

Define

$$
h: x \mapsto \begin{cases}x^{2}(2-x)^{3} e^{x-1 / 2} & \text { if } 0<x \leq 2, \tag{A.20}\\ 0 & \text { otherwise }\end{cases}
$$

We will work with an approximation η_{+}to the function $\eta_{\circ}:(0, \infty) \rightarrow \mathbb{R}$ given by

$$
\eta_{\circ}(x)=h(x) \eta_{\diamond}(x)= \begin{cases}x^{3}(2-x)^{3} e^{-(x-1)^{2} / 2} & \text { for } 0<x \leq 2, \tag{A.21}\\ 0 & \text { otherwise }\end{cases}
$$

where $\eta_{\diamond}:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\eta_{\diamond}(x)=x e^{-x^{2} / 2} \tag{A.22}
\end{equation*}
$$

The approximation η_{+}is defined by

$$
\begin{equation*}
\eta_{+}(x)=h_{H}(x) x e^{-x^{2} / 2} \tag{A.23}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{H}(x)=\frac{1}{2 \pi i} \int_{-i H}^{i H}(M h)(s) x^{-s} d s \tag{A.24}
\end{equation*}
$$

and $H>0$ will be set later.
It is easy to see that $h_{H}(x)$ is continuous, and in fact in $C^{\infty}((0, \infty))$, since it is defined in (A.24) as an integral on a compact segment, with an integrand depending smoothly on x. Thus, η_{+}is C^{∞}.

It is also clear from (A.24) that $h_{H}(x)$ is bounded, and so $\eta_{+}(x)$ is of fast decay as $x \rightarrow \infty$ and decays at least as fast as x for $x \rightarrow 0^{+}$. In the same way, (A.24) implies that $h_{H}^{\prime}(x)$ is bounded (as are all higher derivatives), and so $\eta_{+}^{\prime}(x)$ is of fast decay as $x \rightarrow \infty$ as well as being bounded.

Notice, however, that h_{H} is not in L^{1} with respect to $d x / x$ (or $d x$), because the integral in (A.24) has sharp cutoffs at $i H$ and $-i H$: integration by parts shows that the dominant term of $h_{H}(x)$ as $x \rightarrow \infty$ is $c(x) / \log x$, where $c(x)=\Re(M h(i H)$. $\left.x^{-i H}\right) / \pi$ oscillates between $-|M h(i H)| / \pi$ and $|M h(i H)| / \pi$. Thus, we will abstain from writing $M h_{H}$, say, even though is fair enough to think of $M h_{H}$ as the truncation of $M h$ at $i H$ and $-i H$. (We could justifying writing $M h_{H}$ by developing an L^{2} theory for the Mellin transform, in analogy to the L^{2} theory of the Fourier transform, but we will not need to.)

Lemma A.7. Let h and h_{H} be as in (A.20) and (A.24). Then

$$
\begin{equation*}
h_{H}(x)=h *_{M} \frac{\sin (H \log x)}{\pi \log x} . \tag{A.25}
\end{equation*}
$$

Proof. Clearly, for $I=[-H, H]$,

$$
h_{H}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(M h)(i t) 1_{I}(t) e^{-i t \log x} d t
$$

which equals the value of the Fourier transform of $M h(i t) \cdot 1_{I}(t)$ at $\log x / 2 \pi$. Since $1_{[-H, H]}$ is in L^{2} and both $M h(i t)$ and its Fourier transform $x \mapsto 2 \pi h\left(e^{2 \pi x}\right)$ are in L^{1}, we may apply (2.12), and obtain that

$$
\begin{aligned}
h_{H}(x) & =\frac{1}{2 \pi}\left(2 \pi h\left(e^{2 \pi x}\right) * \widehat{1}_{I}\right)\left(\frac{\log x}{2 \pi}\right) \\
& =\int_{-\infty}^{\infty} h\left(e^{2 \pi\left(\frac{\log x}{2 \pi}-u\right)}\right) \widehat{1}_{I}(u) d u=\frac{1}{2 \pi} \int_{0}^{\infty} h\left(\frac{x}{w}\right) \widehat{1}_{I}\left(\frac{\log w}{2 \pi}\right) \frac{d w}{w}
\end{aligned}
$$

almost everywhere. Now, $\widehat{1}_{I}(t)=\sin (2 \pi H t) / \pi t$, and so (A.25) holds almost everywhere.

We know that $h_{H}(x)$ is continuous, and the right side of (A.25) is continuous as well (since $h\left(e^{2 \pi x}\right)$ is a function of fast decay, and $\widehat{1}_{H}$ is uniformly continuous). Therefore, equation (A.25) actually holds everywhere.

Figures A.1-A. 3 show h_{H} and η_{+}for different values of H. The plot for $H=100$ is indistinguishable from that of η_{\circ}. Figures A. 3 and A. 4 shows the range $x \geq 2$, where $h(t)$ and η_{\circ} are identically zero, for higher H; notice the scale.

