Jet schemes and minimal embedded desingularization of plane branches

Monique Lejeune-Jalabert • Hussein Mourtada • Ana Reguera
To Professor Heisuke Hironaka on the occasion of his 80th birthday

Received: date / Accepted: date

Abstract

For a plane branch C with g Puiseux pairs, we determine the irreducible components of its jet schemes which correspond to the star (or rupture) and end divisors that appear on the dual graph of the minimal embedded desingularization of C. We exploit these informations to construct a Teissier type resolution of C embedded in \mathbb{C}^{g+1}, which is special in the sense that its restriction to the strict tranform of the plane induces the minimal embedded desingularization of C.

Keywords Jet schemes • Resolution of singularities • Toric Geometry
Mathematics Subject Classification (2000) MSC 14E18 • MSC 14E15 • 14M25

1 Introduction

This article has two sources of motivations :

On one hand, Teissier's approach to resolution of singularities, which roughly speaking consists in re-embedding the variety, in such a way that in the new

[^0]coordinates, the variety is non-degenerate with respect to its Newton polyhedron in the sense of Khovansky-Kouchnirenko, so that it can be desingularized by one toric morphism. In particular in [GT], the authors, by considering the specialization of a plane branch C to the monomial curve whose semigroup is the one of C, gave such a desingularization for plane branches.

On the other hand, Nash's approach to detect the intrinsic data in various abstract resolution of singularities of a variety, from its arc space. While the arc space contains information about abstract resolution of singularities, jet schemes, as pointed out in [ELM], encode information about embedded resolution of singularities (See also [dFEI]).

In the case of a plane branch $C \subset \mathbb{C}^{2}$, we will mix the two points of view as follows: First we will use some information about irreducible components of the jet schemes in order to detect interesting divisors that appear on the minimal embedded resolution of C, namely the root divisor, the end divisors and the star divisors (see definition 25). Then we will associate with these irreducible components a combinatorial data, that we will exploit to give an embedded resolution of the branch $C \subset \mathbb{C}^{g+1}$. This last resolution is special between those given in [GT], in the sense that its restriction to the strict transform of the plane \mathbb{C}^{2} is the minimal embedded resolution of $C \subset \mathbb{C}^{2}$. This also gives a jet-theoretical interpretation of the notion of maximal contact in [L].

2 Jet schemes and dual graph of a plane branch

We begin by recalling the definitions of jet scheme and by giving some notations.
Let \mathbb{K} be an algebraically closed field. Let X be a \mathbb{K}-scheme and let $m \in \mathbb{N}$. The functor $F_{m}: \mathbb{K}-$ Schemes \longrightarrow Sets which to an affine scheme defined by a \mathbb{K}-algebra A associates

$$
F_{m}(\operatorname{Spec}(A))=\operatorname{Hom}_{\mathbb{K}}\left(\operatorname{Spec} A[t] /\left(t^{m+1}\right), X\right)
$$

is representable by a \mathbb{K}-scheme $X_{m}[\mathrm{~V}] ; X_{m}$ is called the m-th jet scheme of X, and F_{m} is isomorphic to its functor of points. In particular the closed points of X_{m} are in bijection with the $\mathbb{K}[t] /\left(t^{m+1}\right)$ points of X.
For $m, p \in \mathbb{N}, m>p$, the truncation homomorphism $A[t] /\left(t^{m+1}\right) \longrightarrow A[t] /\left(t^{p+1}\right)$ induces a canonical projection $\pi_{m, p}: X_{m} \longrightarrow X_{p}$. These morphisms clearly verify $\pi_{m, p} \circ \pi_{q, m}=\pi_{q, p}$ for $p<m<q$. This yields an inverse system whose limit X_{∞} is a \mathbb{K}-scheme called the arc space of X. Note that $X_{0}=X$. We denote the canonical projections $X_{m} \longrightarrow X_{0}$ by π_{m} and $X_{\infty} \longrightarrow X_{m}$ by Ψ_{m}.

Example 1 The m-th jet scheme of the affine space $\mathbb{A}_{\mathbb{K}}^{n}=\operatorname{Spec} \mathbb{K}\left[x_{0}, \ldots x_{n-1}\right]$ is $\left(\mathbb{A}_{\mathbb{K}}^{n}\right)_{m}=$ Spec $\mathbb{K}\left[\underline{x}^{(0)}, \cdots, \underline{x}^{(m)}\right]$ where, for $j \geq 0, \underline{x}^{(j)}=\left(x_{0}^{(j)}, \cdots, x_{n-1}^{(j)}\right)$ is an n-uplet of indeterminates. Hence, $\left(\mathbb{A}_{\mathbb{K}}^{n}\right)_{m}$ is isomorphic to $\mathbb{A}_{\mathbb{K}}^{(m+1) n}$ and
the projection $\pi_{m, m-1}:\left(\mathbb{A}_{\mathbb{K}}^{n}\right)_{m} \longrightarrow\left(\mathbb{A}_{\mathbb{K}}^{n}\right)_{m-1}$ is the map that forgets the last n coordinates.

For $f \in \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$, and $j \geq 0$, let $F^{(j)}\left(\underline{x}^{(0)}, \cdots, \underline{x}^{(j)}\right) \in \mathbb{K}\left[\underline{x}^{(0)}, \cdots, \underline{x}^{(j)}\right]$ be defined by the Taylor expansion as follows:

$$
f\left(\sum_{j} \underline{x}^{(j)} t^{j}\right)=\sum_{j=0}^{m} F^{(j)}\left(\underline{x}^{(0)}, \ldots, \underline{x}^{(j)}\right) t^{j} .
$$

Now, let $X=$ Spec $\frac{\mathbb{K}\left[x_{0}, \cdots, x_{n}\right]}{\left(f_{1}, \cdots, f_{r}\right)}$ be an affine \mathbb{K}-scheme. Then

$$
X_{m}=\operatorname{Spec} \frac{\mathbb{K}\left[\underline{x}^{(0)}, \cdots, \underline{x}^{(m)}\right]}{\left(F_{l}^{(j)}\right)_{l=1, \cdots, r}^{j=0, \cdots, m}}
$$

Indeed, for a \mathbb{K}-algebra A, to give an A-point of X_{m} is equivalent to give a \mathbb{K}-algebra homomorphism

$$
\varphi: \frac{\mathbb{K}\left[x_{0}, \cdots, x_{n}\right]}{\left(f_{1}, \cdots, f_{r}\right)} \longrightarrow A[t] /\left(t^{m+1}\right)
$$

The map φ is completely determined by the image of $x_{i}, i=0, \cdots, n$, that is

$$
x_{i} \longmapsto \varphi\left(x_{i}\right)=\mathrm{x}_{i}^{(0)}+\mathrm{x}_{i}^{(1)} t+\ldots+\mathrm{x}_{i}^{(m)} t^{m} \in A[t] /\left(t^{m+1}\right)
$$

such that $f_{l}\left(\varphi\left(x_{0}\right), \ldots, \varphi\left(x_{n}\right)\right) \in\left(t^{m+1}\right), l=1, \ldots, r$. This is equivalent to determine $\underline{\mathrm{x}}^{(j)}=\left(\mathrm{x}_{0}^{(j)}, \ldots, \mathrm{x}_{n-1}^{(j)}\right) \in A^{n}, j=0, \ldots, m$, which satisfy

$$
F_{l}^{(j)}\left(\underline{\mathrm{x}}^{(0)}, \ldots, \underline{\mathrm{x}}^{(j)}\right)=0
$$

where $l=1, \cdots, r$ and $j=0, \cdots, m$.

