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SINGULARITY THEORY AND INTEGER PARTITIONS

HUSSEIN MOURTADA

Abstract. What can singularities of algebraic varieties say about the decom-

positions of a positive integer into a sum of positive integers ?

1. Introduction

In his first letter to Hardy, dated 16 January 1913 ([18], p. 29) Ramanujan
stated the formulas
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about which Hardy writes in the article ”The Indian Mathematician Ramanujan”
([34], p. 144):

”[These formulas] defeated me completely. I had never seen anything in the least
like them before. A single look at them is enough to show that they could only be

written down by a mathematician of the highest class. They must be true because,
if they were not true, no one would have had the imagination to invent them.”

This article is not exactly about these formulas, but about some identities which are
at the heart of their proofs; this allows the author to enjoy writing them and prob-
ably the reader (who already knew them or not yet) to enjoy the scene. According
to [17], the first proof of these formulas was given by Watson [56]; following [9], let
us see how partitions, via the Rogers-Ramaunujan identities, play a fundamental
role in the proof. Consider the q−difference equation

(1.3) F (x) = F (xq) + xqF (xq2),

where q ∈ C∗ and F (x) =
∑
an(q)xn is an analytic function satisfying F (0) = 1.
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Let c(x, q) := F (x)
F (xq) ; we have

c(x, q) = 1 +
xq

c(xq, q)
= 1 +

xq

1 + xq2

c(xq2,q)

.

Iterating this last identity, we find that the left member of the identity (1.1) is equal
to c(1, e−2π) and that the left member of the identity (1.2) is equal to c(1, e−π). Now,
if we plug F (x) =

∑
an(q)xn in the equation (1.3), by comparing the coefficients

of xn on both sides, we get

an(q) =
qn

2

(q)n
=

qn
2

(1− q)(1− q2) · · · (1− qn)
.

This gives the left equalities in the following two identities:

(1.4) F (1) = 1 +
∑
n≥1

qn
2

(q)n
=

∏
i≡ 1,4 (mod 5)

1

1− qi
.

(1.5) F (q) = 1 +
∑
n≥1

qn
2+n

(q)n
=

∏
i≡ 2,3 (mod 5)

1

1− qi
.

The equalities on the right in (1.4) and (1.5) are two miracles, which are central in
this article. They allow us to represent c(1, q) as an infinite product and we may
then deduce Ramanujan’s continued fraction (1.1),(1.2) by an appeal to the theory
of elliptic theta functions.

The ”miracles” in (1.4) and (1.5) are called the Rogers-Ramanujan identities; it is
magic how they appear ”in many different domains”: statistical mechanics, combi-
natorics and number theory, representation theory, probability theory and in Alge-
braic Geometry and Commutative Algebra; see [12, 16, 20, 22, 30, 33, 29]. Here we
will concentrate on the Algebro-Geometric side of the story. But at first, since we
have stated the Rogers-Ramanujan identities in terms of q−series, let us explain
why these are partition identities.

Definition 1.1. A partition of a positive integer n is a decreasing sequence λ =
(λ1 ≥ λ2 ≥ · · · ≥ λr) such that λ1 + · · ·+ λr = n. The λi’s are called the parts of
λ and r is its size.

For instance, 4 has 5 partitions:

(1.6) 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The combinatorial version of Rogers-Ramanujan identities in terms of integer par-
titions is due to MacMahon [40] and Schur [53].

Theorem 1.2 (Rogers–Ramanujan identities, combinatorial version). Let n be a
nonnegative integer and set i ∈ {1; 2}. Denote by T2,i(n) the number of partitions
of n such that the difference between two consecutive parts is at least 2 and the part
1 appears at most i − 1 times. Let E2,i(n) be the number of partitions of n into
parts congruent to ±2 + i mod 5. Then we have

T2,i(n) = E2,i(n).



HILBERT MEETS RAMANUJAN: SINGULARITY THEORY AND INTEGER PARTITIONS 3

For example, the partitions of 4 (see 1.6) which are counted by T2,2(4) are 4 and
3 + 1; those which are counted by E2,2(4) are 4 and 1 + 1 + 1 + 1. In particular
we have T2,2(4) = E2,2(4) = 2, and the theorem says that this is the case for
every positive integer n. The relation between the identities (1.4) and (1.5) and
theorem 1.2 is that one can prove that the left member of (1.4) (respectively (1.5))
is the generating series of the sequence T2,2(n) (respectively T2,1(n)) and it is not
a difficult exercise to see that the right member of (1.4) (respectively (1.5)) is the
generating series of the sequence E2,2(n) (respectively E2,1(n)). Recall here that
the generating series of a sequence of integer numbers (an)n∈Z≥0

is by definition∑
n∈Z≥0

anq
n.

The other important object (with integer partitions) for this article is the arc
space, coming from algebraic geometry. Let X ⊂ Ce be an algebraic variety: i.e., X
is the zero locus in Ce of a set of polynomials in e variables with coefficients in the
field C of complex numbers. The arc space X∞ of X is a space which parametrizes
the arcs (germs of formal curves) which are traced on X; so a point of X∞ cor-
responds to an arc on X. As we will see, this is also an ”algebraic variety” (or a
scheme) which often is of infinite dimension. Arc spaces (and their finite dimen-
sional approximations) play an important role in singularity theory, for instance
via the Nash problem [49], motivic integration [25, 23], birational geometry [47] or
equisingularity [45, 46, 37, 38].