Lemma A.8. Let η_{+}be as (A.23). Then $M \eta_{+}$is holomorphic for $\Re s>-1$.
Proof. Let h, h_{H} and η_{\diamond} be as in (A.20), (A.24) and (A.22). Since $t \rightarrow M h(i t)$ is in L^{1}, so is its truncation to $[-H, H]$, and hence h_{H} is in L^{∞}. Therefore, $\eta_{+}(x) x^{\sigma-1}=$ $h_{H}(x) \cdot \eta_{\diamond}(x) x^{\sigma-1}$ is in L^{1} for any σ for which $\eta_{\diamond}(x) x^{\sigma-1}$ is in L^{1}; that is, the strip

Figure A.1: $h_{H}(x)$ on $[0,3]$

Figure A.3: $h_{H}(x)$ on $[2,5]$

Figure A.2: $\eta_{+}(x)$ on $[0,3]$

Figure A.4: $\eta_{+}(x)$ on $[2,5]$
of holomorphy of $M \eta_{+}$contains that of the Mellin transform $M \eta_{\diamond}$ of $\eta_{\diamond}(x)$. It is easy to see that the strip of holomorphy of $M \eta_{\diamond}$ is $\{s: \Re s>-1\}$.

Lemma A.9. For $\delta \in \mathbb{R}$, let $\eta_{\diamond, \delta}(x)=\eta_{\diamond}(x) e(\delta x)$ and $\eta_{+, \delta}(x)=\eta_{+} e(\delta x)$, where η_{\diamond} and η_{+}are as in (A.22) and (A.23). Then

$$
\begin{equation*}
M \eta_{+, \delta}(s)=\frac{1}{2 \pi i} \int_{-i H}^{i H} M h(z) M \eta_{\diamond, \delta}(s-z) d z \tag{A.26}
\end{equation*}
$$

for $\Re s>-1$.
Proof. By (2.32), $\eta_{+, \delta}$ equals the inverse Mellin transform of

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i H}^{i H} M h(z) M \eta_{\diamond, \delta}(s-z) d z \tag{A.27}
\end{equation*}
$$

for $\Re s>-1$. The function in (A.27) is in L^{1} on vertical lines $\sigma+i \mathbb{R}, \sigma>-1$. Since $\eta_{+, \delta}(x) x^{\sigma-1}$ is in L^{1} for $\sigma>-1$, it follows from Fourier inversion (applied to the function defined by (A.27)), together with a change of variables, that $M \eta_{+}$equals the function in (A.27) for $\Re s>-1$.

Part of our work from now on will consist in expressing norms of h_{H} and η_{+}in terms of norms of h, η_{\circ} and $M h$.

A.2.2 The Mellin transform $M h$

Consider the Mellin transform $M h$ of the function h. By symbolic integration,
$M h(s)=e^{-\pi i s-\frac{1}{2}}(8 \gamma(s+2,-2)+12 \gamma(s+3,-2)+6 \gamma(s+4,-2)+\gamma(s+5,-2))$,
where $\gamma(s, x)$ is the lower incomplete Gamma function, as in $\S 4.2 .2$. Unfortunately, (A.28) leads to catastrophic cancellation. In ARB, or double-precision in general, the error term is already large for $t=8$, and the result becomes useless for $t \geq 12$ or so. Thus, we are better off deriving our own series development for $M h(s)$, either using (4.12) or, as we shall do, proceeding as in the derivation of (4.12).

Lemma A.10. Let $h:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.20). Then, for any $s \in \mathbb{C}$ other than $0,-1,-2, \ldots$ and any $l \geq \max (8,-\Re s+3)$,

$$
\begin{align*}
M h(s) & =e^{3 / 2} 2^{s} \sum_{k=3}^{l-1}(-1)^{k+1} 2^{k} \frac{k(k-1)(k-2)\left(k^{2}-3 k+4\right)}{s(s+1) \cdots(s+k)} \tag{A.29}\\
& +O^{*}\left(\frac{l(l-1)(l-2)\left(l^{2}-3 l+4\right)}{|s||s+1| \cdots|s+l|} \cdot \frac{e^{3 / 2} 2^{\Re s+l}}{1-\rho_{l}(s)}\right)
\end{align*}
$$

where $r_{l}(s)=3.96 /|s+l+1|$. Moreover, for any s such that $|s+4| \geq 100$,

$$
\begin{equation*}
|M h(s)| \leq \frac{1025 \cdot 2^{\Re s}}{|s||s+1| \cdots|s+3|} \tag{A.30}
\end{equation*}
$$

Proof. Write $P(t)=t^{2}(2-t)^{3}$. Since $P(2)=P^{\prime}(2)=P^{\prime \prime}(2)$, integration by parts yields

$$
\begin{aligned}
e^{-3 / 2} M h(s) & =\int_{0}^{\infty} P(t) e^{t-2} t^{s-1} d t=-\frac{1}{s} \int_{0}^{\infty}\left(P(t) e^{t-2}\right)^{\prime} t^{s} d t \\
& =-\frac{1}{s(s+1)(s+2)} \int_{0}^{\infty}\left(P(t) e^{t-2}\right)^{(3)} t^{s+2} d t \\
& =\sum_{k=3}^{\infty}(-1)^{k} \frac{\left(P(t) e^{t-2}\right)^{(k)}(2) \cdot 2^{s+k}}{s(s+1) \cdots(s+k)}
\end{aligned}
$$

