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Abstract. In the �rst part of this article, we consider a Groebner basis of the
di�erential ideal [x2

1] with respect to "the" weighted lexicographical monomial
order and show that its computation is related with an identity involving the
partitions that appear in the �rst Rogers-Ramanujan identity. We then prove
that a Groebner basis of this ideal is not di�erentially �nite in contrary with the
case of "the" weighted reverse lexicographical order. In the second part, we give
a simple and direct proof of a theorem of Nguyen Duc Tam about the Groebner
basis of the di�erential ideal [x1y1]; we then obtain identities involving partitions
with 2 colors.

Intoduction

An integer partition of a positive integer number n is a decreasing sequence of
positive integers

λ = (λ1 ≥ λ2 ≥ . . . ≥ λl),

such that λ1 + λ2 + · · · + λl = n. The λi's are called the parts of λ and l is its
size. The book [A] is a classic in the theory of integer partitions. A famous identity
related to partitions and which plays an important role in this paper is the First
Rogers-Ramanujan Identity:

The number of partitions of n with no consecutive parts, neither equal parts is
equal to the number of of partitions of n whose parts are congruent to 1 or 4

modulo 5.

In [BMS] (see also [BMS1]) we got to this identity by considering the space of
arcs of the double point X = Spec(K[x]/x2) centred at the origin; denote it by
X0
∞. The coordinate ring A of X0

∞ is naturally graded and we associate with it its
Hilbert-Poincaré series that we call the Arc Hilbert-Poincaré series; we denote it
by AHPX,0(t). Note that this is an invariant of singularities of algebraic varieties
[M, BMS]. We prove in [BMS] that AHPX,0(t) is equal to the generating sequence of
the number of partitions appearing in the Rogers-Ramanujan identities. The proof
uses a Groebner basis computation associated with a monomial ordering (reverse
lexicographical). Note that we have

A =
K[xi, i ∈ Z>0]

[x21]
,
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where [x21] is the di�erential ideal generated by x21 and its iterated derivative by the
derivation D which is determined by D(xi) = xi+1. So

[x21] = (x21, 2x1x2, 2x1x3 + 2x22, . . .).

The grading of A is determined by giving to xi the weight i.

In the frist part of this article, we consider a di�erent monomial ordering (lexi-
cographical) and we �nd that the Groebner basis computation with respect to this
monomial ordering is related with an other identity involving the partitions that
appear in the �rst Rogers-Ramanujan identity. We then use this other member in
the Rogers-Ramanujan identitiy to carry the computations of the Groebner-basis in
small degrees (usual degree) but in all weights. This leads us to prove, in contrast
with the case of the reverse lexicographical ordering, that a Groebner basis of our
ideal with respect to the lexicographical ordering is not di�erentially �nite.

In the other part of this article, we will give a direct and simpler proof of a theo-
rem by Nguyen Duc Tam [N] where he computes a Groebner basis of the arc space
of X = Spec(K[x, y]/(xy)) or simply of the di�erential ideal generated by xy. We
then use this theorem to obtain identities of partitions with two colors.

Acknowledgements: We are thankful to Marc Chardin and Bernard Teissier for
several discussions during the preparation of this work and to Jan Schepers for the
remarks and suggestions he made on an earlier version of this paper. We also thank
the referee for his careful reading, his corrections and suggestions.

1. Hilbert series and integer partitions

In this section, we will begin by considering the Hilbert-Poincaré series of some
graded algebras that are inspired by Groebner basis computations; we then inter-
pret these series as generating sequences of partitions having special properties. At
the end of the section, we will give more explanations on how we have found these
graded algebras.

We will denote by K an algebraically closed �eld of characteristic 0. Recall that
for a gradedK−algebras, A = ⊕i∈NAi (we assume that dimK(Ai) <∞) the Hilbert-
Poincaré series of A, that we denote by HP (A), is by de�nition

HP (A) =
∑
i∈N

dimK(Ai)q
i,

where q is a variable. For more about Hilbert-Poincaré series, see the appendix in
[BMS] and the references there.
Let n, l ≥ 1 be integer numbers. We consider the graded algebra K[xl, xl+1, . . .]

where we give xi the weight i, for i ≥ l. This grading induces a grading on the

K-algebra K[xl,xl+1,...]

(xi1 ···xin , ij≥l)
.
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We consider the Hilbert-Poincaré series

H l
n = HP

(
K[xl, xl+1, . . .]

(xi1 · · ·xin , ij ≥ l)

)
.

Lemma 1.1. We have
H l
n = qlH l

n−1 +H l+1
n .

