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Abstract

For m ∈ N,m ≥ 1, we determine the irreducible components of the m − th jet
scheme of a normal toric surface S. We give formulas for the number of these compo-
nents and their dimensions. This permits to determine the log canonical threshold of
a toric surface embedded in an affine space. When m varies, these components give
rise to projective systems, to which we associate a weighted oriented graph. We prove
that, among toric surfaces, the data of this graph is equivalent to the data of the
analytical type of S. Besides, we classify these irreducible components by an integer
invariant that we call index of speciality. We prove that for m large enough, the set of
components with index of speciality 1, is in 1− 1 with the set of exceptional divisors
that appear on the minimal resolution of S.

1 Introduction

Nash has introduced the arc space of a variety X in order to investigate the intrinsic data
of the various resolutions of singularities of X. The analogy with p−adic numbers has led
Kontsevich [K], Denef and Loeser [DL1] to invent motivic integration and to introduce
several rational series that generalize analogous series in the p−adic context [DL2]. The
geometric counterpart of the theory of motivic integration has been used by Ein, Mustata
and others to obtain formulas controlling discrepancies in terms of invariant of jet schemes
-these are finite dimensional approximations of the arc space-[Mus2],[ELM],[EM],[dFEI].
Roughly speaking, while we can extract informations about abstract resolutions of singu-
larities from the arc space and vice versa, we can extract informations about embedded
resolutions of singularities from the jet schemes and vice versa. This partly explains why the
arc space of a toric variety -which has been intensively studied [KKMS],[L],[B-GS],[I],[IK]-
is well understood. Indeed, we know an equivariant abstract resolution of a toric variety,
what permits to understand the action of the arc space of the torus on its arc space [I],
but an equivariant embedded resolution is less accessible.

The structure of jet schemes of singular algebraic varieties is complicated; despite that
they were the subject of numerous article in the last decade, few is known about their ge-
ometry for specific class of singularities, except for the following classes: monomial ideals
[GS], determinantal varieties [D], plane branches [Mo1], quasi-ordinary singularities [CM].
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In this article, we study the jet schemes of a normal toric surface singularity. We deter-
mine their irreducible components and we give formulas for their number and dimensions.
We give here a brief description of the results. The data of a toric surface singularity S is
equivalent to the data of a cone σ ⊂ N = Z2 generated by (1, 0) and (p, q) for two coprime
numbers 0 < p < q. Let q/p = [c2, ..., ce−1] be the Hirzebruch-Jung continued fraction
expansion (see section 2.2); the embedding dimension of S is equal to e; the equations
defining the embedding of S in Ae = SpecK[x1, · · · , xe] are described in section 2. Let
m ∈ N,m ≥ 1 and let S0

m be the space of m−jets centered at the singularity of S (see
section 2.1 for preliminaries on jet schemes). For i = 2, · · · , e − 1, s ∈ {1, . . . , dm2 e}(i.e.
m ≥ 2s− 1 ≥ 1) and l ∈ {s, . . . , Lsi,m}, where

Lsi,m := min{(ci − 1)s, (m+ 1)− s},

we define
Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m,

where for p ∈ N, and f ∈ K[x1, · · · , xe],

Contp(f)m = {γ ∈ Sm | ordγ(f) = p}.

We define Cs,li,m := Ds,l
i,m to be be the Zariski closure of Ds,l

i,m. We find in theorem 4.15 the
following.

Theorem. Let m ∈ N, m ≥ 1. The irreducible components of S0
m are C

s,Lsi,m
e−1,m and the

Cs,li,m, i = 2, · · · , e− 1, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , L
s
i,m − 1}}.

The formulas that we obtain for the codimensions of the irreducible components of S0
m

(see proposition 4.11) enable us, by applying Mustata’s formula [Mus2], to determine the
log canonical threshold of the pair S ⊂ Ae (e is the embedding dimension). For e = 3, the
log canonical threshold is 1. For e ≥ 4, we find in corollary 4.27 that

lct(S,Ae) =
e

2
.

Moreover, making use of the truncation morphisms between the jet schemes, we asso-
ciate with the irreducible components of S0

m a graph which is weighted by the codimensions
of the irreducible components and the embedding dimension of some of these components.
We prove in corollary 4.25 that the data of this graph is equivalent to the analytical type
of the surface. Note that motivic invariants of a toric surface singularity do not determine
its analytical type [LR],[Ni].

Finally, we classify the irreducible components by a natural invariant that we call
index of speciality; this is the order of contact of the generic point of the component with
the maximal ideal defining the singular point of S. We prove that for m large enough,
the number of irreducible components of S0

m is in 1-1 correspondence with the divisors
appearing on the minimal abstract resolution of singularities of S. This is to compare with
the bijectivness of the Nash map for toric varieties [IK]. This is also related to a jet schemes
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approach to a conjecture of Teissier on toric resolution of singularities [T]. This approach
is explained in [Mo4] (see also [LMR]).

The proof of the main theorem uses heavily the description of the defining equations
of the embedding S ⊂ Ae ([R],[St]), and some syzygies of these equations that we describe
and that are ad hoc to the problem. It also uses known results on the arc space of a
toric variety [L],[IK],[I] and it is by induction on m and on the embedding dimension e.
In particular it uses a kind of approximation of the toric surface S by toric surfaces with
smaller embedding dimensions.

Some of the results of this paper were announced in [Mo3].
The structure of the paper is as follows: in section two we present a reminder on jet

schemes and on toric surfaces. In section three we study the jet schemes of the An singu-
larities. The last section is devoted to the toric surfaces of embedding dimension bigger or
equal to four.
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2 Jet schemes and toric surfaces

2.1 Jet schemes

Let K be field. Let X be a K-scheme of finite type over K. For m ∈ N, the functor
Fm : K−Schemes −→ Sets which to an affine scheme defined by a K−algebra A associates

Fm(Spec(A)) = HomK(SpecA[t]/(tm+1), X)

is representable by a K−scheme Xm [V]. We call Xm the m−th jet scheme of X and we
have that Fm is isomorphic to its functor of points. In particular the K−points of Xm are
in bijection with the K[t]/(tm+1)−points of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1) induces
a canonical projection πm,p : Xm −→ Xp. These morphisms are affine and for p < m < q
they clearly verify πm,p ◦ πq,m = πq,p. This yields an inverse system whose limit X∞ is a
scheme called the arc space of X. Note that X0 = X. We denote the canonical projections
Xm −→ X0 by πm and X∞ −→ Xm by Ψm. See [EM] for more about jet schemes.

Example 1. Let X = Spec K[x1,··· ,xn]
(f1,··· ,fr) be an affine K−scheme. For a K-algebra A, an
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A-point of Xm is a K-algebra homomorphism

ϕ :
K[x1, · · · , xn]

(f1, · · · , fr)
−→ A[t]/(tm+1).

This homomorphism is completely determined by the image of xi, i = 1, · · · , n

xi 7−→ ϕ(xi) = x
(0)
i + x

(1)
i t+ · · ·+ x

(m)
i tm

and it should verify that ϕ(fl) = fl(φ(x1), · · · , φ(xn)) ∈ (tm+1), l = 1, · · · , r.

Therefore if we set

fl(φ(x1), · · · , φ(xn)) =

m∑
j=0

f
(j)
l (x(0), · · · , x(j)) tj mod (tm+1)

where x(j) = (x
(j)
1 , · · · , x(j)n ), then we have that

Xm = Spec
K[x(0), · · · , x(m)]

(f
(j)
l )j=0,··· ,m

l=1,··· ,r

Example 2. From the above example, we see that the m-th jet scheme of the affine space
An is isomorphic to A(m+1)n and that the projection πm,m−1 : Anm −→ Anm−1 is the map
that forgets the last n coordinates.

Remark 2.1. This a notational remark; in the sequel we will denote the m− th jet scheme
of the affine space An by Anm.

Remark 2.2. Note that in general, if X is a nonsingular variety of dimension n, then
all the projections πm,m−1 : Xm −→ Xm−1 are locally trivial fibrations with fiber An. In
particular Xm is of dimension n(m+ 1) ([EM]).

2.2 Toric surfaces

Let S be a singular affine normal toric surface defined over the field K. There exist two
coprime integers p and q such that S is defined by the cone σ ⊂ N = Z2 generated by
(1, 0) and (p, q) and 0 < p < q, i.e. S =SpecK[xu, u ∈ σ∨ ∩M ] where σ∨ is the dual cone
of σ andM is the dual lattice of N ([O]). We have the Hirzebruch-Jung continued fraction
expansion in terms of cj ≥ 2 :

q

p
= c2 −

1

c3 −
1

· · · −
1

ce−1

which we denote by [c2, ..., ce−1]. Let θ∨ be the convex hull of (σ∨ ∩M) \ 0 and let ∂θ∨

be its boundary polygon. Let u1, u2, . . . , uh be the points of M lying in this order on
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∂θ∨, with u1 = (0, 1) and uh = (q,−p). Then from [O], proposition 1.21 we have that
h = e is the embedding dimension of S and the ui form a minimal system of generators
of the semigroup σ∨ ∩M. For i = 1, . . . , e, we will denote by xi the regular function on
S defined by xui . Riemenschneider has exhibited the generators of the ideal defining S in
Ae = SpecK[x1, · · · , xe]. They can be given in a quasi-determinantal format [R], [St]: x1 x2 . . . xe−2 xe−1

xc2−22 . . . x
ce−1−2
e−1

x2 x3 . . . xe−1 xe


where the generalised minors of a quasi-determinant f1 f2 . . . fk−1 fk

h1,2 . . . hk−1,k
g1 g2 . . . gk−1 gk


are figj − gi(

∏j−1
n=i hn,n+1)fj .