Because P is of degree 5,

$$
\begin{aligned}
\left(P(t) e^{t-2}\right)^{(k)}(2)=\sum_{j=0}^{5}\binom{k}{j} P^{(j)}(2) e^{2-2} & =-24\binom{k}{3}-96\binom{k}{4}-120\binom{k}{5} \\
& =-k(k-1)(k-2)\left(k^{2}-3 k+4\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
M h(s)=e^{3 / 2} 2^{s} \sum_{k=3}^{\infty}(-1)^{k+1} 2^{k} \frac{k(k-1)(k-2)\left(k^{2}-3 k+4\right)}{s(s+1) \cdots(s+k)} . \tag{A.31}
\end{equation*}
$$

It is clear that, for $k>3$, the ratio of the $(k+1)$ th to the k th term in (A.31) is at most $\rho_{k}(s)=2(k+1)\left(k^{2}-k+2\right) /\left((k-2)\left(k^{2}-3 k+4\right)|s+k+1|\right)$, which is <1 for $k \geq 8,|s+k+1| \geq 4$, or for $k=3$ and $|s+k+1|>16$. Hence, equation (A.29) holds with $\rho_{l}(s)$ instead of $r_{l}(s)$ for any $l \geq \max (8,-\Re s+3), s \neq 0,-1,-2, \ldots$ It is easy to verify that $r_{l}(s) \geq \rho_{l}(s)$ for all $l \geq 8$, and so (A.29) holds as it stands. It also holds, once again with $\rho_{l}(s)$ instead of $r_{l}(s)$, for $l=3$ and s such that $|s+4| \geq 16$. Hence

$$
\begin{equation*}
|M h(s)| \leq \frac{24 \cdot 8 e^{3 / 2}}{1-\rho_{3}(s)} \cdot \frac{2^{\Re s}}{|s||s+1| \cdots|s+3|} \leq \frac{1025 \cdot 2^{\Re s}}{|s||s+1| \cdots|s+3|} \tag{A.32}
\end{equation*}
$$

for s such that $|s+4| \geq 100$.
The following lemma is somewhat crude. It will be used only to bound error terms in numerical integration.

Lemma A.11. Let $h:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.20). Then, for any $s \in \mathbb{C}$ with $\Re s \geq-1 / 2,|s+4| \geq 5$,

$$
\begin{equation*}
\left|\frac{d^{2}}{d s^{2}} M h(s)\right| \leq \frac{1.22 \cdot 10^{7} \cdot 2^{\Re s}}{|s|^{3}|s+1||s+2||s+3|} \tag{A.33}
\end{equation*}
$$

Moreover, for any $s \in i \mathbb{R}$,

$$
\begin{equation*}
\left|\frac{d^{2}}{d s^{2}} M h(s)\right| \leq \int_{0}^{2} x(2-x)^{3} e^{x-1 / 2}(\log x)^{2} x^{s} d x \leq 1.0431 \tag{A.34}
\end{equation*}
$$

Proof. Differentiating equation (A.29) and taking $l \rightarrow \infty$, we see that

$$
\begin{aligned}
\left|\frac{d^{2}}{d s^{2}} M h(s)\right| & \leq e^{3 / 2} 2^{\Re s} \sum_{k=3}^{\infty} 2^{k} \frac{(k+1)^{2} k(k-1)(k-2)\left(k^{2}-3 k+4\right)}{|s|^{3}|s+1| \cdots|s+k|} \\
& \leq \frac{e^{3 / 2} 2^{3+\Re s} \cdot \frac{105}{8}}{|s|^{3}|s+1||s+2||s+3|} \sum_{j=0}^{\infty} \frac{2^{j}}{|s+4|^{j}}(j+1)(j+2) \ldots(j+6) .
\end{aligned}
$$

Since, for $r \geq 0$,

$$
\sum_{j=0}^{\infty}(j+1) \ldots(j+r) x^{j}=\left(\frac{1}{1-x}\right)^{(r)}=\frac{r!}{(1-x)^{r+1}}
$$

we conclude that (A.33) holds. More precisely,

$$
\left|\frac{d^{2}}{d s^{2}} M h(s)\right| \leq \frac{c \cdot 2^{\Re s}}{|s|^{3}|s+1||s+2||s+3|}
$$

where $c=\frac{105}{8} e^{3 / 2} 2^{3} 6!/(1-2 /|s+4|)^{7}=1.2103326 \cdot 10^{7}$.
To prove (A.34), simply proceed from the definition of $M h$, and then use (rigorous) numerical integration.

We can use (A.29) to compute $M h(i t)$ (though using (A.28) is preferable for $|t|$ small) and (A.30) to bound $M h(\sigma+i t)$ for σ fixed and $|t|$ large. We use midpoint integration, as in (4.2), with the bounds from Lemma A. 11 as an input. We obtain via ARB, using (A.28) and Lemma A.11, that

$$
\int_{0}^{1}|M h(i t)| d t \leq 1.9054814
$$

and, via D. Platt's int_double package, together with (A.29) and Lemma A.11,

$$
\int_{1}^{5000}|M h(i t)| d t \leq 4.09387319
$$

Hence, by (A.30),

$$
\begin{equation*}
|M h(i t)|_{1} \leq 2(1.9054814+4.09387319)+O^{*}\left(\int_{5000}^{\infty} \frac{2050}{t^{4}} d t\right) \leq 11.99871 \tag{A.35}
\end{equation*}
$$

A. 3 NORMS OF η_{\circ} AND η_{+}

A.3.1 The difference $\eta_{+}-\eta_{\mathrm{o}}$ in L^{2} norm.