Proof. Using corollary 6.2 in [BMS], we have

H l
n = HP

(
K[xl, xl+1, . . .]

(xi1 · · ·xin , ij ≥ l)

)
=

HP

(
K[xl, xl+1, . . .]

(xl, xi1 · · ·xin , ij ≥ l)

)
+ qlHP

(
K[xl, xl+1, . . .]

((xi1 · · ·xin , ij ≥ l) : xl)

)
The last term is exactly H l+1

n + qlH l
n−1.

�

The above lemma allows us to determine H l
n.

Proposition 1.2. We have

H l
n = 1 +

ql

1− q
+

q2l

(1− q)(1− q2)
+ · · ·+ q(n−1)l

(1− q)(1− q2) · · · (1− qn−1)
.

Proof. The proof is by induction on the integer n. Notice that for n = 1, H l
1 =

HP (K) = 1. For n = 2, the weighted-homogeneous components of

K[xl, xl+1, . . .]

(xi1xi2 , ij ≥ l)

are generated by 1 in degree 0 and xi in degree i for i ≥ l; for i = 1, . . . l − 1,
the weighted-homogeneous components of degree i is the null vector space. Let us
assume that the formula is true for H l

j, j ≤ n− 1 and prove it for H l
n. Using lemma

1.1 repetitively, we obtain

H l
n = qlH l

n−1 +H l+1
n = qlH l

n−1 + ql+1H l+1
n−1 +H l+2

n = · · · =

qlH l
n−1 + ql+1H l+1

n−1 + · · ·+ qmHm
n−1 +Hm+1

n .

But we have
lim
m→∞

Hm
n = 1,

where the limit is considered for the q-adic topology in C[[q]]; hence we can write

H l
n = 1 + qlH l

n−1 + ql+1H l+1
n−1 + · · ·+ qmHm

n−1 + qm+1Hm+1
n−1 + · · · =

1 +
∑
m≥l

qmHm
n−1.

By the induction hypothesis we obtain

H l
n = 1+

ql +
q2l

1− q
+

q3l

(1− q)(1− q2)
+ · · ·+ q(n−1)l

(1− q)(1− q2) · · · (1− qn−2)
+
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ql+1 +
q2(l+1)

1− q
+

q3(l+1)

(1− q)(1− q2)
+ · · ·+ q(n−1)(l+1)

(1− q)(1− q2) · · · (1− qn−2)
+ · · · =

(summing by columns)

1 + (ql + ql+1 + · · · ) + (
q2l

1− q
+
q2(l+1)

1− q
+ · · · ) + · · ·+

(
q(n−1)l

(1− q)(1− q2) · · · (1− qn−2)
+

q(n−1)(l+1)

(1− q)(1− q2) · · · (1− qn−2)
+ · · · ).

The formula for H l
n follows from the formula

qjl + qj(l+1) + qj(l+2) + · · · = qjl

1− qj
, j = 1, . . . , n− 1.

�

Corollary 1.3. Let l, n ≥ 1 be integers. The generating series of the integer parti-
tions with parts greater or equal to l and size (number of parts) less or equal to n−1
is

1 +
ql

1− q
+

q2l

(1− q)(1− q2)
+ · · ·+ q(n−1)l

(1− q)(1− q2) · · · (1− qn−1)
.

Proof. This is just the combinatorial interpretation of proposition 1.2: A basis of the

i−th weighted-homogeneous component of K[xl,xl+1,...]

(xi1 ···xin , ij≥l)
is given by the monomials

xh1 · · ·xhr such that h1+· · ·+hr = i, hj ≥ l and xh1 · · ·xhr 6∈ (xi1 · · ·xin , ij ≥ l); this
corresponds to the partitions of i with parts greater or equal to l and size (number
of parts) less or equal to n− 1. �

We now look at the Hilbert series that makes the link to the �rst Rogers-Ramanujan
identity. For j ≥ 1, let

(1) HP

(
K[xj, xj+1, . . .]

(xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥ ik ≥ k ≥ j)

)
.

Lemma 1.4. We have

Hj = qjHj
j +Hj+1.

Proof. Using corollary 6.2 in [BMS], we have

Hj = HP

(
K[xj, xj+1, . . .]

(xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥ ik ≥ k ≥ j)

)
=

HP

(
K[xj, xj+1, . . .]

(xj, xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥ ik ≥ k ≥ j)

)
+

qjHP

(
K[xj, xj+1, . . .]

((xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥ ik ≥ k ≥ j) : xj)

)
.

