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Abstract. In this article, we compute the motivic Igusa zeta function of a space mono-
mial curve that appears as the special fiber of an equisingular family whose generic fiber
is a complex plane branch. To this end, we determine the irreducible components of
the jet schemes of such a space monomial curve. This approach does not only yield a
closed formula for the motivic zeta function, but also allows to determine its poles. We
show that, while the family of the jet schemes of the fibers is not flat, the number of
poles of the motivic zeta function associated with the space monomial curve is equal to
the number of poles of the motivic zeta function associated with a generic curve in the
family.

Introduction

The history of the motivic Igusa zeta function goes back to the seventies when Igusa
studied the p-adic Igusa zeta function, which is related to the classical problem in number
theory of computing the number of solutions of congruences. More precisely, the original
Igusa zeta function counts, for a non-constant polynomial f ∈ Z[x1, . . . , xn] and a prime
number p, the Z/(pm+1Z)-points of X = {f = 0}, when m varies in N. It was introduced
by Weil [Wei], and its basic properties, such as rationality, were first investigated by
Igusa [Igu]. In analogy with the p-adic zeta function, Denef and Loeser [DL2] introduced
the ‘more general’ motivic Igusa zeta function in which f ∈ C[x1, . . . , xn] is a complex
polynomial, and the Z/(pm+1Z)-points of X = {f = 0} are replaced by its C[t]/(tm+1)-
points. It is more general in the sense that the earlier zeta function can be obtained from
the motivic one.

The space of C[t]/(tm+1)-points of X = {f = 0} or, equivalently, of morphisms
Spec(C[t]/(tm+1)) → X has a natural scheme structure; it is denoted by Xm and called
the mth jet scheme of X. Geometrically, if we consider X in the affine space Cn, the space
Xm can be thought of as the moduli space parameterizing germs of curves in Cn which
have a ‘contact’ with X larger than m. Simple invariants of the Xm (e.g., their irreducible
components and their dimensions) encode deep information on the singularities of X, see
for instance [Mou1],[Mou3] and [Mus1]. In terms of these jet schemes, the motivic Igusa
zeta function Zmot

X (T ) associated with X (or with f) can be written as

Zmot
X (T ) = 1− 1− T

T
JX(T ),

where JX(T ) is the Poincaré series

JX(T ) :=
∑
m≥0

[Xm](L−nT )m+1 ∈MC[[T ]].
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Here, MC is a localization of the Grothendieck ring of complex varieties, and [Xm] and
L are the classes of Xm and of the affine line C in this Grothendieck ring, respectively.
Clearly, this expression also makes sense when X is any subscheme of Cn given by some
ideal I in C[x1, . . . , xn], instead of just a hypersurface. Furthermore, the motivic zeta
function turns out to be a rational function in T , and it is natural to study its poles.

The motivic Igusa zeta function for one polynomial f ∈ C[x1, . . . , xn] can also be ex-
pressed in terms of an embedded resolution of singularities of f ; the analogous expression
for an ideal is in terms of a principalization of the ideal. This formula in the hypersurface
case can be found in [DL2], and its generalization to ideals is mentioned in [VZ]. It is the
most classical way to compute the motivic zeta function and allows to determine a com-
plete list of candidates poles of this zeta function. However, it is in general very difficult
to calculate a principalization and to verify whether the candidate poles are actual poles;
usually, ‘most’ of the candidates are in fact no actual poles. Therefore, in this article, in
order to determine the motivic zeta function and its poles, we will compute the above
Poincaré series, based on the structure of the jet schemes.

We will apply this approach to a class of monomial curves that naturally appear as
the special fibers of (equisingular) families of curves whose generic fibers are isomorphic
to some irreducible plane (germ of a) curve. More precisely, let C := {f = 0} ⊂ (C2, 0)
be a germ of a complex plane curve defined by an irreducible series f ∈ C[[x0, x1]] with
f(0) = 0, and let

νC : R :=
C[[x0, x1]]

(f)
−→ N

be the associated valuation, where νC(h) = (f, h)0 is the local intersection multiplicity of
the curve C and the curve {h = 0}. The semigroup Γ(C) := {νC(h) | h ∈ R \ {0}} ⊂ N is
finitely generated, and we can identify a unique minimal system of generators (β̄0, . . . , β̄g)
of Γ(C). Let (Y, 0) ⊂ (Cg+1, 0) be the image of the monomial map M : (C, 0)→ (Cg+1, 0)

given by M(t) = (tβ̄0 , tβ̄1 , . . . , tβ̄g). It is an irreducible curve with the ‘plane’ semigroup
Γ(C) as its semigroup and it is the special fiber of a flat family η : (χ, 0) ⊂ (Cg+1×C, 0)→
(C, 0) whose generic fiber is isomorphic to C. We call Y the monomial curve associated
with C, and the explicit equations defining Y in Cg+1 are of the form

xn1
1 − xn0

0 = 0
xn2

2 − xb20
0 xb21

1 = 0
...

x
ng
g − x

bg0
0 x

bg1
1 · · ·x

bg(g−1)

g−1 = 0,

where ni > 1 and bij ≥ 0 are integers that are defined in terms of (β̄0, . . . , β̄g).