We wish to estimate the distance in L^{2} norm between η_{\circ} and its approximation η_{+}.
Lemma A.12. Let $\eta_{\circ}, \eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be as in (A.21) and (A.23), with $H>0$. Then

$$
\begin{equation*}
\int_{0}^{\infty}\left|h_{H}(t)-h(t)\right|^{2} \frac{d t}{t}=\frac{1}{\pi} \int_{H}^{\infty}|M h(i t)|^{2} d t \tag{A.36}
\end{equation*}
$$

Proof. The inverse Mellin transform is an isometry for the same reason that the Mellin transform is: both are Fourier transforms under a change of variables. Recall that h_{H} was defined in (A.24) as the inverse Mellin transform of $M h$ on the imaginary axis truncated by $|\Im s| \leq H$. Hence $h(t)-h_{H}(t)$ is the inverse Mellin transform of $M h$ on the imaginary axis truncated by $|\Im s|>H$. Then we get (A.36) by isometry.

Lemma A.13. Let $\eta_{\circ}, \eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be as in (A.21) and (A.23), with $H \geq 100$. Then

$$
\left|\eta_{+}-\eta_{\circ}\right|_{2} \leq \frac{140}{H^{7 / 2}}, \quad\left|\left(\eta_{+}-\eta_{\circ}\right)(x) \log x\right| \leq \frac{61.5}{H^{7 / 2}}
$$

Proof. By (A.21), (A.23) and Lemma A.12,

$$
\begin{align*}
\left|\eta_{+}-\eta_{\circ}\right|_{2}^{2} & =\int_{0}^{\infty}\left|h_{H}(t) t e^{-t^{2} / 2}-h(t) t e^{-t^{2} / 2}\right|^{2} d t \\
& \leq\left(\max _{t \geq 0} e^{-t^{2}} t^{3}\right) \cdot \int_{0}^{\infty}\left|h_{H}(t)-h(t)\right|^{2} \frac{d t}{t} \tag{A.37}\\
& =\left(\max _{t \geq 0} e^{-t^{2}} t^{3}\right) \cdot \frac{1}{\pi} \int_{H}^{\infty}|M h(i t)|^{2} d t
\end{align*}
$$

The maximum $\max _{t \geq 0} t^{3} e^{-t^{2}}$ is $(3 / 2)^{3 / 2} e^{-3 / 2}$.
By (A.30), under the assumption that $H \geq 100$,

$$
\begin{equation*}
\int_{H}^{\infty}|M h(i t)|^{2} d t \leq \int_{H}^{\infty} \frac{1025^{2}}{t^{8}} d t \leq \frac{1025^{2}}{7 H^{7}} \tag{A.38}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\left|\eta_{+}-\eta_{\circ}\right|_{2} \leq \frac{1025}{\sqrt{7 \pi}}\left(\frac{3}{2 e}\right)^{3 / 4} \cdot \frac{1}{H^{7 / 2}} \leq \frac{140}{H^{7 / 2}} \tag{A.39}
\end{equation*}
$$

We could do better by computing the difference between h_{+}and h_{\circ} directly for given H, using (A.25), but we will not bother to.

We must now bound

$$
\left|\int_{0}^{\infty}\left(\eta_{+}(t)-\eta_{\circ}(t)\right)^{2}(\log t)^{2} d t\right|
$$

This quantity is at most

$$
\left(\max _{t \geq 0} e^{-t^{2}} t^{3}(\log t)^{2}\right) \cdot \int_{0}^{\infty}\left|h_{H}(t)-h(t)\right|^{2} \frac{d t}{t}
$$

By the bisection method with 23 iterations (see $\S 4.1$),

$$
\max _{t \geq 0} e^{-t^{2}} t^{3}(\log t)^{2}=\max _{t \in\left[10^{-6}, 10\right]} e^{-t^{2}} t^{3}(-\log t)=0.07892 \ldots
$$

Hence, by (A.36) and (A.38), again under the assumption that $H \geq 100$,

$$
\begin{equation*}
\int_{0}^{\infty}\left(\eta_{+}(t)-\eta_{\circ}(t)\right)^{2}(\log t)^{2} d t \leq 0.078925 \cdot \frac{1025^{2}}{7 \pi H^{7}} \leq\left(\frac{61.5}{H^{7 / 2}}\right)^{2} \tag{A.40}
\end{equation*}
$$

A.3.2 Norms involving η_{\circ} and η_{+}

Let us first prove a general result.

