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1 Introduction

This article has two sources of motivations :

On one hand, Teissier’s approach to resolution of singularities, which roughly
speaking consists in re-embedding the variety, in such a way that in the new
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coordinates, the variety is non-degenerate with respect to its Newton polyhe-
dron in the sense of Khovansky-Kouchnirenko, so that it can be desingularized
by one toric morphism. In particular in [GT], the authors, by considering the
specialization of a plane branch C to the monomial curve whose semigroup is
the one of C, gave such a desingularization for plane branches.

On the other hand, Nash’s approach to detect the intrinsic data in various
abstract resolution of singularities of a variety, from its arc space. While the
arc space contains information about abstract resolution of singularities, jet
schemes, as pointed out in [ELM], encode information about embedded reso-
lution of singularities (See also [dFEI]).

In the case of a plane branch C ⊂ C2, we will mix the two points of view as
follows: First we will use some information about irreducible components of the
jet schemes in order to detect interesting divisors that appear on the minimal
embedded resolution of C, namely the root divisor, the end divisors and the
star divisors (see definition 25). Then we will associate with these irreducible
components a combinatorial data, that we will exploit to give an embedded
resolution of the branch C ⊂ Cg+1. This last resolution is special between
those given in [GT], in the sense that its restriction to the strict transform of
the plane C2 is the minimal embedded resolution of C ⊂ C2. This also gives a
jet-theoretical interpretation of the notion of maximal contact in [L].

2 Jet schemes and dual graph of a plane branch

We begin by recalling the definitions of jet scheme and by giving some nota-
tions.
Let K be an algebraically closed field. Let X be a K-scheme and let m ∈ N.
The functor Fm : K−Schemes −→ Sets which to an affine scheme defined by
a K−algebra A associates

Fm(Spec(A)) = HomK(SpecA[t]/(tm+1), X)

is representable by a K−scheme Xm [V]; Xm is called the m−th jet scheme
of X, and Fm is isomorphic to its functor of points. In particular the closed
points of Xm are in bijection with the K[t]/(tm+1) points of X.
Form, p ∈ N,m > p, the truncation homomorphismA[t]/(tm+1) −→ A[t]/(tp+1)
induces a canonical projection πm,p : Xm −→ Xp. These morphisms clearly
verify πm,p ◦ πq,m = πq,p for p < m < q. This yields an inverse system whose
limit X∞ is a K−scheme called the arc space of X. Note that X0 = X. We
denote the canonical projections Xm −→ X0 by πm and X∞ −→ Xm by Ψm.

Example 1 The m-th jet scheme of the affine space AnK = Spec K[x0, . . . xn−1]

is (AnK)m = Spec K[x(0), · · · , x(m)] where, for j ≥ 0, x(j) = (x
(j)
0 , · · · , x(j)

n−1)

is an n-uplet of indeterminates. Hence, (AnK)m is isomorphic to A(m+1)n
K and



Jet schemes and minimal embedded desingularization of plane branches 3

the projection πm,m−1 : (AnK)m −→ (AnK)m−1 is the map that forgets the last n
coordinates.

For f ∈ K[x0, . . . , xn], and j ≥ 0, let F (j)(x(0), · · · , x(j)) ∈ K[x(0), · · · , x(j)]
be defined by the Taylor expansion as follows:

f(
∑
j

x(j)tj) =

m∑
j=0

F (j)(x(0), . . . , x(j)) tj .

Now, let X = Spec K[x0,··· ,xn]
(f1,··· ,fr) be an affine K−scheme. Then

Xm = Spec
K[x(0), · · · , x(m)]

(F
(j)
l )j=0,··· ,m

l=1,··· ,r

Indeed, for a K-algebra A, to give an A-point of Xm is equivalent to give a
K-algebra homomorphism

ϕ :
K[x0, · · · , xn]

(f1, · · · , fr)
−→ A[t]/(tm+1).

The map ϕ is completely determined by the image of xi, i = 0, · · · , n, that is

xi 7−→ ϕ(xi) = x
(0)
i + x

(1)
i t+ . . .+ x

(m)
i tm ∈ A[t]/(tm+1)

such that fl(ϕ(x0), . . . , ϕ(xn)) ∈ (tm+1), l = 1, . . . , r. This is equivalent to

determine x(j) = (x
(j)
0 , . . . , x

(j)
n−1) ∈ An, j = 0, . . . ,m, which satisfy

F
(j)
l (x(0), . . . , x(j)) = 0

where l = 1, · · · , r and j = 0, · · · ,m.