They can be written as follows:

Eij = xixj − xi+1x
ci+1−2
i+1 x

ci+2−2
i+2 · · ·xcj−2−2

j−2 x
cj−1−2
j−1 xj−1,

where 1 ≤ i < j − 1 ≤ e− 1.

Let bi ∈ N, bi ≥ 2, be such that q/(q− p) = [b1, . . . , br]. Let l0 = (1, 0), . . . , ls+1 = (p, q)
in this order be the elements of N lying on the compact edges of the boundary ∂θ of the
convex hull θ of (σ ∩N) \ 0.

Proposition 2.3. We have that r = s and is equal to the number of irreducible components
of the exceptional curve for the minimal resolution of singularities of S. Moreover we have
that

c2 + · · ·+ ce−1 − 2(e− 2) + 1 = s.

See lemma 1.22 and corollary 1.23 in [O] for a proof.

3 Jet schemes of toric surfaces of embedding dimension e = 3

Let S be the variety defined in A3 by the equation f(x, y, z) = xy−zn+1 = 0. S has an An
singularity at the origin 0 and is nonsingular elsewhere. Note that an affine toric suface of
embedding dimension 3 has this type of singularities (see section 2.1). If we set

f(

m∑
i=0

x(i)ti,

m∑
i=0

y(i)ti,

m∑
i=0

z(i)ti) =

i=m∑
i=0

F (i)ti mod tm+1, (�)

then Sm is defined in A3(m+1) = A3
m by the ideal Im = (F (0), F (1), ..., F (m)).
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By remark 2.2, the morphism π−1m (S\0) −→ S\0 is a trivial fibration, therefore we
have that π−1m (S\0) is an irreducible component of Sm of codimension m + 1 in A3

m. On
the other hand, we will prove in the coming lines that the codimension of S0

m := π−1m (0)
in A3

m is m+ 2, which means that Sm is irreducible for every m ∈ N : indeed, since Im is
generated by m + 1 equations, any irreducible component of Sm could have codimension
at most m+ 1. (Note that the irreducibility of Sm follows from [Mus1] because S is locally
a complete intersection with a rational singularity, but we give here a direct proof in this
simple case.)
We claim that for m ≤ n, we have S0

m = Z0
m, where Z ⊂ A3 is the hypersurface defined by

xy = 0. Indeed, a m−jet γm = (x =
∑m

i=0 x
(i)ti, y =

∑m
i=0 y

(i)ti, z =
∑m

i=0 z
(i)ti) ∈ (A3)m

centered at the origin (i.e.x(0) = y(0) = z(0)) is in S0
m if and only if xy−zn+1 ≡ 0 mod tm+1,

but since z0 = 0 and m ≤ n, we have that ordt zn+1 ≥ n + 1 ≥ m + 1, therefore this is
equivalent to ordt xy ≥ m+ 1 and therefore to γ ∈ Z0

m.
But clearly form ≤ n, the irreducible commponents of Z0

m = S0
m are the subvarities defined

by the ideals
I lm = (x(0), ..., x(l−1), y(0), ..., y(m−l), z(0)), l = 1, ...,m.

Notice that the codimension of C lm := V (I lm) in A3
m is equal to m + 2 for l = 1, ...,m.

We deduce that for m ≤ n, Sm is irreducible of codimension m + 1. On the other hand,
for m ≥ n + 1 we have that C lm = π−1m,n(V (I ln)) is defined in (A3)m by the ideal I lm =

(I ln, J
l
m−(n+1)) where J lm−(n+1) is the ideal obtained from the ideal defining Xm−(n+1) in

A3
m−(n+1) by changing variables. Indeed if we set

f(

m∑
i=l

x(i)ti,

m∑
i=n−l+1

y(i)ti,

m∑
i=1

z(i)ti) =

f(tl(
m−l∑
i=0

x(l+i)ti), tn−l+1(

m−(n−l+1)∑
i=0

y(n−l+1+i)ti), t(
m−1∑
i=0

z(i+1)ti)) =

tn+1f(

m−l∑
i=0

x(l+i)ti,

m−(n−l+1)∑
i=0

y(n−l+1+i)ti,

m−1∑
i=0

z(i+1)ti)

= tn+1(

i=m−(n+1)∑
i=0

G
(i)
l t

i) mod tm+1, (��)

then J lm−(n+1) is generated by G(i)
l , i = 0, . . . ,m− (n+1), and by comparing (�) with (��),

we get that

G
(i)
l = F (i)(x(l), . . . , x(l+i), y(n−l+1), . . . , y(n−l+1+i), z(1), . . . , z(1+i)).

We deduce that for l = 1, ..., n,

Codim (π−1m,n(V (I ln)),A3
m) = n+ 2 + Codim (Sm−(n+1),A3

m−(n+1)).
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This implies by a simple induction that for l = 1, ..., n,

Codim π−1m,n(V (I ln)) = m+ 2.

Therefore Codim (S0
m,A3

m) = m + 2, so Sm is irreducible. It follows that π−1m,n(V (I ln))
which is isomorphic to Sm−(n+1) × A2n+1 is irreducible and we conclude:

Theorem 3.1. Let m ∈ N, n ≥ 1, and let S0
m be the scheme of m−jets centered in the

singular locus of an An singularity. Then we have the following:

1. S0
m is a locally complete intersection scheme.

2. For m ≤ n, S0
m has m irreducible components, C lm, l = 1, . . . ,m each of codimension

m + 2. For m ≥ n + 1, it has n irreducible components, C lm, l = 1, . . . , n, each of
codimension m+ 2.

3. The global jet scheme Sm is irreducible.

4. For 2 ≤ m ≤ n, and l ∈ {1, . . . ,m − 1} we have that πm,m−1(C lm) ⊂ C lm−1,

πm,m−1(C
l
m) ⊂ C l−1m−1 and πm,m−1(C

m
m ) ⊂ Cm−1m−1 . For m ≥ n + 1 we have that

πm,m−1(C
l
m) ⊂ C lm−1, for l ∈ {1, . . . , n}. These are all the inclusions induced by

πm,m−1 for m ≥ 2.

We obtain a graph Γ by representing every irreducible components of S0
m,m ≥ 1, by a

vertex vi,m and by joining the vertices vi1,m+1 and vi0,m if the morhphism πm+1,m induces
a morphism between the corresponding irreducible components. From the theorem 3.1,
part 4, we deduce that the graph Γ for the singularity A4 is the following :

4 Jet schemes of toric surfaces of embedding dimension e ≥ 4

We keep the notations introduced in section 2 and we begin by introducing some more
notations. Let f ∈ K[x1, . . . , xe] ; for m, p ∈ N such that p ≤ m, we set:

Contp(f)m(resp.Cont>p(f)m) := {γ ∈ Sm | ordγ(f) = p(resp. > p)},
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Contp(f) = {γ ∈ S∞ | ordγ(f) = p},

where ordγ(f) is the t−order of f ◦ γ.
For a, b ∈ N, b 6= 0, we denote by dab e the round-up of a

b . For i = 2, · · · , e − 1, s ∈
{1, . . . , dm2 e}(i.e. m ≥ 2s− 1 ≥ 1) and l ∈ {s, . . . , Lsi,m}, where

Lsi,m := min{(ci − 1)s, (m+ 1)− s},

we set
Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m,

and
Cs,li,m := Ds,l

i,m.

If R is a ring, I ⊆ R an ideal and f ∈ R, we denote by V (I) the subvariety of Spec R
defined by I and by D(f) the open set D(f) := Spec Rf .
We will prove that the irreducible components of S0

m := π−1m (0) are among the closed sets
Cs,li,m (see the theorem in the introduction). The irreducibility of the Cs,li,m is proved in
proposition 4.7, where we also compute their codimensions. In proposition 4.13 we prove
that they cover S0

m. In lemma 4.12, we prove that there are redundancies between the Cs,li,m.
The fact that there are no inclusions among them but those of lemma 4.12, is proved in
theorem 4.15.

We begin by giving an overview of the strategy of the proof of theorem 4.15.
The first remark is that S0

1 , which is the Zariski tangent space of S at 0, is isomorphic
to an affine space (lemma 4.3), more precisely we have:

S0
1 = Spec

(
K[x

(0)
1 , . . . , x

(0)
e , x

(1)
1 , . . . , x

(0)
e ]

(x
(0)
1 , . . . , x

(0)
e )

)
. (?)

A key idea is to stratify it as follows

S0
1 = (S0

1 ∩D(x
(1)
1 )) ∪ . . . ∪ (S0

1 ∩D(x
(1)
1 )) ∪ (S0

1 ∩ (x
(1)
1 , . . . , x(1)e ).