The last term is exactly Hj+1 + qjHj
j .

�
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Theorem 1.5. We have

H1 = 1 +
q

1− q
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · · =

1 +
∑
n≥1

qn
2

(1− q)(1− q2) · · · (1− qn)
.

Proof. Applying lemma 1.4 for j = 1, we obtain that H1 = qH1
1 +H2; applying the

same lemma for j = 2 we have that H1 = qH1
1 + q2H2

2 +H3; Applying repetitively
and in the same way lemma 1.4, we obtain that for m ≥ 2,

H1 = qH1
1 + q2H2

2 + · · ·+ qmHm
m +Hm+1.

Noticing that

lim
m→∞

Hm = 1

(where the limit is considered for the q-adic topology in C[[q]],C being the �eld of
complex numbers) we can write

H1 = 1 + qH1
1 + q2H2

2 + · · ·+ qmHm
m + · · · .

Using proposition 1.2, we obtain that H1 is equal to

1 +q

+q2 + q4

1−q

+q3 + q6

1−q + q9

(1−q)(1−q2)

+q4 + q8

1−q + q12

(1−q)(1−q2) + · · ·

Summing by columns we obtain the result.
�

An equivalent statement of the theorem the following.

Theorem 1.6. Let n ≥ 1 be a positive integer. The number of partitions of n with
size less than or equal to the smallest part is equal to the number of partitions of n
without consecutive nor equal parts.

Proof. This follows from the known fact ([A, BMS]) that the series obtained in
theorem 1.5 is also the generating sequence of the partitions without consecutive
nor equal parts. �
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It was pointed to us by Jan Schepers that the theorem [OEIS] is mentioned in
[OEIS] but without a clear reference. We have rediscovered this theorem from
Groebner basis computations (see the explanations after theorem 1.7); our point
of view allows us to obtain the following family of identities (indexed by an integer
number k) which are generalizations of theorem 1.6.

Theorem 1.7. Let n ≥ k be a positive integer. The number of partitions of n with
parts larger or equal to k and size less than or equal to (the smallest part minus
k − 1) is equal to the number of partitions of n with parts larger or equal to k and
without consecutive nor equal parts.

Proof. We denote by Fk the Hilbert series of

K[xk, xk+1, . . .]

(xi1 · · ·xij−k+1
xj, i1 ≥ i2 ≥ . . . ≥ ij−k+1 ≥ j ≥ k)

.

It follows from similar computations to those in the proof of the theorem 1.5 that

Fk = 1 + qkHk
1 + qk+1Hk+1

2 + · · ·+ qk+mHk+m
m+1 + · · · .

By proposition 1.2 we have

Fk = 1 +qk

+qk+1 + q2k+2

1−q

+qk+2 + q2k+4

1−q + q3k+6

(1−q)(1−q2)

+qk+3 + q2k+6

1−q + q3k+9

(1−q)(1−q2) + · · · .

Summing by columns we obtain that

Fk = 1 +
∑
n≥1

qn(n+k−1)

(1− q)(1− q2) · · · (1− qn)
.

This implies that

Fk+1 + qkFk+2 =

1 + qk+1

1−q + q2k+4

(1−q)(1−q2) + q3k+9

(1−q)(1−q2)(1−q3) + · · ·

+qk + q2k+2

1−q + q3k+6

(1−q)(1−q2) + · · · .
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Again summing by columns we obtain that

Fk+1 + qkFk+2 = 1 +
∑
n≥1

qn(n+k−1)

(1− q)(1− q2) · · · (1− qn)
= Fk.

It follows from proposition 5.8 in [BMS] (with a shift in the indices) that for k ≥ 1
there exist Aj, Bj ∈ C[[q]] such that

Fk = Ak+iFk+i +Bk+i+1Fk+i+1,

Ak+1 = 1, Bk+2 = qk, and for all i ≥ 2 we have

Ak+i = Ak+i−1 +Bk+i,

Bk+i+1 = qk+i−1Ak+i−1.

Denote now by H ′k the Hilbert series of

K[xk, xk+1, . . .]

(x2i , x
2
i+1, i ≥ k)

.

By equation (7) in [BMS], H ′k satis�es the same recursion formula

H ′k = Ak+iH
′
k+i +Bk+i+1H

′
k+i+1.

Since limBj = 0 and limFj = limH ′j = 1 (in the (q)-adic topology) we have

Fk = lim
(
Ak+iFk+i +Bk+i+1Fk+i+1

)
= limAk+i =

lim
(
Ak+iH

′
k+i +Bk+i+1H

′
k+i+1

)
= H ′k.

