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Appendix A

Norms of smoothing functions

Our aim here is to give bounds on the norms of some smoothing functions. They are
all based on the Gaussian e−t2/2 in one way or the other.

A.1 THE FUNCTIONS η AND η1

We will work with functions η, η1 : [0,∞) → R defined by

η1(x) =

��
2
πx

2e−x2/2 if x ≥ 0,

0 if x < 0
(A.1)

and

η(x) = (2 · 1[1/2,1]) ∗M
�

2

π
x2e−x2/2 =

� 2x

x

2

�
2

π
w2e−w2/2 dw

w

=

�
8

π
· (e−x2/2 − e−2x2

)

for x ≥ 0; we let η(x) = 0 for x < 0.
Since, as is well-known,

�∞
−∞ e−πx2

dx = 1, we know that

|η|1 =

�
2

π

� ∞

−∞

�
e−x2/2 − e−2x2

�
dx =

�
2

π
(
√
2π −

�
π/2) = 1.

Of course, the factor
�

8/π in the definition of η is there so as to make |η|1 equal
1. Taking derivatives, we see that η(x) has its only local maximum on [0,∞) at x =
2
�

(log 2)/3, and that that limx→∞ η(x) = η(0) = 0. Hence

|η�|1 = 2η

�
2

�
log 2

3

�
= 4

�
2

π

�
e−4 log 2

2·3 − e−4 2 log 2
3

�

= 4

�
2

π

�
1

22/3
− 1

28/3

�
=

3

21/6
√
π
.

By the same token,

|η|∞ =
3

27/6
√
π
.

The Fourier transform is a little harder to bound.
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Lemma A.1. Let

η(x) =

��
8/π · (e−x2/2 − e−2x2

) if x ≥ 0,
0 if x < 0.

(A.2)

Then
|�η��|∞ = 2.73443691486 +O∗(3 · 10−11).

Proof. Let

fa(x) =

�
e−ax2

if x ≥ 0,
0 if x < 0.

Then, for a > 0, �fa(t) equals
� ∞

0

e−ax2

e−2πixtdx = e−
π2

a t2
� ∞

0

e−a(x+iπt/a)2dx = e−
π2

a t2
� iπt

a +∞

iπt
a

e−az2

dz.

We shift the contour of integration, and obtain

�fa(t) = e−
π2

a t2

�
−
� iπt

a

0

e−az2

dz +

� ∞

0

e−az2

dz

�

= e−
π2

a t2

�
− 1√

a

� iπt√
a

0

e−z2

dz +

�
π/a

2

�

=

√
π

2
√
a
e−

π2

a t2
�
1− i erfi

�
πt√
a

��
,

where erfi is the imaginary error function (4.4) . This formula is of course standard;
see [AS64, 7.4.6–7.4.7].

Now, recalling the standard rule �g�(t) = (2πit)�g(t) (§in 2.4.1; valid when g and g�

are both in L1), we see that

�η��(t) = (2πit)2�η(t) = −27/2π3/2t2(�f1/2(t)− �f2(t))

= 4π2t2e−π2t2/2

��
1− 2e−

3
2π

2t2
�
− i

�
erfi

�
πt√
2

�
− 2e−

3
2π

2t2 erfi(
√
2πt)

��
.

(A.3)
Before we use the expression (A.3), let us give a somewhat crude bound, useful

for t large. The function η�� has a jump (from 0 to 3
�
8/π) at the origin, but η(3) is

integrable and defined outside the origin. Hence

|�η��(t)| ≤ |�η(3)(t)|
2π|t| ≤ |η(3)|∞

2π|t| =
1

2π|t|

�
3

�
8

π
+ lim

x0→0+

� ∞

x0

|η(3)(x)|dx
�
.

Since we are just deriving a crude bound for now, we can use the inequality |η(3)(x)| ≤�
8/π(|f (3)

1/2(x)|+ |f (3)
2 (x)|):

lim
x0→0+

� ∞

x0

|η(3)(x)|dx =

�
8

π

�
lim

x0→0+

� ∞

x0

|f (3)
1/2(x)|dx+ lim

x0→0+

� ∞

x0

|f (3)
2 (x)|dx

�
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We can easily see that f (3)
a (x) = (−8a3x3 + 12a2x)e−ax2

is positive for 0 < x <�
3/2a and negative for x >

�
3/2a, and that f ��

a (0) = −2a and limx→∞ f ��
a (x) = 0.

Hence

lim
x0→0+

� ∞

x0

|f (3)
a (x)|dx = 2a+ 2|f ��

a (
�

3/2a)| = 2a+ 8ae−3/2,

and so

lim
x0→0+

� ∞

x0

|η(3)(x)|dx =

�
8

π

�
2(1/2 + 2) + 8(1/2 + 2)e−3/2

�
=

5 + 20e−3/2

�
π/8

.

We conclude that

|�η��(t)| ≤ 4 + 10e−3/2

(π/2)3/2|t| . (A.4)

We will use this bound for t > 6/5, say.
Now we apply the bisection method as in §4.1.1, with 5 initial iterations followed

by 35 more iterations, to obtain that the maximum of |�η��(t)| for t ∈ [0, 1.2] lies in the
interval

[2.734436914842, 2.734436914882] (A.5)

Since 2.73443 . . . is greater than (4 + 10e−3/2)/((6/5)(π/2)3/2) = 2.63765 . . . , and
|�η��(t)| = |�η��(−t)|, we conclude that the maximum of |�η��(t)| for all t ∈ R lies in
(A.5).

We will now bound |η��|1. Note that it is substantially greater, i.e., worse, than the
bound on |�η��|∞ given by Lemma A.1. Thus we may stand to gain something by using
Lemma 3.4 rather than Lemma 3.3.

Lemma A.2. Let η be as in (A.2). Then

|η��|1 = 3.884903382586 +O(2 · 10−12).

The procedure of proof will be a little simpler than in later lemmas of this kind,
such as Lemma A.4.