We will first study the jet schemes Ym of Y for every m ∈ N. Because Y0 = Y and the
natural morphism πm : Ym → Y induces a trivial fibration over Y \{0} with fiber Cm, the
interesting information is concentrated in the fibers π−1

m (0) form ≥ 1. From the irreducible
components of these fibers, we easily find the decomposition into irreducible components
of the whole jet scheme Ym for m ≥ 1, see Theorem 3.7 and Corollary 3.8, respectively.
In addition, we can associate with this decomposition a natural graph which is similar to
the one in [CM], [Mou1] and [Mou3], and which we use to encode the computation of the
motivic Igusa zeta function of Y , see Figure 1. With this point of view, we are able to
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compute a closed formula for the motivic zeta function in Theorem 4.7:

Zmot
Y (T ) =

1− (L− 1)L−(g+1) − L−(g+1)T

1− L−gT
+

P0(T )

1− L−ν1TN1

+

g−1∑
i=1

Pi(T )

(1− L−νiTNi)(1− L−νi+1TNi+1)
− (L− 1)L−(νg+g+1)(1− T )TNg

(1− L−gT )(1− L−νgTNg)
,

where Pi(T ) for i = 0, . . . , g − 1 are concrete polynomials with coefficients in the ring
Z[L,L−1], and (Ni, νi) for i = 1, . . . , g are couples of known positive integers with

νi
Ni

=
1

niβ̄i

( i∑
l=0

β̄l −
i−1∑
l=1

nlβ̄l

)
+ (i− 1) +

g∑
l=i+1

1

nl
.

Except for some ‘small’ concrete cases, we do not see how one can obtain such a formula
using a principalization, see also Remark 4.2. Furthermore, we obtain only g+1 candidate
poles:

Lg, L
νi
Ni , i = 1, . . . , g.

Using residues and the related topological Igusa zeta function, we prove that, contrary to
formulas that one could obtain using a principalization, all these candidate poles are ac-
tual poles, see Theorem 5.3. We also get the log canonical threshold of Y ⊂ Cg+1 given by
ν1

N1
=
∑g

l=0
1
nl
. Note that the number of poles of the motivic zeta function of Y is equal to

the number of poles of the motivic zeta function of the plane branch C. This implies that
the motivic zeta function associated with the special fiber of the family η : (χ, 0)→ (C, 0)
has the same number of poles as the motivic zeta function associated with the generic
fiber. This is a fascinating result as the induced family on the level of jet schemes is not
flat. More precisely, let S := (C, 0) and consider, for every m ∈ N, the relative mth jet
scheme ((χ, 0)/S)m of η : (χ, 0) → S with the natural morphism ηm : ((χ, 0)/S)m → S,
whose fibers are isomorphic to the mth jet schemes of the fibers of η. Then, although the
family η is equisingular (in particular, flat), we show in Theorem 3.9 that the family ηm
is not flat for m large enough. We would like to point out that, in the hypersurface case,
an equisingular family of hypersurfaces does induce a flat family on the jet schemes (with
their reduced structures) [Ley, Theorem 3.4].

The poles of the motivic Igusa zeta function associated with a complex polynomial
f ∈ C[x1, . . . , xn] are the subject of an intriguing open problem, the so-called monodromy
conjecture, which relates number theoretical invariants and topological invariants of f .
Roughly speaking, it predicts a relation between the poles of the motivic zeta function
and the action of the monodromy of f , seen as a function f : Cn → C, on the cohomology
of its Milnor fiber at some point x ∈ X ⊂ Cn. For an ideal I, one can state the generalized
monodromy conjecture in which Verdier monodromy replaces the classical monodromy.
To date, both the classical and the generalized conjecture have only been proven in full
generality for polynomials and ideals in two variables, see [Loe] and [VV], respectively.
In higher dimension, there are various partial results in the hypersurface case (we refer
to the introduction of [BV] for a list of references), while in the non-hypersurface case,
the most general result so far is a proof for monomial ideals [HMY]. The results in this
article make the first part of this conjecture for monomial curves of the above type very
explicit; the study of their monodromy part and proof of the monodromy conjecture can
be found in [MVV]. In other words, these two articles together solve the conjecture for
an interesting class of binomial ideals in arbitrary dimension.
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The article is organized as follows. We assume N to be the set of non-negative integers.
We begin in Section 1 with introducing the curves Y ⊂ Cg+1 in which we are interested.
Section 2 consists of a brief discussion of the jet schemes and motivic zeta function asso-
ciated with an affine variety. In Section 3, we determine the irreducible components of
the jet schemes Ym for m ∈ N and show that the induced family on the jet schemes is
not flat for most m. Based on the structure of Ym, we compute the motivic zeta function
of Y , find its g + 1 candidate poles, and provide some examples in Section 4. Finally, in
Section 5, we prove that all candidate poles are actual poles.

1. Space monomial curves with plane semigroups

In this section, we introduce the type of singularities that we will consider in this
article. They arise as (equisingular) deformations of germs of irreducible plane curves.
We begin with an irreducible series f ∈ C[[x0, x1]] in two variables over the complex
numbers satisfying f(0) = 0. We denote by C := {f = 0} ⊂ (C2, 0) the germ at the origin
of the curve defined by f. We can assume, modulo a change of variables, that the curve
{x0 = 0} is transversal to C and that the curve {x1 = 0} has maximal contact (among
smooth curves) with C. To C, one can relate a valuation

νC :
C[[x0, x1]]

(f)
\ {0} −→ N : h 7→ dimC

C[[x0, x1]]

(f, h)
.

We denote by Γ(C) the semigroup associated with νC:

Γ(C) :=

{
νC(h)

∣∣∣ h ∈ C[[x0, x1]]

(f)
\ {0}

}
⊂ N.

Then, Γ(C) is a finitely generated semigroup with which we can associate the following
data [Zar, Chapter II]:

(1) the unique minimal system of generators (β̄0, . . . , β̄g) of Γ(C) with β̄0 < · · · < β̄g
and gcd(β̄0, . . . , β̄g) = 1 (gcd being the greatest common divisor);

(2) the integers ei := gcd(β̄0, . . . , β̄i) for i = 0, . . . , g, where e0 = β̄0, eg = 1 and
e0 > · · · > eg; and

(3) the integers ni := ei−1

ei
≥ 2 for i = 1, . . . , g.