First we study π−1m,1(S
0
1 ∩D(x

(1)
i )), for i = 2, . . . , e − 1 and m ≥ 2. By using syzygies

between the equations defining S (lemma 4.5), we construct in proposition 4.11 a trivial
fibration from π−1m,1((S

0
1 ∩ D(x

(1)
i ), to a constructible subset of the jet schemes of an Aci

singularity. This latter constructible subset is introduced and studied in lemma 4.10, what
permits to us to determine the irreducible components of the Zariski closure π−1m,1((S

0
1 ∩

D(x
(1)
i ), for i = 2, . . . , e − 1, namely the C1,l

i,m. The constructibles π−1m,1((S
0
1 ∩ D(x

(1)
i ) for

i = 1, e are irreducible (proposition 4.11) and included in the Zariski closure of π−1m,1((S
0
1 ∩

D(x
(1)
i ), i = 1, e− 1, (proposition 4.11, part (2)).
It remains to study π−1m,1(S

0
1 ∩ (x

(1)
1 , . . . , x

(1)
e ), for m ≥ 2. For m = 2, we prove that

π−12,1(S0
1 ∩ (x

(1)
1 , . . . , x

(1)
e ) is included in the Zariski closure of π−12,1((S0

1 ∩ D(x
(1)
i ), for i =

2, ..., e − 1 (proposition 4.13). The proof of the latter statement in the case where the
embedding dimension e = 4 is based on dimension arguments, then we use induction
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on e. For this purpose, we approximate S by toric surfaces which are of less embedding
dimensions. For m = 3, π−13,1(S0

1 ∩ (x
(1)
1 , . . . , x

(1)
e )(which is equal to C2,2

2,3 by lemma 4.3) is
an irreducible component of S0

3 , and is an affine space that we stratify in a similar way to
(?) (see the case m = 2n + 1 in proposition 4.13). We then as above consider the inverse
image by πm,3,m ≥ 4 of each strata. The inverse images by πm,3 of the open stratas will be
understood again by comparison with some subsets of the jet schemes of Aci singularities
and they will give rise to a new generation of irreducible components, namely the C2,l

i,m.
Then we study the inverse image by π4,3 and π5,3 of the closed strata. This phenomena is
understood by an induction on m, (more precisely on n) which permits us to cover S0

m by
irreducible subsets. In theorem 4.15 we prove that there are no inclusions between these
subsets.

From 4.1 till 4.12, we are preparing the proof of theorem 4.15. Our first aim is to prove
the irreducibility of the Cs,li,m’s and to compute their codimension in Aem, this is the subject
of proposition 4.7. We begin by some preparatory lemmas.

Proposition 4.1. 1. For i = 2, · · · , e− 1 and l, s ∈ N such that 1 ≤ s ≤ l ≤ (ci − 1)s,
we have that Conts(xi) ∩ Contl(xi+1) 6= ∅.

2. For s ∈ N, s ≥ 1, Conts(x1) ∩ Conts(x2) 6= ∅.
Proof : (1)-We will prove that there exists an arc h on S, whose generic point lies in the
torus, and such that h ∈ Conts(xi) ∩ Contl(xi+1). Note that with an arc h on S, we can
naturally associate a vector vh = (a, b) ∈ σ ∩ N and that for any v ∈ σ ∩ N there exists
an arc h such that v = vh; moreover, for any u ∈M ∩ σ∨, we have that h ∈ Contvh.u(xu),
where we denote by vh.u the scalar product of vh and u, and by xu the regular function
defined by u on S ([LR], proposition 3.3). Let ui, i = 1, · · · , e, be the system of minimal
generators of σ∨ ∩M, defined in 2.2 such that xui = xi. Therefore to prove that there
exists an arc h as above, it is sufficient to prove that there exists (a, b) ∈ σ ∩N such that
(a, b).ui = s and (a, b).ui+1 = l. Since ui and ui+1 determine a Z−basis of M, there exists
a unique (a, b) ∈ N such that (a, b).ui = s and (a, b).ui+1 = l. Let’s prove that (a, b) lies in
the interior of σ, i.e. that for j = 1, · · · , e, (a, b).uj > 0. Since ui−1 = ciui− ui+1, we have
that (a, b).ui−1 = cis− l which is greater than or equal to s because by hypothesis we have
s ≤ l ≤ s(ci − 1). Similarly we have that (a, b).ui+2 = ci+1l − s which is greater than or
equal to l. Since ci ≥ 2, for i = 1, · · · , e, by descending (respectively ascending) induction
we find that (a, b).uj−1 ≥ (a, b).uj , for j = 2, · · · , i (respectively (a, b).uj−1 ≤ (a, b).uj , for
j = i+ 2, · · · , e) and the proposition follows.
(2)-We have that u1 = (0, 1), u2 = (1, 0).We need to prove that the unic vector v = (a, b) ∈
N such that (a, b).(0, 1) = b = s and (a, b).(1, 0) = a = s, also belongs to σ; in fact it is is
clear that (s, s) belongs to the interior of σ. We also need to prove that for j = 3, · · · , e,
we have that (s, s).uj ≥ s ; since uj ∈ σ∨ and (1, 1) lies in the interior of σ, we have that
(1, 1).uj > 0, moreover uj ∈M and (1, 1) ∈ N, so (1, 1).uj ∈ Z and (1, 1).uj ≥ 1.

The following lemma prepares lemma 4.3.

Lemma 4.2. Let i = 2, · · · , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , Lsi,m}. For
γ ∈ Ds,l

i,m, we have
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1. the inequality ordγxj ≥ s, j = 1, . . . , e.

2. If moreover m 6= Lsi,m, then for j = 1, . . . , i− 1 we have ordγxj > s.

Proof : Let γ ∈ Ds,l
i,m. This implies that ordγEi−1,i+1 ≥ m + 1. From the expression of

Ei−1,i+1 and the hypothesis l ∈ {s, . . . , Lsi,m}, we get that ordγxi−1 ≥ s. We also have
ordγEi−2,i ≥ m+ 1; using the fact that ordγxi−1 ≥ s we get ordγxi−2 ≥ s. Recursively, by
using the conditions, ordγEj,i ≥ m + 1, j = i − 3, i − 4, . . . , 1, we obtain ordγxj ≥ s, j =
i− 3, i− 4, . . . , 1. Similarly, by using the conditions ordγEi,j ≥ m+ 1, j = i+ 2, . . . , e we
obtain ordγxj ≥ s, j = i+ 2, . . . , s and hence the first part of the lemma. The second part
follows in the same way using the conditions ordγEj,i ≥ m+ 1, j = 1, . . . ,m− 1.

Lemma 4.3. For i = 2, · · · , e− 1, s ≥ 1, the ideal defining Cs,si,2s−1 in Ae2s−1 is

Is,si,2s−1 = (x
(b)
j , 1 ≤ j ≤ e, 0 ≤ b < s).

Note that Cs,si,2s−1 does not depend on i. For j = 1, e, we set

Cs,sj,2s−1 := Cs,si,2s−1, i = 2, · · · , e− 1.

Proof : Let us prove that Ds,s
i,2s−1 = V (Is,si,2s−1) ∩ D(x

(s)
i x

(s)
i+1). Let γ ∈ Ae2s−1 such that

ordγxi = ordγxi+1 = s. Lemma 4.2 gives that ordγxj ≥ s, j = 1, . . . e. We deduce

Ds,s
i,2s−1 ⊂ V (Is,si,2s−1) ∩D(x

(s)
i x

(s)
i+1).

The opposite inclusion comes from the fact that a jet in V (Is,si,2s−1) ∩D(x
(s)
i x

(s)
i+1) ⊂ Ae2s−1

satisfies all the equations of S modulo t2s. Since V (Is,si,2s−1) ⊂ Ae2s−1 is irreducible, the
lemma follows.

Lemma 4.4. For i = 2, · · · , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , Lsi,m}, we
have that

Cs,li,m ⊂ π
−1
m,2s−1(C

s,s
i,2s−1).

Proof : For γ ∈ Ds,l
i,m, it follows from lemma 4.2 (part 1) that ordγxj ≥ s, j = 1, . . . , e

and hence from lemma 4.3 we deduce that Ds,l
i,m ⊂ π−1m,2s−1(C

s,s
i,2s−1). The lemma follows

since π−1m,2s−1(C
s,s
i,2s−1) is closed.

Lemma 4.5. 1. For i = 2, . . . , e− 1, m ∈ N, s ∈ {1, . . . , dm2 e},

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) = {γ ∈ Aem ; ordγxj ≥ s, j = 1, · · · , e, ordγxi = s,

ordγEi−1,i+1 ≥ m+ 1, ordγEj,i ≥ m+ 1, for 1 ≤ j < i− 1

ordγEi,j ≥ m+ 1, for i < j − 1 ≤ e− 1}.
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2. For i = 2, · · · , e− 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , L
s
i,m}, we have

Ds,l
i,m = {γ ∈ Aem; ordγEij ≥ m+ 1 for i < j − 1 ≤ e− 1,

ordγEji ≥ m+ 1 for 1 ≤ j < i− 1,

ordγEi−1,i+1 ≥ m+ 1, ordγxi = s, ordγxi+1 = l}.

Proof : (1) The inclusion “ ⊂ “ is an immediate consequence of lemma 4.3. To get the
other inclusion, it is enough to check that for every γ ∈ Aem enjoying the conditions listed
above, we also have ordγEjh ≥ m+ 1 for 1 ≤ j < h− 1 ≤ e− 1.
If i < j, the syzygie

xiEjh − xjEih + x
cj+1−2
j+1 · · ·xch−1−2

h−1 xh−1Ei,j+1 = 0 (4.1)

implies that ordγEjh ≥ m+ 1, because ordγxj and ordγxh−1 ≥ s and ordγxi = s.
Similarly if h < i, the syzygie

xiEjh − xhEji + xj+1x
cj+1−2
j+1 · · ·xch−1−2

h−1 Eh−1,i = 0 (4.2)

implies that ordγEjh ≥ m+ 1, because ordγxh and ordγxj+1 ≥ s and ordγxi = s.
Assume now that 1 ≤ j < i− 1 and h = i+ 1; the syzygie

xi+1Eji − xiEj,i+1 + xj+1x
cj+1−2
j+1 · · ·xci−1−2

i−1 Ei−1,i+1 = 0 (4.3)

implies that ordγEj,i+1 ≥ m+ 1.
Similarly if j = i− 1 and i+ 1 < h ≤ e, the syzygie

xi−1Eih − xiEi−1,h + x
ci+1−2
i+1 · · ·xch−1−2

h−1 xh−1Ei−1,i+1 = 0 (4.4)

implies that ordγEi−1,h ≥ m+ 1.
Finally , if 1 ≤ j < i− 1 and i+ 1 < h ≤ e, the syzygie

xjEih − xiEjh + x
ci+1−2
i+1 · · ·xch−1−2

h−1 xh−1Ej,i+1 = 0 (4.5)

implies that ordγEj,h ≥ m + 1, taking into account that we have shown above that
ordγEj,i+1 ≥ m+ 1.
(2) First, since the ideal defining S in Ae is generated by Ejh, 1 ≤ j < h− 1 ≤ e− 1, we
have that

Ds,l
i,m ⊂ U

s,l
i,m := {γ ∈ Aem; ordγEij(resp. ordγEji) ≥ m+ 1 for i < j − 1 ≤ e− 1

(resp. 1 ≤ j < i− 1), ordγEi−1,i+1 ≥ m+ 1, ordγxi = s, ordγxi+1 = l}.