Noticing that Fk is the generating series of the number of partitions with parts
larger or equal to k and size less than or equal to (the smallest part minus k − 1)
and that H ′k is the generating series of the number of partitions with parts larger
or equal to k and without consecutive nor equal parts, we obtain the result in the
theorem.

�

Theorem 1.6 is inspired from a Groebner basis computation of the di�erential ideal
[x21] : By [BMS], the initial ideal of [x21] with respect to the reverse lexicographical
ordering is (x2i , xixi+1, i ≥ 1), while we can guess that its initial ideal with respect
to the lexicographical ordering is ((xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥ ik ≥ k ≥ 1) (we
make use of this guess in the next section). Hence the Hilbert series of the quotient
rings of K[x1, x2, . . .] by these ideals are equal. The Hilbert series of the quotient
by (x2i , xixi+1, i ≥ 1), is the generating series of the partitions without consecutive
nor equal parts; The Hilbert series of the quotient by ((xi1 · · ·xikxk, i1 ≥ i2 ≥ . . . ≥
ik ≥ k ≥ 1) is the generating series of the partitions with size less or equal to the
smallest part. Theorem 1.7 can be guessed in the same way by considering the ideal
[x2k] in K[xk, xk+1, . . .].
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2. On the lex Groebner basis of [x21]

Again, letK be a �eld of characteristic 0, and consider the graded ringK[x1, x2, . . . ],
where the weight of xi is i. So the weight of the monomial xα := xα1

i1
xα2
i2
. . . xαn

in
, is

equal to
∑n

j=1 ijαj, and its (usual) degree is equal to n.

Let f2 = x21 and for i ≥ 3, fi = Di−2(f2) := D(fi−1), where D is the derivation
determined by D(xi) = xi+1; then I = [f2] := (f2, f3, . . . ) ⊂ K[x1, x2, . . . ], is the
de�ning ideal (up to isomorphism) of the space of arcs centred at the origin of
X = Spec(K[x]/(x2)). The ideal I is a di�erential ideal, i.e. we have D(I) ⊂ I.
We are interested in the possibility that I have a di�erentially �nite Groebner basis
with respect to a monomial ordering ; see the following de�nition.

De�nition 2.1. Let J ⊂ K[x1, x2, . . . ] be a di�erential ideal with respect to D (i.e.
D(J) ⊂ J). Let ” < ” be a total monomial order de�ned on K[x1, x2, . . . ]. We say
that J has a di�erentially �nite Groebner basis with respect to ” < ”, if there exist
a �nite number of polynomials h1, . . . , hr ∈ K[x1, x2, . . . ] such that J = [h1, . . . , hr]
and the initial ideal In<(J) of J with respect to ” < ” satis�es

In<(J) = (In<(D
i(hj)), j = 1, . . . , r; i ≥ 0),

where Di denotes the i−th iterated derivative and D0 is the identity.

Note that the notation [h1, . . . , hr] in the de�nition denotes the di�erential ideal
generated by the hi, i = 1, . . . , r and by all their iterated derivatives. . Note that
there might be di�erent notions of di�erential Groebner basis, see [CF], [O] and
their bibliography.

In this section, we prove that no Groebner basis of I with respect to the weighted
lexicographical order is di�erentially �nite. Note that, in contrary with this case,
it follows for [BMS] that in the case of the weighted reverse lexicographical order I
has a di�erentially �nite Groebner basis.

We denote the n-th derivative of a polynomial fi by f
(n)
i , so we have

fn = f
(n−2)
2 = (x21)

(n−2) =
n−2∑
i=0

(
n−2
i

)
x
(i)
1 x

(n−2−i)
1 =

n−2∑
i=0

(
n−2
i

)
x1+ixn−i−1.

Denote the leading term of fn with respect to the weighted lexicographical order
by LT (fn). So LT (fn) = 2x1xn−1 for all n ≥ 2.

Recall that the S-polynomial of f, g ∈ K[x1, x2, . . . ] is by de�nition

S(f, g) :=
xγ

LT (f)
f − xγ

LT (g)
g,

where xγ is the least common multiple of the leading monomials of f and g. A pos-
sible reference about S-polynomials and Groebner basis is [GP].

A direct computation of the S-polynomial of f3 and f4 gives

S(f3, f4) = x32.
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We set Fx32 := S(f3, f4). For k > 2, we recursively de�ne

Fx2x2k := S(F
(2)

x2x2k−1
, S(fk+1, fk+2)).

We then have the following lemma.