This article tells, on the one hand, about a link between arc spaces and partition
identities and on the other hand how this link allows one to discover and prove
new partition identities. In the second section, we will introduce the arc space and
the arc HP-series (the arc Hilbert-Poincaré series) which is an invariant of singu-
larities of algebraic varieties; we will also show how to compute this series in some
examples. The third section reveals the relation between the arc HP-series and
Rogers-Ramanujan identities: differential algebra and Groebner basis theory play
an important role here. The fourth section shows how one can guess and prove new
partition identities using the link between arc spaces and integer partitions. The
last section is about research directions which are related to the subject of this ar-
ticle but which have not been treated here. The article is meant to be self contained.

Aknowledgements. The author would like to thank several colleagues and friends
with whom he discussed at a moment or another about the subject of this paper,
in particular: P. Afsharijoo, L. Boccadifuoco, C. Bruscheck, S. Corm, S. Corteel, J.
Dousse, T. Dupuy, M. Hajli, H. Hauser, F. Jouhet, M. Lejeune-Jalabert, Z. Mohsen,
A. Rangachev, J. Schepers, B. Teissier.

2. The Arc Hilbert-Poincaré series

Let C be the field of complex numbers (any other field of characteristic zero
would be good for this paper). Let X ⊂ C3 be an affine algebraic variety; the story
is absolutely the same if we replace the 3 in C3 by an integer number e, modulo
more notations; actually later we will consider examples where e (the embedding
dimension) is 1, 2 or 3. For the scope of this paper, we can consider X to be a
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hypersurface defined by a polynomial f ∈ R = C[x, y, z], i.e.

X = {(a1, a2, a3) ∈ C3 | f(a1, a2, a3) = 0}.
Again, not much related to what we will tell changes if we replace the ideal generated
by (f) by an ideal generated by a finite number of polynomials. We will also write

(2.1) X = Spec
C[x, y, z]

(f)
= Spec

R
(f)

;

this latter notation emphasizes, as in modern Algebraic Geometry, on the fact the
ring of polynomial functions defined on X with value in C is given by

OX =
C[x, y, z]

(f)
.

For instance, the polynomial function defined by f (or any polynomial in the ideal
(f) generated by f) is zero in OX ; this meets the fact that for any (a1, a2, a3) ∈
X, f(a1, a2, a3) = 0. Moreover, the use of the notation Spec allows us to distinguish
the variety (or scheme) defined by f from the one defined by f2 (even though the
underlying geometric object is the same); one can think of SpecR/(f2) as a kind
of thickening of SpecR/(f), since we have more polynomial functions on it, f for
instance is not zero in R/(f2) .

An arc γ on X is defined by a string of power series

γ(t) = (x(t), y(t), z(t))

such that f(γ(t)) = f(x(t), y(t), z(t)) = 0. This latter equality says that the arc γ
which was originally defined as an arc on C3 is an arc on X. Let us write

(2.2) x(t) =
∑
i≥0

xit
i, y(t) =

∑
i≥0

yit
i, z(t) =

∑
i≥0

zit
i,

and expand f(γ(t)) =

(2.3) f(
∑
i≥0

xit
i,
∑
i≥0

yit
i,
∑
i≥0

zit
i) =

∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)t
j .

The data of an arc is then equivalent to the data of the coefficients

xi, yi, zi, i ∈ Z≥0,

which satisfy the equations Fj(x0, y0, z0, . . . , xj , yj , zj) = 0 for every j ∈ Z≥0.
Hence the arc space which is the space of all arcs on X is the algebraic variety
X∞ which is defined in an infinite dimensional affine space (whose coordinates are
xi, yi, zi, i ∈ Z≥0) by the polynomials Fj , j ∈ Z≥0. In other terms X∞ = SpecOX∞
where

OX∞ =
C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)
.

Giving the variables xi, yi and zi the weight i, the polynomials Fj are weighted-
homogeneous of degree j : Indeed, if we replace in the equation (2.3) the variables
xi, yi, zi by λixi, λ

iyi, λ
izi, it becomes

f(
∑
i≥0

λixit
i,
∑
i≥0

λiyit
i,
∑
i≥0

λizit
i) =

∑
j≥0

Fj(λ
0x0, λ

0y0, λ
0z0, . . . , λ

jxj , λ
jyj , λ

jzj)t
j ;
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At the same time, noticing that λiti = (λt)i we can write the equation as follows

f(
∑
i≥0

xi(λt)
i,
∑
i≥0

yi(λt)
i,
∑
i≥0

zi(λt)
i) =

∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)(λt)
j ;

hence, by collecting the coefficients of tj in both forms of the equation, we have

Fj(λ
0x0, λ

0y0, λ
0z0, . . . , λ

jxj , λ
jyj , λ

jzj) = λjFj(x0, y0, z0, . . . , xj , yj , zj).

This gives OX∞ a structure of a grading ring, i.e., we have a decomposition

OX∞ =
⊕
j≥0

OX∞,j ,

as a direct sum of subgroups OX∞,j such that the product of an element in OX∞,j
with an element in OX∞,j′ is an element in OX∞,j+j′ . The fact that the Fj are
weighted-homogeneous is essential, otherwise, we can have two polynomials in
C[xi, yi, zi, i ∈ Z≥0] which are of different weights but whose images in OX∞ are
equal. Still, OX∞ is not yet our favorite geometric object.

