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Abstract

For m € N,m > 1, we determine the irreducible components of the m — th jet
scheme of a normal toric surface S. We give formulas for the number of these compo-
nents and their dimensions. This permits to determine the log canonical threshold of
a toric surface embedded in an affine space. When m varies, these components give
rise to projective systems, to which we associate a weighted oriented graph. We prove
that, among toric surfaces, the data of this graph is equivalent to the data of the
analytical type of S. Besides, we classify these irreducible components by an integer
invariant that we call index of speciality. We prove that for m large enough, the set of
components with index of speciality 1, is in 1 — 1 with the set of exceptional divisors
that appear on the minimal resolution of S.

1 Introduction

Nash has introduced the arc space of a variety X in order to investigate the intrinsic data
of the various resolutions of singularities of X. The analogy with p—adic numbers has led
Kontsevich [K], Denef and Loeser [DL1| to invent motivic integration and to introduce
several rational series that generalize analogous series in the p—adic context [DL2|. The
geometric counterpart of the theory of motivic integration has been used by Ein, Mustata
and others to obtain formulas controlling discrepancies in terms of invariant of jet schemes
-these are finite dimensional approximations of the arc space-|Mus2|,[ELM]|,[EM],|dFEI].
Roughly speaking, while we can extract informations about abstract resolutions of singu-
larities from the arc space and vice versa, we can extract informations about embedded
resolutions of singularities from the jet schemes and vice versa. This partly explains why the
arc space of a toric variety -which has been intensively studied [KKMS],[L|,|B-GS|,[1],[IK]-
is well understood. Indeed, we know an equivariant abstract resolution of a toric variety,
what permits to understand the action of the arc space of the torus on its arc space [I],
but an equivariant embedded resolution is less accessible.

The structure of jet schemes of singular algebraic varieties is complicated; despite that
they were the subject of numerous article in the last decade, few is known about their ge-
ometry for specific class of singularities, except for the following classes: monomial ideals
[GS], determinantal varieties [D], plane branches [Mol], quasi-ordinary singularities [CM].
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In this article, we study the jet schemes of a normal toric surface singularity. We deter-
mine their irreducible components and we give formulas for their number and dimensions.
We give here a brief description of the results. The data of a toric surface singularity S is
equivalent to the data of a cone 0 C N = Z? generated by (1,0) and (p, q) for two coprime
numbers 0 < p < ¢q. Let gq/p = [ca, ..., ce—1] be the Hirzebruch-Jung continued fraction
expansion (see section 2.2); the embedding dimension of S is equal to e; the equations
defining the embedding of S in A® = SpecK|z1,--- ,x.] are described in section 2. Let
m € N;m > 1 and let SY, be the space of m—jets centered at the singularity of S (see

m

section 2.1 for preliminaries on jet schemes). For i = 2,---,e -1, s € {1,...,[F]}(i.e.
m>2s—1>1)and € {s,..., L7}, where

Li = min{(c; — 1)s, (m + 1) — s},

we define
Di’fn = Cont®(x;)m N Contl(a:i+1)m,
where for p € N, and f € K[zq,- -+, x¢],

Cont?(f)m = {vy € Sm | ordy(f) = p}.

We define Cz fn = Dfél to be be the Zariski closure of fon We find in theorem 4.15 the
following.

7Ls
Theorem. Let m € N, m > 1. The irreducible components of SO, are C:_f;:; and the
Coti=2,,e—1se{l,....,[2]} andl € {s,...,L,, — 1}}.

,m?
The formulas that we obtain for the codimensions of the irreducible components of S9,
(see proposition 4.11) enable us, by applying Mustata’s formula [Mus2|, to determine the
log canonical threshold of the pair S C A® (e is the embedding dimension). For e = 3, the
log canonical threshold is 1. For e > 4, we find in corollary 4.27 that

let(S, A°) = <.
2

Moreover, making use of the truncation morphisms between the jet schemes, we asso-
ciate with the irreducible components of S?, a graph which is weighted by the codimensions
of the irreducible components and the embedding dimension of some of these components.
We prove in corollary 4.25 that the data of this graph is equivalent to the analytical type
of the surface. Note that motivic invariants of a toric surface singularity do not determine
its analytical type [LR],[Ni].

Finally, we classify the irreducible components by a natural invariant that we call
index of speciality; this is the order of contact of the generic point of the component with
the maximal ideal defining the singular point of S. We prove that for m large enough,
the number of irreducible components of SY is in 1-1 correspondence with the divisors
appearing on the minimal abstract resolution of singularities of S. This is to compare with
the bijectivness of the Nash map for toric varieties [IK]. This is also related to a jet schemes
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approach to a conjecture of Teissier on toric resolution of singularities [T]. This approach
is explained in [Mo4] (see also [LMR]).

The proof of the main theorem uses heavily the description of the defining equations
of the embedding S C A® (|R],[St]), and some syzygies of these equations that we describe
and that are ad hoc to the problem. It also uses known results on the arc space of a
toric variety |L],[IK],[I] and it is by induction on m and on the embedding dimension e.
In particular it uses a kind of approximation of the toric surface S by toric surfaces with
smaller embedding dimensions.

Some of the results of this paper were announced in [Mo3|.

The structure of the paper is as follows: in section two we present a reminder on jet
schemes and on toric surfaces. In section three we study the jet schemes of the A,, singu-
larities. The last section is devoted to the toric surfaces of embedding dimension bigger or
equal to four.
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2 Jet schemes and toric surfaces

2.1 Jet schemes

Let K be field. Let X be a K-scheme of finite type over K. For m € N, the functor
F,, : K—Schemes — Sets which to an affine scheme defined by a K—algebra A associates

F(Spec(A)) = Homg (SpecAlt]/(t™1), X)

is representable by a K—scheme X, [V]. We call X,,, the m—th jet scheme of X and we
have that F},, is isomorphic to its functor of points. In particular the K—points of X,,, are
in bijection with the K[t]/(¢#™*1)—points of X.

For m,p € N,;m > p, the truncation homomorphism A[t]/(t™*!) — A[t]/(t**!) induces
a canonical projection m, , : X, — Xj,. These morphisms are affine and for p < m < ¢
they clearly verify 7, , o mqm = 7gp. This yields an inverse system whose limit X, is a
scheme called the arc space of X. Note that Xg = X. We denote the canonical projections
X — Xo by 7, and Xoo — X, by Uy, See [EM] for more about jet schemes.

Example 1. Let X = Spec W be an affine K—scheme. For a K-algebra A, an



2 JET SCHEMES AND TORIC SURFACES 4

A-point of X, is a K-algebra homomorphism

cr T AR/ (.
(fla"'af'r‘) []/( )
This homomorphism is completely determined by the image of x;,i =1,---,n

and it should verify that o(f;) = fi(d(x1), -+ ,d(xyp)) € "), I=1,--- 7

Therefore if we set

flo(@r), - (zn) =Y 7@, D) ¥ mod (1™t

=0
where 1) = ({L‘gj), e ,:Ly(,,j)), then we have that
K[z©) (m)
X = Spee— — st |
fl ) —1,7- 77r

Example 2. From the above example, we see that the m-th jet scheme of the affine space
A" is isomorphic to ATV and that the projection Tm m—1 @ Ay, — Al | is the map
that forgets the last n coordinates.

Remark 2.1. This a notational remark; in the sequel we will denote the m —th jet scheme
of the affine space A™ by A7,.

Remark 2.2. Note that in general, if X is a monsingular variety of dimension n, then
all the projections Tpmm—1 @ Xm — Xm—1 are locally trivial fibrations with fiber A™. In
particular X, is of dimension n(m + 1) ([EM]).

2.2 Toric surfaces

Let S be a singular affine normal toric surface defined over the field K. There exist two
coprime integers p and ¢ such that S is defined by the cone 0 C N = Z? generated by
(1,0) and (p,q) and 0 < p < q, i.e. S =SpecK|[z", u € " N M] where o is the dual cone
of o and M is the dual lattice of N (|O]). We have the Hirzebruch-Jung continued fraction
expansion in terms of ¢; > 2 :

q_
R
p

c —
3 1

Ce—1

which we denote by [cg, ..., cc—1]. Let 6V be the convex hull of (¢¥ N M)\ 0 and let 96"
be its boundary polygon. Let ui,uo,...,uy be the points of M lying in this order on




3 JET SCHEMES OF TORIC SURFACES OF EMBEDDING DIMENSION E =3 5

96", with u; = (0,1) and up = (g, —p). Then from |[O], proposition 1.21 we have that
h = e is the embedding dimension of S and the u; form a minimal system of generators
of the semigroup ¢V N M. For i = 1,...,e, we will denote by x; the regular function on
S defined by z%:. Riemenschneider has exhibited the generators of the ideal defining S in
A°® = SpecK][zy, - -+ ,x.]. They can be given in a quasi-determinantal format [R], [St]:

I T2 ... Te—2 Te—1
co—2 Ce—1—2
IEQ o .. e—1
i) r3 ... Te-1 Te

where the generalised minors of a quasi-determinant

fi fa oo frm Ix
h172 e hk_Lk
g1 g2 ... Gk-1 9k

—1
are fig; — gi(I[)—; hnns1) fj-

They can be written as follows:

A . . . C7;+172 C7;+272 . Cj72—2 Cj,1—2 .
Ez] = TiTj — Li41T;41 Liyo Tio Tj1 Tj-1

where 1<i<j—1<e—1.
Let b; € N, b; > 2, be such that q/(q—p) = [b1,...,b]. Let lp = (1,0),...,ls41 = (p,q)

in this order be the elements of N lying on the compact edges of the boundary 90 of the
convex hull § of (c N N)\ 0.