Lemma A.14. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be as in (A.23), with $H>0$ arbitrary. Then, for any $\sigma \geq-3 / 2, \eta_{+}(t) t^{\sigma}$ is in L^{2}, and, for any $\sigma>-2, \eta_{+}(t) t^{\sigma}$ is in L^{1}.
Proof. Just as in the proof of Lemma A.13, by (A.21), (A.23) and Lemma A.12,

$$
\begin{align*}
\left|\left(\eta_{+}(t)-\eta_{\circ}(t)\right) t^{\sigma}\right|_{2}^{2} & =\int_{0}^{\infty}\left|h_{H}(t) t e^{-t^{2} / 2}-h(t) t e^{-t^{2} / 2}\right|^{2} t^{2 \sigma} d t \\
& \leq\left(\max _{t \geq 0} e^{-t^{2}} t^{2 \sigma+3}\right) \cdot \int_{0}^{\infty}\left|h_{H}(t)-h(t)\right|^{2} \frac{d t}{t} \tag{A.41}\\
& =\left(\max _{t \geq 0} e^{-t^{2}} t^{2 \sigma+3}\right) \cdot \frac{1}{\pi} \int_{H}^{\infty}|M h(i t)|^{2} d t
\end{align*}
$$

Here

$$
\frac{1}{\pi} \int_{H}^{\infty}|M h(i t)|^{2} d t \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}|M h(i t)|^{2} d t=\int_{0}^{\infty}|h(t)|^{2} \frac{d t}{t}<\infty
$$

and, if $\sigma>-3 / 2, \max _{t \geq 0} e^{-t^{2}} t^{2 \sigma+3}$ is also finite. Then $\eta_{+}(t) t^{\sigma}$ is in L^{2}.
By Cauchy-Schwarz, for $\sigma>-2$,

$$
\int_{0}^{1}\left|\eta_{+}(t) t^{\sigma}\right| d t+\int_{1}^{\infty}\left|\eta_{+}(t) t^{\sigma}\right| d t
$$

is at most

$$
\sqrt{\int_{0}^{1}\left|\eta_{+}(t) t^{-3 / 2}\right|^{2} d t} \sqrt{\int_{0}^{1} t^{2 \sigma+3} d t}+\sqrt{\int_{1}^{\infty}\left|\eta_{+}(t) t^{\sigma+1}\right|^{2} d t} \sqrt{\int_{0}^{1} t^{-2} d t}
$$

Since $\left|\eta_{+}(t) t^{-3 / 2}\right|_{2},\left|\eta_{+}(t) t^{\sigma+1}\right|_{2}<\infty$, it follows that $\left|\eta_{+}(t) t^{\sigma}\right|_{1}<\infty$.
Let us now bound some L^{1} - and L^{2}-norms involving η_{+}. First, by rigorous numerical integration via ARB,

$$
\begin{equation*}
\left|\eta_{\circ}\right|_{2}=0.800128, \quad\left|\eta_{\circ}(t) \log t\right|_{2}=0.213868 \tag{A.42}
\end{equation*}
$$

(Integrating symbolically is also an option in the first case.) Hence, by Lemma A.13,

$$
\begin{equation*}
\left|\eta_{+}\right|_{2} \leq\left|\eta_{\circ}\right|_{2}+\left|\eta_{+}-\eta_{\circ}\right|_{2} \leq 0.800129+\frac{140}{H^{7 / 2}} \tag{A.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\eta_{+}(t) \log t\right|_{2} \leq\left|\eta_{\circ}(t) \log t\right|_{2}+\left|\left(\eta_{+}-\eta_{\circ}\right)(t) \log t\right|_{2} \leq 0.213869+\frac{61.5}{H^{7 / 2}} \tag{A.44}
\end{equation*}
$$

In general, for any $f:(0, \infty) \rightarrow \mathbb{C}$ such that $\eta_{\circ}(t) f(t) \in L^{1}$,

$$
\begin{aligned}
\left|\eta_{+}(t) f(t)\right|_{1} & =\left|\eta_{\circ}(t) f(t)\right|_{1}+O^{*}\left(\left|\left(\eta_{+}(t)-\eta_{\circ}(t)\right) f(t)\right|_{1}\right) \\
& =\left|\eta_{\circ}(t) f(t)\right|_{1}+O^{*}\left(\left|\left(h_{H}(t)-h(t)\right) t e^{-t^{2} / 2} f(t)\right|_{1}\right)
\end{aligned}
$$

and, by Cauchy-Schwarz, (A.36) and (A.38),

$$
\begin{aligned}
\left|\left(h_{H}(t)-h(t)\right) t e^{-t^{2} / 2} f(t)\right|_{1} & \leq\left|\frac{h_{H}(t)-h(t)}{\sqrt{t}}\right|_{2} \cdot\left|t^{3 / 2} e^{-t^{2} / 2} f(t)\right|_{2} \\
& \leq \frac{1025}{\sqrt{7 \pi} H^{7 / 2}}\left|t^{3 / 2} e^{-t^{2} / 2} f(t)\right|_{2}
\end{aligned}
$$

For instance, by numerical integration via ARB,

$$
\left|\eta_{\circ}(t) t^{-1 / 2}\right|_{1}=0.909875 \ldots, \quad\left|\eta_{\circ}(t) \log t\right|_{1}=0.245205 \ldots
$$

and, by symbolic integration,

$$
\left|t^{3 / 2} e^{-t^{2} / 2} t^{-1 / 2}\right|_{2}=\frac{\pi^{1 / 4}}{2}, \quad\left|t^{3 / 2} e^{-t^{2} / 2} \log t\right|_{2}=\sqrt{\frac{\pi^{2}}{48}+\frac{\gamma^{2}}{8}-\frac{\gamma}{4}}
$$