Proof. Clearly limt→∞ η�(t) = η�(0) = 0. Since

η��(x)�
8/π

= (x2 − 1)e−x2/2 − (16x2 − 4)e−2x2

,

η�(x) can have a local extremum only when e3x/2 = 16−12/(1−x). Since exp(3x/2)
is increasing and 16 − 12/(1 − x) decreases monotonically from 4 to −∞ as x goes
from 0 to 1 and decreases monotonically from ∞ to 16 as x goes from 1 to ∞, we see
that e3x/2 = 16−12/(1−x) has exactly two roots, one in (0, 1) and one in (1, 3), say.
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The bisection method shows that η�(x) does have local extrema in these intervals, and
that η�(x) takes the following values at them:

y1 = 1.27071184712 +O∗ �4 · 10−13
�
,

y2 = 0.6717398441732 +O∗ �2 · 10−13
�
.

(A.6)

Hence

|η��|1 = 2(1.27071184712 + 0.6717398441732 +O∗(6 · 10−13))

= 3.884903382586 +O(2 · 10−12).

* * *

Let

η∗(x) = (log x)η(x) =

��
8/π · (log x)(e−x2/2 − e−2x2

) if x ≥ 0,
0 if x < 0.

(A.7)

We need to know a couple of norms involving η∗. Thanks are due to N. Elkies, K.
Conrad and R. Israel for help with several integrals.

Lemma A.3. Let η∗(x) be as in (A.7). Then

|η∗|1 = 0.415495256376802 +O∗(3 · 10−15).

Proof. First of all,
� ∞

0

xae−x2

dx =

� ∞

0

ua/2e−u du

2
√
u

=
1

2

� ∞

0

u
a+1
2 −1e−udu =

1

2
Γ

�
a+ 1

2

�
.

Taking the derivative with respect to a at a = 0, we see that
� ∞

0

(log x)e−x2

dx =
1

4
Γ�(1/2) =

−√
π(γ + log 4)

4
, (A.8)

where we obtain the value of Γ�(1/2) from (3.38) and (3.49). Hence
�

8

π

� ∞

0

(log x)
�
e−x2/2 − e−2x2

�
dx

=

�
8

π

�√
2

� ∞

0

(log
√
2u)e−u2

du− 1√
2

� ∞

0

log
u√
2
· e−u2

du

�

=
2√
π

� ∞

0

(log u)e−u2

du+
2 · 3

2 log 2√
π

� ∞

0

e−u2

du

= −γ + log 4

2
+

3 log 2

2
=

log 2− γ

2
,
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where we use (A.8) in the last step.
Now

|η∗|1 = −2 ·
�

8

π

� 1

0

(log x)
�
e−x2/2 − e−2x2

�
dx

+

�
8

π

� ∞

0

(log x)
�
e−x2/2 − e−2x2

�
dx.

For r > −1,
� 1

0

(log x)xrdx =

� 1

0

(log x)xr+1d log x =

� 0

−∞
ue(r+1)udu

=

��
u

r + 1
− 1

(r + 1)2

�
e(r+1)u

�
|0−∞ = − 1

(r + 1)2
.

(A.9)

Expanding exp into a Taylor series, we see that

� 1

0

(log x)
�
e−x2/2 − e−2x2

�
dx =

� 1

0

(log x)

� ∞�

k=0

(−x2/2)k − (−2x2)k

k!

�
dx

= −
∞�

k=0

(−1)k · 2
k − 2−k

k!

� 1

0

(log x)x2kdx

=
∞�

k=0

(−1)k
2k

k!(2k + 1)2
−

∞�

k=0

(−1)k
2−k

k!(2k + 1)2

=

K�

k=0

(−1)k
2k

k!(2k + 1)2
−

K−1�

k=0

(−1)k
2−k

k!(2k + 1)2
+O∗

�
2K + 2−K

K!(2K + 1)2

�

for any even K ≥ 0, since these are alternating sums. Setting K = 20, we obtain

|η∗|1 = −2 ·
�

8

π

�
−0.112024193759256 +O∗(6 · 10−16)

�
+

log 2− γ

2

= 0.415495256376802 +O∗(3 · 10−15).

It ought to be possible to prove results such as Lemma A.3 by pressing a but-
ton: symbolic integration gives an expression involving a generalized hypergeometric
function. Generalized hypergeometric functions are now at least partly implemented
in ARB [Joh19]. Of course, one can also prove Lemma A.3 by rigorous numerical
integration (§4.1.3), though that feels a little brutal for such a simple integrand.

The following kind of procedure also ought to be completely automated.

Lemma A.4. Let η∗ be as in (A.7). Then

|η�∗|1 = 1.02010539081 +O∗(10−11).
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Proof. It is clear that limt→0+ η∗(x) = limt→∞ η∗(x) = 0. It will thus be enough
to identify and estimate the local maxima and minima of η∗ on (0,∞). We apply the
bisection method using interval arithmetic as explained at the end of §4.1.1, and obtain
η∗ has two local extrema within [1/3, 3], and that the values of η∗ at these extrema are

y1 = −0.305340693793 +O∗ �2 · 10−12
�
,

y2 = 0.204712001611 +O∗ �2 · 10−12
�
.

(A.10)

Now, for x > 0,

η�∗(x)�
8/π

=
e−x2/2 − e−2x2

x
+ (log x)

�
−xe−x2/2 + 4xe−2x2

�
. (A.11)

For x ≤ 1/e (say), the first two terms add up to an alternating sum

3

2
x− 15

8
x3 + . . . ≤ 3

2
x.

In the same way and for the same range of x,

− exp(−x2/2) + 4e−2x2 ≥ 3− (15/2)x2.

Hence, for x ≤ 1/e,

η�∗(x)�
8/π

≤ −| log x|
�
3x− 15

2
x3

�
+

3

2
x

≤ −| log x|
�
3x

2
− 15

2
x3

�
< 0.

For x ≥ e, it is the third term in (A.11) that dominates:

η�∗(x)�
8/π

≤ −(log x)xe−x2/2

�
1− 1

x2(log x)
− 4

e3x2/2

�
< 0.