Proposition 2.3. We have that r = s and is equal to the number of irreducible components
of the exceptional curve for the minimal resolution of singularities of S. Moreover we have
that

62+"'+6671—2(€—2)+1:S.

See lemma 1.22 and corollary 1.23 in [O] for a proof.

3 Jet schemes of toric surfaces of embedding dimension ¢ = 3

Let S be the variety defined in A3 by the equation f(x,y,2) = zy—2""! = 0. S has an A,
singularity at the origin 0 and is nonsingular elsewhere. Note that an affine toric suface of
embedding dimension 3 has this type of singularities (see section 2.1). If we set

m m m i=m

f(z l'(z)tz, Z y(z)f,? Z Z(Z)tz) — Z F(Z)t’t mod tm+1, (0)

=0 =0 =0 =0

then S, is defined in A3(™+1) = A3 by the ideal I,,, = (F©, FO) .. F(M),
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By remark 2.2, the morphism ,,}(S\0) — S\0 is a trivial fibration, therefore we

have that 7' (S\0) is an irreducible component of S, of codimension m + 1 in A3 . On
the other hand, we will prove in the coming lines that the codimension of S, := 7,,1(0)
in A3 is m + 2, which means that S,, is irreducible for every m € N : indeed, since I, is
generated by m + 1 equations, any irreducible component of .S, could have codimension
at most m+ 1. (Note that the irreducibility of S, follows from [Musl| because S is locally
a complete intersection with a rational singularity, but we give here a direct proof in this
simple case.)

We claim that for m < n, we have SO, = Z9  where Z C A3 is the hypersurface defined by
zy = 0. Indeed, a m—jet v, = (x = >_;" Ox(z)tz y =Syl 2 =31 208 € (A3),,
centered at the origin (i.e.z(?) = y(© = 2(0))isin SY if and only if zy — z"+1 = 0 mod ¢!,
but since zg = 0 and m < n, we have that ord; z”“ >n+ 12> m+ 1, therefore this is
equivalent to ord; zy > m 4+ 1 and therefore to v € ZSI.

But clearly for m < n, the irreducible commponents of Z9, = S9 are the subvarities defined

by the ideals
I7l”n = (IE(O), "'7x(lil)7y(0)7 "'7y(mil)7z(0)>7l - 17 .,

Notice that the codimension of C!, := V(I ) in A3, is equal to m +2 for [ = 1,....m
We deduce that for m < n, S, is irreducible of codimension m + 1. On the other hand,
for m > n + 1 we have that C!, = W%}N(V(ﬁl)) is defined in (A3),, by the ideal I, =
1, J

where J! is the ideal obtained from the ideal defining X,,_(,41) in

(n—i—l))

m—(n+1)
Af’n —(n+1) by changing variables. Indeed if we set
f(z (¢, Z y(i)ti,Zz(i)ti) -
i=l i=n—I+1 i=1
m—l1 m—(n—I+1) m—1
x l—H)tz tn l+1( Z (n I+1+4) tz Z P z+1)tz
7,:0 =0 =0
m—l m—(n—I+1) m—1
tn+1f(z IE(l+i)ti, Z y(n—l-&-l-i—i)ti’ Z Z(i+1)ti)
i=0 i=0 i=0
i=m—(n+1) o
=" Gl(z)t’) mod ™1, (00)
i=0
then J'rln—(n+1) is generated by Gl(i),z' =0,...,m—(n+1), and by comparing (¢) with (¢0),
we get that
Gl(i) =r® (CL‘(l), e x(l“), y(”_l+1), . ,y("_lHH), z(l), ... ,z(1+i)).

We deduce that for [ =1,...,n

Codim (w5, (V(I})), A3,) = n+ 2+ Codim  (Sp—(nt1): Ay (n11)):
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This implies by a simple induction that for [ =1, ..., n,
Codim . (V(I})) =m+2.

Therefore Codim (S%,,A3) = m + 2, so S, is irreducible. It follows that W%}H(V(Ié))
which is isomorphic to Sy, _(n41) X A?"t1 s irreducible and we conclude:

Theorem 3.1. Let m € N.n > 1, and let SO, be the scheme of m—jets centered in the
singular locus of an A,, singularity. Then we have the following:

1. SY is a locally complete intersection scheme.

2. For m <n, 8% has m irreducible components, C’fml =1,...,m each of codimension
m 4 2. Form > n+1, it has n irreducible components, Cﬁn,l =1,...,n, each of
codimension m + 2.

3. The global jet scheme Sy, is irreducible.

4. For 2 < m < n, and l € {1,...,m — 1} we have that mpm-1(C.,) C C', 4,
Tmm—1(CL) € C1 and T m-1(CT) € C™=L For m > n 4 1 we have that
Tmm—1(CL) C CL |, for 1 € {1,...,n}. These are all the inclusions induced by
Tmm—1 for m > 2.

We obtain a graph I' by representing every irreducible components of S%,m > 1, by a
vertex v; ,, and by joining the vertices v;, ;41 and vj, p, if the morhphism 7,41, induces
a morphism between the corresponding irreducible components. From the theorem 3.1,
part 4, we deduce that the graph I' for the singularity A4 is the following :

4 Jet schemes of toric surfaces of embedding dimension e¢ > 4

We keep the notations introduced in section 2 and we begin by introducing some more
notations. Let f € K[xy,...,z¢] ; for m,p € N such that p < m, we set:

Cont?(f)m(resp.Cont”(f)m) := {y € Sm | ord,(f) = p(resp. > p)},
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Cont”(f) = {v € S | ord,(f) = p},
where ord,(f) is the t—order of f o~.
For a,b € N, b # 0, we denote by [7] the round-up of 3. Fori = 2,---,e —1, s €
{1, [F]}ie m>2s—1>1)andl € {s,..., L{,, }, where

we set
fon := Cont®(x;)m N Cont' (x4 1)m,
and _
Ci’,; = Di’rln.

If Ris aring, I C R an ideal and f € R, we denote by V(I) the subvariety of Spec R
defined by I and by D(f) the open set D(f) := Spec Ry.
We will prove that the irreducible components of S9, := 7, -1(0) are among the closed sets
c; in (see the theorem in the introduction). The irreducibility of the C; ’fn is proved in
prbposition 4.7, where we also compute their codimensions. In propositiofl 4.13 we prove
that they cover SO . In lemma 4.12, we prove that there are redundancies between the C; ’761
The fact that there are no inclusions among them but those of lemma 4.12, is proved7 in
theorem 4.15.

We begin by giving an overview of the strategy of the proof of theorem 4.15.

The first remark is that S, which is the Zariski tangent space of S at 0, is isomorphic
to an affine space (lemma 4.3), more precisely we have:

Ka:(o),...,xéo),:c(l),...,xgo)
S?zSpec( (1 © 1(0) ) . (%)

(17, ..., xe)

A key idea is to stratify it as follows

SO=(S0nDEM)U. . uEStNDEM)U SN @D, D).

e

First we study 717:1’11(5? N D(xl(l))), fori =2,...,e — 1 and m > 2. By using syzygies
between the equations defining S (lemma 4.5), we construct in proposition 4.11 a trivial
fibration from 7L ((S9 N D(acl(l)), to a constructible subset of the jet schemes of an A,
singularity. This latter constructible subset is introduced and studied in lemma 4.10, what
permits to us to determine the irreducible components of the Zariski closure WTZ}l((S? N

D(:p,gl)), for i = 2,...,e — 1, namely the C’Zl;f1 The constructibles 7%711((5? N D(xgl)) for
i = 1, e are irreducible (proposition 4.11) and included in the Zariski closure of 777;0711((5? N

D(IE(l)),i =1,e— 1, (proposition 4.11, part (2)).