Lemma 2.1. With respect to the weighted lexicographic order, for k > 2, the leading
monomial of Fx2x2k is x2x

2
k.

Proof. The proof is by induction on the integer k. Notice that for k = 3 we have

F
(1)

x32
= 3x22x3, F

(2)

x32
= 3x22x4 + 6x2x

2
3 and S(f4, f5) = x22x4 − 3x2x

2
3. So we have

S(F
(2)

x32
, S(f4, f5)) = 5x2x

2
3 := Fx2x23 .

For k = 4 we have F
(1)

x2x23
= 10x2x3x4+5x33, F

(2)

x2x23
= 10x2x3x5+10x2x

2
4+25x23x4 and

S(f5, f6) = 3x2x3x5 − 4x2x
2
4 − 3x23x4. So

S(F
(2)

x2x23
, S(f5, f6)) =

7

3
x2x

2
4 +

7

2
x23x4 := Fx2x24 .

Now assume that claim holds for k− 1 ≥ 4. This means that for k− 1 ≥ 4 we have

Fx2x2k−1
:= S(F

(2)

x2x2k−2
, S(fk, fk+1)).

Since the leading monomial of Fx2x2k−1
is x2x

2
k−1, we can assume that Fx2x2k−1

=

ax2x
2
k−1+g3, for some rational number a and some polynomial g3 with the monomials

of the form xi1xi2xi3 such that 3 ≤ i1 ≤ i2 ≤ i3. So, on one hand, the second
derivative of Fx2x2k−1

will be as follow

F
(2)

x2x2k−1
= 2ax2xk−1xk+1 + 2ax2x

2
k + h3.

Where h3 = 4ax3xk−1xk + ax4x
2
k−1 + g

(2)
3 . On the other hand, we have

S(fk+1, fk+2) = S(
k−1∑
i=0

(
k−1
i

)
x1+ixk−i,

k∑
i=0

(
k
i

)
x1+ixk+1−i)

= 1
2

k−1∑
i=0

(
k−1
i

)
x1+ixk−ixk+1 − 1

2

k∑
i=0

(
k
i

)
x1+ixk+1−ixk

= 1
2

k−2∑
i=1

(
k−1
i

)
x1+ixk−ixk+1 − 1

2

k−1∑
i=1

(
k
i

)
x1+ixk+1−ixk.

So by the above equation we obtain that LT (S(fk+1, fk+2)) = (k− 1)x2xk−1xk+1.

Now we can compute S(F
(2)

x2x2k−1
, S(fk+1, fk+2)).

S(F
(2)

x2x2k−1
, S(fk+1, fk+2))

= 1
2a
(2ax2xk−1xk+1+2ax2x

2
k+h3)− 1

(k−1)(
1
2

k−2∑
i=1

(
k−1
i

)
x1+ixk−ixk+1−1

2

k−1∑
i=1

(
k
i

)
x1+ixk+1−ixk)

= x2x
2
k +

1
2a
h3 − 1

(k−1)(
1
2

k−3∑
i=2

(
k−1
i

)
x1+ixk−ixk+1 − 1

2

k−1∑
i=1

(
k
i

)
x1+ixk+1−ixk)



10 POONEH AFSHARIJOO, HUSSEIN MOURTADA

= x2x
2
k +

1
2a
h3 +

k
k−1x2x

2
k − 1

(k−1)(
1
2

k−3∑
i=2

(
k−1
i

)
x1+ixk−ixk+1 − 1

2

k−2∑
i=2

(
k
i

)
x1+ixk+1−ixk)

= 2k−1
k−1 x2x

2
k +

1
2a
h3 − 1

(k−1)(
1
2

k−3∑
i=2

(
k−1
i

)
x1+ixk−ixk+1 − 1

2

k−2∑
i=2

(
k
i

)
x1+ixk+1−ixk).

In the �rst sum, 2 ≤ i ≤ k − 3 and in the second one 2 ≤ i ≤ k − 2. So each

monomial that appears in S(F
(2)

x2x2k−1
, S(fk+1, fk+2)) is of the form x3xi1xi2xi3 such

that 3 ≤ i1 ≤ i2 ≤ i3, except x2x
2
k and hence

LT (S(F
(2)

x2x2k−1
, S(fk+1, fk+2))) =

2k − 1

k − 1
x2x

2
k.

�

Theorem 2.2. A Groebner basis of the ideal I, with respect to the weighted lexico-
graphic order, is not di�erentially �nite.