One notices that the data of a morphism of affine algebraic varieties φ : X −→ Y
(a morphism which is defined by polynomial functions) is equivalent to the data
of ring homomorphism φ∗ : OY −→ OX which to a polynomial function h on X,
i.e. h ∈ OY , associates φ∗(h) = φ ◦ h. Hence the natural ring morphism given by
OX −→ OX∞ which sends x, y, z respectively to x0, y0, z0, defines a morphism

ψX : X∞ −→ X.

We sometimes omit X in the notation ψX when X is clear from the context. This
is the morphism which to an arc γ(t) = (x(t), y(t), z(t)) ∈ X∞ associates γ(0) ∈ X,
the center of γ. Let us assume that the origin O = (0, 0, 0) ∈ X (by a change of
variable any point x ∈ X can be considered to be the origin). We are interested in
the fiber ψ−1(O) of ψ above O. We have ψ−1(O) = SpecA∞, where

A∞ =
C[xi, yi, zi, i ∈ Z≥1]

(fj , j ∈ Z≥1)
;

the f ′js are obtained from the F ′js by substituting x0, y0, z0 by 0. Hence the fi’s are
again weighted-homogeneous when giving xi, yi and zi, i ∈ Z>0 the weight i and
A∞ inherits a graded structure A∞ =

⊕
j≥0A∞,j . We are now ready to define our

invariant, the arc HP-series.

Definition 2.1. The arc HP-series of X at O is defined by

AHPX,O(q) :=
∑
j∈Z≥0

dimCA∞,jqj .

Remark 2.2. The reason why we considered the arcs with center at a point (i.e.
ψ−1(O)) and not X∞ is that the dimension over C of OX∞,0 (the homogeneous
component of weight 0) is not finite (OX∞,0 is actually isomorphic to OX). Of
course, one could consider the dimension over a generic point of an irreducible
component of X, but in that case this series is much less interesting as it will be
apparent later.

Example 2.3. The most basic example is the case where X = SpecC[y] = A1 is
the affine line and O is the origin. Following the explanation above, we have

A∞ = C[yj , j ∈ Z>0],
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with the graded structure induced from giving yj the weight j for every j ∈ Z>0.
In particular, A∞,j is generated, as a vector space over C by the monomials

yj1yj2 · · · yjr
where j1 + j2 + · · · + jr = j and where we can assume j1 ≥ j2 ≥ · · · ≥ jr. These
generators are in bijection with the partitions of j, simply by associating with the
monomial yj1yj2 · · · yjr the partition j = j1 + j2 + · · · + jr. Let us use the usual
notation p(j) to denote the number of partitions of j, where by convention p(0) = 1.
We then have

AHPA1,O(q) =
∑
j∈Z≥0

p(j)qj =
∏

j∈Z>0

1

1− qj

The equality to the right in the above equation is a formula which is due to
Euler; one can prove it simply by substituting in the product

1

1− qj
= (1 + qj + q2j + · · · ).

and then by expanding the product using the usual product of power series. A
similar computation gives us

AHPAd,O(q) =
∏

j∈Z>0

1

(1− qj)d

Example 2.3 actually allows us to compute the arc HP-series in many examples.
To see that, let us use a slightly fancier definition of an arc γ on a variety X : an
arc γ on X is a morphism

γ : SpecC[[t]] −→ X.

Here, C[[t]] is the ring of power series with coefficients in C. One can see it as the
completion of the local ring of the affine line at the origin, as follows: the local ring
of the affine line A1 = SpecC[t] is the ring C[t](t) which is obtained from C[t] by
inverting all the polynomials h ∈ C[t] whose values at the origin O is not 0. This is
a local ring with a unique maximal ideal (t); the powers (t)n of this maximal ideal

gives a basis of a topology on C[t](t). The completion Ĉ[t](t) of C[t](t) with respect
to this topology is C[[t]]. One moral of the story is that SpecC[[t]] can be thought
as a formal neighborhood of the origin in the affine line A1, hence the intuition that
the image of γ is a germ of a formal curve on X. Now, if we are interested only in the
arcs centered at the origin O ∈ X, then such an arc γ corresponds to a morphism
γ : OX,0 −→ C[[t]]. Since C[[t]] is complete the universal property of completeness

tells us that γ factors through a morphism γ̂ : ÔX,0 −→ C[[t]]. So, if we assume
that the variety X is non-singular at O (for a hypersurface this is equivalent to say
that the partial derivatives at O are not all zero) then by Cohen structure theorem

([27], section 7.4), the completion ÔX,0 is isomorphic to C[[y1, . . . , yd]], d being the
dimension of X at O. It follows that the data of any γ is equivalent to the data of a
morphism γ̂∗ : C[[y1, . . . , yd]] −→ C[[t]] and that Ψ−1X (O) is isomorphic to Ψ−1

Ad(O).
We conclude from example 2.3 the computation of AHPX,O; Moreover, one can
show that if X is singular at O, AHPX,O 6= AHPAd,O.