Hence η∗(x) has no local extrema in (0, 1/e) or (e,∞).
We conclude that

|η�∗|1 = 2(0.305340693793− 0.20471200611) +O∗(8 · 10−12)

= 1.020105390808 +O∗(8 · 10−12) = 1.02010539081 +O∗(10−11).

We would also like to have a bound for |�η��∗ |∞. If we are to proceed as in the proof
of Lemma A.1, we need to have an expression for �η∗(t). Since log(x) is the derivative
of xν with respect to ν at ν = 0,

�η∗(t) =
d

dν

� ∞

0

xνe−ax2

e(−tx)dx, (A.12)
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and we do have an expression for the integral in the right side of (A.12) in terms of
Γ(ν/2), Γ((ν + 1)/2 and two values of a hypergeometric function 1F1 [GR94, 3.952,
8–9]. The function 1F1 is now implemented in ARB. (See also [Pea09], [POP17].) The
derivative of 1F1 with respect to the first variable is given by a generalized hypergeo-
metric function. We could leave it to ARB, or implement it ourselves in the range we
need by a Taylor series.

Let us not take that route here. It will turn out that we do not actually need an exact
value for |η∗|1. We will actually be happy with the coarse bound |�η��∗ |∞ ≤ |η��∗ |1 and
the following estimate, which we will obtain by the same procedure as in Lemma A.4.

Lemma A.5. Let η∗ be as in (A.7). Then

|η��∗ |1 = 3.908021634825 +O∗ �10−11
�
.

Proof. Clearly, limt→0+ η�∗(x) = limt→∞ η�∗(x) = 0. Let us find the local maxima and
minima of η�∗ on (0,∞). We apply the bisection method using interval arithmetic as
explained at the end of §4.1.1, and obtain that η�∗ has three local extrema with [0.01, 3],
and that the values of η�∗ at these extrema are

y1 = −0.94877018055 +O∗ �4 · 10−12
�
,

y2 = 0.815167328066 +O∗ �8 · 10−13
�
,

y3 = −0.1900733087965 +O∗ �2 · 10−13
�
.

(A.13)

It is easy to see that η��∗ (x) �= 0 for x ∈ (0, 0.01) and for x ∈ (3,∞], as then one of
the terms of

η��∗ (
√
x)�

8/π
= (log x)

�
(x2 − 1)e−x2/2 − (16x2 − 4)e−2x2

�

+
2

x

�
−xe−x2/2 + 4xe−2x2

�
− 1

x2

�
e−x2/2 − e−2x2

�
.

(A.14)

dominates all the others. (For x ∈ (0, 0.01), it is the term 4(log x)e−2x2

; for x ∈
(3,∞) it is the term (x2 − 1)(log x)e−x2/2.)

Hence, (A.13) is the full list of extrema of η�∗ in (0,∞). We conclude that

|η��∗ |1 = −2y1 + 2y2 − 2y3 = 3.908021634825 +O∗ �10−11
�
.

We also need some bounds involving the function η1. First of all,

|η1|1 =

�
2

π

� ∞

0

x2e−x2/2dx =

�
2

π

� ∞

0

e−x2/2dx = 1.

Taking derivatives, we see that x2e−x2/2 has one critical point, at x =
√
2; the value

of x2e−x2/2 at x =
√
2 equals 2/e. Hence

|η�1|1 = 2|η1(
√
2)|1 = 2

�
2

π

2

e
=

√
32

e
√
π
.
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We gather our results in one place: for η1 as in (A.1), η as in (A.2) and η∗ as in
(A.7),

|η|1 = 1, |η�|1 =
3

21/6
√
π

= 1.5079073303 . . . ,

|η��|1 = 3.88490338258 . . . , |�η��|∞ = 2.7344369148 . . . ,

|η1|1 = 1, |η�1|1 =

√
32

e
√
π

= 1.1741013053 . . . ,

|η∗|1 = 0.4154952563768 . . . , |η�∗|1 = 1.0201053908 . . . ,

|�η��∗ |∞ ≤ |η��∗ |1 = 3.9080216348 . . . , |η|∞ =
3

27/6
√
π

= 0.7539536651 . . .

(A.15)

We still need a few more bounds.

Lemma A.6. Let η1 : R → [0,∞) be as in (A.1). Let η1,W (x) = (logWx)η1(x).
Then, for W ≥ 1,

|η1,W |1 = logW +

�
1− γ + log 2

2

�
+O∗

��
8/π

9W 3

�

|η�1,W |1 ≤
�

2

π

�
4

e
logW +

1

eW 2

�
+ 0.608238.

(A.16)

In particular, for W ≥ 136,

|η�1,W |1
|η1,W |1

≤ 3

4
e0.50136 − 3

100
. (A.17)

The form in which we have put the bound (A.17) may seem peculiar, but it will
show itself to be convenient.

Proof. Clearly

|η1,W |1 =

� ∞

0

|(logWx)η1(x)|dx

= −
� 1/W

0

(logWx)η1(x)dx+

� ∞

1/W

(logWx)η1(x)dx

= −2

� 1/W

0

(logWx)η1(x)dx+

� ∞

0

(logWx)η1(x)dx.
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We can simply bound

−
� 1/W

0

(logWx)η1(x)dx ≤
�

2

π

� 1/W

0

(− logW − log x)x2dx

=

�
2

π

�
1

9W 3
(3 logW + 1)− logW

3W 3

�
=

�
2/π

9W 3
.