Proof. For proving this fact, we will use the idea of Buchberger's algorithm (mainly
that any cancellation of initial monomials comes from an S− polynomial [CLO])
to construct a part of a Groebner basis of the ideal I with respect to the weighted
lexicographic order, which is di�erentially in�nite.

By lemma 2.1, we have that for every integer n ≥ 3, the initial monomial of the
polynomial Fx2x2n is included in the initial ideal of I.

Let G = {fi, Fx2x2n , F
(m)

x2x2n
|i ≥ 2,m ≥ 1, n ≥ 3}. By Buchberger's algorithm G

may be a part of a Groebner basis of the ideal I but it is not a Groebner basis of I
because

S(Fx2x23 , F
(1)

x2x23
) = S(Fx2x23 , Fx2x3x4) = 5x43.

But the monomial x43 which is a member of the ideal I is not divisible by the
leading terms of any element of G.

Note that the (usual) degree of the S−polynomial of two polynomials is at least
equal to the maximum of degrees of these two polynomials. On the other hand, the
derivative of a polynomial has the same degree as itself. Hence the degree of the fi's
is equal to two, and other elements of G have degree strictly bigger than 2.
This means that the monomials of degree two that appear as the leading terms of
elements of Groebner basis, are of the form x1xi for i ≥ 1.
So we do not have any polynomial in a Groebner basis whose leading monomial
is x2xn for some n ≥ 2, and so a polynomial having the same initial monomial of
Fx2x2n should be included in this Groebner basis for each integer n ≥ 3. Since the
initial monomial of the polynomial Fx2x2n is not the initial of the derivative of any
other element of G, the Groebner basis of the ideal I with respect to the weighted
lexicographic order will not be di�erentially �nite: it should contain polynomials
whose initial monomials are the initials of Fx2x2n , n ≥ 3 and no one of these initial
monomials is the derivative of an other initial monomial of an element in G.

�
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3. Two colors partitions and the node

Let S := K[x1, x2, . . . , y1, y2, . . . ] be the graded polynomial ring where xi, yi have
the weight i for every i ≥ 1; the order of appearance of the variables is important
since we will use below a reverse lexicographical ordering. We consider the derivation
on S de�ned by D(xi) = xi+1 and D(yi) = yi+1. Let f2 = x1y1, and let

I = [f2] = (x1y1, x2y1 + x1y2, . . .)

be the ideal generated by xy and its iterated derivatives fi, i ≥ 3 by D : for i ≥
3, fi = D(fi−1). Note that the scheme de�ned by I is the space of arcs centred at
the origin of the node X = {xy = 0} ⊂ A2.
In this section, we are interested in determining a Groebner basis of I with respect
to the weighted reverse lexicographical order and then to apply this result to integer
partitions. Note that the Groebner basis below was found by Nguyen Duc Tam [N];
he has a beautiful but very long and di�cult proof that this is actually a Groebner
basis. Below we give a simpler and very short proof.
We will begin by de�ning elements of I, and we will show later that these elements
give the Groebner basis cited above.

De�nition 3.1. ([N]) For 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik and for k ≥ 2, we set

Gi1,i2+1,i3+2,...,ik+k−1 := det


xi1−k+2 xi1−k+3 . . . xi1 fi1+1

xi2−k+3 xi2−k+4 . . . xi2+1 fi2+2

xi3−k+4 xi3−k+5 . . . xi3+2 fi3+3
...

...
. . .

...
...

xik+1 xik+2 . . . xik+k−1 fik+k


where det stands for determinant.

Expanding the determinant with respect to the last column, we see that these are
elements of I. A direct computation using the de�nition of the fi gives the following:

Lemma 3.1. [N] The leading term of Gi1,i2+1,i3+2,...,ik+k−1 with respect to weighted
reverse lexicographic order, is xi1xi2xi3 . . . xikyk.

We denote by G the set whose elements are the Gi1,i2+1,i3+2,...,ik+k−1 and the fi. It
follows from lemma 3.1 that the ideal generated by the initials of the elements of G
is

J := (xi1xi2 . . . xikyk| ij, k ≥ 1).

First, we are interested in computing the Hilbert-Poincaré series of S/J. For that
we introduce for n ≥ 1 the Hilbert-Poincaré series

HPn = HP

(
K[xi, yj|i ≥ 1, j ≥ n]

(xi1xi2 . . . xikyk| ij ≥ 1, k ≥ n)

)
.