From now on, in this section, K is an algebraically closed field of characteristic
0. Let f be a nonzero polynomial of K[x0, x1] and assume that f(0, 0) = 0 and
that f is irreducible in K[[x0, x1]], i.e. the curve defined by f has one branch
at O = (0, 0). We denote by C this branch. By possibly a change of variables,
we may assume that x0 = 0 is transversal to C, and that x1 = 0 has the
maximal contact with C in the sense of [L]. By the Newton-Puiseux theorem,
there exists a parametrization of C of the form

x0(t) = tβ0

x1(t) =
∑
i>β0

ait
i

where gcd(β0, {i / ai 6= 0}) = 1. Let β1, · · · , βg be the sequence of Puiseux
exponents of C, that is, the βi’s are defined recursively by

βi = min{i, ai 6= 0, gcd(β0, · · · , βi−1) is not a divisor of i}.
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Let e0 = β0 and ei = gcd(ei−1, βi), i ≥ 1. The sequence of positive integers
e0 > e1 > · · · > ei > · · · is strictly decreasing, and there exists g ∈ N,
such that eg = 1. We set ni := ei−1

ei
, i = 1, · · · , g and by convention, we set

βg+1 = +∞ and ng+1 = 1.
On the other hand, let vC be the divisorial valuation defined by C, that is

for h ∈ K[[x0, x1]], vC(h) is the intersection number

(f, h)0 := dimK
K[[x0, x1]]

(f, h)
= ordt h(x0(t), x1(t)).

Let Γ (C) be the semigroup of vC i.e Γ (C) = {(f, h)0 ∈ N, h 6≡ 0 mod(f)}.
Then, the minimal system of generators of Γ (C) is β̄0, · · · , β̄g where the β̄i’s
are determined by β̄0 = β0, β̄1 = β1 and β̄i = ni−1βi−1 + βi − βi−1 for
1 ≤ i ≤ g. Note that

ei = gcd(β̄0, · · · , β̄i), 0 ≤ i ≤ g,

and that, for 1 ≤ i ≤ g, there exists a unique system of nonnegative integers
bij , 0 ≤ j < i such that bij < nj for 1 ≤ j < i and

niβ̄i =
∑

0≤j<i

bij β̄j 1 ≤ i ≤ g.

Let {x0, x1, x2, . . . , xg+1} be a minimal generating sequence for the diviso-
rial valuation vC . In fact, one can choose xg+1 = f and xi, 2 ≤ i ≤ g, such
that they satisfy identities of the form

xi+1 = xnii − cix
bi0
0 · · ·x

bi(i−1)

i−1 −
∑

η=(η0,··· ,ηi)

ci,ηx
η0

0 · · ·x
ηi
i , 1 ≤ i ≤ g (?)

with, 0 ≤ ηj < nj , for 1 ≤ j ≤ i, and Σjηj β̄j > niβ̄i and with ci,η, ci ∈ K and
ci 6= 0. These last equations (?) let us realize C as a complete intersection in
Kg+2 = Spec K [[X0, · · · , Xg, Xg+1]] defined by the equations Xg+1 = 0 and

fi = Xi+1 − (Xni
i − ciX

bi0
0 · · ·X

bi(i−1)

i−1 −
∑

η=(η0,··· ,ηi)

ci,ηX
η0

0 · · ·X
ηi
i )

for 1 ≤ i ≤ g.

In [Mo1], we have described the irreducible components of C0
m := π−1

m (0),
(recall that πm : Cm −→ C is the canonical morphism) as follows: For e ∈ N,
set

Conte(x0)m (resp. Cont>e(x0)m) := {γ ∈ Cm | ordtx0 ◦ γ = e (resp. > e)}.
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Theorem 21 ([Mo1], cor. 4.4 and th. 4.9) Let C be a plane branch with g
Puiseux exponents. Let m ∈ N. For 1 ≤ m < n1β̄1 + e1, C0

m = Cont>0(x0)m
is irreducible. For qn1β̄1 + e1 ≤ m < (q + 1)n1β̄1 + e1, with q ≥ 1 in N, the
irreducible components of C0

m are:

(i) the infinite components:

CmκI = Contκβ̄0(x0)m for 1 ≤ κ and κβ̄0β̄1 + e1 ≤ m,

(ii) the vanishing components:

Cjmκv = Cont
κβ̄0

nj ···ng (x0)m for j = 2, · · · , g, 1 ≤ κ and κ 6≡ 0 mod nj ,

κn1 · · ·nj−1β̄1 + e1 ≤ m < κβ̄j

and

(iii) the big component:
Bm = Cont>n1q(x0)m.