Of course,
�∞
0

(logW )η1(x)dx = logW . By integration by parts and (A.8),
� ∞

0

(log x)x2e−x2/2dx =
√
2

� ∞

0

(log
√
2u) · 2u2e−u2

du

=
log 2√

2

� ∞

0

u · 2ue−u2

du+
√
2

� ∞

0

(u log u) · 2ue−u2

du

=
log 2√

2

� ∞

0

e−u2

du+
√
2

� ∞

0

(1 + log u)e−u2

du

=
2 + log 2√

2
·
√
π

2
+

√
2 · −

√
π(γ + log 4)

4
=

�
π

2
·
�
1− γ + log 2

2

�
,

(A.18)

where γ is Euler’s constant. Thus, the bound on |η1,W | in (A.16) holds.
Since

((logWx)x2e−x2/2)� = (logWx)x2 · (−x)e−x2/2 + (x+ 2(logWx)x)e−x2/2

= ((logWx)(2− x2) + 1) · xe−x2/2,

the function η1,W has its critical points at the roots of

(logWx)(2− x2) + 1 = 0. (A.19)

Now,

((logWx)(2− x2))� =
2− x2

x
− 2x(logWx) > 0

for x ≤ 1/W . Since the left side of (A.19) equals 1 for x = 1/W and tends to −∞
as x → 0+, we see that (A.19) has exactly one root x0 in [0, 1/W ], and that η1,W
is decreasing on [0, x0]. Since logWx > 0 for x > 1/W , we also see that (A.19)
has no roots on [1/W,

√
2]. It is also to see that (logWx)(2 − x2) decreases from

0 to −∞ as x ranges from
√
2 to ∞. Thus, (A.19) has exactly one root x1 greater

than
√
2; the function η1,W is increasing on [x0, x1] and decreasing on [x1,∞). Since

x0 < 1/W < x1, η1,W (x0) < 0 < η1,W (x1). Hence

|η�1,W |1 = −2η1,W (x0) + 2η1,W (x1) = −2η1,W (x0) + max
x≥0

2η1,W (x).

Since −η1,W (x0) = −
�

2/π(logWx)x2e−x2/2 ≤ −
�
2/π(logWx)x2 and since

((logWx)x2)� = −x(1 + 2 logWx), which is 0 for x = 1/
√
eW , we see that

−2η1,W (x0) ≤ 2

�
2

π
· 1
2
· 1

eW 2
=

�
2/π

eW 2
.
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Recall that η1,W (x) =
�

2/π((logW )x2e−x2/2 + (log x)x2e−x2/2) and that the
maximum of x �→

�
2/π · x2e−x2/2 equals

�
2/π · 2/e. We bound the maximum

of x �→ (log x)x2e−x2/2 on [
√
2,∞) by the bisection method (applied to the interval

(1.41, 5), with 30 iterations). We obtain that the bound on |η�1,W |1 in (A.16) holds.
Lastly, let us bound |η�1,W |1/|η1,W |1, using the bounds we have just proved. Since

0.608238/((4/e)
�

2/π) = 0.51804 . . . > 0.36481 . . . = 1− (γ + log 2)/2, the func-
tion

W �→

�
2
π

�
4
e logW + 1

eW 2

�
+ 0.608238

logW +
�
1− γ+log 2

2

�
−

√
8/π

9W 3

is decreasing for W ≥ 1. Thus, its value for W ≥ 136 is at most its value at 5,
viz., 1.208193 . . . . Note, finally, that (3/4) · e0.50136 − 3/100 = 1.208223 . . . >
1.208193 . . . .

A.2 THE FUNCTIONS η◦, η+, h AND hH

A.2.1 Definitions and basic properties

Define

h : x �→
�
x2(2− x)3ex−1/2 if 0 < x ≤ 2,
0 otherwise

(A.20)

We will work with an approximation η+ to the function η◦ : (0,∞) → R given by

η◦(x) = h(x)η�(x) =

�
x3(2− x)3e−(x−1)2/2 for 0 < x ≤ 2,
0 otherwise,

(A.21)

where η� : (0,∞) → R is defined by

η�(x) = xe−x2/2. (A.22)

The approximation η+ is defined by

η+(x) = hH(x)xe−x2/2, (A.23)

where

hH(x) =
1

2πi

� iH

−iH

(Mh)(s)x−sds (A.24)

and H > 0 will be set later.
It is easy to see that hH(x) is continuous, and in fact in C∞((0,∞)), since it is

defined in (A.24) as an integral on a compact segment, with an integrand depending
smoothly on x. Thus, η+ is C∞.
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It is also clear from (A.24) that hH(x) is bounded, and so η+(x) is of fast decay as
x → ∞ and decays at least as fast as x for x → 0+. In the same way, (A.24) implies
that h�

H(x) is bounded (as are all higher derivatives), and so η�+(x) is of fast decay as
x → ∞ as well as being bounded.

Notice, however, that hH is not in L1 with respect to dx/x (or dx), because the
integral in (A.24) has sharp cutoffs at iH and −iH: integration by parts shows that
the dominant term of hH(x) as x → ∞ is c(x)/ log x, where c(x) = �(Mh(iH) ·
x−iH)/π oscillates between −|Mh(iH)|/π and |Mh(iH)|/π. Thus, we will abstain
from writing MhH , say, even though is fair enough to think of MhH as the truncation
of Mh at iH and −iH . (We could justifying writing MhH by developing an L2 theory
for the Mellin transform, in analogy to the L2 theory of the Fourier transform, but we
will not need to.)

Lemma A.7. Let h and hH be as in (A.20) and (A.24). Then

hH(x) = h ∗M
sin(H log x)

π log x
. (A.25)

Proof. Clearly, for I = [−H,H],

hH(x) =
1

2π

� ∞

−∞
(Mh)(it)1I(t)e

−it log xdt,

which equals the value of the Fourier transform of Mh(it) · 1I(t) at log x/2π. Since
1[−H,H] is in L2 and both Mh(it) and its Fourier transform x �→ 2πh(e2πx) are in L1,
we may apply (2.12), and obtain that

hH(x) =
1

2π

�
2πh(e2πx) ∗ �1I

��
log x

2π

�

=

� ∞

−∞
h(e2π(

log x
2π −u))�1I(u)du =

1

2π

� ∞

0

h
� x

w

�
�1I

�
logw

2π

�
dw

w

almost everywhere. Now, �1I(t) = sin(2πHt)/πt, and so (A.25) holds almost every-
where.

We know that hH(x) is continuous, and the right side of (A.25) is continuous as
well (since h(e2πx) is a function of fast decay, and �1H is uniformly continuous). There-
fore, equation (A.25) actually holds everywhere.

Figures A.1–A.3 show hH and η+ for different values of H . The plot for H = 100
is indistinguishable from that of η◦. Figures A.3 and A.4 shows the range x ≥ 2, where
h(t) and η◦ are identically zero, for higher H; notice the scale.