K2
It remains to study ﬂ;}l(S? N (a:gl), e ,xél)), for m > 2. For m = 2, we prove that

775&(5? N (azgl), e ,:Uél)) is included in the Zariski closure of 7'(5&((5? N D(m(l)), for i =

i
2,...,e — 1 (proposition 4.13). The proof of the latter statement in the case where the
embedding dimension e = 4 is based on dimension arguments, then we use induction
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on e. For this purpose, we approximate S by toric surfaces which are of less embedding
dimensions. For m = 3,7@%(5? N (xgl), e ,:cgl))(which is equal to 022”3? by lemma 4.3) is
an irreducible component of S, and is an affine space that we stratify in a similar way to
(%) (see the case m = 2n + 1 in proposition 4.13). We then as above consider the inverse
image by 7, 3, m > 4 of each strata. The inverse images by 7, 3 of the open stratas will be
understood again by comparison with some subsets of the jet schemes of A, singularities
and they will give rise to a new generation of irreducible components, namely the C’? ’751
Then we study the inverse image by 74 3 and 75 3 of the closed strata. This phenomenal is
understood by an induction on m, (more precisely on n) which permits us to cover S°, by
irreducible subsets. In theorem 4.15 we prove that there are no inclusions between these
subsets.

From 4.1 till 4.12, we are preparing the proof of theorem 4.15. Our first aim is to prove
the irreducibility of the C; ;ln’s and to compute their codimension in AY,, this is the subject
of proposition 4.7. We beé;in by some preparatory lemmas.

Proposition 4.1. 1. Fori=2,--- ;e—1 andl,s € N such that 1 < s <1< (¢; —1)s,
we have that Cont®(z;) N Cont!(z;11) # 0.

2. For s € N, s > 1, Cont*(z1) N Cont®(x2) # 0.

Proof : (1)-We will prove that there exists an arc h on S, whose generic point lies in the
torus, and such that h € Cont*(z;) N Cont!(x;41). Note that with an arc h on S, we can
naturally associate a vector v, = (a,b) € 0 N N and that for any v € ¢ N N there exists
an arc h such that v = vp,; moreover, for any u € M No", we have that h € Cont’r"(z%),
where we denote by vp.u the scalar product of vy and u, and by % the regular function
defined by v on S ([LR|, proposition 3.3). Let u;,i = 1,--- ,e, be the system of minimal
generators of ¢ N M, defined in 2.2 such that % = x;. Therefore to prove that there
exists an arc h as above, it is sufficient to prove that there exists (a,b) € o N N such that
(a,b).u; = s and (a, b).u;y+1 = l. Since w; and ;41 determine a Z—basis of M, there exists
a unique (a,b) € N such that (a,b).u; = s and (a,b).u;+1 = . Let’s prove that (a, b) lies in
the interior of o, i.e. that for j =1,--- e, (a,b).u; > 0. Since u;—1 = c;u; — uiy1, we have
that (a,b).u;—1 = ¢;s — [ which is greater than or equal to s because by hypothesis we have
s <1 < s(e; —1). Similarly we have that (a,b).ujt2 = ¢;41l — s which is greater than or

equal to [. Since ¢; > 2, for i = 1,--- | e, by descending (respectively ascending) induction
we find that (a,b).uj—1 > (a,b).u;, for j = 2,--- i (respectively (a,b).u;—1 < (a,b).u;, for
j=1+2,---,e) and the proposition follows.

(2)-We have that u; = (0, 1), u2 = (1,0). We need to prove that the unic vector v = (a,b) €
N such that (a,b).(0,1) = b= s and (a,b).(1,0) = a = s, also belongs to o; in fact it is is
clear that (s, s) belongs to the interior of 0. We also need to prove that for j = 3,--- e,
we have that (s, s).u; > s ; since uj; € ¢¥ and (1,1) lies in the interior of o, we have that
(1,1).u; > 0, moreover u; € M and (1,1) € N, so (1,1).u; € Z and (1,1).u; > 1.

0

The following lemma prepares lemma 4.3.
Lemma 4.2. Leti=2,---,e—1, meN, se{l,....[F|} and | € {s,...,Li,,}. For
v e D!

s we have
9
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1. the inequality ordyx; > 5,5 =1,... ¢

2. If moreover m # L, then for j =1,...,1 —1 we have ord,x; > s.

zm’

Proof : Let v € Dfrln This implies that ord,E;_1;11 > m + 1. From the expression of
Ei_1,i+1 and the hypothesis | € {s,...,L{, }, we get that ord,z;—1 > s. We also have
ord,FE;_3; > m+ 1; using the fact that ord,z;—1 > s we get ord,z;_2 > s. Recursively, by
using the conditions, ord,FE;; > m+1,j =1 —3,i—4,...,1, we obtain ord,z; > s,j =
t—3,i—4,...,1. Similarly, by using the conditions ord,E; ; > m+1,j =i+2,...,e we
obtain ordyx; > s,j =i +2,...,s and hence the first part of the lemma. The second part
follows in the same way using the conditions ord,Ej; > m+1,5=1,...,m — L

O

Lemma 4.3. Fori=2,---,e—1, s > 1, the ideal defining C;7, 1 Ay s

Ly =@ 1<j<e0<b<s).

Note that C}5. | does not depend on i. For j =1,e, we set
5,8 S,8
Cj725 1t _0125 L 1=2--,e—1

Proof :  Let us prove that Djy = V(I3 ;)N D(:Ugs)ngr)l). Let v € A, such that
ordyx; = ord,x;y1 = s. Lemma 4.2 gives that ord,z; > s, j =1,...e. We deduce

D5y € V(L5,) N D a})).

The opposite inclusion comes from the fact that a jet in V(If’;s_l) N D(x(s):cz(i)l) CAS, 4
satisfies all the equations of S modulo #2%. Since V (I; 128 1) C AS._, is irreducible, the
lemma follows. O

Lemma 4.4. Fori=2,---,e—1, meN, sc{l,...,[%]} and | € {s,...,Lf,m}7 we
have that

C C 7Tm 25— 1(027255—1)'
Proof : For v € D

and hence from lemma 4.3 we deduce that va’l C Tpins_1(Ci5,_1). The lemma follows

it follows from lemma 4.2 (part 1) that ordyx; > s,5 =1,... e

zm’

$,8 .
since 7! 25-1(Cj5s_1) 1s closed.
O

Lemma 4.5. 1. Fori=2,...,e—1, meN, sc{l,...,[%]},

m28 1(08288 lﬁD( ())):{’YEA%7 Ord/yszs, .7:17 , €, OTd/YH?Z‘:S,

ordyEi_1,41>m+1, ordyEj; >m+1, for 1 <j<i—1
ordyE;; >m+1, fori<j—1<e—1}.
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2. Fori=2,---,e—1, meN, se{l,...,[§]} andl € {s,..., Li, }, we have
DZ’Tln:{vEAfn; ordyEijj >m+1fori<j—1<e—1,
ordvEji >m+1for1<j<i—1,
ordyEi_1i4+1 > m+1, ordyx; = s, ordyzit1 =1}
Proof : (1) The inclusion ¢ C “ is an immediate consequence of lemma 4.3. To get the
other inclusion, it is enough to check that for every v € A, enjoying the conditions listed

above, we also have ord\Ej, > m+1for1<j<h—-1<e-—1
If ¢ < j, the syzygie

C'+1—2 Ch7172
l’iEjh - aijih + xjj-i-l Xy :L'h_lEiJJrl =0 (4.1)

implies that ord,E;, > m + 1, because ord,x; and ord,x,—1 > s and ord,x; = s.
Similarly if h < 4, the syzygie
i1 —2 12
l‘iEjh — {L‘thi + l’j+1l‘§]_:11 s 1’2}111 Eh—l,i =0 (4.2)
implies that ord,E;, > m + 1, because ord,xj, and ordyz;11 > s and ord,x; = s.
Assume now that 1 < j <i¢—1 and h =i+ 1; the syzygie

C'+172 C'_1—2
Tip1Bji —wiljivr +xjpxlly oD "B =0 (4.3)

implies that ord,Ej;11 > m + 1.
Similarly if j =i —1 and ¢ + 1 < h < e, the syzygie

i1 —2 12
zi1 By —xiBi g +ai T x)  T ep B4 =0 (4.4)
implies that ord,E;_1, > m + 1.
Finally ;if 1 <j<i—1and i+ 1< h < e, the syzygie

ii1—2 -2
«TjEih — l’iEjh + :L’f_:ll <o Hfzh_ll xh—lEj,i-i-l =0 (45)
implies that ord,E;, > m + 1, taking into account that we have shown above that
Ord»ij7i+1 >m+ 1.
(2) First, since the ideal defining S in A® is generated by Ej,, 1 <j<h—-1<e—1, we
have that
DIt U;;fl = {y € A},; ord,E;j(resp. ord Ej;) >m+1fori<j—1<e—1

,m

(resp. 1 < j<i—1), ordyEi—1;41 > m+1, ordyx; = s, ordyxiy1 =1},
For ~ € U;’,’Tln, we have by the proof of 4.4 that for j = 1,--- e, ordyx; > s. It follows from
the first part of this lemma that fon = U

i,m”*

O]
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Remark 4.6. Note that the syzygies (4.1),...,(4.5) are syzygies in the ring of polynomials
and not in the ring of reqular functions on S. This is essential for the conclusion in the
above lemma.