For γ ∈ U s,li,m, we have by the proof of 4.4 that for j = 1, · · · , e, ordγxj ≥ s. It follows from
the first part of this lemma that Ds,l

i,m = U s,li,m.
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Remark 4.6. Note that the syzygies (4.1), . . . , (4.5) are syzygies in the ring of polynomials
and not in the ring of regular functions on S. This is essential for the conclusion in the
above lemma.

Proposition 4.7. For i = 2, · · · , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , L
s
i,m},

Cs,li,m is irreducible, and its codimension in Aem is equal to

se+ (m− (2s− 1))(e− 2).

Proof : The irreducibility of Cs,li,m follows from the fact that Ds,l
i,m is isomorphic to the

product of a two dimensional torus by an affine space. Indeed, set xj ◦γ =
∑

0≤ν≤m x
(ν)
j tν ,

1 ≤ j ≤ e. Assume that ordγxi = s and ordγxi+1 = l; then by lemma 4.5, part (2),
γ ∈ Ds,l

i,m if and only if ordγEi−1,i+1 ≥ m + 1, ordγEij ≥ m + 1 for i + 1 < j ≤ e and
ordγEji ≥ m + 1 for 1 ≤ j < i − 1. Recall also that we have that ordγ(xi) ≥ s for
i = 1, . . . , e.
We begin by examining the condition ordγEi−1,i+1 ≥ m+ 1.

If m + 1 ≤ cis, we have that ordγEi−1,i+1 ≥ m + 1, if and only if x(ν)i−1 = 0 for
0 ≤ ν ≤ m− l; this is due to the fact that we have the ordγxcii = cis and ordγxi+1 = l.
If m+ 1 > h+ 1 > cis then

E
(h)
i−1,i+1 = x

(h−l)
i−1 x

(l)
i+1 −H (?)

whereH is a polynomial in x(s)i , . . . , x
(h−cis+s)
i , x

(l)
i+1, . . . , x

(h−cis+l)
i+1 and x(cis−l)i−1 , . . . , x

(h−l−1)
i−1

(where we have put x(ν)i−1 = 0 for 0 ≤ ν < cis− l; this follows from the case m+ 1 ≤ cis).
In particular, for h = cis, we have that E(cis)

i−1,i+1 = x
(cis−l)
i−1 x

(l)
i+1 − x

(s)
i

c

i . After dividing by

x
(l)
i+1 6= 0 we obtain that E(cis)

i−1,i+1 = 0 gives that x(cis−l)i−1 = x
(s)
i

c

i/x
(l)
i+1. Exchanging x

(cis−l)
i−1

by this fraction in E(cis+1)
i−1,i+1 and dividing by x(l)i+1 6= 0, we obtain from (?) that E(cis+1)

i−1,i+1 = 0

is equivalent to x(cis−l+1)
i−1 equals a polynomial function in x(s)i , x

(s+1)
i , 1/x

(l)
i+1, x

(l)
i+1, x

(l+1)
i+1 .

Keeping doing this with E(h′)
i−1,i+1 for cis ≤ h′ < h and by replacing in E(h)

i−1,i+1(see (?)) the

variables x(cis−l)i−1 , x
(cis−l+1)
i−1 , . . . , x

(h−l−1)
i−1 by their expressions as polynomial functions in

x
(s)
i , . . . , x

(h−1−cis+s)
i , 1/x

(l)
i+1, x

(l)
i+1, . . . , x

(h−1−cis+l)
i+1 , that are obtained form E

(h′)
i−1,i+1, h

′ =

cis, . . . , h − 1, is an induction on h that permits to express x(h−l)i−1 as a polynomial func-
tion in the variables x(s)i , . . . , x

(h−cis+s)
i , 1/x

(l)
i+1, x

(l)
i+1, . . . , x

(h−cis+l)
i+1 . Hence, ordγEi−1,i+1 ≥

m + 1, if and only if x(ν)i−1 = 0 for 0 ≤ ν < cis − l and is a polynomial function of
x
(s)
i , · · · , x(m−cis+s)i , 1/x

(l)
i+1, x

(l)
(i+1), · · ·x

(m−cis+l)
(i+1) for cis− l ≤ ν ≤ m− l.

Consider now the conditions ordγEij ≥ m+1 for i+1 < j ≤ e. For j = i+2, notice that
Ei,i+2 has the "same" shape of Ei−1,i+1. It follows from the study of ordγEi−1,i+1 ≥ m+ 1

that ordγEi,i+2 ≥ m+ 1 if and only if x(ν)i+2 = 0 for 0 ≤ ν < s and is a polynomial function
of 1/x

(s)
i , x

(s)
i , · · · , x(m−s)i , x

(l)
i+1, · · · , x

(m−l)
i+1 for s ≤ ν ≤ m − s. Now by using the expres-

sions of of the x(ν)i+2’s in the equations that defines ordγEi,i+3 ≥ m+1 (see the shape of the
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equation Ei,i+3, for which we can write similar equations as (?) where H will depend on the
x
(ν)
i

′
s, x

(ν)
i+1

′
s, x

(ν)
i+2

′
s and x(ν)i+3

′
s), we obtain the expressions of the x(ν)i+3

′
s as polynomials in

the variables 1/x
(s)
i , x

(s)
i , · · · , x(m−s)i , x

(l)
i+1, · · · , x

(m−l)
i+1 ; an induction on j = i+2, i+3, . . . , e

gives that ordγEij ≥ m+ 1 for i+ 1 < j ≤ e if and only if x(ν)j = 0 for 0 ≤ ν < s and is a

polynomial function of 1/x
(s)
i , x

(s)
i , · · · , x(m−s)i , x

(l)
i+1, · · · , x

(m−l)
i+1 for s ≤ ν ≤ m− s.

Similarly, ordγEji ≥ m + 1, for 1 ≤ j < i − 1 if and only if x(ν)j = 0 for 0 ≤ ν <

s and is a polynomial function of 1/x
(s)
i , x

(s)
i , · · · , x(m−s)i , x

(s)
i−1, · · · , x

(m−l)
i−1 for s ≤ ν ≤

m − s. Taking in considerations that x(m−s)i−1 , . . . , x
(m−l)
i−1 are polynomial functions in the

variables x(s)i , · · · , x(m−cis+s)i , 1/x
(l)
i+1, x

(l)
(i+1), · · ·x

(m−cis+l)
(i+1) , it follows that a closed point in

Ds,l
i,m determines and is completely determined by the following data:

x
(s)
i , xi+1

(l) ∈ K∗,

x
(s+1)
i , . . . , x

(m)
i ∈ K,

x
(l+1)
i+1 , . . . , x

(m)
i+1 ∈ K

x
(m+1−l)
i−1 , . . . , x

(m)
i−1 ∈ K

x
(m+1−s)
j , . . . , x

(m)
j ∈ K, j = 1, . . . , i− 2, i+ 2, . . . , e.

As a consequence, the dimension ofDs,l
i,m, hence of its closure C

s,l
i,m is d = 2m+s(e−4)+2.

And the formula of the codimension is obtained by considering (m+ 1)e− d.

Remark 4.8. The final presentation of the proof of the proposition 4.7 was suggested by
the referee.

For i = 2, . . . , e−2, letXi =SpecK[xi−1, xi, xi+1]/(xi−1xi+1−xcii ). For s ∈ {1, . . . , dm2 e},
let

V s
i,m := {γ ∈ Xi

m, ordγ(xj) ≥ s, j = i− 1, i+ 1, ordγ(xi) = s},

and for l ∈ {s, . . . , Lsi,m}, let

∆s,l
i,m := {γ ∈ Xi

m, ordγ(xi) = s, ordγ(xi+1) = l}.

The algebraic morphism

K[xi−1, xi, xi+1]

(xi−1xi+1 − xcii )
−→ K[x1, . . . , xe]

(Eij , 1 ≤ i < j − 1 ≤ e− 1)
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induces a natural map pi : S −→ Xi; the associated map pim : Sm −→ Xi
m induces

morphisms
π−1m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) −→ V s

i,m and Ds,l
i,m −→ ∆s,l

i,m

Now in view of lemma 4.5 (see also the proof of proposition 4.7), we have the following
proposition.

Proposition 4.9. The maps

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) −→ V s

i,m and Ds,l
i,m −→ ∆s,l

i,m

are isomorphic to trivial fibrations of rank s(e− 3).

Proof : For the second map, this is the geometric translation of lemma 4.5 and proposition
4.7. In particular, the rank of the fibration is determined by the number of free variables

x
(m+1−s)
j , . . . , x

(m)
j ∈ K, j = 1, . . . , i− 2, i+ 2, . . . , e,

(see the last line of the proof of proposition 4.7): fixing these variables gives a point in the
fibre above a fixed point in ∆s,l

i,m. The proof concerning the first map is similar.

The following propositions are preparatory for the proof of proposition 4.13, which
states that S0

m is the union of the Cs,li,m.