Moreover, the restrictions of the morphisms πm+1,m define projective sys-
tems of three types: the first type

. . .→ Bm+1 → Bm → · · · → B1

the second

. . .→ C(m+1)κI → CmκI → · · · → C(κβ0β1+e1)κI → Bκβ0β1+e1−1 . . .→ Bκβ0β1

and the third, for 2 ≤ j ≤ g and κ 6≡ 0 mod(nj),

Cj
(κβj−1)κv

−→ Cj
(κβj−2)κv

· · · → Cj
(κn1···nj−1β̄1+e1)κv

→ Bκn1···nj−1β̄1+e1−1 . . .

→ Bκn1···nj−1β̄1
.

To the irreducible component appearing in the second and the third type of
projective systems, we associate the invariant κ that we will call index of spe-
ciality. The components appearing at the left hand side of the finite projective
systems of the third type, will be called the end components. Later, we will be
interested in the end components of index of speciality equal to 1, these are
Cj

(βj−1)1v
, j = 2, . . . , g. Note that for m < n1β̄1 + e1, C

0
m is irreducible, in

particular C0
β1−1

is irreducible and we call it the first end component. Let

m0 := min{m ∈ N,m ≥ 1 | codim(C0
m+1, (A2

K)m+1) > codim(C0
m, (A2

K)m)}.

It follows from proposition 4.1 in [Mo1], that m0 = β̄0−1. We have that C0
β0−1

is irreducible, and we call it the root component.
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Given m ≥ 1 and an irreducible component Hm of C0
m, given h ∈ OC we

set

ordhHm := ordtγ
](h)

where γ : Spec κ(Hm)[[t]]/(t)m+1 → C is the generic point of Hm and γ] is
its induced morphism of rings γ] : OC → κ(Hm)[[t]]/(t)m+1.
For i = 1, . . . , g, let

vi(Hm) := (ordx0
(Hm), ordx1

(Hm), . . . , ordxi(Hm)) ∈ Ni+1,

and let µi ∈ N ∪∞ be defined as follows :

µi := min{m ≥ 1 | there exists a pair of irreducible components(Hm, Hm+1)

verifying: i) πm+1,m(Hm+1) ⊂ Hm,

ii) codim(Hm, (A2
K)m) < codim(Hm+1, (A2

K)m+1)

iii) vi(Hm) = vi(Hm+1) }.

Proposition-definition 22 (1) For i = 1, . . . , g, we have that µi = niβi − 1.
(2) The pair (Hµi , Hµi+1) with the above property is unique, and we have that

Hµ1 = C0
µ1
.

Hµ2 = Cµ21I (resp. C3
µ21v) for g = 2 (resp. g > 2) and β̄2−n1β̄1 6= e2,

otherwise if g ≥ 2 and β̄2 − n1β̄1 = e2 then Hµ2
= Bµ2

.
Hµi = Ci+1

µi1v
(resp. Hµg = Cµg1I) for 3 ≤ i ≤ g − 1 (resp. 3 ≤ i = g).

We call the components Hµi the rupture components.
(3) For i = 1, . . . , g, vi(Hµi) = 1

ei
(β̄0, . . . , β̄i).

Proof: For i = 1 the proof is a direct consequence of proposition 4.1 of
[Mo1]. We now prove the case 2 ≤ i ≤ g − 1, the case i = g goes along the
same lines (The only difference lies in the notation). For i ≥ 2, it follows from
the conditions i, ii and iii on the pair (Hm, Hm+1) that Hm+1 and Hm both
belong to one of the projective systems of the second or the third type. Indeed,
if Hm+1 belongs to

B(k+1)n1β̄1−1 → · · · → Bkn1β̄1+e1 , k ∈ N

we have by corollary 4.2 in [Mo1] that when the codimension changes v1

changes, and always by the same corollary v2(B(k+1)n1β̄1−1) 6= v2(B(k+1)n1β̄1
).