Proposition 4.7. Fori=2,---,e—1, meN, se {l,...,[F]} andl € {s,..., L}, },

Cifn is irreducible, and its codimension in Af, is equal to
se+(m—(2s—1))(e—2).

Proof . The irreducibility of C; LL follows from the fact that Dfrln is isomorphic to the
product of a two dimensional torus by an affine space. Indeed, set z;0y =, <v<m azg-y)t”,
1 < j < e. Assume that ord,z; = s and ord,x;+1 = [; then by lemma 4.5, part (2),
v € Dfﬁn if and only if ord\E; 1,41 = m + 1,ordyE;; > m+1fori+1 < j < e and
ordijZ? > m+1 for 1 < j < i— 1. Recall also that we have that ord,(z;) > s for
1=1,...,¢e
We begin by examining the condition ord,E;_1,11 > m+ 1.

If m+1 < ¢s, we have that ord,F;_1,41 > m + 1, if and only if :1:7@1 = 0 for
0 < v <m —[; this is due to the fact that we have the ord,yxf" = ¢;s and ordyz;1 = L.
Ifm+1>h+1>c¢s then

Ez@l i+l = xz(ﬁzl)xz(izl —H ()
where H is a polynomial in xES), . Z(h C’s+s), Z(Ql, . ,xﬁi}cisﬂ) and a:(c“s l), o a:giigl*l)
(where we have put xz(y) =0 for 0 < v < ¢;s — [; this follows from the case m + 1 < ¢;s).
In particular for h = ¢;s, we have that EZ(CZF)ZH = xECii’l)$£21 E )Z After dividing by
z+1 # 0 we obtain that E( 1)Z+1 = 0 gives that l‘(ms b — Z Z/:UZ+1 Exchanging :c( cis—1)

by this fraction in E(le J{i)l and dividing by xl +1 # 0, we obtain from (%) that El(c’f er+1)1 =0

is equivalent to :c(cf ) equals a polynomial function in ;1:(5) (5+1 1/1‘Z+1, 521, l(fll).

Keeping doing this with E( 1)Z+1 for ¢;s < h' < h and by replacmg in EZ( )1 H_1(see (%)) the

(cis—1l) (cis— l+1) (h—1-1)

variables z;”'| ", x| R 2t by their expressions as polynomial functions in
J:Z(»s),...,xgh 1-cis+s) 1/xi+1,x§21,...,x§i11 cis+l) , that are obtained form EZ( 1)z+17h/ =
¢S,...,h — 1, is an induction on h that permlts to express a:( 7) as a polynomial func-
tion in the variables xl( ), ... ,x(h cis+s) 1/ z—i—l’ Z(Ql, .. ,xEZICZSH). Hence, ordyE;_1 ;41 >
m + 1, if and only if xz(z)l =0 for 0 < v < ¢;s — 1 and is a polynomial function of
:1:1(,5)7 . ,xz(m*c"s“), 1z, x&—l)’ e xEZI)CiSH) forcs —1<v<m-—L

Consider now the conditions ord, E;; > m+1 fori+1 < j < e. For j = i+2, notice that
E; ;12 has the "same" shape of F;_1 ;1. It follows from the study of ord,E;_1 ;11 > m+1

that ord EZ i+2 > m+1if and only if x§+)2 =0 for 0 < v < s and is a polynomial function

of l/xi T, ),-'- ,.CCE ), 5217”' ,$§+1 D for s < v <m — s. Now by using the expres-
()5

sions of of the z;’y’s in the equations that defines ord, E; ;13 > m+1 (see the shape of the
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equation Ej ;4 3, for which we can write similar equations as (x) where H will depend on the

!/ / / / /
x,gy) s, a:z(:_)l s, 961(1)2 s and :cgi)?) s), we obtain the expressions of the xgi)?) s as polynomials in

the variables 1/x§5),x§5), e ,:cgm*s),xz(ﬁl, e ,ngfl); an inductionon j =i+2,143,...,¢e
gives that ord,F;; > m+ 1 for i+ 1 < j < e if and only if xg-y) =0for0<v<sandisa
polynomial function of 1/x58) xgs), e ,xgm S), 1‘5_21,' ,ngfl) fors<v<m-—s.

Similarly, ord,Ej; > m + 1, for 1 S J < i —1if and only if a:;'/) =0for 0 <v<

s and is a polynomial function of 1/x; (s) (s) ,x(m 8),:10( ) R ,x(Tfl) for s < v <
y 7 i—1 i—1

m — s. Taking in considerations that asgml S), e ,xET{ D are polynomial functions in the

variables $l( ), . 7$§m cis+s) 1/ z+1’ :EE?_H), e a:g'rl)cisﬂ), it follows that a closed point in

)0 . . . .
D} determines and is completely determined by the following data:

Yz € K7,

xESH) x(m) c K,

P

I+1
Aol ek
xETfrl_l), . ,xETl) eK

xg.m“‘s),...,x(.’”)eK,j:1,...,i—2,i+2,...,e

As a consequence, the dimension of D , hence of its closure C 1 isd = 2m+-s(e—4)42.
And the formula of the codimension is obtalned by considering (m +1)e —d.
O

Remark 4.8. The final presentation of the proof of the proposition 4.7 was suggested by
the referee.

Fori=2,...,e—2,let X* =SpecK[z;_ 1,2, vi11]/(Tic12i01—2 §).Forse{1,....[%1},
let

Vim = {v € Xﬁn,ordv(xj) >s, j=1i—1,i+1, ord,(z;) = s},
and for [ € {s,..., Li,.}, let
ol— v e XU ord(z;) = s, ordy(zit1) = 1}.
The algebraic morphism

Klzi—1, i, 2i41] Kz, ...,z
(:L’ifll‘prl—l'fi) (Eij,1§i<j—1§€—1)
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induces a natural map p’ : S — X?; the associated map pi, : S, — X}, induces
morphisms
N N
m 25 I(Czs2ss 1 N D(mES))) — me and Dzs,m — A'Ls,m
Now in view of lemma 4.5 (see also the proof of proposition 4.7), we have the following
proposition.

Proposition 4.9. The maps

Tys 1 (Com N D)) — V3, and DjY — AL

m,2s—1\~¢,
are isomorphic to trivial fibrations of rank s(e — 3).

Proof : For the second map, this is the geometric translation of lemma 4.5 and proposition
4.7. In particular, the rank of the fibration is determined by the number of free variables

2" e K j =1, i 2042, ey

(see the last line of the proof of proposition 4.7): fixing these variables gives a point in the
fibre above a fixed point in Affn The proof concerning the first map is similar. O

The following propositions are preparatory for the proof of proposition 4.13, which
states that SY, is the union of the szl

Lemma 4.10. Fori=2,...,e—1, and s € {1,...,[%]}, the irreducible components of
V3 are the ASL 1 {s,. .. LS b

,m 1,m’

Proof . First, assume that m + 1 < ¢;s, so that Lj , =m+ 1 —s. We have that
Vin =17 € A3 ordyx; > s,j=1i—1,i+1,0ordyx; =s

and ordyxi—1 + ordyxiyr > m+ 1}

and for [ € {s,...,m+ 1 — s},

Af”l ={ye A’ ; ordyx; = s,ordyxip = lordyz;iy >m+1—1} =

Ve 0,000, 00l D))

Since s <1 < m + 1 — s, we have that ASl C Vi, 80 Us<i<mi1— AN VS . Now

,m
for v € Vims we have that ord,z; = 5,1 := ord ATiy1 > s and ord,xi—1 > m + 11 If

Il < m+1—s, we thus have that v € Alm,
yeV(x 5 )17---7531(-8;11),332(-0)7,“ (s—1) x’EJr)17 - a:l(fl S)) Asm+1 * hence the claim.
Now assume that ¢;s < m + 1, so that L], = (¢; —1)s. For l e {8 ., (¢i — 1)s} and

ASZ

7,m?

if | > m+1—s, we have that ord,z;—1 > s, hence

we thus have that ord,z; = s,ord,x;;1 =1 > s, and Ord'yxi 1+ 1 =¢;s, hence

ordwxi_l = ¢;8 — | > s, therefore Affn C V7, and Usqi<(e; ,USA C VS
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On the other hand V,, = (7}, ..o 1)~ (VZSC o_1) Where 7l 0 Xb — X! is the
natural map. For s <[ < (¢; — 1)s, we have that Affn = (Tr;n,cisfl)_l(Af,ﬁis—l)'
Now we have just seen that m = UsSlS(ci—l)sAf:iis ; and that
Al =V 5)1,...,955“; P00 el 9 ),

As a consequence (7, ..o 1)~ (Af’é s_1) Is isomorphic to the product of an affine space
by the space of (m — ¢;s)—jets of the surface SpecK|xz,” (Cls l)’ngs)’ Z(Ql]/( s g, O

c; -
:cl(»s) ), and this latter is irreducible by section 3, hence coincides with Affn So Viim C

Us<i<(ci—1)s A“ln, hence the claim.