Lemma 4.10. For i = 2, . . . , e − 1, and s ∈ {1, . . . , dm2 e}, the irreducible components of

V s
i,m are the ∆s,l

i,m, l ∈ {s, . . . , Lsi,m}.

Proof : First, assume that m+ 1 ≤ cis, so that Lsi,m = m+ 1− s. We have that

V s
i,m = {γ ∈ A3

m ; ordγxj ≥ s, j = i− 1, i+ 1, ordγxi = s

and ordγxi−1 + ordγxi+1 ≥ m+ 1}

and for l ∈ {s, . . . ,m+ 1− s},

∆s,l
i,m = {γ ∈ A3

m ; ordγxi = s, ordγxi+1 = l, ordγxi−1 ≥ m+ 1− l} =

V (x
(0)
i−1, . . . , x

(m−l)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(l−1)
i+1 ) ∩D(x

(s)
i x

(l)
i+1).

Since s ≤ l ≤ m + 1 − s, we have that ∆s,l
i,m ⊂ V s

i,m, so ∪s≤l≤m+1−s∆
s,l
i,m ⊂ V s

i,m. Now
for γ ∈ V s

i,m, we have that ordγxi = s, l := ordγxi+1 ≥ s and ordγxi−1 ≥ m + 1 − l. If
l ≤ m+1−s, we thus have that γ ∈ ∆s,l

i,m; if l > m+1−s, we have that ordγxi−1 ≥ s, hence
γ ∈ V (x

(0)
i−1, . . . , x

(s−1)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(m−s)
i+1 ) = ∆s,m+1−s

i,m , hence the claim.
Now assume that cis < m + 1, so that Lsi,m = (ci − 1)s. For l ∈ {s, . . . , (ci − 1)s} and
γ ∈ ∆s,l

i,m, we thus have that ordγxi = s, ordγxi+1 = l ≥ s, and ordγxi−1 + l = cis, hence

ordγxi−1 = cis− l ≥ s, therefore ∆s,l
i,m ⊂ V s

i,m and ∪s≤l≤(ci−1)s∆
s,l
i,m ⊂ V s

i,m.
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On the other hand V s
i,m = (πim,cis−1)

−1(V s
i,cis−1) where πim,cis−1 : Xi

m −→ Xi
cis−1 is the

natural map. For s ≤ l ≤ (ci − 1)s, we have that ∆s,l
i,m = (πim,cis−1)

−1(∆s,l
i,cis−1).

Now we have just seen that V s
i,cis−1 = ∪s≤l≤(ci−1)s∆

s,l
i,cis−1 and that

∆s,l
i,cis−1 = V (x

(0)
i−1, . . . , x

(cis−l−1)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(l−1)
i+1 ).

As a consequence (πim,cis−1)
−1(∆s,l

i,cis−1) is isomorphic to the product of an affine space

by the space of (m− cis)−jets of the surface SpecK[x
(cis−l)
i−1 , x

(s)
i , x

(l)
i+1]/(xi−1

(cis−l)xi+1
(l)−

x
(s)
i

ci
), and this latter is irreducible by section 3, hence coincides with ∆s,l

i,m. So V
s
i,m ⊂

∪s≤l≤(ci−1)s∆
s,l
i,m, hence the claim.

Proposition 4.11. Let m, s ∈ N such that s ∈ {1, . . . , dm2 e}.

1. For i = 2, · · · , e−1, the irreducible components of π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) are the

Cs,li,m, l ∈ {s, · · · , Lsi,m}.

2. For i = 1, e, we have that π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) is irreducible of codimension

se+ (m− (2s− 1))(e− 2)

in Aem. Moreover we have that

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
1 )) = C

s,Lsi,m
2,m

and
π−1m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
e )) = Cs,se−1,m.

Proof : (1) By the lemmas 4.4 and 4.5, we have that Ds,l
i,m ⊂ π

−1
m,2s−1(C

s,s
i,2s−1∩D(x

(s)
i )) =

{γ ∈ Aem ; ordγxj ≥ s, j = 1, · · · , e, ordγxi = s, ordγEi−1,i+1 ≥ m+ 1,

ordγEj,i(resp.ordγEi,j) ≥ m+ 1, for 1 ≤ j < i− 1(resp. i < j − 1 ≤ e− 1)}.

Now in view of proposition 4.9, the maps

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) −→ V s

i,m and Ds,l
i,m −→ ∆s,l

i,m

are isomorphic to a trivial fibration of rank s(e − 3). By lemma 4.10, the irreducible
components of V s

i,m are the ∆s,l
i,m, l ∈ {s, . . . , Lsi,m}. Since V s

i,m = V s
i,m ∩D(x

(s)
i ), we thus

have V s
i,m = ∪l(∆s,l

i,m ∩ D(x
(s)
i )); so π−1m,2s−1(C

s,s
i,2s−1 ∩ D(x

(s)
i )) ' ∪lΩs,l

i,m where Ωs,l
i,m =

(∆s,l
i,m ∩D(x

(s)
i ))×As(e−3). As a consequence Ωs,l

i,m is irreducible and we have that Ds,l
i,m ⊂

Ωs,l
i,m. Moreover

Codim(Ωs,l
i,m,A

e
m) = (e− 3)(m+ 1) + (m+ s+ 1)− s(e− 3) =
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(m+ 1)(e− 2)− s(e− 4) = Codim(Cs,li,m,A
e
m),

hence Cs,li,m = Ωs,l
i,m and the claim follows since Cs,li,m 6= Cs,l

′

i,m for l 6= l′.

(2) Assume i = 1, the case i = e follows in the same way. We first check that

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
1 )) =

{γ ∈ Aem, ordγ(xj) ≥ s, j = 1, . . . , e, ordγ(x1) = s,

ordγE1j ≥ m+ 1 for 3 ≤ j ≤ e}.

The inclusion “ ⊂ “ is clear. To get the opposite inclusion we have to prove that the
conditions just listed imply that ordγEjh ≥ m + 1 for 2 ≤ j < h − 1 ≤ e − 1. This is an
immediate consequence of the syzygie

x1Ejh − xjE1h + x
cj+1−2
j+1 · · ·xch−1−2

h−1 xh−1E1,j+1 = 0.

Therefore, π−1m,2s−1(C
s,s
i,2s−1∩D(x

(s)
1 )) is isomorphic to the product of K∗ by an affine space

of dimension (m − s) + (m − s + 1) + s(e − 2) and its Zariski closure is irreducible of
codimension (m+ 1)(e− 2)− s(e− 4) in Aem.
Now the equality

π−1m,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
1 )) = C

s,Lsi,m
2,m

follows from the fact that by proposition 4.1 we have that Conts(x1)∩Conts(x2) 6= ∅, hence
π−1m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
2 ))∩π−1m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
1 )) 6= ∅ ; since this latter is irreducible,

its generic point γ coincides with the generic point of one of the irreducible components
of π−1m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
2 )). The condition ordγE1,2 ≥ m+ 1 shows that this irreducible

component is C
s,Lsi,m
2,m . The other equality in the statement has a similar proof.

Lemma 4.12. For i = 2, . . . , e− 2, we have that

Cs,si,m = C
s,Lsi+1,m

i+1,m .

Proof : If m + 1 ≤ ci+1s, by definition ms
i+1 = m + 1 − s, and in view of lemma

4.3 and lemma 4.4, we have that Ds,s
i,m ⊂ π−1m,2s−1(C

s,s
i+1,2s−1 ∩ D(x

(s)
i+1)). Now by proposi-

tion 4.11, the irreducible components of π−1m,2s−1(C
s,s
i+1,2s−1 ∩D(x

(s)
i+1)) are the Cs,li+1,m for

l ∈ {s, . . . , Lsi+1,m}. Since C
s,s
i,m = Ds,s

i,m is irreducible, and its codimension in Aem coin-
cides with the codimension of any of the Cs,li+1,m, there exists l such that Cs,si,m = Cs,li+1,m

with s ≤ l ≤ m + 1 − s. So Ds,s
i,m and Ds,l

i+1,m are dense open subsets of Cs,si,m and there
exists γ ∈ Ds,s

i,m ∩ D
s,l
i+1,m. We thus have ordγxi = ordγxi+1 = s, and ordγxi+2 = l.

But Ei,i+2 = xixi+2 − xci+1

i+1 and ordγEi,i+2 ≥ m + 1. Since m + 1 ≤ ci+1s, this implies
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ordγxi+2 = l ≥ m+ 1− s, so l = m+ 1− s, i.e. Cs,si,m = C
s,Lsi+1,m

i+1,m .
Assume now that m + 1 > ci+1s; for any γ ∈ Ds,s

i,m, we have that ordγxi = ordγxi+1 = s
and ordγEi,i+2 ≥ m + 1, hence ordγxi+2 = (ci+1 − 1)s = Lsi+1,m which implies that

Ds,s
i,m ⊂ D

s,Lsi+1,m

i+1,m . Since both are irreducible and have the same dimension, we deduce by

passing to the closure that Cs,si,m = C
s,Lsi+1,m

i+1,m .

Let S0
m := π−1m (O), where O is the singular point of S. Note that π−1m (S − {0}) is

an irreducible component of Sm of codimension (m + 1)(e − 2) in Aem; we will see that
the irreducible components of S0

m have codimension less than or equal to (m + 1)(e − 2),
therefore they are irreducible components of Sm.

Proposition 4.13.

S0
m =

⋃
i∈{2,...,e−1},s∈{1,...,dm

2
e},l∈{s,...,Lsi,m}

Cs,li,m.