From now on, in this section, \mathbb{K} is an algebraically closed field of characteristic 0 . Let f be a nonzero polynomial of $\mathbb{K}\left[x_{0}, x_{1}\right]$ and assume that $f(0,0)=0$ and that f is irreducible in $\mathbb{K}\left[\left[x_{0}, x_{1}\right]\right]$, i.e. the curve defined by f has one branch at $O=(0,0)$. We denote by C this branch. By possibly a change of variables, we may assume that $x_{0}=0$ is transversal to C, and that $x_{1}=0$ has the maximal contact with C in the sense of [L]. By the Newton-Puiseux theorem, there exists a parametrization of C of the form

$$
\begin{gathered}
x_{0}(t)=t^{\beta_{0}} \\
x_{1}(t)=\sum_{i>\beta_{0}} a_{i} t^{i}
\end{gathered}
$$

where $\operatorname{gcd}\left(\beta_{0},\left\{i / a_{i} \neq 0\right\}\right)=1$. Let $\beta_{1}, \cdots, \beta_{g}$ be the sequence of Puiseux exponents of C, that is, the β_{i} 's are defined recursively by

$$
\beta_{i}=\min \left\{i, a_{i} \neq 0, \operatorname{gcd}\left(\beta_{0}, \cdots, \beta_{i-1}\right) \text { is not a divisor of } i\right\} .
$$

Let $e_{0}=\beta_{0}$ and $e_{i}=\operatorname{gcd}\left(e_{i-1}, \beta_{i}\right), i \geq 1$. The sequence of positive integers $e_{0}>e_{1}>\cdots>e_{i}>\cdots$ is strictly decreasing, and there exists $g \in \mathbb{N}$, such that $e_{g}=1$. We set $n_{i}:=\frac{e_{i-1}}{e_{i}}, i=1, \cdots, g$ and by convention, we set $\beta_{g+1}=+\infty$ and $n_{g+1}=1$.

On the other hand, let v_{C} be the divisorial valuation defined by C, that is for $h \in \mathbb{K}\left[\left[x_{0}, x_{1}\right]\right], v_{C}(h)$ is the intersection number

$$
(f, h)_{0}:=\operatorname{dim}_{\mathbb{K}} \frac{\mathbb{K}\left[\left[x_{0}, x_{1}\right]\right]}{(f, h)}=\operatorname{ord}_{t} h\left(x_{0}(t), x_{1}(t)\right)
$$

Let $\Gamma(C)$ be the semigroup of v_{C} i.e $\Gamma(C)=\left\{(f, h)_{0} \in \mathbb{N}, h \not \equiv 0 \bmod (f)\right\}$. Then, the minimal system of generators of $\Gamma(C)$ is $\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}$ where the $\bar{\beta}_{i}$'s are determined by $\bar{\beta}_{0}=\beta_{0}, \bar{\beta}_{1}=\beta_{1}$ and $\bar{\beta}_{i}=n_{i-1} \overline{\beta_{i-1}}+\beta_{i}-\beta_{i-1}$ for $1 \leq i \leq g$. Note that

$$
e_{i}=\operatorname{gcd}\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{i}\right), 0 \leq i \leq g
$$

and that, for $1 \leq i \leq g$, there exists a unique system of nonnegative integers $b_{i j}, 0 \leq j<i$ such that $b_{i j}<n_{j}$ for $1 \leq j<i$ and

$$
n_{i} \bar{\beta}_{i}=\sum_{0 \leq j<i} b_{i j} \bar{\beta}_{j} \quad 1 \leq i \leq g .
$$

Let $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{g+1}\right\}$ be a minimal generating sequence for the divisorial valuation v_{C}. In fact, one can choose $x_{g+1}=f$ and $x_{i}, 2 \leq i \leq g$, such that they satisfy identities of the form

$$
x_{i+1}=x_{i}^{n_{i}}-c_{i} x_{0}^{b_{i 0}} \cdots x_{i-1}^{b_{i(i-1)}}-\sum_{\eta=\left(\eta_{0}, \cdots, \eta_{i}\right)} c_{i, \eta} x_{0}^{\eta_{0}} \cdots x_{i}^{\eta_{i}}, \quad 1 \leq i \leq g
$$

with, $0 \leq \eta_{j}<n_{j}$, for $1 \leq j \leq i$, and $\Sigma_{j} \eta_{j} \bar{\beta}_{j}>n_{i} \bar{\beta}_{i}$ and with $c_{i, \eta}, c_{i} \in \mathbb{K}$ and $c_{i} \neq 0$. These last equations (\star) let us realize C as a complete intersection in $\mathbb{K}^{g+2}=S p e c \mathbb{K}\left[\left[X_{0}, \cdots, X_{g}, X_{g+1}\right]\right]$ defined by the equations $X_{g+1}=0$ and

$$
f_{i}=X_{i+1}-\left(X_{i}^{n_{i}}-c_{i} X_{0}^{b_{i 0}} \cdots X_{i-1}^{b_{i(i-1)}}-\sum_{\eta=\left(\eta_{0}, \cdots, \eta_{i}\right)} c_{i, \eta} X_{0}^{\eta_{0}} \cdots X_{i}^{\eta_{i}}\right)
$$

for $1 \leq i \leq g$.
In [Mo1], we have described the irreducible components of $C_{m}^{0}:=\pi_{m}^{-1}(0)$, (recall that $\pi_{m}: C_{m} \longrightarrow C$ is the canonical morphism) as follows: For $e \in \mathbb{N}$, set

Cont $^{e}\left(x_{0}\right)_{m} \quad\left(\right.$ resp. Cont $\left.{ }^{>e}\left(x_{0}\right)_{m}\right):=\left\{\gamma \in C_{m} \mid\right.$ ord $_{t} x_{0} \circ \gamma=e \quad($ resp. $\left.>e)\right\}$.

Theorem 21 ([Mo1], cor. 4.4 and th. 4.9) Let C be a plane branch with g Puiseux exponents. Let $m \in \mathbb{N}$. For $1 \leq m<n_{1} \bar{\beta}_{1}+e_{1}, C_{m}^{0}=$ Cont $^{>0}\left(x_{0}\right)_{m}$ is irreducible. For $q n_{1} \bar{\beta}_{1}+e_{1} \leq m<(q+1) n_{1} \bar{\beta}_{1}+e_{1}$, with $q \geq 1$ in \mathbb{N}, the irreducible components of C_{m}^{0} are:
(i) the infinite components:

$$
C_{m \kappa I}=\overline{C_{\text {ont }} \kappa \overline{\beta_{0}}}\left(x_{0}\right)_{m} \quad \text { for } 1 \leq \kappa \text { and } \kappa \bar{\beta}_{0} \bar{\beta}_{1}+e_{1} \leq m,
$$

(ii) the vanishing components:

$$
\begin{gathered}
C_{m \kappa v}^{j}=\overline{C_{o n t} \overline{\frac{\kappa \bar{\beta}_{0}}{n_{j} \cdots n_{g}}}\left(x_{0}\right)_{m}} \quad \text { for } j=2, \cdots, g, 1 \leq \kappa \text { and } \kappa \not \equiv 0 \bmod n_{j}, \\
\kappa n_{1} \cdots n_{j-1} \bar{\beta}_{1}+e_{1} \leq m<\kappa \bar{\beta}_{j}
\end{gathered}
$$

and
(iii) the big component:

$$
B_{m}=\text { Cont }^{>n_{1} q}\left(x_{0}\right)_{m} .
$$

Moreover, the restrictions of the morphisms $\pi_{m+1, m}$ define projective systems of three types: the first type

$$
\cdots \rightarrow B_{m+1} \rightarrow B_{m} \rightarrow \cdots \rightarrow B_{1}
$$

the second

$$
\cdots \rightarrow C_{(m+1) \kappa I} \rightarrow C_{m \kappa I} \rightarrow \cdots \rightarrow C_{\left(\kappa \bar{\beta}_{0} \bar{\beta}_{1}+e_{1}\right) \kappa I} \rightarrow B_{\kappa \bar{\beta}_{0} \bar{\beta}_{1}+e_{1}-1} \cdots \rightarrow B_{\kappa \bar{\beta}_{0} \bar{\beta}_{1}}
$$

and the third, for $2 \leq j \leq g$ and $\kappa \not \equiv 0 \bmod \left(n_{j}\right)$,

$$
\begin{aligned}
C_{\left(\kappa \bar{\beta}_{j}-1\right) \kappa v}^{j} \longrightarrow C_{\left(\kappa \bar{\beta}_{j}-2\right) \kappa v}^{j} \cdots & \rightarrow C_{\left(\kappa n_{1} \cdots n_{j-1} \bar{\beta}_{1}+e_{1}\right) \kappa v}^{j} \rightarrow B_{\kappa n_{1} \cdots n_{j-1} \overline{\beta_{1}}+e_{1}-1} \cdots \\
& \rightarrow B_{\kappa n_{1} \cdots n_{j-1} \overline{\beta_{1}}}
\end{aligned}
$$