It can be shown that the integer niβ̄i for i = 1, . . . , g belongs to the semigroup generated
by β̄0, . . . , β̄i−1, see for instance [Aze] or [Tei1, Lemma 2.2.1]. Hence, for i = 1, . . . , g,
there exists a unique system of non-negative integers {bij}0≤j<i such that

bij < nj for j 6= 0 and niβ̄i = bi0β̄0 + · · ·+ bi(i−1)β̄i−1;

the uniqueness follows from the inequalities bij < nj. For notational reasons, we introduce
n0 := b10. Additionally, one can show that niβ̄i < β̄i+1 for all i = 1, . . . , g − 1. It is also
worth noting that ei = ni+1 · · ·ng for i = 0, . . . , g − 1, that n0 > n1 ≥ 2, and that

n0 = β̄1

e1
and n1 = β̄0

e1
are coprime. Furthermore, one can choose a system of approximate

roots or a minimal generating sequence (x0, . . . , xg) of νC, where xi ∈ C[[x0, x1]] such that
νC(xi) = β̄i for i = 0, . . . , g, see for example [AM], [Mou2], [Spi] or [Tei1]. For i = 0 and
i = 1, the condition νC(xi) = β̄i is equivalent to the assumptions that we put above on
the variables x0 and x1, respectively. These elements satisfy identities of the form

vxi+1 = xnii − cix
bi0
0 · · ·x

bi(i−1)

i−1 −
∑

γ=(γ0,...,γi)

ci,γvx
γ0

0 · · ·x
γi
i , i = 0, . . . , g,

where v = 1, xg+1 = 0, ci ∈ C \ {0}, ci,γ ∈ C, 0 ≤ γj < nj for 1 ≤ j ≤ i, and∑i
j=0 γjβ̄j > niβ̄i.
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The above equations with v = 1 allow us to embed C as a complete intersection in
(Cg+1, 0) with coordinates x0, . . . , xg. Making v vary in (C, 0) defines a family (χ, 0) ⊂
(Cg+1 × C, 0) of germs of curves, which is equisingular for instance in the sense that all
branches in the family have the same semigroup Γ(C). We denote by η : (χ, 0) → (C, 0)
the restriction to (χ, 0) of the projection on the second factor (Cg+1 × C, 0) → (C, 0).
The special fiber Y := η−1(0) is the curve which is of interest to us and is defined by the
equations

(1)


f1 := xn1

1 − c1x
n0
0 = 0

f2 := xn2
2 − c2x

b20
0 xb21

1 = 0
...

fg := x
ng
g − cgx

bg0
0 x

bg1
1 · · ·x

bg(g−1)

g−1 = 0.

After a change of variables in the coordinates x0, . . . , xg, we can assume that every ci
for i = 1, . . . , g is equal to 1; the coefficients ci are important to see that any irreducible
plane curve is a (equisingular) deformation of a curve of type Y. For simplicity, throughout
this article, we will consider ci = 1 for i = 1, . . . , g.

Remark 1.1. It is worth mentioning that the above embedding of C in (Cg+1, 0) as a
complete intersection is Newton non-degenerate in the sense of [AGS] and [Tev1]. Such
an embedding always exists for a singularity in characteristic 0 [Tev2], and is conjectured
to exist in positive characteristic [Tei2].

The curve Y is called the monomial curve associated with C because it is the image in
(Cg+1, 0) of the monomial map M : (C, 0)→ (Cg+1, 0) given by

M(t) = (tβ̄0 , tβ̄1 , . . . , tβ̄g).

In particular, Y is an irreducible (germ of a) curve with its semigroup equal to the ‘plane’
semigroup Γ(C), see [Tei1] for these and other properties of Y . Finally, note that, even
though Y has been defined as a deformation of a germ, we can consider the global curve
in Cg+1 defined by the above polynomial (actually, binomial) equations of Y . This is still
an irreducible curve, and from now on, we will denote by Y ⊂ Cg+1 this global curve and
refer to it as a (space) monomial curve.

2. Jet schemes and motivic Igusa zeta function

This section provides a short introduction to the jet schemes and the motivic Igusa
zeta function associated with an affine variety. By a (complex) variety, we mean a re-
duced, separated scheme of finite type over C, which is not necessarily irreducible. Let
X = V (I) ⊂ Cg+1 be an affine variety defined by an ideal I = (f1, . . . , fr) ⊂ C[x0, . . . , xg].

For every m ∈ N, the mth jet scheme of X is the C-scheme Xm whose C-points are

Xm(C) = {Spec(C[t]/(tm+1)) −→ X}.

It immediately follows that X0 = X. For general m, one can derive the defining equations

of Xm in its natural ambient space C(g+1)(m+1) as follows. Let x
(j)
i for i = 0, . . . , g and

j = 0, . . . ,m be the coordinates in C(g+1)(m+1). We will denote by x(j) the (g + 1)-tuple

(x
(j)
0 , . . . , x

(j)
g ) and by x(t) the element

x(t) := x(0) + x(1)t+ · · ·+ x(m)tm

:= (x
(0)
0 + x

(1)
0 t+ · · ·+ x

(m)
0 tm, . . . , x(0)

g + x(1)
g t+ · · ·+ x(m)

g tm)
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in C[x(j); j = 0, . . . ,m][t]/(tm+1). For k = 1, . . . , r and l = 0, . . . ,m, let F
(l)
k ∈ C[x(j);

j = 0, . . . , l] be the elements which satisfy the identity

(2) fk(x(t)) = F
(0)
k + F

(1)
k t+ · · ·+ F

(m)
k tm mod (tm+1).