O
Proposition 4.11. Let m,s € N such that s € {1,...,[%5]}.
1. Fori=2,-- — 1, the irreducible components 0f7rm 05— 1(02’2‘1, 1N D(z S ))) are the
cplle {s,.-- (g,

2. Fori=1,e, we have that 7" 25-1(Cips 1 N D(x (S))) is irreducible of codimension
se+(m—(2s—1))(e—2)

in A? . Moreover we have that

3,8 SLfm
(C35, N D) = C

T 28 1 2,m

and

ke 1 (Cin_ N D)) = ¢

m,2s—1\~q e—1,m"

Proof : (1) By the lemmas 4.4 and 4.5, we have that DSl C 7Tm 25-1(Cins 1 ND(x l(s)))

K3
{veAf,; ordyzj>s, j=1,--- e, ordyx; =s, ordyEi_1;41 > m+1,
ordyEji(resp.ord,E; j) > m+1, for 1<j<i—1(resp.i<j—1<e—1)}.
Now in view of proposition 4.9, the maps

Tl 1 (Cip N DY) — V2, and DY — AT

1,25—

are isomorphic to a trivial fibration of rank s(e — 3). By lemma 4.10, the irreducible
components of VS are the Affn, Led{s,....,L],} Since V;°, = V5 N D(asgs)), we thus
have V3, = (A“ N D(Y)); so mk,_ 1(cj;s N D(x ”)) ~ U, where Qs’l

(ASZ N D(x, (s) )) x A*(¢=3) As a consequence Q ., is irreducible and we have that D

l
Q" . Moreover
i,m

Codim (!, AS) = (e = 3)(m+1) + (m+s+1) — s(e — 3) =

,m’
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(m+1)(e — 2) — s(e — 4) = Codim(CS! (A°),

,m’

U ! 1 Tl N 71
hence Cim = sz and the claim follows since C'Zm # C’im for I £1.
(2) Assume 7 = 1, the case i = e follows in the same way. We first check that

7.‘_;17125_1(0“97258_1 N D(xES))) =

2y
{ve A, ord,(x;) >s, j=1,...,e, ordy(z1) = s,
ordyEi; >m+1 for 3 <j <e}.
The inclusion “ C “ is clear. To get the opposite inclusion we have to prove that the
conditions just listed imply that ord,E;, > m+1for 2 < j <h—-1<e~—1. Thisis an
immediate consequence of the syzygie

Cir1—2 Ch—1— _
:L'lEjh — ."L‘jE1h + aﬁjil Ty l‘h_lEl’jJrl =0.

Therefore, 7rm125 1(Cipe 1N D(xgs))) is isomorphic to the product of K* by an affine space
of dimension (m — )+ (m—s+ 1)+ s(e —2) and its Zariski closure is irreducible of
codimension (m +1)(e —2) — s(e —4) in AS,.

Now the equality

— S,8 57Lf,m
7rm,12371(c 2s—1 n D(mg ))) =C

7 2.m
follows from the fact that by propos1t10n 4.1 we have that Cont®(x1)NCont®(z2) # 0, hence
ﬂ;}Qs_l(Cf;s 1N D(l‘g ))) ﬂwm 95 I(szss 1N D(wg ))) # () ; since this latter is irreducible,
its generlc point ~ coincides with the generic point of one of the irreducible components

of 7Tm 25— 1(Cis_ U N D(:Ués))). The condition ordyE7 2 > m + 1 shows that this irreducible

component is C’Q’ i . The other equality in the statement has a similar proof.

O]

Lemma 4.12. Fori=2,...,e — 2, we have that
$L5 10
Cim = Citim’

Proof : If m+ 1 < ¢;418, by definition msJrl = m+1—s, and in view of lemma
4.3 and lemma 4.4, we have that Ds > C 7rm 25— 1(Cisf1 9s—1 N D(x £+)1)) Now by proposi-
tion 4.11, the irreducible components of 7Tm 05— 1(Cff1 9s—1 N D(x 5421)) are the C’fjl 1 for
L€ {s,....Li,y,} Since C’S S Dss is 1rredu01ble and its codimension in A¢  coin-

cides with the codimension of any of the CZ 1,m» there exists [ such that C’s e =C; Jrll m
with s <1 < m+1—s. So D, and DSJZI ., are dense open subsets of C’f; and there
exists v € DSS N D+1m

Ci+1

But F;ii2 = zwit2 — 2, and ordyEj ;190 > m + 1. Since m + 1 < ¢;418, this implies

We thus have ord,x; = ord,z;11 = s, and ord,z;12 = L.
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: S,Lf m
ordyxizo =1>m+1—s,s0ol=m+1-s,ie. C’f; = CZ.HE‘
Assume now that m + 1 > ¢;11s; for any v € D;” | we have that ordyz; = ordyzit1 = s

and ord,E;;yo > m + 1, hence ordyzits = (ciy1 — 1)s = L:, 1, which implies that

s,L3 . . . . .
D> C D, +f1+nl’m. Since both are irreducible and have the same dimension, we deduce by
s,L?

i+1,m ]

passing to the closure that C;7> = C; '}

Let S := m,1(0), where O is the singular point of S. Note that m,'(S — {0}) is

m
an irreducible component of S, of codimension (m + 1)(e — 2) in AS,; we will see that

m?
the irreducible components of SY, have codimension less than or equal to (m + 1)(e — 2),

therefore they are irreducible components of Sy,.

Proposition 4.13.

SY = U oo

i€{2,e—1},5€{L e, [} 1€ s, L2, }

Proof : We first look at the case m=2n+1, n > 0. We claim that

0 -1 ) +17 +1
Song1 = U 7T2n+1,2571(ci,283—1 N D(ngs))) U CZ%ﬁ . ()
i€{l,....e},s€{1,...,n}

The proof of the claim is by induction on n. By lemma 4.3, we have that S = CZ{ ’11 for any
i =1,...,e, hence the case n = 0. Using the inductive hypothesis for n — 1, and the fact
that for s € {1,...,n — 1} we have that ma,_12s—1 © T2n+12n—1 = T2n+12s—1, We obtain:

0o _ _—1 0 _
Son41 = 7r2n+1,2n—1(52n—1) =

_1 b ( ) _1 b
U 7T2n+1,2s—1( 1'8,283—1 n D(%S )) U 7T2n+1,2n—1( 322—1)-
ie{l,...,e},s€{1,....n—1}

The claim follows from the stratiﬁcat%o)n - -
Cigp1 = Ujz1,.. o(Cily 1 N D(xjn ) U(Ci,q N V() - xe™)),

K3 (2 (2

and from the fact that by lemma 4.3, 73, 5, 1 (Ci)_1 N V(a{’”, ezl = C’?;nlflﬂ.

We conclude the proof of the proposition for m = 2n + 1 from proposition 4.11 (1) and
(2).