Proposition 2.4. Let X be an algebraic variety and consider a point O ∈ X. We
have that X is non-singular at O if and only if
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AHPX,O(q) =
∏

j∈Z>0

1

(1− qj)d

Proposition 2.4 tells us that the arc HP-series is an invariant of singularities
since it detects singular points from non-singular ones. It also tells us that this
series contains more information at singular closed points (the case that we are
considering); for instance if X is irreducible, it is non-singular at its generic point
and its arc HP-series (where dimensions are considered over the residue field of the
generic point) is equal to the series in the proposition; see [44] section 9 for a com-
parison of the information contained in this invariant with more classical invariants
of singularities.

In general, it is quite difficult to compute this series, essentially because the
homological complexity of the jet schemes (the finite dimensional approximation
of the arc space); for instance even for curves singularities [45], the jet schemes
have a lot of irreducible components and they are very far from being equidi-
mensional. We will actually use jet schemes to show how to compute HP-series
for some ”simple” singularities. For m ∈ Z≥0, an m−jet α on X is a morphism
α : SpecC[t]/(tm+1) −→ X. Following the same reasoning that we made to repre-
sent the arc space, we find that for an X like in (2.1) the m−th jet scheme of X
is

Xm = SpecOXm = Spec
C[xi, yi, zi, i = 0, . . . ,m]

(Fj , j = 0, . . . ,m)
.

Again, for the same reason as in the arc space case we have a natural morphism
πm : Xm −→ X (again here, when it is clear from the context, we neglect the
mentioning of X in the notation πm) and we have π−1(O) = SpecAm where

(2.4) Am =
C[xi, yi, zi, i = 1, . . . ,m]

(f1, . . . , fm)

We are ready to determine the arc HP-series for rational double point surface
singularities. These latter are somehow ubiquitous in singularity theory and in
algebraic geometry [26]. For instance these are the only locally complete intersection
rational surface singularities. Embedded in C3, They are defined via the equations:

An, n ∈ N : xy − zn+1 = 0.

Dn, n ∈ N, n ≥ 4 : z2 − x(y2 + xn−2) = 0.

E6 : z2 + y3 + x4 = 0.

E7 : x2 + y3 + yz3 = 0.

E8 : z2 + y3 + x5 = 0.

The following theorem was first proved in [43]; we give here a proof following [22].

Theorem 2.5. Let X be surface having a rational double point singularity at O.
We have

AHPX,O(q) =
1

(1− q)3
∏
j≥2

1

(1− qj)2
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Proof. We will prove that π−1m (O) ⊂ SpecC[xi, yi, zi, i = 0, . . . ,m] is a complete
intersection (i.e., the codimension of all its irreducible components is equal to the
number of its defining equations); the result will then follow from [54], knowing
that the weight of fj is j for j = 1, . . . ,m, and that by definition the Hilbert-
Poincaré series of Am is equal to the Hilbert-Poincaré series of Am modulo (qm+1).
Notice that embedded in A3

m := SpecC[xi, yi, zi, i = 0, . . . ,m], π−1m (O) is defined
by the ideal (x0, y0, z0, f2, . . . , fm); i.e. by the equations given by all the generators
of the ideal equal to 0 (f1 does not appear here because it is equal to 0 modulo
(x0, y0, z0)). So the codimension of π−1m (O) in A3

m is smaller than or equal to m+2,
the number of equations. We also know that π−1m (Xreg) (Xreg being the non-
singular locus of X) is irreducible of codimension m + 1 : indeed, one can see
that the equations Fj , j = 0, . . . ,m are linear outside (x, y, z) = (0, 0, 0). If the
codimension π−1m (O) is smaller than or equal to m + 1, then π−1m (O) cannot be

included in the Zariski closure π−1m (Xreg) of π−1m (Xreg) since its dimension is then

larger than or equal to the dimension of π−1m (Xreg); the other inclusion is also

impossible since π−1m (O) ⊂ {x0 = 0} while π−1m (Xreg) is not. We deduce that if the
codimension π−1m (O) is smaller than or equal to m + 1, then Xm has at least two
irreducible components; this contradicts the fact that Xm is irreducible since X is
locally complete intersection with rational singularities [48]. Hence we deduce that
the codimension of any irreducible component of π−1m (O) in A3

m is exactly equal to
m+ 2, the number of the defining equations.

�

There are several other instances where the arc HP-series can be determined, see
[44].

3. The arc HP-series and the Rogers-Ramanujan identities

The first Rogers-Ramanujan identity comes into the picture when considering
one of the most elementary singularities, the one defined by (x2) in the line. More
precisely, from [21], we have:

Theorem 3.1. Let X = SpecC[y]/(y2). We have

AHPX,O(q) =
∏

i≡1,4 mod 5

1

1− qi

Moreover, let B∞ := A∞/(y1). Again B∞ inherits from A∞ a graded structure
B∞ = ⊕j∈Z≥0

B∞,j and one can consider its Hilbert-Poincaré series

HPB∞(q) =
∑
j∈Z≥0

dimCB∞,jqj .