Then, we have

Xm = Spec
C[x(j); j = 0, . . . ,m]

(F
(l)
k ; k = 1, . . . , r; l = 0, . . . ,m)

.

For m, p ∈ N with m ≥ p, there is a natural map πm,p : Xm → Xp induced by the trun-
cation map C[t]/(tm+1)→ C[t]/(tp+1). We will put πm for πm,0. Note that for m, p, q ∈ N
with m ≥ p ≥ q, we have πp,q ◦ πm,p = πm,q.

In order to define the motivic zeta function associated with X, we first give a brief
introduction to the Grothendieck ring of complex varieties and fix some notation. Let
VarC be the category of complex varieties. The Grothendieck group K0(VarC) is the
abelian group generated by the symbols [V ] for V ∈ VarC with the following two relations:
[V ] = [W ] for isomorphic V and W , and [V ] = [W ]+ [V \W ] for W closed in V . By using
the multiplication [V ] · [W ] := [V ×W ], the Grothendieck group becomes a commutative
ring with 1 := [Spec C] as unit element, and we still denote the Grothendieck ring by
K0(VarC). We write L := [C] for the class of the affine line and MC := K0(VarC)[L−1]
for the ring obtained by inverting L.

Remark 2.1. For a constructible subset W of a variety V (i.e., W is a finite union of
locally closed subvarieties of V ), we can define its class in K0(VarC) as follows. First, we
can always write W as a finite disjoint union W1 t · · · tWr of locally closed subvarieties
of V . Then, one can show that [W ] :=

∑r
i=1[Wi] is well-defined as element in K0(VarC).

In particular, this definition implies for a locally trivial fibration p : V → B with fiber F
that [V ] = [B] · [F ].

Note that for every m ∈ N, a point γ ∈ Spec C[x(j); j = 0, . . . ,m] corresponds to a jet
γ(t) = (γ0(t), . . . , γg(t)) ∈ (E[t]/(tm+1))g+1 for some field extension E of C. We will often
also denote this jet by γ := γ(t). Hence, we can define

ordt(fk(γ)) := ordt(fk(γ(t))),

for k = 1, . . . , g, and

Xm :=
{
γ ∈ Spec C[x(j); j = 0, . . . ,m]

∣∣∣ min
k=1,...,r

ordt(fk(γ)) = m
}
.

For each m, the set Xm is a locally closed subvariety of Spec C[x(j); j = 0, . . . ,m], and it
thus defines a class [Xm] in the Grothendieck ring.

With this notation, the (global) motivic Igusa zeta function associated with the variety
X (or with the ideal I) is the formal power series

Zmot
X (T ) := L−(g+1)

∑
m≥0

[Xm](L−(g+1)T )m ∈MC[[T ]].

There is also a local version where Xm is replaced by Xm,0 consisting of those γ ∈ Xm with

x
(0)
i = 0 for i = 0, . . . , g or, equivalently, with associated jet γ(t) having the origin 0 as

center (i.e., γ(0) = 0). For X defined by one polynomial (i.e., I = (f)), the motivic zeta
function was introduced and shown to be rational by Denef and Loeser in [DL2]. The
definition for general ideals can be found in [VZ].
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To find the motivic zeta function Zmot
Y (T ) associated with a space monomial curve

Y ⊂ Cg+1, we will not compute the above series directly. Instead, we will compute the
Poincaré series

JY (T ) :=
∑
m≥0

[Ym](L−(g+1)T )m+1,

where [Ym] ⊂ C(g+1)(m+1) is the mth jet scheme of Y . This is well-defined because of
the fact that [Ym] = [(Ym)red] in K0(VarC). Using the relations [Y0] = Lg+1 − [Y0] and
[Ym] = Lg+1[Ym−1]− [Ym] for m ≥ 1, it is not hard to see that the Poincaré series is related
to Zmot

Y (T ) by

Zmot
Y (T ) = 1− 1− T

T
JY (T ).

Remark 2.2. One often considers the more natural Poincaré series
∑

m≥0[Ym]Tm. We

choose to work with the above series JY (T ) because the factor L−(g+1)(m+1) implies, in
some sense, that we need to look for the codimension of Ym in C(g+1)(m+1).

3. Jet schemes of space monomial curves whose semigroup is plane

In this section, we will study the jet schemes Ym of a space monomial curve Y ⊂ Cg+1

defined in Section 1. The information is mainly concentrated in the fibers π−1
m (0) of

πm : Ym → Y for m ≥ 1; indeed, Y0 = Y and the restriction of πm to π−1
m (Y \ {0}) for

m ≥ 1 is a trivial fibration whose fibers are isomorphic to Cm. Furthermore, since such a
monomial curve for g = 1 is a plane curve Y ⊂ C2 with one Puiseux pair for which the
structure of π−1

m (0) has been studied in [Mou1, Corollary 4.4], we will be concerned with
the case g ≥ 2. To determine the irreducible components of the fibers π−1

m (0) with their
unique reduced subscheme structure, we first consider the reduced structure π−1

m (0)red. In
the next proposition, we see that π−1

m (0)red for 1 ≤ m ≤ n0n1 is irreducible and rather
easy to understand, where we denote the integer part of a rational number a

b
by [a

b
].

Proposition 3.1. (1) For m ∈ N satisfying 0 < m < n0n1, we have

π−1
m (0)red = Spec

C[x(j); j = 0, . . . ,m]

(x
(0)
i , . . . , x

([m
ni

])

i ; i = 0, . . . , g)
.