It follows from the definition of the components Hm appearing in a projec-
tive system of the second (resp. third) type, from condition iii and corollary
4.2 in [Mo1] that ordx0

(Hm) = kn1 = κn1 . . . ng(resp. κn1 . . . nj−1.) There
also exists l ≥ 2 such that κnl−1 · · ·nj−1β̄l−1 ≤ m + 1 < κnl · · ·nj−1βl. If
moreover we have m+ 1 < niβ̄i, then l ≤ i and by combining proposition 4.5,
proposition 4.7 (see also the formula which appears after proposition 4.7) and
again corollary 4.2 in loc. cit., we observe that codim(Hm+1) > codim(Hm)
implies that ordxl(Hm+1) > ordxl(Hm).
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Since by proposition 4.7 in loc. cit. we have that

codim(Ci+1
(niβ̄i−1)1v

, (A2
K)m) < codim(Ci+1

(niβ̄i)1v
, (A2

K)m+1),

it remains to prove vi(Ci+1
(niβ̄i−1)1v

) = vi(Ci+1
(niβ̄i)1v

) = 1
ei

(β̄0, . . . , β̄i). By apply-

ing lemma 4.6 in loc. cit. for j = i, i+ 1 we have that

ordx0
(Ci+1

(niβ̄i−1)1v
) = ordx0

(Ci+1
(niβ̄i)1v

) =
β̄0

ei
,

ordx1(Ci+1
(niβ̄i−1)1v

) = ordx1(Ci+1
(niβ̄i)1v

) = β̄1

ei
, and for 2 ≤ l ≤ i, we have that

ordxl(C
i+1
(niβ̄i−1)1v

) ≥ β̄l
ei
, ordxl(C

i+1
(niβ̄i)1v

) ≥ β̄l
ei
. Moreover, by the lemma loc.

cit. we have that the generic point of Ci+1
(niβ̄i−1)1v

satisfies the equations

x
(
β̄l
ei

)

l

nl

− clx
(
β̄0
ei

)

0

bl0

. . . x
(
β̄l−1
ei

)

l−1

bl(l−1)

, l = 2, . . . , i− 1.

The generic point of Ci+1
(niβ̄i)1v

satisfies beside the above equations, the following

x
(
β̄i
ei

)

i

ni

− clx
(
β̄0
ei

)

0

bi0

. . . x
(
β̄l−1
ei

)

i−1

bi(i−1)

.

Since at the generic point of Ci+1
(niβ̄i)1v

, we have that x
(
β̄0
ei

)

0 and x
(
β̄1
ei

)

1 are both

different from zero, it follows by induction on l, using the above equations

that, at the generic point of Ci+1
(niβ̄i)1v

, x
(
β̄l
ei

)

l 6= 0 for l = 2, . . . , i. Whence the

proposition.

Corollary 23 For i = 1, . . . , g we have that vg(Hµi) = 1
ei
δi where

δi := (β0, . . . , βi, niβi, . . . , ni . . . ng−1βi) ∈ Zg+1
≥0 . (??)

Proof: The case i = g is proved in proposition-definition 2.2 (3). Let us con-
sider the case i = 1, . . . , g − 1.. By applying proposition 4.5 in loc. cit. with
i replaced successively by i + 1, . . . , g − 1 and j by i + 1, we deduce that for
l = i+ 1, . . . , g, ordxl(Hµi) ≥ 1

ei
ni . . . nl−1β̄i, the equality follows because the

codimension grows.

The vectors δi and the cones σi,j , i = 1, . . . , g; j = 1, 2 that we will in-
troduce in the following remark, will be of particular importance in the next
section.

Remark 24 Let εi ∈ Ng+1 be the vector whose i− th component is 1, and its
other components are 0. Let δ0 be defined as in (??) where we set n0 := 0, i.e.
δ0 = (β0, 0, . . . , 0). For 0 ≤ i ≤ g, we define the cones σi,1 :=< δi−1, δi > and
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σi,2 :=< εi, δi >, 1 ≤ i ≤ g.
We consider the irreducible components Hm in the following inverse systems

B(k+1)n1β̄1−1 → · · · → Bkn1β̄1+e1 , k ∈ N

and which are at the end position or verify codim(Hm+1) > codim(Hm), where
Hm+1 is the consecutive element in the inverse system. We have that the
vectors vg of such irreducible components belong to σ1,1∪σ2,2. For i = 2, . . . , g,
we consider the irreducible components Hm in the following inverse systems

Ci
(βi−1)1v

−→ Ci
(βi−2)1v

· · · −→ Ci
(ni−1βi−1)1v

Ci+1

(niβi−1)1v
−→ Ci+1

(niβi−2)1v
· · · −→ Ci+1

(nini−1βi−1)1v

(resp. C(ngβ̄g−1)1I −→ C(ngβ̄g−2)1I −→ C(ngng−1βg−1−2)1I if i = g)

and which are at the end position or verify codim(Hm+1) > codim(Hm), where
Hm+1 is the consecutive element in the inverse system. By reasoning as in
the above proposition, we can prove that the vectors vg of such irreducible
components belong to σi,1 ∪ σi,2.