Proof : We first look at the case m=2n+1, n ≥ 0. We claim that

S0
2n+1 =

⋃
i∈{1,...,e},s∈{1,...,n}

π−12n+1,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) ∪ Cn+1,n+1

i,2n+1 . (�)

The proof of the claim is by induction on n. By lemma 4.3, we have that S0
1 = C1,1

i,1 for any
i = 1, ..., e, hence the case n = 0. Using the inductive hypothesis for n − 1, and the fact
that for s ∈ {1, . . . , n− 1} we have that π2n−1,2s−1 ◦ π2n+1,2n−1 = π2n+1,2s−1, we obtain:

S0
2n+1 = π−12n+1,2n−1(S

0
2n−1) =⋃

i∈{1,...,e},s∈{1,...,n−1}

π−12n+1,2s−1(C
s,s
i,2s−1 ∩D(x

(s)
i )) ∪ π−12n+1,2n−1(C

n,n
i,2n−1).

The claim follows from the stratification
Cn,ni,2n−1 =

⋃
j=1,··· ,e(C

n,n
i,2n−1 ∩D(x

(n)
j )) ∪ (Cn,ni,2n−1 ∩ V (x

(n)
1 , · · · , x(n)e )),

and from the fact that by lemma 4.3, π−12n+1,2n−1(C
n,n
i,2n−1 ∩ V (x

(n)
1 , · · · , x(n)e )) = Cn+1,n+1

i,2n+1 .
We conclude the proof of the proposition for m = 2n + 1 from proposition 4.11 (1) and
(2).

The case m =2(n+1), n ≥ 0 : by (�) we just need to prove that for n ≥ 0, and
i = 1, . . . , e we have that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) = ∪{i=2,··· ,e−1 ; l=n+1,··· ,Ln+1

i,2(n+1)
}C

n+1,l
i,2(n+1).

First note that by lemma 4.3 and 4.4, we have the inclusion

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) ⊃ ∪{i=2,··· ,e−1 ; l=n+1,··· ,Ln+1

i,2(n+1)
}C

n+1,l
i,2(n+1). (�)
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The proof of the opposite inclusion is by induction on the embedding dimension e of S.
First assume that e = 4; the equations defining S in A4 are E13, E14, E24. So the ideal
defining π−12(n+1),2n+1(C

n+1,n+1
i,2n+1 ) in A4

2(n+1) is generated by

(x
(0)
j , . . . , x

(n)
j , E

(2n+2)
13 , E

(2n+2)
14 , E

(2n+2)
24 ; j = 1, . . . , 4),

hence every irreducible component of π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) has codimension in A4

2(n+1)

less than or equal to 4(n+ 1) + 3 = 4n+ 7.
Now we have that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) =

⋃
j=1,...,4

π−12(n+1),2n+1((C
n+1,n+1
i,2n+1 ∩D(x

(n+1)
j )))

∪ π−12(n+1),2n+1((C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
1 , . . . , x

(n+1)
4 )))

=
⋃

j=1,...,4

π−12(n+1),2n+1((C
n+1,n+1
i,2n+1 ∩D(x

(n+1)
j )))

∪ π−12(n+1),2n+1((C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
1 , . . . , x

(n+1)
4 ))).

Moreover by proposition 4.11 part (2), indices 1 and 4 are superfluous. In addition by
lemma 4.3 and proposition 4.11. 1), we have that for j = 2, 3,

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩D(x

(n+1)
j )) =

⋃
l=n+1,...,(2(n+1))n+1

j

Cn+1,l
j,2(n+1).

Hence π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) =⋃

l=n+1,...,(2(n+1))n+1
j ; j=2,3

Cn+1,l
j,2n+1 ∪ π−12(n+1),2n+1((C

n+1,n+1
i,2n+1 ∩ V (x

(n+1)
1 , . . . , x

(n+1)
4 ))).

Finally we have that π−12(n+1),2n+1((C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
1 , . . . , x

(n+1)
4 ))) =

{γ ∈ S2(n+1), ordγxj ≥ n+2, j = 1, . . . , 4} = {γ ∈ A4
2(n+1), ordγxj ≥ n+2, j = 1, . . . , 4}

= V (x
(0)
j , . . . , x

(n+1)
j ; j = 1, . . . , 4)

is irreducible of codimension 4(n + 2) in A4
2(n+1). Since 4(n + 2) > 4n + 7, it is not an

irreducible component of π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ), hence the claim.

We now assume the lemma to be true for toric surfaces S̃ of embedding dimension ẽ with
4 ≤ ẽ ≤ e− 1. We have that π−12(n+1),2n+1(C

n+1,n+1
i,2n+1 ) =

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩D(x(n+1)

e )) ∪ π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e ).
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By proposition 4.11, part (2), π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩D(x

(n+1)
e )) ⊂ Cs,se−1,2(n+1), so it re-

mains to determine π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩V (x

(n+1)
e )). The discussion splits into two cases:

i) There exists h ∈ {3, . . . , e} such that ch−1 > 2 and ch = · · · = ce−1 = 2.

By lemma 4.3, we have that π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
e ) =

{γ ∈ S(2n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ e− 1, ordγxe ≥ n+ 2} =

{γ ∈ Ae(2n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ e− 1, ordγxe ≥ n+ 2,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ e− 1}.

Now recall that Ee−2,e = xe−2xe−xce−1

e−1 . If h < e, we have that ce−1 = 2, so for γ ∈ Ae2(n+1)
such that ordγxe−2 ≥ n + 1, ordγxe ≥ n + 2 and ordγEe−2,e ≥ 2n + 3, we thus have that
2ordγxe−1 ≥ 2n+ 3 hence ordγxe−1 ≥ n+ 2. Similarly, if i ≥ h, for γ ∈ Ae2(n+1) such that
ordγxi−1 ≥ n+1, ordγxi+1 ≥ n+2 and ordγEi−1,i+1 ≥ 2n+3, we get that ordγxi ≥ n+2.
By descending induction on i, this shows that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e ) ⊂ V (x
(n+1)
h , . . . , x(n+1)

e ).

Note that this inclusion is verified by definition when h = e. Moreover, for γ ∈ Ae2(n+1)

such that ordγxj ≥ n + 1(resp. n + 2) for 1 ≤ j < h(resp. h ≤ j ≤ e), we have that
ordγEjk ≥ 2n+ 3 if h ≤ k ≤ e, indeed we have that

ordγxjxk ≥ n+ 1 + n+ 2 = 2n+ 3, and

ordγxj+1x
cj+1−2
j+1 . . . x

ck−1−2
k−1 xk−1 ≥ 3(n+ 1) (resp. n+ 1 + n+ 2)

for k = h(resp. k > h). Therefore we have that π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
e ) =

{γ ∈ Ae2(n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ h− 1, ordγxj ≥ n+ 2, h ≤ j ≤ e,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ h− 2}. (��)

If h ≥ 5, this can be interpreted geometrically as follows: Let S̃ be the toric surface in
Ah−1 = Spec[x1, . . . , xh−1] defined by the ideal generated by (Ejk, 1 ≤ j < k − 1 ≤ h− 2)
and for i = 2, . . . , h− 2, m ∈ N, s ∈ {1, . . . , dm2 e}, l ∈ {s, . . . , L

s
i,m} let

D̃s,l
i,m = {γ ∈ S̃m; ordγxi = s, ordγxi+1 = l}

and C̃s,li,m = D̃s,l
i,m; finally for m > p, let π̃m,p : S̃m −→ S̃p be the canonical projection. By

lemma 4.3 again, we have that

π̃−12(n+1),2n+1(C̃
n+1,n+1
i,2n+1 ) = {γ ∈ Ah−12(n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ h− 1,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ h− 2}.
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Therefore we deduce that π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x

(n+1)
e ) =

π̃−12(n+1),2n+1(C̃
n+1,n+1
i,2n+1 )× SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e],

which by the inductive hypothesis is equal to⋃
i=2,...,h−2; l=n+1,...,Ln+1

i,2(n+1)

C̃n+1,l
i,2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e].

Newt we claim that ⋃
i=2,...,h−2; l=n+1,...,Ln+1

i,2(n+1)

Cn+1,l
i,2(n+1) ⊂ V (x

(n+1)
h , . . . , x(n+1)

e ).

Indeed, let γ ∈ Dn+1,l
i,2(n+1) for some i and l in the above union. We have that γ ∈

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ), i.e. ordγxj ≥ n+ 1 for 1 ≤ j ≤ e, ordγxi = n+ 1 and ordγEie ≥

2n+ 3. Since i ≤ h− 2 and ch−1 > 2, this implies that

ordγxi+1x
ci+1−2
i+1 . . . x

ce−1−2
e−1 xe−1 ≥ 2n+ 3,

therefore ordγxixe ≥ 2n+ 3, thus ordγxe ≥ n+ 2, and since we have proved that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e ) ⊂ V (x
(n+1)
h , . . . , x(n+1)

e ),

we deduce that Cn+1,l
i,2(n+1) = Dn+1,l

i,2(n+1) ⊂ V (x
(n+1)
h , . . . , x

(n+1)
e ).

Finally by proposition 4.7, Cn+1,l
i,2(n+1)(resp. C̃

n+1,l
i,2(n+1)) is irreducible of codimension (n+1)e+

e− 2(resp. (n+ 1)(h− 1) + h− 3) in Ae2(n+1)(resp. A
h−1
2(n+1)), therefore

dim Cn+1,l
i,2(n+1) = dim C̃n+1,l′

i′,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e]

for any i′ ∈ {2, . . . h−2}, l′ ∈ {n+1, . . . , Ln+1
i′,2(n+1)}, and we deduce from the first inclusion

(�) that Cn+1,l
i,2(n+1) coincides with C̃n+1,l′

i′,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e] for

some i′ ∈ {2, . . . h− 2}, and l′ ∈ {n+ 1, . . . , Ln+1
i′,2(n+1)}.