(2) The fiber π−1
n0n1

(0)red is given by

Spec
C[x(j); j = 0, . . . , n0n1]

(x
(0)
0 , . . . , x

(n1−1)
0 , x

(0)
1 , . . . , x

(n0−1)
1 , x

(n0)
1

n1 − x(n1)
0

n0

, x
(0)
i , . . . , x

([
n0n1
ni

])

i ; i = 2, . . . , g)
.

The following lemma is used in the proof of Proposition 3.1.

Lemma 3.2. For i = 2, . . . , g, we have bi0 > n0.

Proof. Fix i ∈ {2, . . . , g}. We prove the inequality in the lemma by contradiction; assume
that bi0 ≤ n0. On the one hand, we have

bi0β̄0 + bi1β̄1 + · · ·+ bi(i−1)β̄i−1 ≤ n0β̄0 + n1β̄1 + · · ·+ ni−1β̄i−1 − (β̄1 + · · ·+ β̄i−1),
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where we used that bij ≤ nj − 1 for j = 1, . . . , i − 1. On the other hand, by repeatedly
using that β̄l > nl−1β̄l−1 and that nl ≥ 2, we find that

niβ̄i > ni(ni−1β̄i−1)

≥ ni−1β̄i−1 + ni−1β̄i−1

> ni−1β̄i−1 + ni−1(ni−2β̄i−2)

≥ ni−1β̄i−1 + ni−2β̄i−2 + ni−2β̄i−2

...

≥ ni−1β̄i−1 + ni−2β̄i−2 + · · ·+ n2β̄2 + n1β̄1 + n1β̄1

= ni−1β̄i−1 + ni−2β̄i−2 + · · ·+ n2β̄2 + n1β̄1 + n0β̄0,

where the last equality follows from n0β̄0 = b10β̄0 = n1β̄1. The two families of inequalities
give

bi0β̄0 + bi1β̄1 + · · ·+ bi(i−1)β̄i−1 ≤ n0β̄0 + n1β̄1 + · · ·+ ni−1β̄i−1 − (β̄1 + · · ·+ β̄i−1)

< n0β̄0 + n1β̄1 + · · ·+ ni−1β̄i−1

< niβ̄i.

This contradicts the equality bi0β̄0 + bi1β̄1 + · · ·+ bi(i−1)β̄i−1 = niβ̄i from Section 1. �

Proof of proposition 3.1. We begin with proving the first part; assume that 0 < m < n0n1.
Recall that f1, . . . , fg are the defining equations of Y given in (1), and that a closed
point γ ∈ Spec C[x(j); j = 0, . . . ,m] corresponds to a jet that we also call γ = γ(t) =
(γ0(t), . . . , γg(t)) with

γi(t) =
m∑
l=0

x
(l)
i t

l,

where x
(l)
i are the coordinates of γ. With this notation, γ ∈ π−1

m (0)red if and only if

the coordinates x
(0)
i for i = 0, . . . , g are zero (i.e., the center of γ is the origin) and

ordt(fk(γ)) ≥ m+ 1 for k = 1, . . . , g. From Proposition 4.1 in [Mou1] applied to the curve
given by the equation xn1

1 − xn0
0 = 0, we find that

x
(l)
i = 0 , i = 0, 1 ; l = 0, . . . ,

[m
ni

]
.

Taking into consideration that m < n0n1, one can see that these conditions are the only
conditions coming from the equation f1 = xn1

1 −xn0
0 . In particular, assuming that the center

of γ is the origin, the condition ordt(f1(γ)) ≥ m+ 1 implies that ordt(γ0) ≥ [m
n0

] + 1. We

will prove that ordt(γ0) ≥ [m
n0

] + 1 in turn implies for every i = 2, . . . , g that ordt(fi(γ)) ≥
m+ 1 is equivalent to ordt(γi) ≥ [m

ni
] + 1. Recall that fi = xnii − x

bi0
0 · · ·x

bi(i−1)

i−1 . Since, by

Lemma 3.2, we have bi0 > n0 and since ordt(γ0) ≥ [m
n0

] + 1, we obtain

ordt(x
bi0
0 · · ·x

bi(i−1)

i−1 (γ)) = ordt(γ
bi0
0 · · · γ

bi(i−1)

i−1 ) ≥ ordt(γ
bi0
0 )

≥ ordt(γ
n0+1
0 )

≥ (n0 + 1)
([m
n0

]
+ 1
)

≥ m+ 1.

Hence, ordt(fi(γ)) ≥ m+ 1 if and only if ordt(x
ni
i (γ)) = ordt(γ

ni
i ) ≥ m+ 1. As the latter

is equivalent to ordt(γi) ≥ [m
ni

] + 1, this ends the proof of the first part.
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We now prove the second part of the proposition. Let γ ∈ Spec C[x(j); j = 0, . . . , n0n1]
be again associated with a (g + 1)-tuple γ = γ(t). It follows from the first part that
γ ∈ π−1

n0n1
(0)red implies that

x
(l)
i = 0 , i = 0, . . . , g ; l = 0, . . . ,

[n0n1 − 1

ni

]
.

Noticing that f1 is weighted homogeneous of degree n0n1 if we give x0 the weight n1 and
x1 the weight n0, we can write

f1(γ) ≡ f1(tn1(x
(n1)
0 + x

(n1+1)
0 t+ · · ·+ x

(n0n1)
0 tn0n1−n1),

tn0(x
(n0)
1 + x

(n0+1)
1 t+ · · ·+ x

(n0n1)
1 tn0n1−n0))

≡ tn0n1f1(x
(n1)
0 + x

(n1+1)
0 t+ · · ·+ x

(n0n1)
0 tn0n1−n1 ,

x
(n0)
1 + x

(n0+1)
1 t+ · · ·+ x

(n0n1)
1 tn0n1−n0)

≡ tn0n1f1(x
(n1)
0 , x

(n0)
1 )

≡ tn0n1(x
(n0)
1

n1 − x(n1)
0

n0

) mod (tn0n1+1).