To the irreducible component appearing in the second and the third type of projective systems, we associate the invariant κ that we will call index of speciality. The components appearing at the left hand side of the finite projective systems of the third type, will be called the end components. Later, we will be interested in the end components of index of speciality equal to 1 , these are $C_{\left(\bar{\beta}_{j}-1\right) 1 v}^{j}, j=2, \ldots, g$. Note that for $m<n_{1} \bar{\beta}_{1}+e_{1}, C_{m}^{0}$ is irreducible, in particular $C_{\bar{\beta}_{1}-1}^{0}$ is irreducible and we call it the first end component. Let

$$
m_{0}:=\min \left\{m \in \mathbb{N}, m \geq 1 \mid \operatorname{codim}\left(C_{m+1}^{0},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m+1}\right)>\operatorname{codim}\left(C_{m}^{0},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m}\right)\right\}
$$

It follows from proposition 4.1 in $[\mathrm{Mo1}]$, that $m_{0}=\bar{\beta}_{0}-1$. We have that $C_{\bar{\beta}_{0}-1}^{0}$ is irreducible, and we call it the root component.

Given $m \geq 1$ and an irreducible component H_{m} of C_{m}^{0}, given $h \in \mathcal{O}_{C}$ we set

$$
\operatorname{ord}_{h} H_{m}:=\operatorname{ord}_{t} \gamma^{\sharp}(h)
$$

where $\gamma:$ Spec $\kappa\left(H_{m}\right)[[t]] /(t)^{m+1} \rightarrow C$ is the generic point of H_{m} and γ^{\sharp} is its induced morphism of rings $\gamma^{\sharp}: \mathcal{O}_{C} \rightarrow \kappa\left(H_{m}\right)[[t]] /(t)^{m+1}$.
For $i=1, \ldots, g$, let

$$
v^{i}\left(H_{m}\right):=\left(\operatorname{ord}_{x_{0}}\left(H_{m}\right), \operatorname{ord}_{x_{1}}\left(H_{m}\right), \ldots, \operatorname{ord}_{x_{i}}\left(H_{m}\right)\right) \in \mathbb{N}^{i+1}
$$

and let $\mu_{i} \in \mathbb{N} \cup \infty$ be defined as follows :
$\mu_{i}:=\min \left\{m \geq 1 \mid\right.$ there exists a pair of irreducible components $\left(H_{m}, H_{m+1}\right)$

$$
\begin{aligned}
& \text { verifying: } i) \pi_{m+1, m}\left(H_{m+1}\right) \subset H_{m} \\
& \text { ii) } \operatorname{codim}\left(H_{m},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m}\right)<\operatorname{codim}\left(H_{m+1},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m+1}\right) \\
& \text { iii) } \left.v^{i}\left(H_{m}\right)=v^{i}\left(H_{m+1}\right)\right\}
\end{aligned}
$$

Proposition-definition 22 (1) For $i=1, \ldots, g$, we have that $\mu_{i}=n_{i} \bar{\beta}_{i}-1$.
(2) The pair $\left(H_{\mu_{i}}, H_{\mu_{i}+1}\right)$ with the above property is unique, and we have that
$H_{\mu_{1}}=C_{\mu_{1}}^{0}$.
$H_{\mu_{2}}=C_{\mu_{2} 1 I}\left(\right.$ resp. $\left.C_{\mu_{2} \underline{v} v}^{3}\right)$ for $g=2 \quad($ resp. $g>2)$ and $\bar{\beta}_{2}-n_{1} \overline{\beta_{1}} \neq e_{2}$, otherwise if $g \geq 2$ and $\bar{\beta}_{2}-n_{1} \bar{\beta}_{1}=e_{2}$ then $H_{\mu_{2}}=B_{\mu_{2}}$.
$H_{\mu_{i}}=C_{\mu_{i} 1 v}^{i+1}\left(\right.$ resp. $\left.H_{\mu_{g}}=C_{\mu_{g} 1 I}\right)$ for $3 \leq i \leq g-1($ resp. $3 \leq i=g)$.
We call the components $H_{\mu_{i}}$ the rupture components.
(3) For $i=1, \ldots, g, v^{i}\left(H_{\mu_{i}}\right)=\frac{1}{e_{i}}\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}\right)$.

Proof: For $i=1$ the proof is a direct consequence of proposition 4.1 of [Mo1]. We now prove the case $2 \leq i \leq g-1$, the case $i=g$ goes along the same lines (The only difference lies in the notation). For $i \geq 2$, it follows from the conditions $i, i i$ and $i i i$ on the pair $\left(H_{m}, H_{m+1}\right)$ that H_{m+1} and H_{m} both belong to one of the projective systems of the second or the third type. Indeed, if H_{m+1} belongs to

$$
B_{(k+1) n_{1} \overline{\beta_{1}}-1} \rightarrow \cdots \rightarrow B_{k n_{1} \overline{\beta_{1}}+e_{1}}, \quad k \in \mathbb{N}
$$

we have by corollary 4.2 in [Mo1] that when the codimension changes v^{1} changes, and always by the same corollary $v^{2}\left(B_{(k+1) n_{1} \overline{\beta_{1}}-1}\right) \neq v^{2}\left(B_{(k+1) n_{1} \overline{\beta_{1}}}\right)$.

It follows from the definition of the components H_{m} appearing in a projective system of the second (resp. third) type, from condition iii and corollary 4.2 in [Mo1] that $\operatorname{ord}_{x_{0}}\left(H_{m}\right)=k n_{1}=\kappa n_{1} \ldots n_{g}\left(\right.$ resp. $\kappa n_{1} \ldots n_{j-1}$.) There also exists $l \geq 2$ such that $\kappa n_{l-1} \cdots n_{j-1} \bar{\beta}_{l-1} \leq m+1<\kappa n_{l} \cdots n_{j-1} \bar{\beta}_{l}$. If moreover we have $m+1<n_{i} \bar{\beta}_{i}$, then $l \leq i$ and by combining proposition 4.5, proposition 4.7 (see also the formula which appears after proposition 4.7) and again corollary 4.2 in loc. cit., we observe that $\operatorname{codim}\left(H_{m+1}\right)>\operatorname{codim}\left(H_{m}\right)$ implies that $\operatorname{ord}_{x_{l}}\left(H_{m+1}\right)>\operatorname{ord}_{x_{l}}\left(H_{m}\right)$.