The case m =2(n+1), n > 0 : by (¢) we just need to prove that for n > 0, and
i =1,...,e we have that

-1 n+1n+1y n-+1,1
7T2(n+1),2n+1( i,2n+1 ) = U{i:2,~~-,e—1 : l:n+1,~~,L?;r(anrl)}Ci,Z(nJrl)'

First note that by lemma 4.3 and 4.4, we have the inclusion

—1 n—+1,n+1 n+1,0
Totr1)2nt1(Ciznit ) 2 Ugizg oot l:n+1,...,L?;<171+1)}Ci’2(n+1). (¢)
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The proof of the opposite inclusion is by induction on the embedding dimension e of S.
First assume that e = 4; the equations defining S in A? are FE3, F14, Eoy. So the ideal

defining 7r2(}1+1)72n+1(022+nl_ﬁ+1) in Ag is generated by

(n+1)

(0) Q) E(2n+2)7E£in+2)’E§in+2); j=1,..4),

(7w By

1 3 -1 n+1n+1 . . . . 4
hence every irreducible component of my; .5, +1(Ci9,11" ) has codimension in Ay

less than or equal to 4(n+1) +3=4n+ 7.
Now we have that

n+1)

-1 n+1ln+1y -1 n+1,n+1 (n+1)
Tom+1)2nt1 Cigni1 ) = U Tomst)2ni1((Ciantr N D(@;77)))
j=1,...4
-1 +1,n+1 (n+1) (n+1)
U 7T2(n+1),2n+1((022n+q AV(ey oz )

. -1 n+1,n+1 (n+1)
= U 7T2(n+1),2n+1((cz',2n+1 ND(z;")))
j=1,..4

— n+1n+1 n+1 n+1
U 7T2(}1+1),2n+1((0i,;1+1+ ﬂV(xg )""’xz(l ))))-

Moreover by proposition 4.11 part (2), indices 1 and 4 are superfluous. In addition by
lemma 4.3 and proposition 4.11. 1), we have that for j = 2,3,

-1 n+1,n+1 (n+1)\y n+1,1
7r2(n+1),2n+1(Ci,2n+1 n D(xj ) = U Cj,2(n+1)'
I=n+1,...,(2(n+1)) 7
-1 n+1ln+1\
Hence 772(n+1),2n+1(0i,2n+1 ) =
+1,1 -1 +1,n+1 (n+1) (n+1)
U Ciantt U Toganyann(Cianit NV (@™, 2™,
I=n+1,...,2(n+1))7+; j=2.3
. 1 +1,n4+1 +1 +1
Finally we have that 71’2(”_‘_1)’2”_‘_1((02%& N V(xgn ), . ,xin )))) =

{7 € Songry, ordyzy >n+2, j=1,...,4} ={y € Ag(m—l}» ordyr; >n+2, j=1,...,4}

=v(E®,. 2 =1, 4

is irreducible of codimension 4(n + 2) in Ag(nﬂ). Since 4(n +2) > 4n + 7, it is not an

1 n+1nt1 .
n+1)72n+1(Ci72n+1 ), hence the claim.

We now assume the lemma to be true for toric surfaces S of embedding dimension é with

4 < é <e—1. We have that 7T2_(}1+1) 2n+1(025211ﬁ+1)

irreducible component of W;(

-1 C?H-l,n-i-l ml)(x(n+1))) U 71-_1

n+1,n+1 (n+1)
Totm+1),2n+1(Cizni e st 2nt1(Cignir N V(z).



4 JET SCHEMES OF TORIC SURFACES 19

1 n+1,n+1 (n+1) s,8 .
n+1),2n+1(ci,2n+1 ND(ze 7)) C Ce71,2(n+1)’ S0 1t re-

2(1L+].) QnH(CZ;}QHHV(;U&”H))). The discussion splits into two cases:
i) There exists h € {3,...,e} such that ¢s—1 >2and ¢ =+ = ce—1 = 2.

By lemma 4.3, we have that = (Cgrnlﬂﬂ n V(xgn—i-l)) _

By proposition 4.11, part (2), 7T2_(

mains to determine 7

1
2(n+1),2n+1
{v € Sony1y; ordyz; >n+1, 1<j<e—1, ordyze >n+2} =

{’yGA&nH); ordyz; >n+1, 1<j<e—1, ordyre >n+2,
ordvEjp >2n+3, 1<j<k—-1<e—1}.

Now recall that Fe_o . = xc—27e —xZe__f. If h < e, we have that c._1 = 2, so for v € Ag(nﬂ)
such that ord,ze—2 > n+1,0ordyx, > n+2 and ord,E._2. > 2n + 3, we thus have that
20rdyxe—1 > 2n + 3 hence ord,r.—1 > n + 2. Similarly, if ¢ > h, for v € Ag(nﬂ) such that
ordyri1 > n+1,ordyx;y1 2 n+2and ordyE;_1,;11 > 2n+3, we get that ord,x; > n+2.
By descending induction on ¢, this shows that

CZ;;}_&H N V(azgnﬂ)) - V(ménﬂ), e ,x(”ﬂ)).

-1
7T2(n+1),2n+1( ¢

Note that this inclusion is verified by definition when h = e. Moreover, for v € Ag(n +1)
such that ordyx; > n + 1(resp. n 4+ 2) for 1 < j < h(resp. h < j < e), we have that
ordyEj, > 2n+ 3 if h < k < e, indeed we have that

ordyx;xp, >n+1+n+2=2n+3, and
O’T’d,y.rj_t,_lw;{:f—2 . xZ’“_’ll_2:ck_1 >3(n+1) (resp. n+1+n+2)

for k = h(resp. k > h). Therefore we have that 7T2_(1H_1) 2n+1(022t11£+1 NV (@) =

{7€A§(n+1); ordve; >n+1,1<j<h—1ordyx; >n+2h<j<e,

ordyEjp, >2n+3,1<j<k—-1<h-2}.  (00)

If h > 5, this can be interpreted geometrically as follows: Let S be the toric surface in
APl = Spec[r1, ..., zp_1] defined by the ideal generated by (Ej,,1<j<k—1<h—2)
and fori =2,...,h—2, meN,se{l,...,[F]}, € {s,...,Lim} let

Ds,l

7,m

={y € Sp; ord,z; = s,0ord xis; =1}

and CN'ZSTZ = ﬁffm finally for m > p, let 7, : Sy — Sp be the canonical projection. By
lemma 4.3 again, we have that

-1 An+1n+1 h—1 . .
7T2(n+1)72n+1(022n+7§ )={y € A2(n+1), ordyr; >n+1,1<j<h-1,

ordyEj, >2n+3,1<j<k—-1<h-—2}
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Cn+1,n+1 A V(w£”+1)) _

—1
Therefore we deduce that To(n+1),2n +1(Cionih

-1 “n+1n+1 (n+2) (2(n+1))
7r2(n+1),2n+1(022n+ni ) X SPGCK[UCjn yeees Xg (n yj=h,... e,

which by the inductive hypothesis is equal to

An+ll (n+2) (2(n+1)) .
U Ci,2(n+1) X SpeCK[ij oo Ly yj=h,...e].
) n+1
7,:2,...,]’1,72; l:n+1""’Li,<2‘r(n+1)
Newt we claim that
nt Ll (n+1) (n+1)
U e Vg, 7, x ).
i=2,..,h—2; l=n+1,...,. L7}

3,2(n+1)

n+1,1

i,2(n+1)
-1 Flntly . ,
7r2(n+1)’2n+1(C’Z-Tf%f1 ), ie. ordyx; >n+1forl<j<e, ordyx; =n+1 and ord,Eje >

2n + 3. Since ¢ < h — 2 and ¢,_1 > 2, this implies that

Indeed, let v € D for some ¢ and [ in the above union. We have that v €

Ci+1—2 Ce—1—2
ord,ysciﬂxi;l Ty TTe—1 2> 2n+ 3,

therefore ord,x;x. > 2n + 3, thus ordyx. > n + 2, and since we have proved that

- 1n+1 +1
7T2(L+1),2n+1(0$;1£+ N V(w(en+1)) - V(xgn )> e >33£n+1)>’
we deduce that CZ;(:;-ZH) = DZ;(L?LI) C V(ménﬂ), e ,A"*”).
Finally by proposition 4.7, Cf;(;’il) (resp. C?;(}z’-lu)) is irreducible of codimension (n+1)e+
e—2(resp. (n+1)(h—1)+h—3)in Ag(nﬂ)(resp. Ag(nl_i_l)), therefore
: LU i ALY (n+2) @(n+1)
dim CZZ(n—s—l) = dim C?,2(n+1) X SpecK[mj . yJ=h,... €

forany i € {2,...h—2}1' e {n+1,..., L?E%nﬂ)}, and we deduce from the first inclusion
(o) that C’f;(:l’il) coincides with C’Z};(lnl;l) X SpecK[x§n+2), .. .,xf(nﬂ)),j =h,...,e| for
some i € {2,...h—2},and ' e {n+1,... ,L;g%nﬂ)}.
But we have that ordyxz; = n + 1, ord,(xi+1) = [ for v the generic point of Cf;(;’il),

therefore since i+1 < h—1, we have that ord;z; = n+1 and ordsx; 1 = [ for 7y the generic

point of é;;(lﬁl;l . Therefore 7 € CN'Z.TL;(;’L) and we deduce that C’Z,L;(l?’f;l) C C’Zl;(}l’il). But
since they are irreducible of the same codimension they are equal, so we have that
n+1,0  _ An+1]l (n+2) (2(n+1)) .
Ci’2(n+1) _01,2(n+1) x SpecKl[z; "7, ... z; yj=h,... e
We thus have that
-1 n+1,n+1 +1 o n+1,0
7T2(nJr1),2n+1(C’i72n+1 n V(xg” ))) - U Cz‘,2(n+1)’

. g n+1
=2, h=2sl=n+1,.. . L5 Ly
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and the claim follows.(Note that we get that

TLJrl,l _ n+17l
U Cramst) = U Cramsn)
i=2,....h—2,e—1,l=n+1; ...,L i=2,....e—1,l=n+1; .., L™

n+1 n+1
4,2(n+1) %,2(n+1))

as an immediate consequence of lemma 4.3 and lemma 4.12.)