But we have that ordγxi = n + 1, ordγ(xi+1) = l for γ the generic point of Cn+1,l
i,2(n+1),

therefore since i+1 ≤ h−1, we have that ordγ̃xi = n+1 and ordγ̃xi+1 = l for γ̃ the generic
point of C̃n+1,l′

i′,2(n+1). Therefore γ̃ ∈ C̃
n+1,l
i,2(n+1) and we deduce that C̃n+1,l′

i′,2(n+1) ⊂ C̃n+1,l
i,2(n+1). But

since they are irreducible of the same codimension they are equal, so we have that

Cn+1,l
i,2(n+1) = C̃n+1,l

i,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e].

We thus have that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e )) =
⋃

i=2,...,h−2;l=n+1,...,Ln+1
i,2(n+1)

Cn+1,l
i,2(n+1),
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and the claim follows.(Note that we get that⋃
i=2,...,h−2,e−1,l=n+1; ...,Ln+1

i,2(n+1)

Cn+1,l
i,2(n+1) =

⋃
i=2,...,e−1,l=n+1; ...,Ln+1

i,2(n+1))

Cn+1,l
i,2(n+1)

as an immediate consequence of lemma 4.3 and lemma 4.12.)

If h = 4, let S̃ be the toric surface in A3 = SpecK[x1, x2, x3] defined by the ideal (E1,3)
and let C̃n+1

2(n+1) = {γ ∈ S̃2(n+1); ordγxj ≥ n+ 1, j = 1, 2, 3}. The equality (��) reduces to

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e )) = C̃n+1
2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e].

Since E13 = x1x3 − xc22 , if c2 > 2, C̃n+1
2(n+1) ⊂ SpecK[x

(n+1)
j , . . . , x

(2(n+1))
j , j = 1, . . . , 3]

is defined by the ideal (x
(n+1)
1 x

(n+1)
3 ), so C̃n+1

2(n+1) = V (x
(n+1)
1 ) ∪ V (x

(n+1)
3 ) while it is

irreducible if c2 = 2.
We check as above that ⋃

l=n+1,...,Ln+1
2,2(n+1)

Cn+1,l
2,2(n+1) ⊂ V (x

(n+1)
4 , . . . , x(n+1)

e )

and that dimCn+1,l
2,2(n+1) coincides with the dimension of any irreducible components of

C̃n+1
2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e]. Again in view of (�), each Cn+1,l

2,2(n+1) is

an irreducible component of C̃n+1
2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e].

If c2 = 2, then Ln+1
2,2(n+1) = n+ 1 and we thus have

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e )) = Cn+1,n+1
2,2(n+1) .

If c2 > 2, we have that Ln+1
2,2(n+1) = n+ 2, and the same argument as above shows that

Cn+1,n+1
2,2(n+1) = V (x

(n+1)
1 )× SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e]

Cn+1,n+2
2,2(n+1) = V (x

(n+1)
3 × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e].

We thus have

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ∩ V (x(n+1)

e )) =
⋃

l=n+1; ...,Ln+1
i,2(n+1))

Cn+1,l
2,2(n+1)

hence the claim.
Finally if h = 3, by (��) we have that π−12(n+1),2n+1(C

n+1,n+1
i,2n+1 ∩ V (x

(n+1)
e )) =

SpecK[x
(n+1)
j , . . . , x

(2(n+1))
j , j = 1, 2]× SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 3, . . . , e].
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Now we have that Cn+1,n+1
2,2(n+1) ⊂ V (x

(n+1)
3 , . . . , x

(n+1)
e ). Indeed, for γ ∈ Dn+1,n+2

i,2n+1 , we have
that ordγx2 = n+1, ordγx3 = n+2, ordγxj ≥ n+1, j = 4, . . . , e and ordγE2j ≥ 2n+3 for
j = 4, . . . , e. Since c3 = . . . = ce−1 = 2, this implies that ordγxj ≥ n + 2 for j = 4, . . . , e,

so γ ∈ V (x
(n+1)
3 , . . . , x

(n+1)
e ). We conclude that π−12(n+1),2n+1(C

n+1,n+1
i,2n+1 ∩ V (x

(n+1)
e )) =

Cn+1,n+2
2,2(n+1) because both sets are irreducible and have the same dimension, and the claim

follows in this case.

ii) If c2 = · · · = ce−1 = 2 then

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) = V (x

(0)
i , . . . , x

(n)
i , i = 1, . . . , n,

x
(n+1)
i x

(n+1)
j − x(n+1)

i−1 x
(n+1)
j−1 , 1 ≤ i < j − 1 ≤ e− 1).

The ideal generated by (x
(n+1)
i x

(n+1)
j − x(n+1)

i−1 x
(n+1)
j−1 , 1 ≤ i < j − 1 ≤ e− 1), is isomorphic

to the ideal defining S in Ae, hence it is prime and π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) is irreducible.

It follows from proposition 4.11, part (2) that

π−12(n+1),2n+1(C
n+1,n+1
i,2n+1 ) = Cn+1,n+1

e−1,2(n+1),

thus the proposition in this case.

Remark 4.14. Note that the argument that we use in the proposition 4.13 for e = 4 does
not work in general. The argument works in the case e = 4 because the number of equations
that define S ⊂ Ae (this number is

(
2
e−1
)
) is less or equal to e if and only if e ≤ 4.

Theorem 4.15. Let m ∈ N, m ≥ 1. Modulo the identifications Cs,si,m = C
s,Lsi+1,m

i+1,m , the
irreducible components of S0

m := π−1m (0) are the Cs,li,m, i = 2, · · · , e − 1, s ∈ {1, . . . , dm2 e}
and l ∈ {s, . . . , Lsi,m}}. The irreducible components of Sm are π−1m (S\0) and the irreducible
components of S0

m.

Proof : By proposition 4.13, Sm is covered by the Cs,li,m. Consider C
s,l
i,m with l 6= Lsi,m;

since l < Lsi,m this implies that m > 2s − 1 and ci 6= 2. For the generic point γ we know
from lemma 4.2 (part 2) that for 1 ≤ j ≤ i− 1, ordγxj > s.

This forbids that Cs,l
′

i′,m ⊂ Cs,li,m or Cs,li,m ⊂ Cs,l
′

i′,m for i′ ∈ {2, . . . , i − 1} because by
proposition 4.7, they have the same codimension in Aem, hence an inclusion as above implies
that they shoud coincide, so ordγxi′ = s.On the other hand, Cs,li,m 6⊂ C

s′,l′

i′,m, if s < s′, because

by proposition 4.11, Cs,li,m has non-empty intersection with D(x
(s)
i ), but Cs

′,l′

i′,m ⊂ V (x
(s)
i ).

Finally, Cs
′,l′

i′,m 6⊂ Cs
′,l′

i′,m because by proposition 4.7 the codimension of the first one, is less
then or equal to the codimension of the second one, and the first statement of the theorem
follows. The last statement of the theorem follows from the fact that

codim(Cs,li,m,A
e
m) ≤ codim(π−1m (S\0),Aem).



4 JET SCHEMES OF TORIC SURFACES 23

Indeed : By proposition 4.7, codim(Cs,li,m,Aem) = se + (m − (2s − 1))(e − 2). By re-

mark 2.2, we have that codim(π−1m (S\0),Aem) = (m + 1)(e − 2). and we have that for
s ≥ 1, se+ (m− (2s− 1))(e− 2) ≤ (m+ 1)(e− 2) if and only if e ≥ 4.

Definition 4.16. Let m ∈ N, m ≥ 1, and let C be an irreducible component of S0
m and γ

be its generic point. By Theorem 4.15, there exist s ∈ {1, . . . , dm2 e}, l ∈ {s, . . . , L
s
i,m} and

i ∈ {2, · · · , e− 1} such that C = Cs,li,m. We say that C has index of speciality s.

Note that s = ordγ(M) := minf∈M{ordγ(f)} where M is the maximal ideal of the
local ring OS,0 and γ the generic point of C.

For i = 2, . . . , e− 1, and m ∈ N, we set

N s
ci(m) := Lsi,m − s+ 1.

For m ∈ N, m ≥ 1, we call N(m) the number of irreducible component of S0
m. Then

counting the irreducible components in the Theorem 4.15 we find

Corollary 4.17. If all the ci are equal to 2, then N(m) = dm2 e. Otherwise let ci1 , ..., cih
be the elements in {c2, . . . , ce−2} different from 2, then we have

N(m) =

dm
2
e∑

s=1

(N s
ci1

(m) + (N s
ci2

(m)− 1) + . . .+ (N s
cih

(m)− 1)).

Moreover, for s ∈ {1, . . . , dm2 e}, the number of irreducible components of S0
m of index

of speciality s is equal to

N s
ci1

(m) + (N s
ci2

(m)− 1) + . . .+ (N s
cih

(m)− 1.

Corollary 4.18. Let S be a toric surface. The number of irreducible components of S0
m and

their dimensions determine the embedding dimension e of S and the set {ct, t = 2, . . . , e−2}.

Proof : We have that dim(S0
1) = e, the embedding dimension of S. If e = 3, then for m

big enough, we have by theorem 3.1 that N(m) = c is constant, and we deduce that S is
an Ac singularity. Suppose the e ≥ 4.
For m ≥ 1, let

Ñ1(m) =

dm
2
e∑

s=1

((m+ 1− (2s− 1)) + (e− 3)(m+ 1− (2s− 1)− 1).