Since by proposition 4.7 in loc. cit. we have that

$$
\operatorname{codim}\left(C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m}\right)<\operatorname{codim}\left(C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1},\left(\mathbb{A}_{\mathbb{K}}^{2}\right)_{m+1}\right)
$$

it remains to prove $v^{i}\left(C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1}\right)=v^{i}\left(C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}\right)=\frac{1}{e_{i}}\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}\right)$. By applying lemma 4.6 in loc. cit. for $j=i, i+1$ we have that

$$
\operatorname{ord}_{x_{0}}\left(C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1}\right)=\operatorname{ord}_{x_{0}}\left(C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}\right)=\frac{\bar{\beta}_{0}}{e_{i}}
$$

$\operatorname{ord}_{x_{1}}\left(C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1}\right)=\operatorname{ord}_{x_{1}}\left(C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}\right)=\frac{\bar{\beta}_{1}}{e_{i}}$, and for $2 \leq l \leq i$, we have that $\operatorname{ord}_{x_{l}}\left(C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1}\right) \geq \frac{\bar{\beta}_{l}}{e_{i}}, \operatorname{ord}_{x_{l}}\left(C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}\right) \geq \frac{\bar{\beta}_{l}}{e_{i}}$. Moreover, by the lemma loc. cit. we have that the generic point of $C_{\left(n_{i} \bar{\beta}_{i}-1\right) 1 v}^{i+1}$ satisfies the equations

$$
\left.x_{l}^{\left(\frac{\bar{\beta}_{l}}{e_{i}}\right)^{n_{l}}}-c_{l} x_{0}^{\left(\frac{\bar{\beta}_{0}}{e_{i}}\right)^{b_{l 0}}} \ldots x_{l-1}^{\left(\frac{\left(\overline{\bar{l}}_{l-1}\right.}{e_{i}}\right.}\right)^{b_{l(l-1)}}, l=2, \ldots, i-1 .
$$

The generic point of $C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}$ satisfies beside the above equations, the following

$$
\left.x_{i}^{\left(\frac{\bar{\beta}_{i}}{e_{i}}\right)^{n_{i}}}-c_{l} x_{0}^{\left(\frac{\bar{\beta}_{0}}{e_{i}}\right)^{b_{i 0}}} \ldots x_{i-1}^{\left(\frac{\overline{\bar{\beta}}_{l-1}}{e_{i}}\right.}\right)^{b_{i(i-1)}}
$$

Since at the generic point of $C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}$, we have that $x_{0}^{\left(\frac{\bar{\beta}_{0}}{e_{i}}\right)}$ and $x_{1}^{\left(\frac{\bar{\beta}_{1}}{e_{i}}\right)}$ are both different from zero, it follows by induction on l, using the above equations that, at the generic point of $C_{\left(n_{i} \bar{\beta}_{i}\right) 1 v}^{i+1}, x_{l}^{\left(\frac{\bar{\beta}_{l}}{e_{i}}\right)} \neq 0$ for $l=2, \ldots, i$. Whence the proposition.

Corollary 23 For $i=1, \ldots, g$ we have that $v^{g}\left(H_{\mu_{i}}\right)=\frac{1}{e_{i}} \delta_{i}$ where

$$
\delta_{i}:=\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}, n_{i} \bar{\beta}_{i}, \ldots, n_{i} \ldots n_{g-1} \bar{\beta}_{i}\right) \in \mathbb{Z}_{\geq 0}^{g+1} . \quad(\star \star)
$$

Proof: The case $i=g$ is proved in proposition-definition 2.2 (3). Let us consider the case $i=1, \ldots, g-1$.. By applying proposition 4.5 in loc. cit. with i replaced successively by $i+1, \ldots, g-1$ and j by $i+1$, we deduce that for $l=i+1, \ldots, g, \operatorname{ord}_{x_{l}}\left(H_{\mu_{i}}\right) \geq \frac{1}{e_{i}} n_{i} \ldots n_{l-1} \bar{\beta}_{i}$, the equality follows because the codimension grows.

The vectors δ_{i} and the cones $\sigma_{i, j}, i=1, \ldots, g ; j=1,2$ that we will introduce in the following remark, will be of particular importance in the next section.

Remark 24 Let $\varepsilon_{i} \in \mathbb{N}^{g+1}$ be the vector whose i - th component is 1 , and its other components are 0 . Let δ_{0} be defined as in $(\star \star)$ where we set $n_{0}:=0$, i.e. $\delta_{0}=\left(\bar{\beta}_{0}, 0, \ldots, 0\right)$. For $0 \leq i \leq g$, we define the cones $\sigma_{i, 1}:=<\delta_{i-1}, \delta_{i}>$ and
$\sigma_{i, 2}:=<\varepsilon_{i}, \delta_{i}>, 1 \leq i \leq g$.
We consider the irreducible components H_{m} in the following inverse systems

$$
B_{(k+1) n_{1} \overline{\beta_{1}}-1} \rightarrow \cdots \rightarrow B_{k n_{1} \overline{\beta_{1}}+e_{1}}, \quad k \in \mathbb{N}
$$

and which are at the end position or verify $\operatorname{codim}\left(H_{m+1}\right)>\operatorname{codim}\left(H_{m}\right)$, where H_{m+1} is the consecutive element in the inverse system. We have that the vectors v^{g} of such irreducible components belong to $\sigma_{1,1} \cup \sigma_{2,2}$. For $i=2, \ldots, g$, we consider the irreducible components H_{m} in the following inverse systems

$$
\begin{aligned}
C_{\left(\bar{\beta}_{i}-1\right) 1 v}^{i} & \longrightarrow C_{\left(\bar{\beta}_{i}-2\right) 1 v}^{i} \cdots
\end{aligned} C_{\left(n_{i-1} \overline{\beta_{i-1}}\right) 1 v}^{i}
$$

and which are at the end position or verify $\operatorname{codim}\left(H_{m+1}\right)>\operatorname{codim}\left(H_{m}\right)$, where H_{m+1} is the consecutive element in the inverse system. By reasoning as in the above proposition, we can prove that the vectors v^{g} of such irreducible components belong to $\sigma_{i, 1} \cup \sigma_{i, 2}$.

We now will associate with a rupture component a divisorial valuation over $\mathbb{A}_{\mathbb{K}}^{2}$. Let $\pi: X \longrightarrow \mathbb{A}_{\mathbb{K}}^{2}$ be the minimal embedded resolution of $C \subset \mathbb{A}_{\mathbb{K}}^{2}$, which is a composition of a finite number t of point blowing ups. Since C is an hypersurface in $\mathbb{A}_{\mathbb{K}}^{2}, \pi$ is a \log resolution. Let $E_{i}, 1 \leq i \leq t$, be the strict transform on X of the exceptional locus of the i-th point blowing up. The curves $\left\{E_{i}\right\}_{i=1}^{t}$ will be called exceptional divisors and the exceptional divisor E_{1}, which is defined by the first blowing up, will be called root divisor. Let $E=\sum_{i=1}^{t} r_{i} E_{i}$ be defined by

$$
f . O_{X}=O_{X}\left(-\sum_{i=1}^{t} r_{i} E_{i}\right)
$$

For $m \in \mathbb{N}$, let $\psi_{m}^{a}: \mathbb{A}_{\infty}^{2} \longrightarrow \mathbb{A}_{m}^{2}$ be the canonical morphism, here the exponent a stands for ambient. For $p \in \mathbb{N}$, we now consider the following cylinder in the arc space

$$
\mathcal{C o n t}^{p}(f)=\left\{\gamma \in \mathbb{A}_{\infty}^{2} ; \operatorname{ord}_{t} f \circ \gamma=p\right\} .
$$

Note that this notation is different from the notation "Cont" that we have introduced before, here we are considering arcs in the ambient space. From example 1, we know that ψ_{m}^{a} is a trivial fibration, therefore for a rupture component $H_{\mu_{i}}$, we have that

$$
\psi_{\mu_{i}}^{a-1}\left(H_{\mu_{i}}\right) \cap \mathcal{C o n t}^{\mu_{i}+1}(f)
$$

is an irreducible component of $\mathcal{C o n t}^{\mu_{i}+1}(f)$. Note the fact that by definition of rupture components the codimension of $H_{\mu_{i}+1}$ jumps, implies that
$\psi_{\mu_{i}}^{a-1}\left(H_{\mu_{i}}\right) \cap \mathcal{C}_{\text {ont }}{ }^{\mu_{i}+1}(f) \neq \emptyset$. We associate with $H_{\mu_{i}}$ a discrete valuation $\nu_{H_{\mu_{i}}}$ as follows: let γ be the generic point of $\psi_{m}^{a-1}\left(H_{\mu_{i}}\right) \cap \mathcal{C o n t}^{\mu_{i}+1}(f)$, then for every $h \in \mathbb{K}\left[x_{0}, x_{1}\right]$, we set

$$
\nu_{H_{\mu_{i}}}(h)=\operatorname{ord}_{t} h \circ \gamma .
$$

It follows from corollary 2.6 in [ELM], that $\nu_{H_{\mu_{i}}}$ is a divisorial valuation (see also [R], prop. 3.7 (vii) applied to $\psi_{\mu_{i}}^{a}{ }^{-1}\left(H_{\mu_{i}}\right)$). In the same manner, we associate with the end components a divisorial valuation.