Ifh =4, let S be the toric surface in A? = SpecK[z1, 72, x3] defined by the ideal (Ej 3)
and let C’g(:il) = {7 € Sony1y; ordyz; > n+1, j=1,2,3}. The equality (o) reduces to

— n+1,n n ~n n+2 2(n+1 .
7r2(1t+1),2n+1(0i,;—nl+1+1 N V(xg +1))) = Cg(j;il) X SPGCK[xE' " )> - -,x§- (nt ))J =4,... ¢l

Since E3 = xixg — x9?, if ¢g > 2, CN’;‘(TZL) C SpecK[xg-"H),...,x§-2(n+l)),j =1,...,3]
is defined by the ideal (xgnﬂ)xénﬂ)), S0 C’;L(Zil) = V(:cgnﬂ)) U V(a?gnﬂ)) while it is
irreducible if ¢y = 2.

We check as above that

n+1,1 n+1 n
U gy cvE. el

_ +1
l—n+1,...,L;2(n+1)

and that dim C77H ) coincides with the dimension of any irreducible components of

2,2(n+1
C’g&il) X SpecK[x§n+2), . ,x§2(n+1)),j =4,...,e]. Again in view of (¢), each C’;’JQF(ZIJFD is
an irreducible component of 63(211) X SpecK[a:gnJrQ), .. ,:CE.Q("JFI)),]' =4,...,¢€].
If ¢ = 2, then LZ;(I”H) =n + 1 and we thus have
1 +1,n41 +1)\ _ ~mtlntl
7r2(n+1),2n+1(022n+q N V(xgn ))) - Cg,g(nj_l) .

If ¢5 > 2, we have that LT} y=n + 2, and the same argument as above shows that

2,2(n+1
C;;(ITLT:I)I = V(xgnﬂ)) X SpecK[ménH), . ,x}g(nﬂ)),j =4,...,€
CZ;F(ZT{)Q = V(ﬂsgnﬂ) X SpeCK[$§n+2), e ,$§-2(n+1)),j =4,...,¢€].
We thus have
Tamen o (Clanil NV (@) = U Coatms)

. +1
I=n+1; A..,LZQ(nﬁ_l))
hence the Claim.

Finally if h = 3, by (¢0) we have that 7r2_(1L+1) 2n+1(CZ;nlﬂ+l NV (")) =

SpecK[acgnH), cee x§2(n+1)),j =1,2] x SpecK[$§-n+2), e ,x§-2(n+1)),j =3,...,¢€].
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Now we have that C;'QH Tlr)l C V(x (n+1), ... ,:Uénﬂ)) Indeed, for v € D:L;nlfl”, we have

that ordyzo = n+1,ordyrs =n+2,ordyx; >n+1,7=4,...,e and ord,Ez; > 2n+ 3 for
j=4,...,e.Since c3 = ... = Ce—1 = 2, this implies that ordyxj >n+2for j=4,... e,
so vy € V(xé o (n+1)) We conclude that 7, (n+1) ZnH(C:l;nlﬁlﬂ NV ("+1))) =

C”H(1 :L_J{)Q because both sets are irreducible and have the same dimension, and the claim

follows in this case.

ll) IfCQZ e = Ce—1 = 2 then
—1 +1n+1y (0) (n) .
7r2(n+1),2n+1(022n+nl ) - V(xz yeeesly Ty, U= 17 , 1,

:J:Enﬂ):rg-nﬂ) — :cgflrl)x;f{l), 1<i<j—1<e-—1).
The ideal generated by (z; (nt+1) §n+1) — mgnjfl)mgntl) 1<i<j—1<e—1),isisomorphic

Cn+1,n+1

to the ideal defining S in A®, hence it is prime and ( 1), 2n+1( i2n41

) is irreducible.
It follows from proposition 4.11, part (2) that

—1 n+1,n+1y _ ~n+1n+l
7T2(n+1),2n+1(0i,2n+1 ) Ce—1,2(n+l)’

thus the proposition in this case.

O]

Remark 4.14. Note that the argument that we use in the proposition 4.13 for e = 4 does
not work in general. The argument works in the case e = 4 because the number of equations
that define S C A® (this number is (631)) 1s less or equal to e if and only if e < 4.

Ls
Theorem 4.15. Let m € N, m > 1. Modulo the identiﬁcations Cim = C:H’jnlm, the

i=2,---,e—1,s€e{l,....,[F]}
andl € {s,...,L;,}}. The irreducible components of Sp, are Tt (S\0) and the irreducible
components of S9,.

Proof : By proposition 4.13, S,, is covered by the C’Sl Consider C’Sl with [ # L?

zm’

since | < L7, this implies that m > 2s — 1 and ¢; # 2. For the generlc point v we know
from lemma 4 2 (part 2) that for 1 < j <i—1,ord,z; > s.

This forbids that C5¢ ¢ C’Sl or C’Sl C C’Sl for ¢/ € {2,...,i — 1} because by

i/ ,m
proposition 4.7, they have the same codlmenswn in A , hence an 1nclu81on as above implies

that they shoud coincide, so ord,x; = s. On the other hand CSZ 4 cl if s < s’, because

i’,m?

by proposmon 4.11, CSl has non-empty intersection with D(z; (s )) but CS e V(z; (s ))

irreducible components of SY, = ,.1(0) are the C;’

zm7

Finally, C gZ CS ! hecause by proposition 4.7 the codimension of the ﬁrbt one, is less
then or equal to the codlmensmn of the second one, and the first statement of the theorem
follows. The last statement of the theorem follows from the fact that

codim(C  AS ) < codim(mm!(S\0), AS,).

,m’
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Indeed : By proposition 4.7, codim(Czé,A%) = se + (m — (2s — 1))(e — 2). By re-

mark 2.2, we have that codim(m,'(S\0),A%,) = (m + 1)(e — 2). and we have that for
s>1,se+(m—(2s—1))(e—2) < (m+1)(e—2) if and only if e > 4. O

Definition 4.16. Let m € N, m > 1, and let C be an irreducible component of SO, and v
be its generic point. By Theorem 4.15, there exist s € {1,...,[%51}, L € {s,..., L]} and

i€{2,---,e—1} such that C = Cfél We say that C has index of speciality s.

Note that s = ord,(M) := mingep{ord,(f)} where M is the maximal ideal of the
local ring Og and 7 the generic point of C.

Fori=2,...,e—1,and m € N, we set
N (m):=L;,, —s+1.

For m € N, m > 1, we call N(m) the number of irreducible component of SY,. Then
counting the irreducible components in the Theorem 4.15 we find

Corollary 4.17. If all the ¢; are equal to 2, then N(m) = [F]. Otherwise let c;, ..., c;

h

be the elements in {ca,...,cc—2} different from 2, then we have
3]
N(m) = ) (Ng, (m)+(NZ (m)—=1)+...4 (N (m)—1)).
s=1
Moreover, for s € {1,...,[5]}, the number of irreducible components of SO of index

of speciality s is equal to

N, (m) + (N2, (m) = 1)+ ..+ (N2, (m) — 1.
Corollary 4.18. Let S be a toric surface. The number of irreducible components of S9, and
their dimensions determine the embedding dimension e of S and the set {c;, t = 2,...,e—2}.

Proof :  We have that dim(Sy) = e, the embedding dimension of S. If ¢ = 3, then for m
big enough, we have by theorem 3.1 that N(m) = c is constant, and we deduce that S is
an A, singularity. Suppose the e > 4.