We have that N(m) ≤ Ñ1(m) and N(1) = Ñ1(1) = 1. Let

m1 = min{m ; N(m) < Ñ1(m)} and α1 = Ñ1(m1)−N(m1),
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then there exists i1, · · · , iα1 ∈ {c2, . . . , ce−1} such that ci1 = · · · = ciα1 = m1.
If α1 = e− 2, then we have found all the ci. If not, then for j ≥ 2, we recursively define

Ñj(m) =

dm
2
e∑

s=1

(N s
ci1

(m) + (N s
ci2

(m)− 1) + · · ·+ (N s
ciα1

(m)− 1) + · · ·+

(N s
ciα1+···+αj−1

(m)− 1)) + (e− 2− (α1 + · · ·+ αj−1))(m+ 1− (2s− 1)− 1),

mj = min{m ; N(m) < Ñj(m)} and αj = Ñj(mj)−N(mj).

Therefore there exists iα1+···+αj−1+1, · · · , iα1+···+αj−1+αj ∈ {c2, . . . , ce−1} such that

ciα1+···+αj−1+1 = · · · = ciα1+···+αj−1+αj
= mj .

If α1 + · · · + αj−1 + αj = e − 2, then we have found all the ct, otherwise we repeat the
procedure at most e− 2 times.

Remark 4.19. Corollary 4.18 is to compare with the result of Nicaise in [Ni], where
he proved that the motivic Igusa Poincaré series of a toric surface is equivalent to the
set {ct, t = 2, . . . , e − 2}, and that the order of the ci in the continued fraction can not
be extracted from this series. It is clear also from the formulas given in proposition 4.7
and corollary 4.17, that the number of irreducible components and their dimensions is
not affected by the order of the ci in the continued fraction. Note that despite that these
informations on the jet schemes are closely related to the informations encoded in the
motivic Igusa Poincaré series, they are not equivalent in general.

Below we show how we extract all the ci and their order or equivalently the analyt-
ical type of S from their jet schemes. We first explain in the next proposition how the
components C1,l

i,m behave under the truncation morphisms πm,m−1. The proof follows from
section 3 and propositions 4.10,4.13.

Proposition 4.20. Let m ∈ N,m ≥ 1. Let i ∈ 2, . . . , e− 1, and l ∈ {1, . . . , L1
i,m}. For

2 ≤ m ≤ ci − 1, we have the following inclusions

πm,m−1(C
1,l
i,m) ⊂ C1,l−1

i,m−1,

whenever l − 1 ∈ {1, . . . , L1
i,m−1}.

πm,m−1(C
1,l
i,m) ⊂ C1,l

i,m−1,

whenever l ∈ {1, . . . , L1
i,m−1}. For m ≥ ci, we have

πm,m−1(C
1,l
i,m) ⊂ C1,l

i,m−1,

for l ∈ {1, . . . , ci − 1}. And these are all the inclusions between components of index of
speciality 1 induced by πm,m−1,m ≥ 1.

π3,2(C
2,2
i,3 ) ⊂ C1,l′

i′,2 , for i′ ∈ {2, . . . , e− 1}, l′ ∈ {1, L1
i′,2},

This means that it is included in all the irreducible components of the level 2 jet scheme.
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As in section 3, we now attach to the structure of the jet schemes of S a weighted
graph that detects the invariants of the singularity S.

Definition 4.21. 1. The weighted graph of the jet schemes of S is the levelled weighted
graph Γ obtained by

• representing every irreducible components of S0
m,m ≥ 1, by a vertex vi,m, where

the sub-index m is the level of the vertex;
• joining the vertices vi1,m+1 and vi0,m if the morphism πm+1,m induces a mor-
phism between the corresponding irreducible components;
• weighting each vertex by the dimension of the corresponding irreducible compo-
nent.

2. The index 1 weighted graph of the jet schemes of S is the subgraph Γ1 of Γ whose
vertices are those associated with the components of index of speciality equal to 1. It
is obtained from Γ by deleting the other vertices (those corresponding to irreducible
components of index of speciality different from 1) and edges with at least one of the
extremities not corresponding to an irreducible component of index of speciality 1.

We first will describe the subgraph Γ1. The last inclusion in the proposition 4.20 implies
that we can detect the vertex associated with the component C2,2

i,3 .We then can extract the
graph Γ1 from Γ by deleting all the vertices and edges which are connected to the vertex
associated with C2,2

i,3 , and whose index of speciality is not 1. Then, applying proposition
4.20, we find that Γ1 can be constructed from the c′is as follows: for every i = 2, . . . , i −
1, let Γ1

i be the graph whose vertices are in 1 - 1 correspondence with the irreducible
components C1,l

i,m,m ≥ 1, and l ∈ {1, . . . , L1
i,m}; the graph Γ1

i coincides with the graph

associated with an Aci−1 singularity in section 3. The identifications C1,1
i,m = C

1,L1
i+1,m

i+1,m ,

induce identifications between infinite lines of Γ1
i and Γ1

i+1 (See the next example). Then
Γ1 is the union of Γ1

i modulo the identifications. We then obtain :

Corollary 4.22. Let S be a toric surface.

1. The weighted graph Γ determines the embedding dimension e of S and the set {ct, t =
2, . . . , e− 2}.

2. The order of the ci’s which are different from 2.

Proof. The first part follows from corollary 4.18 knowing only the weight of the vertex
corresponding to S0

1 , i.e. its dimension. It follows from the discussion above (mainly
from the last inclusion in the proposition 4.20) that, given Γ, we can extract Γ1 from it.
The order of the ci’s which are different from 2 is then extracted from Γ1 thanks to the
identifications described above (see the figure in the next example for an illustration).

Remark 4.23. Notice that if ci = 2, then Γ1
i looks like a line and is not possible to detect

where it sits on Γ1 after the identifications.
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Example 3. We consider the toric surface singularity defined by the cone generated by
the vectors (1, 0) and (4, 11). We have that 11/4 = [3, 4]. Below we show the subgraph
Γ1 = Γ1

2 ∪ Γ1
3 of the graph Γ of this singularity. First we show the graphs Γ1

2 and Γ1
3. To

keep the figure the simplest possible, we do not weight the graph here with the codimensions;
but he weights are essential to detect the invariants of S. And after the identifications we
obtain Γ1 :

To recover c2, . . . , ce−1 with their order (mainly the order where the ci’s which are equal
to 2 appear), we will need to put more weights on the vertices of Γ associated with the
irreducible components of S0

2 ; these are C1,2
i1,2
, C1,1

i2,2
, C1,1

i2,2
, . . . , C1,1

ih,2
where i1, . . . , ih are like

in corollary 4.17. Back to the equations of S, we find that C1,2
i1,2
' S[i0,i1] × Ae, C1,1

ij ,2
'

S[ij ,ij+1] × Ae, for j = 1, . . . , h where i0 = 1, ih+1 = e, S[ij ,ij+1] is the toric surface defined
by the 2× 2 minors of the matrix
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(
x
(1)
ij

. . . x
(1)
ij+1−1

x
(1)
ij+1 . . . x

(1)
ij+1

)

in K[x
(1)
ij
, . . . , x

(1)
ij+1

] and Ae = K[x
(2)
1 , . . . , x

(2)
e ]. Note that for j = 0, . . . , h, the embedding

dimension of S[ij ,ij+1] is ij+1−ij+1, in particular S[ij ,ij+1] is isomorphic to A2 if and only if
ij+1−ij = 1. Hence, after weighting the vertices corresponding to irreducible components of
S0
2 by their embedding dimensions, we see how the c′is which are equal to 2 are distributed

between the other c′is. Hence we define an other weighted graph as follows:

Definition 4.24. We denote by EΓ the weighted graph which is obtained from Γ by weight-
ing the vertices of Γ associated with the irreducible components of S0

2 by their embedding
dimensions (note that by the definition of Γ, these vertices are also weighted by their di-
mensions).

Hence we obtain:

Corollary 4.25. Let S be a toric suface. The data of the weighted graph EΓ of S0
m is

equivalent to the data of all the ci and of their order in the continued fraction, or equivalently
to the analytical type of S.

Remark 4.26. Note that if we reverse the order of the ct, the obtained toric surface will
be isomorphic to the original one.

Using a theorem of Mustata in [Mus2], we obtain as a by-product the log canonical
threshold lct(S,Ae) of the pair S ⊂ Ae :

Corollary 4.27. Let S be a toric surface of embedding dimension e. If e = 3 (i.e. S is an
An singularity) then lct(S,Ae) = 1, otherwise

lct(S,Ae) =
e

2

Proof : By [Mus2] we have that

lct(S,Ae) = min
m∈N

Codim(Sm,Aem)

m+ 1
.

The case e = 3 follows from section 3, since in this case we have that Sm is irreducible of
codimension m + 1. Let us suppose that e ≥ 4. If m is odd, m = 2s − 1, s ≥ 1 then the
component Cs,si,2s−1 is of maximal dimension and we have that

Codim(Cs,si,2s−1,Ae2s−1)
2s

=
se

2s
=
e

2
.

If m is even, m = 2n, n ≥ 0 then the components Cn,li,2n, i = 2, . . . , e − 1, l = n,Lni,m are
of maximal dimension, and since e ≥ 4 we have that

Codim(Cn,li,2n,Ae2n)

2n+ 1
=
ne+ e− 2

2n+ 1
≥ e

2
,
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and the lemma follows.

Corollary 4.28. For m ≥ max{ci, i = 2, · · · , e−1}, the number of irreducible components
of S0

m, with index of speciality s = 1, is equal to the number of exceptional divisors that
appear on the minimal resolution of S.

Proof. This comes from the comparison of corollary 4.17 with proposition 2.3.

Remark 4.29. The corollary 4.28 is to compare with the bijectivity of the Nash map, due
to Ishii and Kollar for this type of Singularities, [IK]. Actually, the projective limits of the
systems (C1,l

i,m)m gives rise to the irreducible components of the space of arcs centred at the
singular point of S.
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