We now will associate with a rupture component a divisorial valuation
over A2

K. Let π : X −→ A2
K be the minimal embedded resolution of C ⊂ A2

K,
which is a composition of a finite number t of point blowing ups. Since C is
an hypersurface in A2

K, π is a log resolution. Let Ei, 1 ≤ i ≤ t, be the strict
transform on X of the exceptional locus of the i-th point blowing up. The
curves {Ei}ti=1 will be called exceptional divisors and the exceptional divisor
E1, which is defined by the first blowing up, will be called root divisor. Let
E =

∑t
i=1 riEi be defined by

f.OX = OX(−
t∑
i=1

riEi).

For m ∈ N, let ψam : A2
∞ −→ A2

m be the canonical morphism, here the exponent
a stands for ambient. For p ∈ N, we now consider the following cylinder in the
arc space

Contp(f) = {γ ∈ A2
∞; ordtf ◦ γ = p}.

Note that this notation is different from the notation ”Cont” that we have
introduced before, here we are considering arcs in the ambient space. From
example 1, we know that ψam is a trivial fibration, therefore for a rupture
component Hµi , we have that

ψaµi
−1(Hµi) ∩ Contµi+1(f)

is an irreducible component of Contµi+1(f). Note the fact that by defini-
tion of rupture components the codimension of Hµi+1 jumps, implies that
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ψaµi
−1(Hµi) ∩ Contµi+1(f) 6= ∅. We associate with Hµi a discrete valuation

νHµi as follows: let γ be the generic point of ψam
−1(Hµi) ∩ Contµi+1(f), then

for every h ∈ K[x0, x1], we set

νHµi (h) = ordth ◦ γ.

It follows from corollary 2.6 in [ELM], that νHµi is a divisorial valuation (see

also [R], prop. 3.7 (vii) applied to ψaµi
−1(Hµi) ). In the same manner, we as-

sociate with the end components a divisorial valuation.

Let us consider the dual graph associated with the configuration of the
exceptional divisors.

Definition 25 A star divisor is either an exceptional divisor whose corre-
sponding vertex on the dual graph has valence equal to 3 or the exceptional
divisor which intersects the strict transform of the branch. An end divisor is
an exceptional divisor whose corresponding vertex has valence equal to 1, and
which is not the root divisor (see figures 3 and 2).

Then we can state the following theorem :

Theorem 26 1. The divisorial valuations associated with the rupture com-
ponents are the valuations defined by the star divisors.

2. The end components of index of speciality one correspond to the end divi-
sors and the root component corresponds to the root divisor.

Proof: We prove the first assertion, the second one follows in the same way.
Let Eij , j = 1, . . . , g be a star divisor locally defined by gij = 0, we consider
the set

Cont1(Eij ) = {γ ∈ X∞; ordtgij ◦ γ = 1}.

Let π∞ : X∞ −→ A2
∞ be the canonical morphism induced by π. Then by

corollary 2.6 of [ELM], we need to prove that π∞(Cont1(Eij )) is dense in

ψa
nj β̄j−1

−1(Hµi)∩Contnj β̄j (f). First, by [C],[G], [L] we know that a projection

of a curvette i.e. an element in Cont1(Eij ) has intersection multiplicity whith
C which is equal to nj β̄j and intersection multiplicity with x0 which is equal
to n1 · · ·nj , therefore we have the inclusion

π∞(Cont1(Eij )) ⊂ ψanj β̄j−1
−1(Hµi) ∩ Contnj β̄j (f).

On the other hand, knowing the numerical data of the minimal embedded res-
olution of the branch (see e.g. [C],[G]), we apply theorem 2.1 of [ELM] to find
the codimension of π∞(Cont1(Eij )) ⊂ ψanj β̄j−1

−1(Hµi) in A2
∞ (codimension in

the sense of [ELM],) and which is equal by proposition 4.7 of [Mo1] to the codi-
mension of ψa

nj β̄j−1
−1(Hµi) ∩ Contnj β̄j (f) in A2

∞. Since they are irreducible,

we conclude that their closures are equal, and therefore they define the same
valuation, hence the theorem.
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Figure 1

Figure 2
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We get a tree TC,0 by representing each irreducible component of C0
m,m ≥

1, by a vertex vi,m, 1 ≤ i ≤ N(m), and by joining the vertices vi1,m+1 and
vi0,m if πm+1,m induces one of the maps appearing in the three type of the
projective systems between the corresponding irreducible components.
We represent in figure 1 below the tree for the branch defined by f(x, y) =
(y2 − x3)2 − 4x6y − x9 = 0, whose semigroup is < β̄0 = 4, β̄1 = 6, β̄2 = 15) >,
and for which we have e1 = 2, e2 = 1 and n1 = n2 = 2.