Thus

$$
\begin{equation*}
\left|\eta_{+}(t) t^{-1 / 2}\right|_{1} \leq 0.909876+\frac{146}{H^{7 / 2}}, \quad\left|\eta_{+}(t) \log t\right|_{1} \leq 0.245206+\frac{71}{H^{7 / 2}} \tag{A.45}
\end{equation*}
$$

A.3.3 Norms involving η_{+}^{\prime}

Lemma A.15. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.23), with $H \geq 100$. Then

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2}=O^{*}\left(\frac{109}{H^{2}}\right)
$$

and so

$$
\left|\eta_{+}^{\prime}\right|_{2}=\left|\eta_{\circ}^{\prime}\right|_{2}+O^{*}\left(\frac{109}{H^{2}}\right)=1.65454 \ldots+O^{*}\left(\frac{109}{H^{2}}\right)
$$

As will become clear, we could provide a better error term, one inversely proportional to $H^{5 / 2}$, but we will not need to, as we will use Lemma A. 15 only to bound rather minor error terms.

Proof. We wish to estimate $\left|\eta_{+}^{\prime}\right|_{2}$. Clearly

$$
\left|\eta_{+}^{\prime}\right|_{2}=\left|\eta_{\mathrm{o}}^{\prime}\right|_{2}+O^{*}\left(\left|\left(\eta_{+}-\eta_{\mathrm{o}}\right)^{\prime}\right|_{2}\right)
$$

By symbolic integration, $\left|\eta_{\circ}^{\prime}\right|_{2}=1.65454 \ldots$.
Since η_{+}^{\prime} and η_{\circ}^{\prime} are bounded and both $\eta_{+}(x)$ and η_{\circ} decay at least as fast as x for $x \rightarrow 0^{+}$, we may apply the transformation rule $M\left(f^{\prime}\right)(s)=-(s-1) \cdot M f(s-1)$
from (2.33) to $f(x)=\left(\eta_{+}-\eta_{\circ}\right)(x)$ for any $\sigma>-1$. Since $\eta_{+}-\eta_{\circ}$ is in L^{2}, we can apply the Mellin transform as an isometry for $\sigma=1 / 2$, and obtain

$$
\begin{align*}
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2}^{2} & =\frac{1}{2 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty}\left|M\left(\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right)(s)\right|^{2} d s \tag{A.46}\\
& =\frac{1}{2 \pi i} \int_{-\frac{1}{2}-i \infty}^{-\frac{1}{2}+i \infty}\left|s \cdot M\left(\eta_{+}-\eta_{\circ}\right)(s)\right|^{2} d s
\end{align*}
$$

Recall that $\eta_{+}(t)=h_{H}(t) \eta_{\diamond}(t)$, where $\eta_{\diamond}(t)=t e^{-t^{2} / 2}$. Since $\eta_{\diamond}(t)$ is the inverse Mellin transform of $M \eta_{\diamond}$ on any line $\Re s=\sigma$ with $\sigma>-1$, we see from (2.32) that

$$
\begin{align*}
M\left(\eta_{+}-\eta_{\circ}\right)(s) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} M\left(h-h_{H}\right)(i r) M \eta_{\diamond}(s-i r) d r \\
& =\frac{1}{2 \pi} \int_{|r|>H} M h(i r) M \eta_{\diamond}(s-i r) d r \tag{A.47}
\end{align*}
$$

for $\Re s>-1$.
Recall from (A.30) that $|M h(i r)| \leq 1025 / r^{4}$. By a substitution $t=x^{2} / 2$,

$$
M \eta_{\diamond}(s)=\int_{0}^{\infty} e^{-x^{2} / 2} x^{s} d x=\int_{0}^{\infty} e^{-t}(2 t)^{\frac{s-1}{2}} d t=2^{\frac{s-1}{2}} \Gamma\left(\frac{s+1}{2}\right)
$$

We could now use the decay properties of Γ to obtain a bound on $M\left(\eta_{+}-\eta_{\circ}\right)(s)$. In the interests of a quick and clean solution, let us proceed instead as follows. In general, for $f \in L^{1}(\mathbb{R})$ and $g \in L^{2}(\mathbb{R})$,

$$
\begin{align*}
|f * g|_{2}^{2} & =\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} f(y) g(x-y) d y\right|^{2} d x \\
& =\int_{-\infty}^{\infty}|f(y)| d y \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(y)||g(x-y)|^{2} d y d x=|f|_{1}^{2}|g|_{2}^{2} \tag{A.48}
\end{align*}
$$

by Cauchy-Schwarz. (This is a special case of Young's inequality.) By the easy inequality $|a+b|^{2} \leq 2|a|^{2}+2|b|^{2}$,

$$
\begin{align*}
|(f * g)(x) x|_{2}^{2} & =\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty}\right| f(y)| | g(x-y)|\cdot(y+(x-y)) d y|^{2} d x \\
& =2 \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty}\right| f(y) y \| g(x-y)|d y|^{2} d x \tag{A.49}\\
& +2 \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty}\right| f(y)| | g(x-y)| | x-y|d y|^{2} d x
\end{align*}
$$

and so, by (A.48)

$$
\begin{equation*}
|(f * g)(x) x|_{2}^{2} \leq 2\left(|f(x) x|_{1}^{2}|g|_{2}^{2}+|f|^{2}|g(x) x|_{2}^{2}\right) \tag{A.50}
\end{equation*}
$$