Lemma A.8. Let η+ be as (A.23). Then Mη+ is holomorphic for �s > −1.

Proof. Let h, hH and η� be as in (A.20), (A.24) and (A.22). Since t → Mh(it) is in
L1, so is its truncation to [−H,H], and hence hH is in L∞. Therefore, η+(x)xσ−1 =
hH(x) · η♦(x)xσ−1 is in L1 for any σ for which η♦(x)xσ−1 is in L1; that is, the strip
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Figure A.1: hH(x) on [0, 3]
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Figure A.2: η+(x) on [0, 3]
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Figure A.3: hH(x) on [2, 5]
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Figure A.4: η+(x) on [2, 5]

of holomorphy of Mη+ contains that of the Mellin transform Mη♦ of η♦(x). It is easy
to see that the strip of holomorphy of Mη♦ is {s : �s > −1}.

Lemma A.9. For δ ∈ R, let η♦,δ(x) = η♦(x)e(δx) and η+,δ(x) = η+e(δx), where
η� and η+ are as in (A.22) and (A.23). Then

Mη+,δ(s) =
1

2πi

� iH

−iH

Mh(z)Mη♦,δ(s− z)dz (A.26)

for �s > −1.

Proof. By (2.32), η+,δ equals the inverse Mellin transform of

1

2πi

� iH

−iH

Mh(z)Mη♦,δ(s− z)dz (A.27)

for �s > −1. The function in (A.27) is in L1 on vertical lines σ + iR, σ > −1. Since
η+,δ(x)x

σ−1 is in L1 for σ > −1, it follows from Fourier inversion (applied to the
function defined by (A.27)), together with a change of variables, that Mη+ equals the
function in (A.27) for �s > −1.
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Part of our work from now on will consist in expressing norms of hH and η+ in
terms of norms of h, η◦ and Mh.

A.2.2 The Mellin transform Mh

Consider the Mellin transform Mh of the function h. By symbolic integration,

Mh(s) = e−πis− 1
2 (8γ(s+2,−2)+12γ(s+3,−2)+6γ(s+4,−2)+γ(s+5,−2)),

(A.28)
where γ(s, x) is the lower incomplete Gamma function, as in §4.2.2. Unfortunately,
(A.28) leads to catastrophic cancellation. In ARB, or double-precision in general, the
error term is already large for t = 8, and the result becomes useless for t ≥ 12 or so.
Thus, we are better off deriving our own series development for Mh(s), either using
(4.12) or, as we shall do, proceeding as in the derivation of (4.12).

Lemma A.10. Let h : (0,∞) → R be defined as in (A.20). Then, for any s ∈ C other
than 0,−1,−2, . . . and any l ≥ max(8,−�s+ 3),

Mh(s) = e3/22s
l−1�

k=3

(−1)k+12k
k(k − 1)(k − 2)(k2 − 3k + 4)

s(s+ 1) · · · (s+ k)

+O∗
�
l(l − 1)(l − 2)(l2 − 3l + 4)

|s||s+ 1| · · · |s+ l| · e
3/22�s+l

1− ρl(s)

�
,

(A.29)

where rl(s) = 3.96/|s+ l + 1|. Moreover, for any s such that |s+ 4| ≥ 100,

|Mh(s)| ≤ 1025 · 2�s

|s||s+ 1| · · · |s+ 3| . (A.30)

Proof. Write P (t) = t2(2 − t)3. Since P (2) = P �(2) = P ��(2), integration by parts
yields

e−3/2Mh(s) =

� ∞

0

P (t)et−2ts−1dt = −1

s

� ∞

0

(P (t)et−2)�tsdt

= − 1

s(s+ 1)(s+ 2)

� ∞

0

(P (t)et−2)(3)ts+2dt

=
∞�

k=3

(−1)k
(P (t)et−2)(k)(2) · 2s+k

s(s+ 1) · · · (s+ k)
.

Because P is of degree 5,

(P (t)et−2)(k)(2) =

5�

j=0

�
k

j

�
P (j)(2)e2−2 = −24

�
k

3

�
− 96

�
k

4

�
− 120

�
k

5

�

= −k(k − 1)(k − 2)(k2 − 3 k + 4),
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and so

Mh(s) = e3/22s
∞�

k=3

(−1)k+12k
k(k − 1)(k − 2)(k2 − 3 k + 4)

s(s+ 1) · · · (s+ k)
. (A.31)

It is clear that, for k > 3, the ratio of the (k + 1)th to the kth term in (A.31) is at most
ρk(s) = 2(k + 1)(k2 − k + 2)/((k − 2)(k2 − 3 k + 4)|s + k + 1|), which is < 1 for
k ≥ 8, |s + k + 1| ≥ 4, or for k = 3 and |s + k + 1| > 16. Hence, equation (A.29)
holds with ρl(s) instead of rl(s) for any l ≥ max(8,−�s+ 3), s �= 0,−1,−2, . . . . It
is easy to verify that rl(s) ≥ ρl(s) for all l ≥ 8, and so (A.29) holds as it stands. It also
holds, once again with ρl(s) instead of rl(s), for l = 3 and s such that |s + 4| ≥ 16.
Hence

|Mh(s)| ≤ 24 · 8e3/2
1− ρ3(s)

· 2�s

|s||s+ 1| · · · |s+ 3| ≤
1025 · 2�s

|s||s+ 1| · · · |s+ 3| (A.32)

for s such that |s+ 4| ≥ 100.

The following lemma is somewhat crude. It will be used only to bound error terms
in numerical integration.