Let us consider the dual graph associated with the configuration of the exceptional divisors.

Definition 25 A star divisor is either an exceptional divisor whose corresponding vertex on the dual graph has valence equal to 3 or the exceptional divisor which intersects the strict transform of the branch. An end divisor is an exceptional divisor whose corresponding vertex has valence equal to 1 , and which is not the root divisor (see figures 3 and 2).

Then we can state the following theorem :
Theorem 26 1. The divisorial valuations associated with the rupture components are the valuations defined by the star divisors.
2. The end components of index of speciality one correspond to the end divisors and the root component corresponds to the root divisor.

Proof: We prove the first assertion, the second one follows in the same way. Let $E_{i_{j}}, j=1, \ldots, g$ be a star divisor locally defined by $g_{i_{j}}=0$, we consider the set

$$
\operatorname{Cont}^{1}\left(E_{i_{j}}\right)=\left\{\gamma \in X_{\infty} ; \operatorname{ord}_{t} g_{i_{j}} \circ \gamma=1\right\}
$$

Let $\pi_{\infty}: X_{\infty} \longrightarrow \mathbb{A}_{\infty}^{2}$ be the canonical morphism induced by π. Then by corollary 2.6 of $[\mathrm{ELM}]$, we need to prove that $\pi_{\infty}\left(\operatorname{Cont}^{1}\left(E_{i_{j}}\right)\right)$ is dense in $\psi_{n_{j} \bar{\beta}_{j}-1}^{a}{ }^{-1}\left(H_{\mu_{i}}\right) \cap \mathcal{C o n t}^{n_{j} \bar{\beta}_{j}}(f)$. First, by [C],[G], [L] we know that a projection of a curvette i.e. an element in $\operatorname{Cont}^{1}\left(E_{i_{j}}\right)$ has intersection multiplicity whith C which is equal to $n_{j} \bar{\beta}_{j}$ and intersection multiplicity with x_{0} which is equal to $n_{1} \cdots n_{j}$, therefore we have the inclusion

$$
\pi_{\infty}\left(\operatorname{Cont}^{1}\left(E_{i_{j}}\right)\right) \subset \psi_{n_{j} \bar{\beta}_{j}-1}^{a}{ }^{-1}\left(H_{\mu_{i}}\right) \cap \operatorname{Cont}^{n_{j} \bar{\beta}_{j}}(f) .
$$

On the other hand, knowing the numerical data of the minimal embedded resolution of the branch (see e.g. $[\mathrm{C}],[\mathrm{G}]$), we apply theorem 2.1 of $[\mathrm{ELM}]$ to find the codimension of $\pi_{\infty}\left(\operatorname{Cont}^{1}\left(E_{i_{j}}\right)\right) \subset \psi_{n_{j} \bar{\beta}_{j}-1}^{a}\left(H_{\mu_{i}}\right)$ in \mathbb{A}_{∞}^{2} (codimension in the sense of [ELM],) and which is equal by proposition 4.7 of [Mo1] to the codimension of $\psi_{n_{j} \bar{\beta}_{j}-1}^{a}{ }^{-1}\left(H_{\mu_{i}}\right) \cap \mathcal{C o n t}^{n_{j} \bar{\beta}_{j}}(f)$ in \mathbb{A}_{∞}^{2}. Since they are irreducible, we conclude that their closures are equal, and therefore they define the same valuation, hence the theorem.

Figure 1

Figure 2

We get a tree $T_{C, 0}$ by representing each irreducible component of $C_{m}^{0}, m \geq$ 1 , by a vertex $v_{i, m}, 1 \leq i \leq N(m)$, and by joining the vertices $v_{i_{1}, m+1}$ and $v_{i_{0}, m}$ if $\pi_{m+1, m}$ induces one of the maps appearing in the three type of the projective systems between the corresponding irreducible components.
We represent in figure 1 below the tree for the branch defined by $f(x, y)=$ $\left(y^{2}-x^{3}\right)^{2}-4 x^{6} y-x^{9}=0$, whose semigroup is $\left\langle\bar{\beta}_{0}=4, \bar{\beta}_{1}=6, \bar{\beta}_{2}=15\right)>$, and for which we have $e_{1}=2, e_{2}=1$ and $n_{1}=n_{2}=2$.

We represent in figure 2 the dual graph of the same branch.
The theorem 26 determines a corrspondance between on one side, the irreducible components denoted in figure 1 by $1,2,3$ (the root component and the end components) and those denoted by a,b (rupture components), and on the other side the vertices on the dual graph which are denoted in figure 2 , by the same numbers (resp. letters).

3 Minimal desingularization

Recall that $f \in \mathbb{K}\left[x_{0}, x_{1}\right]$ is a nonzero polynomial such that $f(0,0)=0$ and f is irreducible in $\mathbb{K}\left[\left[x_{0}, x_{1}\right]\right]$, and C is the plane branch defined by f at $O=(0,0)$. Recall also that $x_{0}, x_{1}, x_{2}, \ldots, x_{g+1}=f$ is a minimal system of generators for v_{C}. We consider the embedding of the formal neighborhood $\widehat{\mathcal{X}}_{0}=$ Spec $\mathbb{K}\left[\left[x_{0}, x_{1}\right]\right]$ of O in \mathbb{K}^{2} into the formal neighborhood $\widehat{\mathcal{Z}_{0}}=\operatorname{Spec} k\left[\left[X_{0}, \ldots, X_{g}\right]\right]$ of O in $\mathcal{Z}_{0}=\mathbb{K}^{g+1}$, given by sending X_{i} to x_{i}. Let $C^{\Gamma} \subseteq \widehat{\mathcal{Z}_{0}}$ be the monomial curve parametrized by $X_{i}=t^{\overline{\beta_{i}}}$.

Recall from corollary 23 that $\delta_{i}:=\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}, n_{i} \bar{\beta}_{i}, \ldots, n_{i} \ldots n_{g-1} \bar{\beta}_{i}\right) \in$ $\mathbb{Z}_{\geq 0}^{g+1}, 0 \leq i \leq g$, and that we consider the cones $\sigma_{i, 1}:=<\delta_{i-1}, \delta_{i}>$ and $\sigma_{i, 2}:=<\varepsilon_{i}, \delta_{i}>$ for $1 \leq i \leq g$, where ε_{i} is the unit vector on the X_{i}-axis. Let $\Sigma_{\mathcal{N}}$ be the Newton fan of the g functions defining $\widehat{\mathcal{X}}_{0}$ in $\widehat{\mathcal{Z}}_{0}$ and let $\mathcal{Z}_{\Sigma_{\mathcal{N}}}$ be the toric variety defined by $\Sigma_{\mathcal{N}}$. Then the cones $\sigma \in \Sigma_{\mathcal{N}}$ whose orbit \mathbb{O}_{σ} in $\mathcal{Z}_{\Sigma_{\mathcal{N}}}$ intersect the strict transform $\widehat{\mathcal{X}}_{\Sigma_{\mathcal{N}}}$ of $\widehat{\mathcal{X}}_{0}$ in $\mathcal{Z}_{\Sigma_{\mathcal{N}}}$ are $\left\{\sigma_{i j}\right\}_{1 \leq i \leq g, j=1,2}$ and their faces, and $\widehat{\mathcal{X}}_{\Sigma_{\mathcal{N}}}$ has $2 g$ toric singularities which are its intersection points with the orbits $\mathbb{O}_{\sigma_{i j}}, 1 \leq i \leq g, j=1,2$ (see [LR], prop. 1.3). Next we will show a canonical way to obtain a regular subdivision Σ_{C} of $\Sigma_{\mathcal{N}}$ inducing the minimal regular subdivision in each $\sigma_{i j}$. In particular, we will have that $\mathbb{R}_{\geq 0} \delta_{g}$ is a cone in Σ_{C}. The reason why we are interested in such a subdivision is the following:

Lemma 31 Let Σ be a regular subdivision of $\Delta:=\mathbb{R}_{\geq 0}^{g+1}$, \mathcal{Z}_{Σ} the toric variety defined by Σ, and $\widehat{\mathcal{X}}_{\Sigma}$ the strict transform of $\widehat{\mathcal{X}}_{0}$ by the equivariant morphism $\pi_{\Sigma}: \mathcal{Z}_{\Sigma} \rightarrow \mathcal{Z}_{0}$. The following conditions are equivalent:
(i) $\mathbb{R}_{\geq 0} \delta_{g}$ is a cone of Σ
(ii) the map $\widehat{\mathcal{X}}_{\Sigma} \rightarrow \widehat{\mathcal{X}}_{0}$ is an embedded desingularization of C.

Besides, if the above conditions hold then π_{Σ} desingularizes the monomial curve C^{Γ}.

Proof: Let $\sigma=<\underline{a}_{0}, \ldots, \underline{a}_{g}>\in \Sigma$ where $\underline{a}_{i}=\left(a_{0 i}, \ldots, a_{g i}\right)$ and let V_{σ} be the affine toric variety defined by σ. Since σ is a regular cone, the map

$$
V_{\sigma}=\operatorname{Spec} k\left[U_{0}, \ldots, U_{g}\right] \rightarrow \mathcal{Z}_{0}
$$

is given by $X_{i}=U_{0}^{a_{0 i}} \ldots U_{g}^{a_{g i}}, 0 \leq i \leq g$, and the orbit $\mathbb{O}_{\underline{a}_{i}}$ of $\mathbb{R}_{\geq 0} \underline{a}_{i}$ is defined in V_{σ} by $U_{i}=0, U_{j} \neq 0, j \neq i$. Let $\left\{X_{i}(t)\right\}_{0 \leq i \leq g}$ be a parametrization of C. If the strict transform C^{\prime} (resp. $\left.\left(C^{\Gamma}\right)^{\prime}\right)$ of C (resp. C^{Γ}) in \mathcal{Z}_{Σ} intersects V_{σ} and is given by $\left\{U_{i}(t)\right\}_{i=0}^{g}$, then $\delta_{g}=\left(\operatorname{ord}_{t} X_{i}(t)\right)_{0 \leq i \leq g}=\left(\operatorname{ord}_{t} t^{\bar{\beta}_{i}}\right)_{0 \leq i \leq g}$ is a combination of the \underline{a}_{i} 's with coefficients $\lambda_{i}=\operatorname{or} \bar{d}_{t} \bar{U}_{i}(t) \in \mathbb{Z}_{\geq 0}$, thus it belongs to σ, and besides, $U_{i}(t)=t^{\lambda_{i}} w_{i}(t)$ where $\left\{w_{i}(t)\right\}_{i=0}^{g}$ are the unique solutions in $\left(k[[t]]^{*}\right)^{g+1}$ of the system $w_{0}(t)^{a_{0 i}} \ldots w_{g}(t)^{a_{g i}}=X_{i}(t) / t^{\bar{\beta}_{i}} \in k[[t]]^{*}$ (resp. $\left.w_{i}(t)=1,0 \leq i \leq g\right)$.

If $\mathbb{R}_{\geq 0} \delta_{g} \in \Sigma$ then we may assume $\lambda_{0}=1, \lambda_{i}=0$ for $i \neq 0$ and hence both C^{\prime} and $\left(C^{\Gamma}\right)^{\prime}$ are smooth and C^{\prime} intersects $\mathbb{O}_{\delta_{g}} \cap \widehat{\mathcal{X}}_{\Sigma}$ transversally and does not intersect \mathbb{O}_{τ} for $\tau \in \Sigma, \tau \neq \mathbb{R}_{\geq 0} \delta_{g}$. This proves $(i) \Rightarrow(i i)$ and also the last statement in the lemma. For $(i i) \Rightarrow(i)$, if $\mathbb{R}_{\geq 0} \delta_{g} \notin \Sigma$, then we may assume $\lambda_{0}, \lambda_{1}>0$ and hence $\mathbb{O}_{a_{0}} \cap \mathbb{O}_{a_{1}} \cap C^{\prime} \neq \emptyset$, i.e. $\widehat{\mathcal{X}}_{\Sigma} \rightarrow \widehat{\mathcal{X}}_{0}$ is not an embedded desingularization.

Let $N_{\sigma_{i j}}$ be the lattice obtained intersecting \mathbb{Z}^{g+1} with the real space spanned by $\sigma_{i j}$, and let γ_{i}, λ_{i} and ρ_{i} be the primitive vectors on the half lines through $\delta_{i-1}, \delta_{i}-\delta_{i-1}$ and $\delta_{i}-\left(\bar{\beta}_{i}-n_{i-1} \bar{\beta}_{i-1}\right) \varepsilon_{i}$ respectively. Then $\left\{\gamma_{i}, \lambda_{i}\right\}$ (resp. $\left\{\rho_{i}, \varepsilon_{i}\right\}$) is a \mathbb{Z}-basis of $N_{\sigma_{i, 1}}\left(\right.$ resp. $N_{\sigma_{i, 2}}$) and we have $\sigma_{i, 1}=<$ $\gamma_{i}, e_{i-1} \gamma_{i}+\left(\bar{\beta}_{i}-n_{i-1} \bar{\beta}_{i-1}\right) \lambda_{i}>$ and $\sigma_{i, 2}=<e_{i-1} \rho_{i}+\left(\bar{\beta}_{i}-n_{i-1} \bar{\beta}_{i-1}\right) \varepsilon_{i}, \varepsilon_{i}>$. Thus, if we set $\tilde{\beta}_{i} \widetilde{\delta}_{i} \quad \sim_{i} \quad=$ $\left(e_{i-1}, \bar{\beta}_{i}-n_{i-1} \bar{\beta}_{i-1}\right) \in \mathbb{Z}_{\geq 0}^{2}$, and $\widetilde{\sigma}_{i, 1}=<(1,0), \widetilde{\delta}_{i}>, \widetilde{\sigma}_{i, 2}=<\widetilde{\delta}_{i},(0,1)>$ are the two-dimensional cones in the subdivision of $\mathbb{R}_{\geq 0}^{2}$ by $\mathbb{R}_{\geq 0}^{2} \widetilde{\delta}_{i}$, then the pair $\left(\sigma_{i, j}, N_{\sigma_{i, j}}\right)$ is isomorphic to $\left(\widetilde{\sigma}_{i, j}, \mathbb{Z}^{2}\right)$ for $1 \leq i \leq g, j=1, \overline{2}$. From this it follows that, if $O_{i j}:=\mathbb{O}_{\sigma_{i, j}} \cap \widehat{\mathcal{X}}_{\Sigma_{\mathcal{N}}}$ and $\widetilde{O}_{i, j}$ is the unique closed orbit in the toric surface $\mathcal{Z}_{\widetilde{\sigma}_{i, j}}$, then the germs $\left(\widehat{\mathcal{X}}_{\Sigma_{\mathcal{N}}}, O_{i, j}\right)$ and $\left(\mathcal{Z}_{\widetilde{\sigma}_{i, j}}, \widetilde{O}_{i j}\right)$ are analytically isomorphic.