So HP (S/J) = HP1. We will use the following form of H1
n from section 1:

Lemma 3.2. For any n ≥ 2 we have

H1
n =

1

(1− q)(1− q2) . . . (1− qn−1)
.
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Proof. By proposition 1.2 we have

H1
n = 1 +

q

1− q
+

q2

(1− q)(1− q2)
+ · · ·+ qn−1

(1− q) . . . (1− qn−1)
We prove the expression in the lemma by induction on the integer n. For n = 2

H1
2 = 1 +

q

1− q
=

1

1− q
Assume that H1

n = 1
(1−q)...(1−qn−1)

. Now we have

H1
n+1 = 1 +

q

1− q
+ · · ·+ qn−1

(1− q) . . . (1− qn−1)
+

qn

(1− q) . . . (1− qn)

= H1
n +

qn

(1− q) . . . (1− qn)
By induction hypothesis we obtain

H1
n+1 =

1

(1− q) . . . (1− qn−1)
+

qn

(1− q) . . . (1− qn)
=

1

(1− q) . . . (1− qn)
�

Lemma 3.3.

HPn = HPn+1 + qn
∏
i≥1

1

1− qi
.

Proof. Using corollary 6.2 in [BMS], we have

HPn = HP

(
K[xi, yj|i ≥ 1, j ≥ n]

(xi1xi2 . . . xikyk| ij ≥ 1, k ≥ n)

)
=

HP

(
K[xi, yj|i ≥ 1, j ≥ n+ 1]

(xi1xi2 . . . xikyk| ij ≥ 1, k ≥ n)

)
+ qnHP

(
K[xi, yj|i ≥ 1, j ≥ n]

(xi1xi2 . . . xin| ij ≥ 1)

)
=

HPn+1 + qnHP

(
K[x1, x2, · · · ]

(xi1xi2 . . . xin| ij ≥ 1)

)
HP (K[yn, yn+1, · · · ]) =

HPn+1 + qnH1
n

∏
i≥n

1

1− qi
;

by lemma 3.2 this is equal to

HPn+1 +
qn

(1− q) · · · (1− qn−1)
∏
i≥n

1

1− qi
=

HPn+1 + qn
∏
i≥1

1

1− qi
.

�

Proposition 3.4. We have

HP (S/J) = HP1 =
1

1− q
∏
i≥1

1

1− qi
.
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Proof. Using lemma 3.3 repetitively we obtain that, for m ≥ 2

HP1 = q
∏
i≥1

1

1− qi
+ q2

∏
i≥1

1

1− qi
+ · · · qm

∏
i≥1

1

1− qi
+HPm+1.

On the other hand

lim
m→∞

HPm =
∏
i≥1

1

1− qi
,

where the limit is considered for the q-adic topology in C[[q]]; so we have,

HP1 =
∏
i≥1

1

1− qi
+ q

∏
i≥1

1

1− qi
+ q2

∏
i≥1

1

1− qi
+ · · ·

= (1 + q + q2 + · · · )
∏
i≥1

1

1− qi

=
1

1− q
∏
i≥1

1

1− qi
.

�

We now are ready to prove:

Theorem 3.5. ([N]) We have that G is a Groebner basis of I.

Proof. Let In(I) be the initial ideal of I with respect to the weighted reverse lexico-
graphical order. Since all the elements of G are also in I, we have that J ⊂ In(I);
to prove that G is a Groebner basis of I, we need to prove that J = In(I).
Noticing that (f2, f3, . . .) is a regular sequence [GS] (Note that this is rarely the case
[M1]) and that fi is of weight i, we deduce that

HP (S/I) =
1

1− q
∏
i≥1

1

1− qi
,

which is equal by proposition 3.4 to HP (S/J). But since we have a �at deforma-
tion with generic �bre S/I and special �bre S/In(I), we have that HP (S/I) =
HP (S/In(I)), hence HP (S/In(I)) = HP (S/J). We deduce that the homogeneous
components of the same weight of S/(In(I) and S/J have the same (�nite) dimen-
sion, and since we have an inclusion in one sense because J ⊂ In(I), they are equal.
Hence J = In(I).

�

We will interpret the above results in terms of two colors partitions: consider that
we have two copies of each positive integer number m, one is blue and the other is
red; we denote these copies by mb and mr. We de�ne an order between the colored
integers by mb > mr (so that we do not count in a partition mb +mr and mr +mb

as di�erent); if m > k, we say mc > kc′ for c, c
′ ∈ {b, r}.
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An integer partition of a positive integer number n is a decreasing sequence (with
respect to the order that we have just de�ned) of positive integers of one color or
an other

λ = (λ1,c1 ≥ λ2,c2 ≥ . . . ≥ λl,cl),

where ci ∈ {b, r} and such that λ1,c1 + λ2,c2 + · · · + λl,cl = n. For example, the two
colors integer partitions of 2 are:

2b
2r

1b + 1b
1r + 1r
1b + 1r.