Lemma A.11. Let h : (0,∞) → R be defined as in (A.20). Then, for any s ∈ C with
�s ≥ −1/2, |s+ 4| ≥ 5,

����
d2

ds2
Mh(s)

���� ≤
1.22 · 107 · 2�s

|s|3|s+ 1||s+ 2||s+ 3| . (A.33)

Moreover, for any s ∈ iR,
����
d2

ds2
Mh(s)

���� ≤
� 2

0

x(2− x)3ex−1/2(log x)2xsdx ≤ 1.0431. (A.34)

Proof. Differentiating equation (A.29) and taking l → ∞, we see that
����
d2

ds2
Mh(s)

���� ≤ e3/22�s
∞�

k=3

2k
(k + 1)2k(k − 1)(k − 2)(k2 − 3k + 4)

|s|3|s+ 1| · · · |s+ k|

≤ e3/223+�s · 105
8

|s|3|s+ 1||s+ 2||s+ 3|
∞�

j=0

2j

|s+ 4|j (j + 1)(j + 2) . . . (j + 6).

Since, for r ≥ 0,

∞�

j=0

(j + 1) . . . (j + r)xj =

�
1

1− x

�(r)

=
r!

(1− x)r+1
,

we conclude that (A.33) holds. More precisely,
����
d2

ds2
Mh(s)

���� ≤
c · 2�s

|s|3|s+ 1||s+ 2||s+ 3| ,
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where c = 105
8 e3/2236!/(1− 2/|s+ 4|)7 = 1.2103326 · 107.

To prove (A.34), simply proceed from the definition of Mh, and then use (rigorous)
numerical integration.

We can use (A.29) to compute Mh(it) (though using (A.28) is preferable for |t|
small) and (A.30) to bound Mh(σ + it) for σ fixed and |t| large. We use midpoint
integration, as in (4.2), with the bounds from Lemma A.11 as an input. We obtain via
ARB, using (A.28) and Lemma A.11, that

� 1

0

|Mh(it)|dt ≤ 1.9054814,

and, via D. Platt’s int_double package, together with (A.29) and Lemma A.11,

� 5000

1

|Mh(it)|dt ≤ 4.09387319.

Hence, by (A.30),

|Mh(it)|1 ≤ 2(1.9054814 + 4.09387319) +O∗
�� ∞

5000

2050

t4
dt

�
≤ 11.99871.

(A.35)

A.3 NORMS OF η◦ AND η+

A.3.1 The difference η+ − η◦ in L2 norm.

We wish to estimate the distance in L2 norm between η◦ and its approximation η+.

Lemma A.12. Let η◦, η+ : (0,∞) → R be as in (A.21) and (A.23), with H > 0. Then
� ∞

0

|hH(t)− h(t)|2 dt
t

=
1

π

� ∞

H

|Mh(it)|2dt. (A.36)

Proof. The inverse Mellin transform is an isometry for the same reason that the Mellin
transform is: both are Fourier transforms under a change of variables. Recall that hH

was defined in (A.24) as the inverse Mellin transform of Mh on the imaginary axis
truncated by |�s| ≤ H . Hence h(t)− hH(t) is the inverse Mellin transform of Mh on
the imaginary axis truncated by |�s| > H . Then we get (A.36) by isometry.

Lemma A.13. Let η◦, η+ : (0,∞) → R be as in (A.21) and (A.23), with H ≥ 100.
Then

|η+ − η◦|2 ≤ 140

H7/2
, |(η+ − η◦)(x) log x| ≤

61.5

H7/2
.
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Proof. By (A.21), (A.23) and Lemma A.12,

|η+ − η◦|22 =

� ∞

0

���hH(t)te−t2/2 − h(t)te−t2/2
���
2

dt

≤
�
max
t≥0

e−t2t3
�
·
� ∞

0

|hH(t)− h(t)|2 dt
t

=

�
max
t≥0

e−t2t3
�
· 1
π

� ∞

H

|Mh(it)|2dt.

(A.37)

The maximum maxt≥0 t
3e−t2 is (3/2)3/2e−3/2.

By (A.30), under the assumption that H ≥ 100,
� ∞

H

|Mh(it)|2dt ≤
� ∞

H

10252

t8
dt ≤ 10252

7H7
. (A.38)

We conclude that

|η+ − η◦|2 ≤ 1025√
7π

�
3

2e

�3/4

· 1

H7/2
≤ 140

H7/2
. (A.39)

We could do better by computing the difference between h+ and h◦ directly for given
H , using (A.25), but we will not bother to.

We must now bound
����
� ∞

0

(η+(t)− η◦(t))
2(log t)2 dt

���� .

This quantity is at most
�
max
t≥0

e−t2t3(log t)2
�
·
� ∞

0

|hH(t)− h(t)|2 dt
t
.

By the bisection method with 23 iterations (see §4.1),

max
t≥0

e−t2t3(log t)2 = max
t∈[10−6,10]

e−t2t3(− log t) = 0.07892 . . . .

Hence, by (A.36) and (A.38), again under the assumption that H ≥ 100,

� ∞

0

(η+(t)− η◦(t))
2(log t)2dt ≤ 0.078925 · 1025

2

7πH7
≤

�
61.5

H7/2

�2

. (A.40)

A.3.2 Norms involving η◦ and η+

Let us first prove a general result.
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Lemma A.14. Let η+ : (0,∞) → R be as in (A.23), with H > 0 arbitrary. Then, for
any σ ≥ −3/2, η+(t)tσ is in L2, and, for any σ > −2, η+(t)tσ is in L1.

Proof. Just as in the proof of Lemma A.13, by (A.21), (A.23) and Lemma A.12,

|(η+(t)− η◦(t))t
σ|22 =

� ∞

0

���hH(t)te−t2/2 − h(t)te−t2/2
���
2

t2σdt

≤
�
max
t≥0

e−t2t2σ+3

�
·
� ∞

0

|hH(t)− h(t)|2 dt
t

=

�
max
t≥0

e−t2t2σ+3

�
· 1
π

� ∞

H

|Mh(it)|2dt.

(A.41)

Here

1

π

� ∞

H

|Mh(it)|2dt ≤ 1

2π

� ∞

−∞
|Mh(it)|2dt =

� ∞

0

|h(t)|2 dt
t

< ∞,

and, if σ > −3/2, maxt≥0 e
−t2t2σ+3 is also finite. Then η+(t)t

σ is in L2.
By Cauchy-Schwarz, for σ > −2,

� 1

0

|η+(t)tσ|dt+
� ∞

1

|η+(t)tσ|dt

is at most
�� 1

0

|η+(t)t−3/2|2dt
�� 1

0

t2σ+3dt+

�� ∞

1

|η+(t)tσ+1|2dt
�� 1

0

t−2dt.