Therefore, for any regular subdivision Σ of Δ inducing the minimal regular subdivision on each $\sigma_{i j}$, the dual graph \mathcal{G} of the morphism $\widehat{\mathcal{X}}_{\Sigma} \rightarrow \widehat{\mathcal{X}}_{0}$ is

Figure 3
where if we denote by Θ_{i} the minimal regular subdivision of $\mathbb{R}_{\geq 0}^{2}$ by $\mathbb{R}_{\geq 0} \widetilde{\delta}_{i}$, then \mathcal{G}_{i} is obtained from Proj Θ_{i} by erasing its ends $\operatorname{Proj}\left(\mathbb{R}_{\geq 0}(1,0)\right)$ and $\operatorname{Proj}\left(\mathbb{R}_{\geq 0}(0,1)\right)$, and the star w_{i} is $\operatorname{Proj}\left(\mathbb{R}_{\geq 0} \widetilde{\delta}_{i}\right)$. But from lemma 3.1 and prop. 1.3 in $[\mathrm{LR}]$ it follows that \mathcal{G} is the dual graph of the minimal embedded desingularization of C in $\widehat{\mathcal{X}}_{0}$. Thus the equivariant morphism $\mathcal{Z}_{\Sigma} \rightarrow \mathcal{Z}_{0}$ induces on $\widehat{\mathcal{X}}_{0}$ the minimal embedded desingularization of C.

The isomorphism between $\left(\sigma_{i, j}, N_{\sigma_{i, j}}\right)$ and $\left(\widetilde{\sigma}_{i, j}, \mathbb{Z}^{2}\right)$ allows us to describe the minimal system of generators $G_{\sigma_{i, j}}$ of $\sigma_{i, j}$ from the minimal system of generators of $\widetilde{\sigma}_{i, j}$. In fact, given $n \geq 1$ and independent variables u_{1}, \ldots, u_{n}, we define a sequence of polynomials $\left\{P_{s}\left(u_{1}, \ldots, u_{s}\right)\right\}_{s=0}^{n}, \quad P_{s} \in \mathbb{N}\left[u_{1}, \ldots, u_{s}\right]$, by $P_{0}=1$ and

$$
P_{s}\left(u_{1}, \ldots, u_{s}\right)=u_{1} P_{s-1}\left(u_{2}, \ldots, u_{s}\right)+P_{s-2}\left(u_{3}, \ldots, u_{s}\right)
$$

where we set $P_{-1}=0$. Note that $P_{s}\left(u_{1}, \ldots, u_{s}\right) / P_{s-1}\left(u_{2}, \ldots, u_{s}\right)=\left[u_{1}, \ldots, u_{s}\right]$ where

$$
\left[u_{1}, \ldots, u_{s}\right]:=u_{1}+\frac{1}{u_{2}+\frac{1}{u_{3}+\frac{1}{\ddots}+\frac{1}{u_{s}}}}
$$

is the continued fraction expansion. Now let $\left[a_{1}^{(i)}, \ldots, a_{s_{i}}^{(i)}\right]$ be the expression of $\left(\bar{\beta}_{i}-n_{i-1} \bar{\beta}_{i-1}\right) / e_{i-1}$ as continued fraction (this notation does not coincide with the one in [Sp]). We define $\Omega:=\left\{(i, s, a) / 1 \leq i \leq g, 1 \leq s \leq s_{i}, 1 \leq\right.$ $\left.a \leq a_{s}^{(i)}\right\} \cup\{(i, 0,0),(i, 1,0) / 1 \leq i \leq g\}$ and, for $(i, s, a) \in \Omega$, we set

$$
P(i, s, a):=P_{s}\left(a_{1}^{(i)}, \ldots, a_{s-1}^{(i)}, a\right) \quad \bar{P}(i, s, a):=P_{s-1}\left(a_{2}^{(i)}, \ldots, a_{s-1}^{(i)}, a\right)
$$

and

$$
v_{(i, s, a)}:=\left\{\begin{array}{lr}
\bar{P}(i, s, a) \gamma_{i}+P(i, s, a) \lambda_{i} & \text { if } s \text { odd } \\
\bar{P}(i, s, a) \rho_{i}+P(i, s, a) \varepsilon_{i} & \text { if } s \text { even }
\end{array}\right.
$$

(note that $v_{(i, 0,0)}=\varepsilon_{i}, v_{(i, 1,0)}=\gamma_{i}$ and $\left.v_{\left(i, s_{i}, a_{s_{i}}^{(i)}\right)}=\gamma_{i+1}\right)$. Then we have

$$
G_{\sigma_{i, 1}}=\left\{v_{(i, s, a)} /(i, s, a) \in \Omega, s \text { odd }\right\} \cup\left\{\gamma_{i+1}\right\}
$$

$$
G_{\sigma_{i, 2}}=\left\{v_{(i, s, a)} /(i, s, a) \in \Omega, s \text { even }\right\} \cup\left\{\gamma_{i+1}\right\}
$$

Let us describe some properties of the vectors $\left\{v_{\alpha}\right\}_{\alpha \in \Omega}$. Let us consider the lexicographic order in Ω. For $\alpha=(i, s, a) \in \Omega, \alpha \neq(i, 0,0),(i, 1,0)$, there exists a unique element in Ω strictly smaller than α of the type ($i, s^{\prime}, a^{\prime}$) with s^{\prime} odd (resp. even) and maximal with this property, let us denote it by α_{o} (resp. α_{e}). Note that the unique element $\alpha-1$ of Ω strictly smaller than α and maximal with this property is one of α_{o}, α_{e}. With this notation we have:

Lemma 32 i) Let $\alpha=(i, s, a) \in \Omega, \alpha \neq(i, 0,0),(i, 1,0)$. Then v_{α} belongs to the interior of the cone $<v_{\alpha_{o}}, v_{\alpha_{e}}, \varepsilon_{i+1}, \ldots, \varepsilon_{g}>$.
ii) Given $\alpha, \alpha^{\prime} \in \Omega, v_{\alpha}=v_{\alpha^{\prime}}$ iff $\alpha=\alpha^{\prime}$ or else there exists $i, 1 \leq i \leq g-1$, such that $\left\{\alpha, \alpha^{\prime}\right\}=\left\{\left(i, s_{i}, a_{s_{i}}^{(i)}\right),(i+1,1,0)\right\}$.
iii) If $\alpha, \alpha^{\prime} \neq(i, 0,0),(i, 1,0)$ for $1 \leq i \leq g$, then $v_{\alpha}<v_{\alpha^{\prime}}$ (where we consider the usual order in \mathbb{R}^{g+1}) iff $\alpha<\alpha^{\prime}$.

Proof: It follows from explicit calculus.
3.3. Given a regular fan Σ_{0} in the lattice $\mathbb{Z}_{\geq 0}^{g+1}$ and a primitive vector $\delta \in \mathbb{Z}_{\geq 0}^{g+1}$ in the support of Σ_{0}, let us show a canonical algorithm to obtain a regular subdivision Σ of Σ_{0} which contains $\mathbb{R}_{\geq 0} \delta$:

If $\mathbb{R}_{\geq 0} \delta$ is a cone in Σ_{0}, we set $\Sigma=\Sigma_{0}$ and finish. If it is not, then there exists a unique cone σ_{0} in Σ_{0} such that δ belongs to the interior σ_{0}° of σ_{0}. The cone σ_{0} is regular, i.e. its extremal vectors $\left\{\underline{a}_{0}, \ldots, \underline{a}_{r_{0}}\right\}$ form part of a basis of the lattice. Let $\omega_{1}:=\sum_{0 \leq k \leq r_{0}} \underline{a}_{k}$ and let us consider the minimal subdivision Σ_{1} of Σ_{0} containing $\mathbb{R}_{\geq 0} \omega_{1}$. The fan Σ_{1} is regular. If $\omega_{1}=\delta$ then Σ_{1} contains $\mathbb{R}_{\geq 0} \delta$. In this case, we set $\Sigma=\Sigma_{1}$ and we stop the algorithm. In the other case, $\omega_{1}<\delta$ (where we consider the usual order in \mathbb{R}^{g+1}), and the unique cone σ_{1} in Σ_{1} such that $\delta \in \sigma_{1}^{\circ}$ has ω_{1} as extremal vector. We repeat the procedure and obtain ω_{2} such that $\omega_{1}<\omega_{2} \leq \delta$ and a regular fan Σ_{2} which is the minimal subdivision of Σ_{1} containing $\mathbb{R}_{\geq 0} \omega_{2}$. We go on in this way.