Thus, modulo that γ is centered at the origin and that ordt(f1(γ)) ≥ n0n1, the condition

ordt(f1(γ)) ≥ n0n1 +1 is equivalent to x
(n0)
1

n1−x(n1)
0

n0

= 0. For i = 2, . . . , g, again modulo
that γ is centered at the origin and that ordt(fi(γ)) ≥ n0n1, one can now see as in the

first part of the proof that ordt(fi(γ)) ≥ n0n1 + 1 if and only if x
[
n0n1
ni

]

i = 0. This proves
the second part of the proposition. �

The same reasoning as in the proof of Proposition 3.1 gives us the following corollary.

Corollary 3.3. Let l ∈ N. For m ∈ N such that ln0n1 < m < (l + 1)n0n1, we have

π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red = Spec

C[x(j); j = 0, . . . ,m]

(x
(0)
i , . . . , x

([m
ni

])

i ; i = 0, . . . , g)
.

The ideal defining the embedding of π−1
(l+1)n0n1,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red in

the affine space Spec C[x(j); j = 0, . . . , (l + 1)n0n1] is generated by

x
(0)
0 , . . . , x

((l+1)n1−1)
0 , x

(0)
1 , . . . , x

((l+1)n0−1)
1 , x

((l+1)n0)
1

n1 − x((l+1)n1)
0

n0

,

x
(0)
i , . . . , x

([
(l+1)n0n1

ni
])

i ; i = 2, . . . , g.

From Proposition 3.1, we know that π−1
m (0)red for 0 < m < n0n1 is irreducible and

isomorphic to an affine space. We also know that π−1
n0n1

(0)red is the product of an affine

space and a hypersurface defined by the equation x
(n0)
1

n1 − x(n1)
0

n0

= 0. We can stratify
π−1
n0n1

(0)red ⊂ C(g+1)(n0n1+1) as follows:

π−1
n0n1

(0)red = (π−1
n0n1

(0)red ∩ {x(n1)
0 = 0}) t (π−1

n0n1
(0)red ∩ {x(n1)

0 6= 0}).

For n0n1 < m ≤ 2n0n1, Corollary 3.3 shows that π−1
m,n0n1

(π−1
n0n1

(0)red ∩ {x(n1)
0 = 0}) =

π−1
m,n0n1

({x(0)
0 = x

(1)
0 = · · · = x

(n1)
0 = 0}) is irreducible and has a rather simple geometry.

Therefore, noticing that πm = πn0n1 ◦ πm,n0n1 , we need to study the inverse image under

πm,n0n1 of π−1
n0n1

(0)red ∩ {x(n1)
0 ) 6= 0} to obtain a stratification of π−1

m (0)red in two strata of
which we understand the geometry. For 2n0n1 < m, Corollary 3.3 does not immediately

give us an easy description of π−1
m,n0n1

({x(0)
0 = x

(1)
0 = · · · = x

(n1)
0 = 0}). However, because

πm,n0n1 = π2n0n1,n0n1 ◦ πm,2n0n1 , understanding this inverse image boils down to under-

standing the inverse image under πm,2n0n1 of π−1
2n0n1,n0n1

({x(0)
0 = x

(1)
0 = · · · = x

(n1)
0 = 0}),
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which we again stratify in two strata corresponding to x
(2n0)
0 = 0 and x

(2n0)
0 6= 0. For

general m ≥ 1, the stratification of π−1
(k+1)n0n1,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1)
0 = 0})red for

k ≥ 0 as

(π−1
(k+1)n0n1,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1)
0 = 0})red ∩ {x((k+1)n1)

0 = 0})

t (π−1
(k+1)n0n1,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1)
0 = 0})red ∩ {x((k+1)n1)

0 6= 0})

yields the following stratification of π−1
m (0)red : let l ∈ N such that ln0n1 < m ≤ (l+1)n0n1,

then

(3) π−1
m (0)red =

( l⊔
k=1

Dm,k

)
tBm,

where

Dm,k := π−1
m,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1−1)
0 = 0} ∩ {x(kn1)

0 6= 0})red,

Bm := π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red.

This stratification will allow us to determine the irreducible components of Ym and will
be crucial for our computation of the motivic zeta function associated with Y . It is
important to notice, as we will see later, that some of the above strata may be empty.
Furthermore, Bm is a closed irreducible subvariety of π−1

m (0)red of which Corollary 3.3
provides the geometric structure. In particular, we know its codimension in C(g+1)(m+1).

Corollary 3.4. Let l ∈ N. For m ∈ N such that ln0n1 < m < (l+1)n0n1, the codimension
of Bm in C(g+1)(m+1) is equal to

g + 1 +

g∑
i=0

[m
ni

]
.

For m = (l + 1)n0n1, the codimension of Bm in C(g+1)(m+1) is equal to

g + (l + 1)(n0 + n1) +

g∑
i=2

[(l + 1)n0n1

ni

]
.

Still, we need to understand the geometry of the strata Dm,k for k = 1, . . . , l, which are
locally closed subvarieties of π−1

m (0)red. We begin with introducing some useful notations.
Firstly, for k ≥ 1 and m ≥ kn0n1, let Cm,k := Dm,k be the Zariski closure of Dm,k in
π−1
m (0)red. Secondly, for k ≥ 1, let j(k) ∈ N be defined by

j(k) :=

{
2 if n2 - k

maxl∈N{n2 · · ·nl−1 | k} otherwise.