Since |η+(t)t−3/2|2, |η+(t)tσ+1|2 < ∞, it follows that |η+(t)tσ|1 < ∞.

Let us now bound some L1- and L2-norms involving η+. First, by rigorous numer-
ical integration via ARB,

|η◦|2 = 0.800128, |η◦(t) log t|2 = 0.213868. (A.42)

(Integrating symbolically is also an option in the first case.) Hence, by Lemma A.13,

|η+|2 ≤ |η◦|2 + |η+ − η◦|2 ≤ 0.800129 +
140

H7/2
(A.43)

and

|η+(t) log t|2 ≤ |η◦(t) log t|2 + |(η+ − η◦)(t) log t|2 ≤ 0.213869 +
61.5

H7/2
.

(A.44)
In general, for any f : (0,∞) → C such that η◦(t)f(t) ∈ L1,

|η+(t)f(t)|1 = |η◦(t)f(t)|1 +O∗ (|(η+(t)− η◦(t))f(t)|1)
= |η◦(t)f(t)|1 +O∗

�
|(hH(t)− h(t))te−t2/2f(t)|1

�
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and, by Cauchy-Schwarz, (A.36) and (A.38),

|(hH(t)− h(t))te−t2/2f(t)|1 ≤
����
hH(t)− h(t)√

t

����
2

· |t3/2e−t2/2f(t)|2

≤ 1025√
7πH7/2

|t3/2e−t2/2f(t)|2.

For instance, by numerical integration via ARB,

|η◦(t)t−1/2|1 = 0.909875 . . . , |η◦(t) log t|1 = 0.245205 . . . .

and, by symbolic integration,

|t3/2e−t2/2t−1/2|2 =
π1/4

2
, |t3/2e−t2/2 log t|2 =

�
π2

48
+

γ2

8
− γ

4
.

Thus

|η+(t)t−1/2|1 ≤ 0.909876 +
146

H7/2
, |η+(t) log t|1 ≤ 0.245206 +

71

H7/2
. (A.45)

A.3.3 Norms involving η�+

Lemma A.15. Let η+ : (0,∞) → R be defined as in (A.23), with H ≥ 100. Then

|(η+ − η◦)
�|2 = O∗

�
109

H2

�
,

and so

|η�+|2 = |η�◦|2 +O∗
�
109

H2

�
= 1.65454 . . .+O∗

�
109

H2

�
.

As will become clear, we could provide a better error term, one inversely propor-
tional to H5/2, but we will not need to, as we will use Lemma A.15 only to bound
rather minor error terms.

Proof. We wish to estimate |η�+|2. Clearly

|η�+|2 = |η�◦|2 +O∗(|(η+ − η◦)
�|2).

By symbolic integration, |η�◦|2 = 1.65454 . . . .
Since η�+ and η�◦ are bounded and both η+(x) and η◦ decay at least as fast as x for

x → 0+, we may apply the transformation rule M(f �)(s) = −(s − 1) · Mf(s − 1)
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from (2.33) to f(x) = (η+ − η◦)(x) for any σ > −1. Since η+ − η◦ is in L2, we can
apply the Mellin transform as an isometry for σ = 1/2, and obtain

|(η+ − η◦)
�|22 =

1

2πi

� 1
2+i∞

1
2−i∞

|M((η+ − η◦)
�)(s)|2 ds

=
1

2πi

� − 1
2+i∞

− 1
2−i∞

|s ·M(η+ − η◦)(s)|2 ds.
(A.46)

Recall that η+(t) = hH(t)η♦(t), where η♦(t) = te−t2/2. Since η♦(t) is the
inverse Mellin transform of Mη♦ on any line �s = σ with σ > −1, we see from
(2.32) that

M(η+ − η◦)(s) =
1

2π

� ∞

−∞
M(h− hH)(ir)Mη♦(s− ir)dr

=
1

2π

�

|r|>H

Mh(ir)Mη♦(s− ir)dr

(A.47)

for �s > −1.
Recall from (A.30) that |Mh(ir)| ≤ 1025/r4. By a substitution t = x2/2,

Mη♦(s) =
� ∞

0

e−x2/2xsdx =

� ∞

0

e−t(2t)
s−1
2 dt = 2

s−1
2 Γ

�
s+ 1

2

�
.

We could now use the decay properties of Γ to obtain a bound on M(η+ − η◦)(s). In
the interests of a quick and clean solution, let us proceed instead as follows. In general,
for f ∈ L1(R) and g ∈ L2(R),

|f ∗ g|22 =

� ∞

−∞

����
� ∞

−∞
f(y)g(x− y)dy

����
2

dx

=

� ∞

−∞
|f(y)|dy ·

� ∞

−∞

� ∞

−∞
|f(y)||g(x− y)|2dydx = |f |21|g|22

(A.48)

by Cauchy-Schwarz. (This is a special case of Young’s inequality.) By the easy in-
equality |a+ b|2 ≤ 2|a|2 + 2|b|2,

|(f ∗ g)(x)x|22 =

� ∞

−∞

����
� ∞

−∞
|f(y)||g(x− y)| · (y + (x− y))dy

����
2

dx

= 2

� ∞

−∞

����
� ∞

−∞
|f(y)y||g(x− y)|dy

����
2

dx

+ 2

� ∞

−∞

����
� ∞

−∞
|f(y)||g(x− y)||x− y|dy

����
2

dx,

(A.49)

and so, by (A.48)

|(f ∗ g)(x)x|22 ≤ 2(|f(x)x|21|g|22 + |f |2|g(x)x|22). (A.50)
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Applying (A.48) and (A.50) to (A.46), we see that

|(η+ − η◦)
�|22 ≤ 1

(2π)3

�
1

4
|f |21|g|22 + 2(|f(x)x|21|g|22 + |f |2|g(x)x|22)

�
,

where f(x) = Mh(ix) for |x| > H , f(x) = 0 for |x| ≤ H , and g(x) = Mη♦(−1/2+
ix).