Theorem 3.2. The Hilbert-Poincaré series of B∞ is

HPB∞(q) =
∏

i≡2,3 mod 5

1

1− qi

We will now give a proof of theorem 3.1. This proof reduces the computations
of the arc HP-series via the theory of Groebner basis to the computation of a
Hilbert-Poincaré series of a quotient of an infinite dimensional polynomial ring by
a monomial ideal. To apply this theory, we use the differential structure of the arc
space. Let us say two words about these two concepts, one about each.
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Groebner bases. The polynomial ring with one variable, C[x], is Euclidean, i.e.
one can apply the Euclidean algorithm which says that given g, h ∈ C[x], there
exists a unique couple of polynomials (q, r) such that

g = hq + r,

and 0 ≤ deg(r) < deg(h); we have that r = 0 if and only if h divides g. This
algorithm is very useful to detect whether an element g belongs to an ideal I ⊂
C[x] : indeed, again thanks to the Euclidean algorithm, C[x] is principal, I = (h)
is generated by one element and g ∈ I if and only if h divides g, equivalently if
r = 0. In the polynomial ring R = C[x1, . . . , xn] with several variables, the ideals
are finitely generated (Hilbert Basis theorem) but not principal in general; hence
the need of a division algorithm which allows to divide a polynomial by several
other polynomials. For that, the degree (which does not define a total ordering of
monomials, many monomials may have the same degree) is replaced by a monomial
ordering that we denote by ≺: this is a total ordering on the monomials of R which
satisfies that for monomials m1,m2,m3 if m1 ≺ m2 then m1m3 ≺ m2m3. We also
demand for ≺ to be a well ordering, i.e., any set of monomials of R has a smallest
element with respect to ≺ . Unlike the monomial of highest degree, the initial
monomial in≺(h) of h ∈ R with respect to ≺ is unique, this is the largest monomial
in h with respect to ≺ . One can then divide a polynomial h by an ordered set of
polynomials (h1, . . . , hs), and the result is:

(3.1) h = h1q1 + . . . hsqs + r,

where q1, . . . , qs, r ∈ R and there is no monomial appearing in r which is divisible
by any of in≺(hi), i = 1, . . . , s. In general r depends on the order of the s−tuple
(h1, . . . , hs) and the condition that r = 0 is not necessary for f to belong to the ideal
generated by (h1, . . . , hs) : for instance (see example 5 page 68 of [24]), the division
of x1x

2
2−x1 by (x1x2−1, x22−1) with respect to the lexicographical ordering, where

we assume y ≺ x, is given by:

x1x
2
2 − x1 = x2(x1x2 − 1) + 0.(x22 − 1) + (−x1 + x2).

The remainder r = −x1 + x2 6= 0 but

x1x
2
2 − x1 = x1(x22 − 1) ∈ (x1x2 − 1, x22 − 1).

To fix this problem, one should consider a special (with respect to the chosen
monomial order ≺) basis (g1, . . . , gl) of the ideal I = (h1, . . . , hs) which satisfies
that the initial ideal in≺(I) := (in≺(h);h ∈ I) is given by

in≺(I) := (in≺(g1), . . . , in≺(gl)).

Such a basis is called a Groebner basis and it ensures when dividing by (g1, . . . , gl)
the uniqueness of the remainder r. one notices that in the example above, I =
(h1, h2) where h1 = x1x2 − 1 and h2 = x22 − 1, the basis (h1, h2) is not a Greobner
basis (with respect to the lexicographical ordering), indeed:

(3.2) S(h1, h2) := x2h1 − xh2 = x− y ∈ I.
We have in≺(x−y) = x 6∈ (in≺(h1), in≺(h2)) = (x1x2, x

2
2). But the basis (h1, h2, h3 =

x− y) is a Groebner basis. The S-polynomial defined in equation (3.2) is made so
that one can eliminate the initials of both h1 and h2 and search for other elements
in the ideal which give new initials that do not belong to the ideal generated by
the initials of the generators of the input basis. As one can guess, the S-polynomial
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is the right tool in general to find a Groebner bases by applying it recursively to
all the couple of elements in the basis and by adding them (actually the remainder
of their divisions by the basis) to the basis when they are useful. The fact that
such an algorithm (the Buchberger algorithm) stops, as for the division algorithm,
is related to the property that the monomial order is a well ordering. Now one im-
portant thing for us, is that for a graded ring which is the quotient of a polynomial
ring R by a (weighted-)homogeneous ideal, the Hilbert-Poincaré series satisfies (see
e.g, theorem 5.2.6 in [32])

(3.3) HPR/I(q) = HPR/in≺(I)(q).

Note that the equality (3.3) is somehow natural, since by the discussion above, if we
take a Greobner basis I = (g1, . . . , gl), any element in R is congruent by the division
algorithm by (g1, . . . , gl) to a unique element r (the remainder) whose terms are
not divisible by any in≺(gi), i.e, by terms whose image in R/in≺(I) is a basis over
C. For more about Greobner bases, the reader can consult e.g [24, 27, 32].

Differential structure on the arc space. The ring OX∞ , where X is an affine
variety, has a structure of a differential ring. Let us stick to the example of X in
section 2 and to the notations there. The ring of global functions on A3

∞ is

OA3
∞

= C[xi, yi, zi, i ∈ Z≥0].

We have a derivation D on OA3
∞

defined by D(xi) = xi+1, D(yi) = yi+1, D(zi) =
zi+1 for i ∈ Z≥0. If we replace in the equation (2.2) the variables xi by xi/i! (where
j! is the factorial of j), and similarly for yi and zi, we find

(3.4) f(γ(t)) =
∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)
j!

tj .

where F0 = f(x0, y0, z0) and Fj is recursively defined by the identityD(Fj) = Fj+1;
equation (3.4) follows from the fact that both sides are additive and multiplicative
in f and that this equality is obviously true for f = x, y or z. We obtain hence the
desired differential structure which is induced by the derivation D on OX∞ ; this is
because the rings

C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)
and

C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)

are isomorphic, the isomorphism being given by the change of variables expressed
above. Fore more about differential algebras see [36, 52].