For m > 1, let

w‘g

(2]
N(m)=) (m+1—2s—1))+(e—3)(m+1—(25s—1) —1).

s=1

We have that N(m) < Nj(m) and N(1) = Ny(1) = 1. Let

my =min{m ; N(m) < Ni(m)} and a; = Ni(m1) — N(m1),
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then there exists i1, ,iq; € {C2,...,Ce—1} such that ¢;;, =--- = Cio, = M1.
If @1 = e — 2, then we have found all the ¢;. If not, then for j > 2, we recursively define

5]

ol

Nj(m) = ) (Ng, (m)+(Ne, (m) =1)+ -+ (Ne, (m) =1)+---+
s=1
(N (m) = 1))+ (e~ 2 — (a1 + - + ;1)) (m+1— (25 — 1) - 1),

Cia1+-»-+o¢j71

m; =min{m ; N(m) < Nj(m)} and «; = Nj(m;) — N(m;).
Therefore there exists o, 4. ta,;_ 1415 s las+-ta;_1+a; € {C2,---,Ce—1} such that

Cia1+.A.+aj71+1 = cia1+'“+o‘j71+aj - m]

If oy + -+ 4+ aj_1 + aj = e — 2, then we have found all the ¢;, otherwise we repeat the
procedure at most e — 2 times. O

Remark 4.19. Corollary 4.18 is to compare with the result of Nicaise in [Ni], where
he proved that the motivic Igusa Poincaré series of a toric surface is equivalent to the
set {ci,t = 2,...,e — 2}, and that the order of the c¢; in the continued fraction can not
be extracted from this series. It is clear also from the formulas given in proposition 4.7
and corollary 4.17, that the number of irreducible components and their dimensions is
not affected by the order of the c¢; in the continued fraction. Note that despite that these
informations on the jet schemes are closely related to the informations encoded in the
motivic Igusa Poincaré series, they are not equivalent in general.

Below we show how we extract all the ¢; and their order or equivalently the analyt-
ical type of S from their jet schemes. We first explain in the next proposition how the
components C;;fl behave under the truncation morphisms 7, ;,—1. The proof follows from
section 3 and propositions 4.10,4.13.

Proposition 4.20. Let m € Nym > 1. Leti € 2,...,e—1, and | € {1,...,L}7m}. For
2 <m < ¢ — 1, we have the following inclusions

Tm,m—1 (Cfi:rfq,) C Cl’l_l

i,m—1?

whenever | —1 € {1,..., L }.

Tmm-1(Ci) € Cio

i,m—1?

whenever | € {1,..., L} .}. For m > ¢;, we have

7rwuvﬂ—l(cil,fn) ccpl

i,m—1?

forl € {1,...,¢; — 1}. And these are all the inclusions between components of index of
speciality 1 induced by T m—1,m > 1.

m32(C73) C Oy, for i €4{2,...,e—1},1' € {1, L} ,},

This means that it is included in all the irreducible components of the level 2 jet scheme.
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As in section 3, we now attach to the structure of the jet schemes of S a weighted
graph that detects the invariants of the singularity S.

Definition 4.21. 1. The weighted graph of the jet schemes of S is the levelled weighted
graph T' obtained by

e representing every irreducible components of SO, m > 1, by a vertex Vim, where
the sub-index m is the level of the vertex;

e joining the vertices vi m41 and viym if the morphism mp41,m induces a mor-
phism between the corresponding irreducible components;

e weighting each vertex by the dimension of the corresponding irreducible compo-
nent.

2. The index 1 weighted graph of the jet schemes of S is the subgraph T'* of T' whose
vertices are those associated with the components of index of speciality equal to 1. It
is obtained from I' by deleting the other vertices (those corresponding to irreducible
components of index of speciality different from 1) and edges with at least one of the
extremities not corresponding to an irreducible component of index of speciality 1.

We first will describe the subgraph I''. The last inclusion in the proposition 4.20 implies
that we can detect the vertex associated with the component CZ 52. We then can extract the
graph I'! from T' by deleting all the vertices and edges which are connected to the vertex
associated with CZ ’32, and whose index of speciality is not 1. Then, applying proposition
4.20, we find that I'" can be constructed from the ;s as follows: for every i = 2,...,1 —
1, let T} be the graph whose vertices are in 1 - 1 correspondence with the irreducible
components ol m > 1, and I € {1,... 7Lzl,m}; the graph I'! coincides with the graph

i,m’
1,L}
associated with an A, , singularity in section 3. The identifications C’i nll =G, _5_117:11””,
induce identifications between infinite lines of I'; and 'y, ; (See the next example). Then

I'! is the union of I'} modulo the identifications. We then obtain :
Corollary 4.22. Let S be a toric surface.

1. The weighted graph T' determines the embedding dimension e of S and the set {c,t =
2,...,e—2}.

2. The order of the ¢;’s which are different from 2.

Proof. The first part follows from corollary 4.18 knowing only the weight of the vertex
corresponding to SY, i.e. its dimension. It follows from the discussion above (mainly
from the last inclusion in the proposition 4.20) that, given I', we can extract I'' from it.
The order of the ¢;’s which are different from 2 is then extracted from I'! thanks to the
identifications described above (see the figure in the next example for an illustration).

O

Remark 4.23. Notice that if ¢; = 2, then F} looks like a line and is not possible to detect
where it sits on T’ after the identifications.
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Example 3. We consider the toric surface singularity defined by the cone generated by
the vectors (1,0) and (4,11). We have that 11/4 = [3,4]. Below we show the subgraph
rt=riu I‘Zl)) of the graph T of this singularity. First we show the graphs T's and I’é. To
keep the figure the simplest possible, we do not weight the graph here with the codimensions;

but he weights are essential to detect the invariants of S. And after the identifications we
obtain T'! :

. - ; ;
, . . A L !
6 6 r
5 C ol 5 < I [ r '(*;
4 . L b, 4 o 3 . p P .
| e 1< ? o
2 L - 2
oz cll
1 \/ 1
m ol m
1} T}
N
8 - - -
, ! L ! .
6 - - -
- . .
s o o . o
4 ¢ ]l - (‘j: > (] . - c
3 iz L1
2 P
1
Tt
To recover ca, . .., ce—1 with their order (mainly the order where the ¢;’s which are equal
to 2 appear), we will need to put more weights on the vertices of I' associated with the
: : 0. 1,2 A1 ~11 1,1 ) ) .
irreducible components of S5; these are Ci1,2’ C’iz,?’ Ci272, cee Cih72 where i1, ..., are like
. . 1,2 0. 1,1
in corollary 4.17. Back to the equations of S, we find that C; "y ~ Slioi] . Ae C',L»j’2 ~
Slisiieil 5 A€ for j=1,...,h where ig = 1,ip41 = €, Slizii+1] is the toric surface defined

by the 2 x 2 minors of the matrix
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1 1
D
(1) 1)
Ti SRR e
in K[xl(j), ey xz(jil] and A° = K[l'?), . ,:cf)]. Note that for j =0, ..., h, the embedding

dimension of Sli-ii+1] is ij4+1—1t;+1, in particular Slizii+1] is isomorphic to A? if and only if
ij+1—1t; = 1. Hence, after weighting the vertices corresponding to irreducible components of
S9 by their embedding dimensions, we see how the ;s which are equal to 2 are distributed
between the other ¢;s. Hence we define an other weighted graph as follows:

Definition 4.24. We denote by ET the weighted graph which is obtained from I' by weight-
ing the vertices of I' associated with the irreducible components of S by their embedding
dimensions (note that by the definition of T', these vertices are also weighted by their di-
mensions,).

Hence we obtain:

Corollary 4.25. Let S be a toric suface. The data of the weighted graph ET of SY is
equivalent to the data of all the ¢; and of their order in the continued fraction, or equivalently
to the analytical type of S.

Remark 4.26. Note that if we reverse the order of the c;, the obtained toric surface will
be isomorphic to the original one.

Using a theorem of Mustata in [Mus2|, we obtain as a by-product the log canonical
threshold lct(S, A°) of the pair S C A®:

Corollary 4.27. Let S be a toric surface of embedding dimension e. If e =3 (i.e. S is an
A, singularity) then lct(S,A°) = 1, otherwise

let(S, A%) = g

Proof : By |Mus2| we have that

m(Sm, A7
let(S, A®) = min Codim(S m)
meN m + 1

The case e = 3 follows from section 3, since in this case we have that S,, is irreducible of
codimension m + 1. Let us suppose that e > 4. If m is odd, m = 2s — 1, s > 1 then the

component C; ’255_1 is of maximal dimension and we have that

Codim(Cy, 1,AS,_1)  se

7, _

se_ ¢
2s 25 27

If m is even, m = 2n, n > 0 then the components Cféln,

of maximal dimension, and since e > 4 we have that

> — _ n
1=2,...,e—1, l—n,LLm are

Codim(CZéln,Agn) _ne+e—2 S €
2n + 1  2n+1 T2
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and the lemma follows.

O]

Corollary 4.28. Form > maz{c;, i = 2,--- ,e—1}, the number of irreducible components
of SO, with index of speciality s = 1, is equal to the number of exceptional divisors that
appear on the minimal resolution of S.

Proof. This comes from the comparison of corollary 4.17 with proposition 2.3. O

Remark 4.29. The corollary 4.28 is to compare with the bijectivity of the Nash map, due
to Ishii and Kollar for this type of Singularities, [IK]. Actually, the projective limits of the
systems (Cll,;)m gives rise to the irreducible components of the space of arcs centred at the

singular point of S.
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