We represent in figure 2 the dual graph of the same branch.

The theorem 26 determines a corrspondance between on one side, the irre-
ducible components denoted in figure 1 by 1,2,3 (the root component and the
end components) and those denoted by a,b (rupture components), and on the
other side the vertices on the dual graph which are denoted in figure 2, by the
same numbers (resp. letters).

3 Minimal desingularization

Recall that f ∈ K[x0, x1] is a nonzero polynomial such that f(0, 0) = 0
and f is irreducible in K[[x0, x1]], and C is the plane branch defined by f
at O = (0, 0). Recall also that x0, x1, x2, . . . , xg+1 = f is a minimal sys-
tem of generators for vC . We consider the embedding of the formal neigh-
borhood X̂0 = Spec K[[x0, x1]] of O in K2 into the formal neighborhood

Ẑ0 = Spec k[[X0, . . . , Xg]] of O in Z0 = Kg+1, given by sending Xi to xi.

Let CΓ ⊆ Ẑ0 be the monomial curve parametrized by Xi = tβi .

Recall from corollary 23 that δi := (β0, . . . , βi, niβi, . . . , ni . . . ng−1βi) ∈
Zg+1
≥0 , 0 ≤ i ≤ g, and that we consider the cones σi,1 :=< δi−1, δi > and

σi,2 :=< εi, δi > for 1 ≤ i ≤ g, where εi is the unit vector on the Xi-axis.

Let ΣN be the Newton fan of the g functions defining X̂0 in Ẑ0 and let ZΣN
be the toric variety defined by ΣN . Then the cones σ ∈ ΣN whose orbit Oσ
in ZΣN intersect the strict transform X̂ΣN of X̂0 in ZΣN are {σij}1≤i≤g,j=1,2

and their faces, and X̂ΣN has 2g toric singularities which are its intersection
points with the orbits Oσij , 1 ≤ i ≤ g, j = 1, 2 (see [LR], prop. 1.3). Next we
will show a canonical way to obtain a regular subdivision ΣC of ΣN inducing
the minimal regular subdivision in each σij . In particular, we will have that
R≥0δg is a cone in ΣC . The reason why we are interested in such a subdivision
is the following:

Lemma 31 Let Σ be a regular subdivision of ∆ := Rg+1
≥0 , ZΣ the toric variety

defined by Σ, and X̂Σ the strict transform of X̂0 by the equivariant morphism
πΣ : ZΣ → Z0. The following conditions are equivalent:

(i) R≥0δg is a cone of Σ

(ii) the map X̂Σ → X̂0 is an embedded desingularization of C.
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Besides, if the above conditions hold then πΣ desingularizes the monomial
curve CΓ .

Proof: Let σ =< a0, ..., ag >∈ Σ where ai = (a0i, ..., agi) and let Vσ be the
affine toric variety defined by σ. Since σ is a regular cone, the map

Vσ = Spec k[U0, ..., Ug]→ Z0

is given by Xi = Ua0i
0 ...U

agi
g , 0 ≤ i ≤ g, and the orbit Oai of R≥0ai is defined

in Vσ by Ui = 0, Uj 6= 0, j 6= i. Let {Xi(t)}0≤i≤g be a parametrization of
C. If the strict transform C ′ (resp. (CΓ )′) of C (resp. CΓ ) in ZΣ intersects

Vσ and is given by {Ui(t)}gi=0, then δg = (ordt Xi(t))0≤i≤g = (ordt t
βi)0≤i≤g

is a combination of the ai’s with coefficients λi = ordt Ui(t) ∈ Z≥0, thus it
belongs to σ, and besides, Ui(t) = tλiwi(t) where {wi(t)}gi=0 are the unique

solutions in (k[[t]]∗)g+1 of the system w0(t)a0i ...wg(t)
agi = Xi(t)/t

βi ∈ k[[t]]∗

(resp. wi(t) = 1, 0 ≤ i ≤ g).

If R≥0δg ∈ Σ then we may assume λ0 = 1, λi = 0 for i 6= 0 and hence both

C ′ and (CΓ )′ are smooth and C ′ intersects Oδg ∩ X̂Σ transversally and does
not intersect Oτ for τ ∈ Σ, τ 6= R≥0δg. This proves (i)⇒ (ii) and also the last
statement in the lemma. For (ii) ⇒ (i), if R≥0δg /∈ Σ, then we may assume

λ0, λ1 > 0 and hence Oa0
∩ Oa1

∩ C ′ 6= ∅, i.e. X̂Σ → X̂0 is not an embedded
desingularization.