Proof. (of theorem 3.1) The ring of A∞ of global functions on ψ−1(O) is (modulo
an isomorphism) given by

A∞ =
C[yj , j ∈ Z>0]

[y21 ]



HILBERT MEETS RAMANUJAN: SINGULARITY THEORY AND INTEGER PARTITIONS11

where

[y21 ] =(y21 ,

2y1y2,

2y22 + 2y1y3,

6y2y3 + 2y1y4,

6y23 + 8y2y4 + 2y1y5, . . .)

=(f2, f3, . . .)

is the differential ideal generated by y21 and all its iterated derivatives by the deriva-
tion D. For a general singularity O ∈ X, where X is affine, the ring A∞ needs not
be differential even if OX∞ is; in our case, this is true because one can construct an
(non-homogeneous) isomorphism between A∞ and OX∞ . Now, when writing the
generators fi of the ideal, we ordered their terms by the weight (in fi they are all
of the same weight i) and by considering as smaller the monomials which make
use of larger indices: for instance, y23 is larger than y2y4 which is larger than y1y5;
this order that we denote by ≺ sounds to us natural from a geometric point of
view since y23 says something about the third neighborhood while y2y4 concerns the
fourth neighborhood ; so we want to see y23 before y2y4. Now if we want to find a
Groebner basis, we need to study the S−polynomial of the various couples of gener-
ators among the f ′is. If the the initial monomials of of fi, fj are coprime, then their
S−polynomial will not ”give” new initials (see e.g. proposition 1, page 106 [24]). So
we need to consider the S−polynomials for the couples (f2n, f2n+1), (f2n+1, f2n+2)
and (f2n+1, f2n+3). Let us study the first case, the other being similar. We have

(3.5) S(f2, f3) = 2y2f2 − y1f3 = 0.

Now deriving (3.5) iteratively 3n+ 4 times, we obtain the equation

(3.6)

3n−1∑
j=1

cjyjf3n+1−j = 0, cj ∈ C.

Using the Leibniz formula, we find

cn = 2Cn−23(n−1) − C
n−1
3(n−1)

cn+1 = 2Cn−13(n−1) − C
n
3(n−1)

where Ckn :=
(
n
k

)
denotes the binomial coefficient. Let α2n and α2n+1 be respectively

the coefficients of y2n in f2n and of ynyn+1 in f2n+1. Since f2n = D2n−2(f2) and
f2n+1 = D2n−1(f2), again using the Leibniz formula we see that the coefficients αn
and αn+1 satisfies

α2n = Cn−12(n−1)

α2n+1 = Cn2n
Now, noticing that α2ncn+1 = −α2n+1cn we can rewrite the equation (3.6) as

S(f2n, f2n+1) =
∑

j=1,··· ,3n−1;j 6=n,n+1

cjyjf3n+1−j .

This latter formula says that S(f2n, f2n+1), n ≥ 2 does not give new initials (reduces
to 0 modulo the basis (f2, f3, . . .), using the terms of [24]). Similarly, we can
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prove that the S-polynomials of the couples (f2n+1, f2n+2) and (f2n+1, f2n+3), n ≥ 1
reduce to 0 modulo the basis (f2, f3, . . .) and by theorem 6 page 108 in [24], we
deduce that (f2, f3, . . .) is a Groebner basis. Hence, since

in≺(f2n) = α2ny
2
n and in≺(f2n+1) = α2n+1ynyn+1

we have

in≺([y21 ]) = (y2n, ynyn+1, n ≥ 1).

From the equality (3.3), we deduce that the arc HP-series of X at O is equal to the
Hilbert-Poincaré series of

L :=
C[yj , j ∈ Z>0]

(y2n, ynyn+1, n ≥ 1)
,

graded by giving the weight j to yj . The j−th (wighted)-homogeneous component
Lj of L is generated by the monomials

yj1yj2 · · · yjs
where j1 +j2 + · · ·+js = j and where yj1yj2 · · · yjs is not divisible by any monomial
of the type y2n or ynyn+1, this is equivalent to say that difference between two
consecutive parts of the associated partition j1 + j2 + · · · + js of j is at least 2.
Using theorem 1.2 and the identity (1.4) we obtain the form of the arc HP-series
in the statement of the theorem.

�

Remark 3.3. (1) The fact that we derived (3.5) 3n+ 4 times is not a trick, it is
just that we know the weight of S(f2n, f2n+1) and we derived enough times
to reach this weight; deriving once make the weight grow of 1.

(2) It worth noticing, that the fact that we considering a non-finitely generated
ideal in the above proof is a source of simplification : indeed, if we consider
the finitely generated ideals (f2, f3, . . . , fm),m ∈ Z≥3), then the given basis
is no longer a Groebner basis with respect to the considered monomial
ordering; it is only when we let m goes to infinity that we have the miracle
that the basis is a Groebner basis. This can for instance be seen in the
equation 3.6, where some fi’s for i > 2n+ 1 may intervene.