Colored partitions has already appeared in the work of Andrews and Agarwal
[APS].

On one hand, we can interpret the series

1

1− q
∏
i≥1

1

1− qi

as the generating series of the partitions with 2 colors of 1 and only the red color of
any other positive integer. So the partitions of 2 of this type are all the partitions
appearing in the above example except the �rst one.

On the other hand, the monomials in S/J of weight n are in bijection with the
partitions with 2 colors of n whose number of blue parts is strictly less than its
smallest red part (if this latter exists). In the above example of partions of 2, all the
partitions but the last one are of this type. The Hilbert-Poincaré series HP (S/J) is
then the generating sequence of this type of partitions. Hence proposition 3.4 gives:

Theorem 3.6. The number of partitions of n with 2 colors of 1 and only the red
color of any other positive integer is equal to the number of partitions with 2 colors
of n whose number of blue parts is strictly less than its smallest red part (if this
latter exists).

Playing the same game with the ideal [xjyj] instead of [x1y1] we can prove the
following generalization of theorem 3.6:

Theorem 3.7. Let j be a positive integer number. The number of partitions of n
with 2 colors of 1, . . . , 2j − 1 and only the red color of any other positive integer is
equal to the number of partitions with 2 colors of n whose number of blue parts is
strictly less than its smallest red part (if this latter exists) minus (j − 1).

We recover theorem 3.6 by putting j = 1.

References

[APS] A.K. Agarwal, Padmavathamma, M.V Subbarao, M. V. Partition theory. Atma Ram and
Sons, Chandigarh, 2005.



PARTITION IDENTITIES AND GROEBNER BASIS 15

[A] G. E. Andrews, The theory of partitions, Cambridge Mathematical Library. Cambridge Uni-
versity Press, Cambridge, 1998. Reprint of the 1976 original.

[BMS] C. Bruschek, H. Mourtada, J. Schepers, Arc spaces and Rogers-Ramanujan identities, The
Ramanujan Journal: Volume 30, Issue 1 (2013), Page 9-38.

[BMS1] C. Bruschek, H. Mourtada, J. Schepers, Arc spaces and Rogers-Ramanujan Identities,
Discrete Mathematics and Theoretical Computer Science Proceedings, FPSAC (2011), 211-
220.

[CF] G. Carra Ferro, A survey on di�erential GrÃ¶bner bases. GrÃ¶bner bases in symbolic anal-
ysis, 77-108, Radon Ser. Comput. Appl. Math., 2, Walter de Gruyter, Berlin, 2007.

[CLO] D. Cox, J. Little, D. O'Shea, Donal Ideals, varieties, and algorithms. An introduction to
computational algebraic geometry and commutative algebra. Fourth edition. Undergraduate
Texts in Mathematics. Springer, Cham, 2015.

[GS] R. Goward, K. Smith, The jet scheme of a monomial scheme, Comm. Algebra 34 (2006), no.
5, 1591-1598.

[GP] G.M. Greuel, G. P�ster, A Singular introduction to commutative algebra. With contributions
by O. Bachmann, C. Lossen and H. Schonemann. Springer-Verlag, Berlin, 2002.

[M] H. Mourtada, Jet schemes of rational double point surface singularities, Valuation Theory in
Interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Sept. 2014, pp: 373-388.

[M1] H. Mourtada, Jet schemes of complex plane branches and equisingularity Annales de l'Institut
Fourier, Tome 61, numero 6 (2011), p. 2313-2336.

[N] T. D. Nguyen Duc Tam, Combinatorics of jet schemes and its applications, PhD Thesis,
University of Tokyo.

[O] F. Ollivier, Standard bases of di�erential ideals. Applied algebra, algebraic algorithms and
error-correcting codes (Tokyo, 1990), 304-321, Lecture Notes in Comput. Sci., 508, Springer,
Berlin, 1991.

[OEIS] On-line Encyclopedia of Integer Sequences, entry A003114.

Pooneh Afsharijoo1, Hussein Mourtada2

Equipe Géométrie et Dynamique,
Institut Mathématique de Jussieu-Paris Rive Gauche,
Université Paris Diderot,
Bâtiment Sophie Germain, case 7012,
75205 Paris Cedex 13, France.

Email 1: pooneh.afsharijoo@imj-prg.fr
Email 2: hussein.mourtada@imj-prg.fr