Let Nσij be the lattice obtained intersecting Zg+1 with the real space
spanned by σij , and let γi, λi and ρi be the primitive vectors on the half
lines through δi−1, δi − δi−1 and δi − (βi − ni−1βi−1) εi respectively. Then
{γi, λi} (resp. {ρi, εi}) is a Z-basis of Nσi,1 (resp. Nσi,2) and we have σi,1 =<

γi, ei−1γi+(βi−ni−1βi−1) λi > and σi,2 =< ei−1ρi+(βi−ni−1βi−1) εi, εi >.

Thus, if we set δ̃i :=
(ei−1, βi − ni−1βi−1) ∈ Z2

≥0, and σ̃i,1 =< (1, 0), δ̃i >, σ̃i,2 =< δ̃i, (0, 1) >

are the two-dimensional cones in the subdivision of R2
≥0 by R2

≥0δ̃i, then the

pair (σi,j , Nσi,j ) is isomorphic to (σ̃i,j ,Z2) for 1 ≤ i ≤ g, j = 1, 2. From this it

follows that, if Oij := Oσi,j ∩ X̂ΣN and Õi,j is the unique closed orbit in the

toric surface Zσ̃i,j , then the germs (X̂ΣN , Oi,j) and (Zσ̃i,j , Õij) are analytically
isomorphic.

Therefore, for any regular subdivision Σ of ∆ inducing the minimal regular
subdivision on each σij , the dual graph G of the morphism X̂Σ → X̂0 is
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Figure 3

where if we denote by Θi the minimal regular subdivision of R2
≥0 by R≥0δ̃i,

then Gi is obtained from Proj Θi by erasing its ends Proj (R≥0(1, 0)) and

Proj (R≥0(0, 1)), and the star wi is Proj (R≥0 δ̃i). But from lemma 3.1 and
prop. 1.3 in [LR] it follows that G is the dual graph of the minimal embed-

ded desingularization of C in X̂0. Thus the equivariant morphism ZΣ → Z0

induces on X̂0 the minimal embedded desingularization of C.

The isomorphism between (σi,j , Nσi,j ) and (σ̃i,j ,Z2) allows us to describe
the minimal system of generators Gσi,j of σi,j from the minimal system of
generators of σ̃i,j . In fact, given n ≥ 1 and independent variables u1, . . . , un,
we define a sequence of polynomials {Ps(u1, . . . , us)}ns=0, Ps ∈ IN[u1, . . . , us],
by P0 = 1 and

Ps(u1, . . . , us) = u1 Ps−1(u2, . . . , us) + Ps−2(u3, . . . , us)

where we set P−1 = 0. Note that Ps(u1, . . . , us) / Ps−1(u2, . . . , us) = [u1, . . . , us]
where

[u1, . . . , us] := u1 +
1

u2 +
1

u3 +
1

. . . +
1

us

is the continued fraction expansion. Now let [a
(i)
1 , . . . , a

(i)
si ] be the expression of

(βi − ni−1βi−1) / ei−1 as continued fraction (this notation does not coincide
with the one in [Sp]). We define Ω := {(i, s, a) / 1 ≤ i ≤ g, 1 ≤ s ≤ si, 1 ≤
a ≤ a(i)

s } ∪ {(i, 0, 0), (i, 1, 0) / 1 ≤ i ≤ g} and, for (i, s, a) ∈ Ω, we set

P (i, s, a) := Ps(a
(i)
1 , . . . , a

(i)
s−1, a) P (i, s, a) := Ps−1(a

(i)
2 , . . . , a

(i)
s−1, a)

and

v(i,s,a) :=

{
P (i, s, a) γi + P (i, s, a) λi if s odd
P (i, s, a) ρi + P (i, s, a) εi if s even

(note that v(i,0,0) = εi, v(i,1,0) = γi and v
(i,si,a

(i)
si

)
= γi+1). Then we have

Gσi,1 = {v(i,s,a) / (i, s, a) ∈ Ω, s odd } ∪ {γi+1}
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Gσi,2 = {v(i,s,a) / (i, s, a) ∈ Ω, s even} ∪ {γi+1}.