Note that 2 ≤ j(k) ≤ g + 1. For 1 ≤ i < j(k) and for m ∈ N satisfying

kniβ̄i
e1

≤ m <
kni+1β̄i+1

e1

,

where, by convention, β̄g+1 := +∞, we define

(4) ci,k(m) := k(n0 + n1) +
i∑
l=2

kβ̄l
e1

+
i∑
l=1

(
m− knlβ̄l

e1

+ 1
)

+

g∑
l=i+1

([m
nl

]
+ 1
)
.

Finally, let Y i for i = 1, . . . , g be the complete intersection curve defined in Ci+1 by the
first i equations f1, . . . , fi of the g defining equations (1) of Y . Note that Y g = Y and
that Y i \ {0} ' C \ {0} for all i = 1, . . . , g.
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Proposition 3.5. Let k ≥ 1 and 1 ≤ i < j(k). For m ∈ N with kniβ̄i
e1
≤ m < kni+1β̄i+1

e1
,

the stratum Dm,k is isomorphic to

(Y i \ {0}) × C(g+1)(m+1)−ci,k(m)−1 ' (C \ {0}) × C(g+1)(m+1)−ci,k(m)−1.

In particular, Cm,k is irreducible and its codimension in C(g+1)(m+1) is equal to ci,k(m).

For m ≥ knj(k)β̄j(k)

e1
, we have that Dm,k = ∅.

Before giving a proof of this proposition, we show the next lemma.

Lemma 3.6. Let i, j ∈ N be such that i+ 1 ≤ j ≤ g. We have

bj0β̄0 + · · ·+ bjiβ̄i ≥ ni+1β̄i+1,

and the inequality is strict if i+ 1 < j.

Proof. For i+ 1 = j, the inequality is an equality and there is nothing to prove. Assume
that i+ 1 < j. On the one hand, we have

bj0β̄0 + · · ·+bjiβ̄i = njβ̄j−bj(i+1)β̄i+1−· · ·−bj(j−1)β̄j−1 ≥ njβ̄j−ni+1β̄i+1−· · ·−nj−1β̄j−1.

The inequality follows from the fact that bjl < nl for l = 1, . . . , j − 1. On the other hand,
as in the proof of Lemma 3.2, we have

njβ̄j > nj−1β̄j−1 + nj−2β̄j−2 + · · ·+ ni+1β̄i+1 + ni+1β̄i+1.

The two series of inequalities give the strict inequality in the lemma. �

Proof of Proposition 3.5. We still denote by f1, . . . , fg the defining equations of Y and by

F
(l)
h for h = 1, . . . , g and l ∈ N the polynomials defined from fh by the identity (2) in

Section 2. We prove that for m ∈ N with kniβ̄i
e1
≤ m < kni+1β̄i+1

e1
for some 1 ≤ i < j(k), the

ideal defining the embedding of Dm,k in Spec C[x(j); j = 0, . . . ,m]
x

(kn1)
0

is generated by

x(0)
r , . . . , x

( kβ̄r
e1
−1)

r , F (lh)
h , x(0)

s , . . . , x
([ m
ns

])
s ;

r = 0, . . . , i; h = 1, . . . , i; lh = 0, . . . ,m− knhβ̄h
e1

; s = i+ 1, . . . , g,

where F (lh)
h := F

(lh)
h

(
x

(
kβ̄0
e1

)

0 , . . . , x
(
kβ̄h
e1

)

h , . . . , x
(
kβ̄0
e1

+lh)

0 , . . . , x
(
kβ̄h
e1

+lh)

h

)
. More precisely, for

h = 1, . . . , i,

F (0)
h = x

(
kβ̄h
e1

)

h

nh

− x
(
kβ̄0
e1

)

0

bh0

· · ·x
(
kβ̄h−1
e1

)

h−1

bh(h−1)

and for l = 1, . . . ,m− knhβ̄h
e1

,

F (l)
h = αlx

(
kβ̄h
e1

)

h

nh−1

x
(
kβ̄h
e1

+l)

h −Hl

(
x

(
kβ̄0
e1

)

0 , . . . , x
(
kβ̄h
e1

)

h , . . . , x
(
kβ̄0
e1

+l)

0 , . . . , x
(
kβ̄h−1
e1

+l)

h−1 , x
(
kβ̄h
e1

+l−1)

h

)
for some αl ∈ C \ {0} and Hl a polynomial.

The proof is by induction on i. We begin with the case i = 1; let kn0n1 ≤ m < kn2β̄2

e1
.

As in Proposition 3.1, a closed point γ ∈ Spec C[x(j); j = 0, . . . ,m] corresponds to a jet
that we also call γ = γ(t) = (γ0(t), . . . , γg(t)) with

γi(t) =
m∑
l=0

x
(l)
i t

l,

where x
(l)
i are the coordinates of γ. The condition that γ ∈ Dm,k is equivalent to the

conditions x
(0)
0 = · · · = x

(kn1−1)
0 = 0, x

(kn1)
0 6= 0, and ordt(fs(γ)) ≥ m+ 1 for s = 1, . . . , g.
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From a little argument using Corollary 3.3, one can see that this implies the equalities

x
(0)
1 = · · · = x

(kn0−1)
1 = 0 and x

(kn0)
1

n1 − x(kn1)
0

n0

= 0. Since x
(kn1)
0 6= 0, the last equation

tells us that x
(kn0)
1 6= 0.