By Plancherel,

|g|22 =

� − 1
2+i∞

− 1
2−i∞

|Mη♦(s)|2ds = 2π|η♦(x)/x|22 = 2π|e−x2/2|22 = π3/2

and, since sMη♦(s) = −(M(xη�♦(x)))(s),

|g(x)x|22 +
1

4
|g(x)|22 =

� 1
2+i∞

1
2−i∞

|(M(xη�♦(x)))(s)|2ds = 2π|xη�♦(x)|22 =
7

8
π3/2.

Since |f(x)| ≤ 1025/r4, we see that |f |1 ≤ 1025/3H3 and |f(x)x|1 ≤ 1025/2H2.
Hence

|(η+ − η◦)
�|22 ≤ 1

4π3

�
10252

4H4
π3/2 +

10252

9H6
· 7π

3
2

8

�
≤ 11792.43

H4
+

4586

H6
≤ 11793

H4

under the assumption H ≥ 100, and so |(η+ − η◦)�|2 ≤ 109/H2.

Lemma A.16. Let η+ : (0,∞) → R be defined as in (A.23), with H ≥ 100. Then

|(η+ − η◦)
�(x)x|2 = O∗

�
77

H2

�
,

Proof. Proceeding just as in the proof of Lemma A.15, we obtain that

|(η+ − η◦)
�(x)x|22 ≤ 1

(2π)3

�
1

4
|f |21|g|22 + 2(|f(x)x|21|g|22 + |f |2|g(x)x|22)

�
,

where f(x) = Mh(ix) for |x| > H , f(x) = 0 for |x| ≤ H , and g(x) = Mη♦(1/2 +
ix).

By Plancherel,

|g|22 =

� 1
2+i∞

1
2−i∞

|Mη♦(s)|2ds = 2π|η♦(x)|22 = 2π|xe−x2/2|22 =
π3/2

2

and, since sMη♦(s) = −(M(xη�♦(x)))(s),

|g(x)x|22 +
1

4
|g(x)|22 =

� 3
2+i∞

3
2−i∞

|(M(xη�♦(x)))(s)|2ds = 2π|x2η�♦(x)|22 =
33

16
π

3
2 .
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Since |f(x)| ≤ 1025/r4, we get that

|(η+−η◦)
�(x)x|22 ≤ 1

4π3

�
10252

4H4

π3/2

2
+

10252

9H6
· 33π

3
2

16

�
≤ 5896.3

H4
+
10810

H6
≤ 5898

H4

under the assumption H ≥ 100, and so |(η+ − η◦)�|2 ≤ 77/H2.

Lemma A.17. Let η+ : (0,∞) → R be defined as in (A.23), with H > 0. Then, for
every σ > −1/2, η�+(x)x

σ is in L2, and, for every σ > −1, η�+(x)x
σ is in L1.

Proof. Assume σ > −1/2. Yet again, we proceed as in the proof of Lemma A.15, and
get that

|(η+ − η◦)
�(x)xσ|22 ≤ 1

(2π)3

�
1

4
|f |21|g|22 + 2(|f(x)x|21|g|22 + |f |21|g(x)x|22)

�
,

where f(x) = Mh(ix) for |x| > H , f(x) = 0 for |x| ≤ H , and g(x) = Mη♦(−1/2+
σ + ix). Much as usual, f and f(x)x are in L1 by (A.30), and g and g(x)x are in L2

because η�(x)xσ−1 and η��(x)x
σ are in L2. Hence |(η+ − η◦)�(x)xσ|2 < ∞, and so

η�+(x)x
σ is in L2.

We deduce that η�+(x)x
σ is in L1 using Cauchy-Schwarz in the same way as in the

proof of Lemma A.14.

Lemma A.18. Let η+ : (0,∞) → R be defined as in (A.23), with H ≥ 100. Then

|η�+ log t|1 = 0.99637 . . .+O∗
�
336

H2

�
.

Proof. Since η◦ is increasing for t ∈ [0, 1] and decreasing for t ∈ [1, 2],

|η�◦ log t|1 =

� 1

0

η�◦(t)(− log t)dt+

� 2

1

(−η�◦(t)) log tdt =
� 2

0

η◦(t)
t

dt = 0.99637 . . . .

By Cauchy-Schwarz, for any ρ > 0,

|(η+ − η◦)
�(t) log t|1 ≤ |(η+ − η◦)

�(t)(ρt+ 1)|2 ·
����
log t

ρt+ 1

����
2

= (|(η+ − η◦)
�|2 + |(η+ − η◦)

�(t)t|2) ·
�

π2

3ρ
+

(log ρ)2

ρ
.

We apply Lemmas A.15 and A.16, set ρ = 7/6, and obtain that

|(η+ − η◦)
�(t) log t|1 ≤ 314

H2
.
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A.3.4 The L∞-norm of η+

Lemma A.19. Let η+ : (0,∞) → R be defined as in (A.23), with H ≥ 100. Then

|η+|∞ = 1 +O∗
�

66

H2

�
.

Proof. Recall that η+(x) = hH(x)η♦(x), where η♦(x) = xe−x2/2. Clearly

|η+|∞ = |η◦|∞ +O∗ (|η+ − η◦|∞) = |η◦|∞ +O∗ (|h(x)− hH(x)|∞|η♦(x)|∞) .
(A.51)

Taking derivatives, we easily see that

|η◦|∞ = η◦(1) = 1, |η♦(x)|∞ = 1/
√
e

It remains to bound |h(x)− hH(x)|∞. By definition (A.24), for any x > 0,

h(x)− hH(x) =
1

2π

�

|t|≥H

(Mh)(it)x−itdt.

Hence, by (A.30),

|h(x)− hH(x)| ≤ 1

2π

�

|t|≥H

|(Mh)(it)|dt ≤ 1

π

� ∞

H

1025

t4
dt =

1

3π

1025

H3
≤ 108.8

H3
,

and so
|η+ − η◦|∞ ≤ 1√

e
|h− hH |∞ ≤ 66

H3
.