Let us describe some properties of the vectors {vα}α∈Ω . Let us consider
the lexicographic order in Ω. For α = (i, s, a) ∈ Ω, α 6= (i, 0, 0), (i, 1, 0), there
exists a unique element in Ω strictly smaller than α of the type (i, s′, a′) with
s′ odd (resp. even) and maximal with this property, let us denote it by αo
(resp. αe). Note that the unique element α − 1 of Ω strictly smaller than α
and maximal with this property is one of αo, αe. With this notation we have:

Lemma 32 i) Let α = (i, s, a) ∈ Ω, α 6= (i, 0, 0), (i, 1, 0). Then vα belongs to
the interior of the cone < vαo , vαe , εi+1, . . . , εg >.

ii) Given α, α′ ∈ Ω, vα = vα′ iff α = α′ or else there exists i, 1 ≤ i ≤ g − 1,

such that {α, α′} = {(i, si, a(i)
si ), (i+ 1, 1, 0)}.

iii) If α, α′ 6= (i, 0, 0), (i, 1, 0) for 1 ≤ i ≤ g, then vα < vα′ (where we
consider the usual order in Rg+1) iff α < α′.

Proof: It follows from explicit calculus.

3.3. Given a regular fan Σ0 in the lattice Zg+1
≥0 and a primitive vector

δ ∈ Zg+1
≥0 in the support of Σ0, let us show a canonical algorithm to obtain a

regular subdivision Σ of Σ0 which contains R≥0δ:
If R≥0δ is a cone in Σ0, we set Σ = Σ0 and finish. If it is not, then there

exists a unique cone σ0 in Σ0 such that δ belongs to the interior σ◦0 of σ0.
The cone σ0 is regular, i.e. its extremal vectors {a0, . . . , ar0} form part of a
basis of the lattice. Let ω1 :=

∑
0≤k≤r0 ak and let us consider the minimal

subdivision Σ1 of Σ0 containing R≥0ω1. The fan Σ1 is regular. If ω1 = δ then
Σ1 contains R≥0δ. In this case, we set Σ = Σ1 and we stop the algorithm. In
the other case, ω1 < δ (where we consider the usual order in Rg+1), and the
unique cone σ1 in Σ1 such that δ ∈ σ◦1 has ω1 as extremal vector. We repeat
the procedure and obtain ω2 such that ω1 < ω2 ≤ δ and a regular fan Σ2

which is the minimal subdivision of Σ1 containing R≥0ω2. We go on in this
way.

The preceding process stops after a finite number of steps since, if ωi ∈ Zg+1
≥0

is the vector appearing in the i-th step, then ω1 < . . . < ωi−1 < ωi ≤ δ. It de-
termines a canonical way of obtaining a regular subdivision of Σ0 containinig
R≥0δ.

3.4. Let us now describe the algorithm to obtain ΣC : First note that ∆
contains the half-lines defined by v(1,1,0) = ε0, v(i,0,0) = εi, 1 ≤ i ≤ g. Let us
consider v(1,1,1), which belongs to Supp ∆, then we can apply the algorithm in
3.3 and obtain a regular subdivision Σ(1,1,1) of ∆ which contains R≥0v(1,1,1).
Now, let α = (i, s, a) ∈ Ω, α 6= (i, 0, 0), (i, 1, 0), and suppose we have obtained
a regular subdivision Σα−1 of ∆ containing {R≥0vα′ / α

′ ≤ α − 1}. In order
to define Σα we observe that the primitive vector vα belongs to Supp Σα−1,
in fact it belongs to the interior of < vα0

, vαe , εi+1, . . . , εg >. We apply the
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algorithm 3.3 and obtain a regular subdivision Σα of Σα−1 which contains
{R≥0vα′ / α

′ ≤ α}. We continue this process until we obtain regular fans Σα
for all α ∈ Ω, α 6= (i, 0, 0), (i, 1, 0). We define ΣC to be Σ

(g,sg,a
(g)
sg )

.

Theorem 33 The equivariant morphism ZΣC → Z0 desingularizes both curves

C and CΓ and besides it induces on X̂0 the minimal embedded desingulariza-
tion of C.

Proof: It is clear that ΣC contains all half-lines R≥0vα for α ∈ Ω, i.e. all
half-lines defined by the vectors in the minimal regular subdivision of each
σij . In order to prove the theorem it suffices to show that these are the unique
1-dimensional cones of ΣC whose support is in some σij . In fact, when we
determine Σα from Σα−1 applying 3.3, the new half-lines that appear are
defined by a finite number of vectors ωs ∈ Zg+1

≥0 which are smaller or equal
than vα and contained in the interior of < vαo , vαe , εi+1, . . . , εg >. Since, for
α′ < α, vα′ does not belong to the interior of that cone, from lemma 3.1 ii),
iii) it follows that the unique vector ωs appearing which is contained in some
σij is vα.
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