Applying (A.48) and (A.50) to (A.46), we see that

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2}^{2} \leq \frac{1}{(2 \pi)^{3}}\left(\frac{1}{4}|f|_{1}^{2}|g|_{2}^{2}+2\left(|f(x) x|_{1}^{2}|g|_{2}^{2}+|f|^{2}|g(x) x|_{2}^{2}\right)\right)
$$

where $f(x)=M h(i x)$ for $|x|>H, f(x)=0$ for $|x| \leq H$, and $g(x)=M \eta_{\diamond}(-1 / 2+$ $i x)$.

By Plancherel,

$$
|g|_{2}^{2}=\int_{-\frac{1}{2}-i \infty}^{-\frac{1}{2}+i \infty}\left|M \eta_{\diamond}(s)\right|^{2} d s=2 \pi\left|\eta_{\diamond}(x) / x\right|_{2}^{2}=2 \pi\left|e^{-x^{2} / 2}\right|_{2}^{2}=\pi^{3 / 2}
$$

and, since $s M \eta_{\diamond}(s)=-\left(M\left(x \eta_{\diamond}^{\prime}(x)\right)\right)(s)$,

$$
|g(x) x|_{2}^{2}+\frac{1}{4}|g(x)|_{2}^{2}=\int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty}\left|\left(M\left(x \eta_{\diamond}^{\prime}(x)\right)\right)(s)\right|^{2} d s=2 \pi\left|x \eta_{\diamond}^{\prime}(x)\right|_{2}^{2}=\frac{7}{8} \pi^{3 / 2}
$$

Since $|f(x)| \leq 1025 / r^{4}$, we see that $|f|_{1} \leq 1025 / 3 H^{3}$ and $|f(x) x|_{1} \leq 1025 / 2 H^{2}$. Hence
$\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2}^{2} \leq \frac{1}{4 \pi^{3}}\left(\frac{1025^{2}}{4 H^{4}} \pi^{3 / 2}+\frac{1025^{2}}{9 H^{6}} \cdot \frac{7 \pi^{\frac{3}{2}}}{8}\right) \leq \frac{11792.43}{H^{4}}+\frac{4586}{H^{6}} \leq \frac{11793}{H^{4}}$
under the assumption $H \geq 100$, and so $\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2} \leq 109 / H^{2}$.
Lemma A.16. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.23), with $H \geq 100$. Then

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(x) x\right|_{2}=O^{*}\left(\frac{77}{H^{2}}\right)
$$

Proof. Proceeding just as in the proof of Lemma A.15, we obtain that

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(x) x\right|_{2}^{2} \leq \frac{1}{(2 \pi)^{3}}\left(\frac{1}{4}|f|_{1}^{2}|g|_{2}^{2}+2\left(|f(x) x|_{1}^{2}|g|_{2}^{2}+|f|^{2}|g(x) x|_{2}^{2}\right)\right)
$$

where $f(x)=M h(i x)$ for $|x|>H, f(x)=0$ for $|x| \leq H$, and $g(x)=M \eta_{\diamond}(1 / 2+$ $i x)$.

By Plancherel,

$$
|g|_{2}^{2}=\int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty}\left|M \eta_{\diamond}(s)\right|^{2} d s=2 \pi\left|\eta_{\diamond}(x)\right|_{2}^{2}=2 \pi\left|x e^{-x^{2} / 2}\right|_{2}^{2}=\frac{\pi^{3 / 2}}{2}
$$

and, since $s M \eta_{\diamond}(s)=-\left(M\left(x \eta_{\diamond}^{\prime}(x)\right)\right)(s)$,

$$
|g(x) x|_{2}^{2}+\frac{1}{4}|g(x)|_{2}^{2}=\int_{\frac{3}{2}-i \infty}^{\frac{3}{2}+i \infty}\left|\left(M\left(x \eta_{\diamond}^{\prime}(x)\right)\right)(s)\right|^{2} d s=2 \pi\left|x^{2} \eta_{\diamond}^{\prime}(x)\right|_{2}^{2}=\frac{33}{16} \pi^{\frac{3}{2}}
$$

Since $|f(x)| \leq 1025 / r^{4}$, we get that
$\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(x) x\right|_{2}^{2} \leq \frac{1}{4 \pi^{3}}\left(\frac{1025^{2}}{4 H^{4}} \frac{\pi^{3 / 2}}{2}+\frac{1025^{2}}{9 H^{6}} \cdot \frac{33 \pi^{\frac{3}{2}}}{16}\right) \leq \frac{5896.3}{H^{4}}+\frac{10810}{H^{6}} \leq \frac{5898}{H^{4}}$
under the assumption $H \geq 100$, and so $\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2} \leq 77 / H^{2}$.
Lemma A.17. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.23), with $H>0$. Then, for every $\sigma>-1 / 2, \eta_{+}^{\prime}(x) x^{\sigma}$ is in L^{2}, and, for every $\sigma>-1, \eta_{+}^{\prime}(x) x^{\sigma}$ is in L^{1}.