The proof of theorem 3.2 follows the same ideas and computations in the proof
of theorem 3.1. The proof above inspires the following approach (see [21]) towards
the Rogers-Ramanujan identities. We begin by introducing some notations: Let
Id = (y2n, ynyn+1, n ≥ d),

L(d) :=
C[yj , j ∈ Z≥d]

Id
,

graded as above and h(d) = HPL(d) . We have an exact sequence

(3.7) 0 −→ C[yj , j ∈ Z≥d]

(Id : yd)
[−d] −→ C[yj , j ∈ Z≥d]

Id
−→ C[yj , j ∈ Z≥d]

(Id, yd)
−→ 0

where the first non-zero morphism is the multiplication by yd; the symbol [−d]
means that the graded structure is shifted by −d, so that the elements of weight
0 after adding the [−d] correspond to those of weight −d if we drop the [−d], and
the colon ideal

(Id : yd) = {h ∈ C[yj , j ∈ Z≥d] | h · yd ∈ Id}.
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The shift guarantees that all the morphisms are homogeneous (they send an
element of a given weight to an element of the same weight) and hence we have
exact sequences at the level of the graded components seen as C-vector spaces.
Noticing that

C[yj , j ∈ Z≥d]

(Id : yd)
= L(d+2),

the rank theorem gives the following

h(d) = h(d+ 1) + qd · h(d+ 2),

and one deduces (see[21])

Proposition 3.4. The power series h(1) satisfies

h(1) = Ad · h(d) +Bd+1 · h(d+ 1);

for Ai, Bi ∈ k[[q]] fulfilling the following recursion

Ad = Ad−1 +Bd

Bd+1 = Ad−1 · qd−1

with initial conditions A1 = A2 = 1 and B2 = 0,B3 = q.

Since ordqBd ≥ d − 2, both limAd and limBd exist (limits with respect to the
q−adic topology as sequence of power series), and they satisfy

limBd = 0 and h(1) = limAd.

The recursion from Proposition 3.4 can be simplified to h(1) = limAd where Ad
fulfills

(3.8) Ad = Ad−1 + qd−2 ·Ad−2
with initial conditions A1 = A2 = 1.

This last recursion is well-known from [13]. Its limit is the infinite product

∞∏
i=1,4mod 5

1

1− qi
,

i.e., the generating series of the number of partitions with parts equal to 1 or 4
modulo 5. The construction above gives the generating series Gd defined in [13] an
interpretation as a Hilbert-Poincaré series of the quotients C[yj , j ∈ Z≥d]/Id. This
immediately implies that the series Gd are of the form Gd = 1 +

∑
j≥iGdjq

j , the

empirical hypothesis of [13].

4. Other Partition identities inspired by this viewpoint

An extension of Rogers-Ramanujan identities. In section 3, we showed that
the arc HP-series for one of the simplest singularities is equal to the generating series
of the number of partitions appearing in the Rogers-Ramanujan identities. At the
heart of the proof, we find a computation of a Groebner basis of the ideal [y21 ], the
defining ideal of the space of arcs centered at O ∈ SpecC[y]/(y2); this Groebner
basis is differentially finite,i.e., it is built from a finite number of elements (here
only one) and all their derivatives. The monomial order considered in section 3 is
somehow ”geometric” (chosen for geometric reasons), but one may also consider
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another monomial ordering < for which the initial ideal in<([y21 ]) of [y21 ] may vary
but the Hilbert-Ponicar series of the quotient

HPSpecC[yj ,j∈Z>0]/in<([y21 ])
= HPSpecC[yj ,j∈Z>0]/([y21 ])

will not vary, by equality (3.3). In [6], a Groebner basis computation with respect to
a weighted lexicographical ordering was considered; but (see theorem 2.2 in [6]) such
a basis cannot be differentially finite. This made it very difficult to actually compute
a Groebner basis of [y21 ] with respect to this order; still, from the computation one
can guess (without a proof) that the leading ideal should be

(4.1) (ykyi1 . . . yik , where k ≤ i1 ≤ · · · ≤ ik).

By playing this game with [y2i ] for i ∈ Z>0 and using iteratively exact sequences
which are similar to (3.7), on can prove the following (Theorem 1.7 [6]):

Theorem 4.1. Let n ≥ k be a positive integer. The number of partitions of n
with parts larger than or equal to k and size less than or equal to (the smallest part
minus k−1) is equal to the number of partitions of n with parts larger than or equal
to k and such that the difference between two consecutive parts is at least 2.

For k = 1, theorem 4.1 says that:

For a positive integer n ≥ 1, the number of partitions of n with size less than
or equal to the smallest part is equal to the number of partitions of n such that the
difference between two consecutive parts is at least 2; this yields another member of
Rogers-Ramanujan identities.

Let us call G2,2(n) the number of partitions of n with size less than or equal to
the smallest part. The partitions of 4 (see (1.6) which are counted by G2,2(4) are

4 and 2 + 2.

In particular we have T2,2(4) = E2,2(4) = G2,2(4) = 2 (see theorem 1.2 for the
notations), and theorem 4.1, for k = 1, asserts that the equality

T2,2(n) = E2,2(n) = G2,2(n)

is true for every n.

Remark 4.2. Recently, in [8], using new methods from differential algebra, the
authors proved that the ideal appearing in (4.1) is actually the initial ideal of [y21 ]
with respect the weighted lexicographical order. Still, until now we do not have a
Groebner basis with respect to this order.