The preceding process stops after a finite number of steps since, if $\omega_{i} \in \mathbb{Z}_{\geq 0}^{g+1}$ is the vector appearing in the i-th step, then $\omega_{1}<\ldots<\omega_{i-1}<\omega_{i} \leq \delta$. It determines a canonical way of obtaining a regular subdivision of Σ_{0} containinig $\mathbb{R}_{\geq 0} \delta$.
3.4. Let us now describe the algorithm to obtain Σ_{C} : First note that Δ contains the half-lines defined by $v_{(1,1,0)}=\varepsilon_{0}, v_{(i, 0,0)}=\varepsilon_{i}, 1 \leq i \leq g$. Let us consider $v_{(1,1,1)}$, which belongs to Supp Δ, then we can apply the algorithm in 3.3 and obtain a regular subdivision $\Sigma_{(1,1,1)}$ of Δ which contains $\mathbb{R}_{\geq 0} v_{(1,1,1)}$. Now, let $\alpha=(i, s, a) \in \Omega, \alpha \neq(i, 0,0),(i, 1,0)$, and suppose we have obtained a regular subdivision $\Sigma_{\alpha-1}$ of Δ containing $\left\{\mathbb{R}_{\geq 0} v_{\alpha^{\prime}} / \alpha^{\prime} \leq \alpha-1\right\}$. In order to define Σ_{α} we observe that the primitive vector v_{α} belongs to Supp $\Sigma_{\alpha-1}$, in fact it belongs to the interior of $\left.<v_{\alpha_{0}}, v_{\alpha_{e}}, \varepsilon_{i+1}, \ldots, \varepsilon_{g}\right\rangle$. We apply the
algorithm 3.3 and obtain a regular subdivision Σ_{α} of $\Sigma_{\alpha-1}$ which contains $\left\{\mathbb{R}_{\geq 0} v_{\alpha^{\prime}} / \alpha^{\prime} \leq \alpha\right\}$. We continue this process until we obtain regular fans Σ_{α} for all $\alpha \in \Omega, \alpha \neq(i, 0,0),(i, 1,0)$. We define Σ_{C} to be $\Sigma_{\left(g, s_{g}, a_{s g}^{(g)}\right)}$.

Theorem 33 The equivariant morphism $\mathcal{Z}_{\Sigma_{C}} \rightarrow \mathcal{Z}_{0}$ desingularizes both curves C and C^{Γ} and besides it induces on $\widehat{\mathcal{X}}_{0}$ the minimal embedded desingularization of C.

Proof: It is clear that Σ_{C} contains all half-lines $\mathbb{R}_{\geq 0} v_{\alpha}$ for $\alpha \in \Omega$, i.e. all half-lines defined by the vectors in the minimal regular subdivision of each $\sigma_{i j}$. In order to prove the theorem it suffices to show that these are the unique 1-dimensional cones of Σ_{C} whose support is in some $\sigma_{i j}$. In fact, when we determine Σ_{α} from $\Sigma_{\alpha-1}$ applying 3.3, the new half-lines that appear are defined by a finite number of vectors $\omega_{s} \in \mathbb{Z}_{\geq 0}^{g+1}$ which are smaller or equal than v_{α} and contained in the interior of $<v_{\alpha_{o}}, v_{\alpha_{e}}, \varepsilon_{i+1}, \ldots, \varepsilon_{g}>$. Since, for $\alpha^{\prime}<\alpha, v_{\alpha^{\prime}}$ does not belong to the interior of that cone, from lemma 3.1 ii$)$, $i i i)$ it follows that the unique vector ω_{s} appearing which is contained in some $\sigma_{i j}$ is v_{α}.

Acknowledgements The authors would like to thank the referees for their careful readings and comments.

References

[A] S.S. Abhyankar, Irreducibility Criterion for Germs of Analytic Functions of Two Complex Variables, Advances in Mathematics 74, (1989), 190-257.
[C] E. Casas-Alvero, Singularities of plane curves. London Mathematical Society Lecture Note Series, 276. Cambridge University Press, Cambridge, 2000.
[dFEI] T. de Fernex, L. Ein, S. Ishii, Divisorial valuations via arcs. Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 425-448,
[ELM] L. Ein, R. Lazarsfeld, M. Mustata, Contact loci in arc spaces. Compos. Math. 140 (2004), no. 5, 1229-1244.
[G] E. García Barroso, Invariants des singularités de courbes planes et courbure des fibres de Milnor. Servicio de Publicaciones de la ULL (2004).
[GT] R. Goldin, B. Teissier, Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), 315-340, Progr. Math., 181, Birkhuser, Basel, 2000.
[GP] P. Gonzlez Prez, Toric embedded resolutions of quasi-ordinary hypersurface singularities. Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1819-1881.
[Kh] A.G. Hovanskii, Newton polyhedra, and toroidal varieties. (Russian) Funkcional. Anal. i Prilozen. 11 (1977), no. 4, 56-64, 96.
[Ko] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32, 1-31, 1976.
[L] M. Jalabert-Lejeune, Sur l'quivalence des singularits de courbes algbrodes planes. Coefficients de Newton. Introduction la thorie des singularits, I, 49-124, Travaux en Cours, 36, Hermann, Paris, 1988.
[LR] M. Lejeune-Jalabert, A. Reguera-López, Arcs and wedges on sandwiched surface singularities. Amer. J. Math. 121 (1999), no. 6, 1191-1213.
[Mo1] H. Mourtada, Jet schemes of complex branches and equisingularity, Ann. Inst. Fourier 61, No. 6, 2313-2336 (2011).
[Mo2] H. Mourtada, Jet schemes of toric surfaces, C. R., Math., Acad. Sci. Paris 349, No 9-10, 563-566 (2011).
[Mus1] M. Mustata, with an appendix by David Eisenbud and Edward Frenkel, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397-424.
[N] J. F. Nash, Arc structure of singularities, Duke Math. J. 81, (1995) no. 1, 31-38.
[R] A. Reguera, Towards the singular locus of the space of arcs. Amer. J. Math. 131 (2009), no. 2, 313-350.
[Sp] M. Spivakovsky, Valuations in Function Fields of Surfaces, American Journal of Mathematics Vol. 112 No. 1., 1990.
[V] P. Vojta, Jets via Hasse-Schmidt derivations. Diophantine geometry, 335-361, CRM Series, 4, Ed. Norm., Pisa, 2007.
[Z] O. Zariski, with an appendice by B.Teissier, Le problème des modules pour les branches planes, Hermann, Paris, 1986.

[^0]: M. Lejeune-Jalabert

 CNRS, Laboratoire de Mathmatiques de Versailles
 45 Avenue des Etas Unies, 78035,Versailles, France
 E-mail: lejeune@math.uvsq.fr
 H. Mourtada

 Institut de Mathmatiques de Jussieu, Université Paris 7
 175 rue Chevaleret, 75013 Paris, France
 E-mail: mourtada@math.jussieu.fr
 A. Reguera

 Dpto. De lgebra y Geometra, Univ. Valladolid
 47005 Valladolid, Spain
 E-mail: areguera@agt.uva.es