Proof. Assume $\sigma>-1 / 2$. Yet again, we proceed as in the proof of Lemma A.15, and get that

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(x) x^{\sigma}\right|_{2}^{2} \leq \frac{1}{(2 \pi)^{3}}\left(\frac{1}{4}|f|_{1}^{2}|g|_{2}^{2}+2\left(|f(x) x|_{1}^{2}|g|_{2}^{2}+|f|_{1}^{2}|g(x) x|_{2}^{2}\right)\right)
$$

where $f(x)=M h(i x)$ for $|x|>H, f(x)=0$ for $|x| \leq H$, and $g(x)=M \eta_{\diamond}(-1 / 2+$ $\sigma+i x)$. Much as usual, f and $f(x) x$ are in L^{1} by (A.30), and g and $g(x) x$ are in L^{2} because $\eta_{\diamond}(x) x^{\sigma-1}$ and $\eta_{\diamond}^{\prime}(x) x^{\sigma}$ are in L^{2}. Hence $\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(x) x^{\sigma}\right|_{2}<\infty$, and so $\eta_{+}^{\prime}(x) x^{\sigma}$ is in L^{2}.

We deduce that $\eta_{+}^{\prime}(x) x^{\sigma}$ is in L^{1} using Cauchy-Schwarz in the same way as in the proof of Lemma A.14.

Lemma A.18. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.23), with $H \geq 100$. Then

$$
\left|\eta_{+}^{\prime} \log t\right|_{1}=0.99637 \ldots+O^{*}\left(\frac{336}{H^{2}}\right)
$$

Proof. Since η_{\circ} is increasing for $t \in[0,1]$ and decreasing for $t \in[1,2]$,
$\left|\eta_{\circ}^{\prime} \log t\right|_{1}=\int_{0}^{1} \eta_{\circ}^{\prime}(t)(-\log t) d t+\int_{1}^{2}\left(-\eta_{\circ}^{\prime}(t)\right) \log t d t=\int_{0}^{2} \frac{\eta_{\circ}(t)}{t} d t=0.99637 \ldots$
By Cauchy-Schwarz, for any $\rho>0$,

$$
\begin{aligned}
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(t) \log t\right|_{1} & \leq\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(t)(\rho t+1)\right|_{2} \cdot\left|\frac{\log t}{\rho t+1}\right|_{2} \\
& =\left(\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}\right|_{2}+\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(t) t\right|_{2}\right) \cdot \sqrt{\frac{\pi^{2}}{3 \rho}+\frac{(\log \rho)^{2}}{\rho}}
\end{aligned}
$$

We apply Lemmas A. 15 and A. 16 , set $\rho=7 / 6$, and obtain that

$$
\left|\left(\eta_{+}-\eta_{\circ}\right)^{\prime}(t) \log t\right|_{1} \leq \frac{314}{H^{2}}
$$

A.3.4 The L^{∞}-norm of η_{+}

Lemma A.19. Let $\eta_{+}:(0, \infty) \rightarrow \mathbb{R}$ be defined as in (A.23), with $H \geq 100$. Then

$$
\left|\eta_{+}\right|_{\infty}=1+O^{*}\left(\frac{66}{H^{2}}\right)
$$

Proof. Recall that $\eta_{+}(x)=h_{H}(x) \eta_{\diamond}(x)$, where $\eta_{\diamond}(x)=x e^{-x^{2} / 2}$. Clearly

$$
\begin{equation*}
\left|\eta_{+}\right|_{\infty}=\left|\eta_{\circ}\right|_{\infty}+O^{*}\left(\left|\eta_{+}-\eta_{\circ}\right|_{\infty}\right)=\left|\eta_{\circ}\right|_{\infty}+O^{*}\left(\left|h(x)-h_{H}(x)\right|_{\infty}\left|\eta_{\diamond}(x)\right|_{\infty}\right) . \tag{A.51}
\end{equation*}
$$

Taking derivatives, we easily see that

$$
\left|\eta_{\circ}\right|_{\infty}=\eta_{\circ}(1)=1, \quad\left|\eta_{\diamond}(x)\right|_{\infty}=1 / \sqrt{e}
$$

It remains to bound $\left|h(x)-h_{H}(x)\right|_{\infty}$. By definition (A.24), for any $x>0$,

$$
h(x)-h_{H}(x)=\frac{1}{2 \pi} \int_{|t| \geq H}(M h)(i t) x^{-i t} d t .
$$

Hence, by (A.30),
$\left|h(x)-h_{H}(x)\right| \leq \frac{1}{2 \pi} \int_{|t| \geq H}|(M h)(i t)| d t \leq \frac{1}{\pi} \int_{H}^{\infty} \frac{1025}{t^{4}} d t=\frac{1}{3 \pi} \frac{1025}{H^{3}} \leq \frac{108.8}{H^{3}}$,
and so

$$
\left|\eta_{+}-\eta_{\circ}\right|_{\infty} \leq \frac{1}{\sqrt{e}}\left|h-h_{H}\right|_{\infty} \leq \frac{66}{H^{3}}
$$