In [2], using similar ideas to those who led to theorem 4.1, the author proved
another exciting extension to Rogers-Ramanujan identities, in which the parity
(even odd) of the parts of a partition plays an important role.

Gordon’s identities and their extensions. In the last section, we kept some-
what hidden the fact that there is a great generalization of theorem 3.1, proved in
[22].
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Theorem 4.3. Let n ∈ Z≥2. For X = SpecK[y]
(yn) ,

AHPX,0(q) =
∏

i6≡ 0,n,n+1 mod(2n+1)

1

1− qi
.

The proof follows the same strategy of the proof of theorem 3.1 but the differen-
tial calculus is much more involved. Another famous family of identities intervenes
in the proof, Gordon’s identities [31].

Theorem 4.4 (Gordon’s identities). Let r and i be integers such that r ≥ 2 and 1 ≤
i ≤ r. Let Tr,i be the set of partitions λ = (λ1, λ2, . . . , λs) where λj−λj+r−1 ≥ 2 for
all j, and at most i−1 of the parts λj are equal to 1. Let Er,i be the set of partitions
whose parts are not congruent to 0,±i mod (2r+1). Let n be a nonnegative integer,
and let Tr,i(n) (respectively Er,i(n)) denote the number of partitions of n which
belong to Tr,i (respectively Er,i). Then we have

Tr,i(n) = Er,i(n).

Using ideas similar to those of section 3, in [3, 1], the author gave an alternative
approach to Gordon’s identities and conjectured a great generalization of theorem
4.1. This conjecture was proved recently in [5, 4]. Let us give the statement of
this theorem: Given an integer r ≥ 2, for 1 ≤ i ≤ r, define the (i, `)-new part of
λ = (λ1, . . . , λs) as follows:

pi,`(λ) :=


λs if ` = 1,

λs−
∑`−1
j=1 pi,j(λ)

if 2 ≤ ` ≤ i,
λs+`−i−

∑`−1
j=1 pi,j(λ)

if i < ` ≤ r − 1,

where λj = 0 for j ≤ 0, and if pi,`(λ) = 0 then pi,j(λ) = 0 for j > `. We denote the
number of all non-zero (i, `)-new parts of λ by Nr,i(λ).

Theorem 4.5. Let r ≥ 2 and 1 ≤ i ≤ r be two integers. Let Cr,i be the set of
partitions of the form λ = (λ1, . . . , λs), such that at most i−1 of the parts are equal

to 1 and either Nr,i(λ) < r − 1, or Nr,i(λ) = r − 1 and s ≤
∑r−1
j=1 pi,j(λ)− (r − i).

Let n be a nonnegative integer, and denote by Cr,i(n) the number of partitions of n
which belong to Cr,i. Then we have

Cr,i(n) = Tr,i(n) = Er,i(n).

The proof uses on the one hand another classification theorem of the partitions
in Cr,i in terms of a new type of Durfee dissection (inspired by [11], this is a
classification in terms of Ferrers diagrams): the proof of this interpretation uses
simple commutative algebra (another purely combinatorial proof of the same result
is also given); On the other hand it uses Bailey lattices [15, 55], a very powerful
tool for calculus with q − series.

Another singularity and its associated family of partition identity. To
have a taste of what kind of partition identities can come out of singularities in
higher dimensions we give below a family of partition identities which is associated
with the singularity at the origin of

Y = Spec
C[x, y]

(xy)
.
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Let us first introduce partitions with 2 colors. Consider that we have two copies of
each positive integer m, one is blue and the other is red; we denote these copies by
mb and mr. We define an order between the colored integers by mb > mr (hence
mb +mr and mr +mb are the same); if m > k, we set mc > kc′ for c, c′ ∈ {b, r}.

An integer partition of a positive integer number n is a decreasing sequence (with
respect to the order that we have just defined) of positive integers of one color or
an other

λ = (λ1,c1 ≥ λ2,c2 ≥ . . . ≥ λl,cl),
where ci ∈ {b, r} and such that λ1,c1 + λ2,c2 + · · ·+ λl,cl = n. For example, the two
colors integer partitions of 2 are:

2b
2r

1b + 1b
1r + 1r
1b + 1r.

Our singularity Y, sometimes called the node singularity, is somehow related (but
still very different in nature) to the singularity X = SpecC[x]/(x2), which led to
the Rogers-Ramanujan identities: one can ”put them” in a family

F : Spec
C[x, y, t]

(x(x− ty))
−→ SpecC[t].

The fibers over t 6= 0 are isomorphic to Y and the fiber above t = 0 is X×A1. This
can perhaps explain the small similarity of theorem 4.1 with the following theorem
from [6]:

Theorem 4.6. Let j be a positive integer number. The number of partitions of n
with 2 colors (say blue and red) of j, . . . , 2j − 1 and only the red color of any other
positive integer larger than 2j is equal to the number of partitions n whose parts
are larger than j and of two colors and such that the number of blue parts is strictly
less than its smallest red part (if this latter exists) minus (j − 1).

5. Omissions

Many other research directions are directly related to the subjects of this article.
I can mention the relation between Neighborly partitions, monomial ideals, graphs
and hypergraphs [42, 7]; this subject which is a direct continuation of the story told
in this article has led recently in [50] to a new proof of Rogers-Ramanujan identities.
I can mention the relation with vertex operators and Virasoro Algebras [14, 28, 39].
And the reader possibly sees interactions with other research directions.
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