Let us first examine the condition ordt(f1(γ)) ≥ m+ 1. We have

f1(γ) ≡ f1

( m∑
l=kn1

x
(l)
0 t

l,

m∑
l=kn0

x
(l)
1 t

l

)
≡ tkn0n1f1

( m∑
l=kn1

x
(l)
0 t

l−kn1 ,
m∑

l=kn0

x
(l)
1 t

l−kn0

)

≡ tkn0n1

m−kn0n1∑
l=0

F (l)
1 tl mod (tm+1),

where F (l)
1 := F

(l)
1

(
x

(kn1)
0 , x

(kn0)
1 , . . . , x

(kn1+l)
0 , x

(kn0+l)
1

)
. The second equality follows from

the weighted-homogeneity of f1 with weights n1 and n0 for x0 and x1, respectively.

Hence, the condition that ordt(f1(γ)) ≥ m+ 1 is equivalent to the annihilation of F (l)
1 for

l = 0, . . . ,m− kn0n1 with the condition that x
(kn1)
0 6= 0. These are the defining equations

of the jet schemes of the regular part of the curve defined by x
(kn0)n1

1 − x
(kn1)n0

0 = 0.

Clearly, F0
1 = x

(kn0)n1

1 − x(kn1)n0

0 , and for l = 1, . . . ,m− kn0n1, they are of the form

F (l)
1 = αlx

(kn0)
1

n1−1
x

(kn0+l)
1 −Hl

(
x

(kn1)
0 , x

(kn0)
1 , . . . , x

(kn1+l)
0 , x

(kn0+l−1)
1

)
,

where αl ∈ C \ {0} and Hl is a polynomial. Because x
(kn0)
1 6= 0, we can divide each F (l)

1

for l = 1, . . . ,m − kn0n1 by x
(kn0)
1

n1−1
to see that F (l)

1 is linear in x
(kn0+l)
1 , and that the

expression of x
(kn0+l)
1 does not depend on the variables x

(h)
1 for h > kn0 + l. In other

words, the system of equations given by F (l)
1 for l = 0, . . . ,m− kn0n1 is triangular in the

variables x
(kn0)
1 , . . . , x

(kn0+m−kn0n1)
1 .

Let us now examine the conditions ordt(fs(γ)) ≥ m + 1 for s = 2, . . . , g. We already

know that ordt(γ0) = kn1 = kβ̄0

e1
and ordt(γ1) = kn0 = kβ̄1

e1
. Therefore,

ordt(x
bs0
0 · · ·x

bs(s−1)

s−1 (γ)) ≥ ordt(γ
bs0
0 γbs11 ) = bs0

kβ̄0

e1

+ bs1
kβ̄1

e1

≥ kn2β̄2

e1

≥ m+ 1,

where the last two inequalities follow from Lemma 3.6 and our assumption on m, respec-

tively. Since fs = xnss − x
bs0
0 · · ·x

bs(s−1)

s−1 , it follows that ordt(fs(γ)) ≥ m + 1 is equivalent

to ordt(x
ns
s (γ)) = ordt(γ

ns
s ) ≥ m+1, which is in turn equivalent to x

(0)
s = · · · = x

([ m
ns

])
s = 0.

To recapitulate, the embedding of Dm,k in Spec C[x(j); j = 0, . . . ,m]
x

(kn1)
0

is defined by

the ideal(
x(0)
r , . . . , x

(
kn0n1
nr
−1)

r , F (l)
1 , x(0)

s , . . . , x
([ m
ns

])
s ; r = 0, 1; l = 0, . . . ,m− kn0n1; s = 2, . . . , g

)
,

which is exactly the same as we claimed. The codimension of Dm,k is equal to c1,k(m);
indeed, the above ideal is a complete intersection because the system of equations given

by F (l)
1 for l = 0, . . . ,m − kn0n1 is triangular in the variables x

(kn0)
1 , . . . , x

(kn0+m−kn0n1)
1 .

As F0
1 = x

(kn0)n1

1 − x(kn1)n0

0 , we clearly also have

Dm,k ' (Y 1 \ {0})× C(g+1)(m+1)−ci,k(m)−1.
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We now proceed in the induction and assume that the description of the ideal which is
given at the beginning of this proof is true for i− 1. We have to treat two cases.

The case where i < j(k). We need to prove that the description for the ideal of Dm,k

is also true if kniβ̄i
e1
≤ m < kni+1β̄i+1

e1
. Let γ ∈ Dm,k be identified with its corresponding jet

γ(t). Because
πm,kn0n1 = π

m,
kniβ̄i
e1
−1
◦ π kniβ̄i

e1
−1,kn0n1

,

we have

Dm,k = π−1

m,
kniβ̄i
e1
−1

(
D kniβ̄i

e1
−1,k

)
.

From the induction hypothesis, it follows that the coordinates of γ satisfy, among others,
the equations

x(0)
r = · · · = x

( kβ̄r
e1
−1)

r = x
(
kβ̄h
e1

)

h

nh

− x
(
kβ̄0
e1

)

0

bh0

· · ·x
(
kβ̄h−1
e1

)

h−1

bh(h−1)

= 0;

r = 0, . . . , i− 1; h = 1, . . . , i− 1.

Since x
(
kβ̄0
e1

)

0 6= 0, the equation for h = 1 gives us that x
(
kβ̄1
e1

)

1 6= 0. Then, the equation for

h = 2 gives that x
(
kβ̄2
e1

)

2 6= 0. We can repeat this to conclude that

x
( kβ̄r
e1

)

r 6= 0; r = 0, . . . , i− 1.

Together with the other equations, this implies that ordt(γr) = kβ̄r
e1

for r = 0, . . . , i − 1.

The induction hypothesis also tells us that ordt(γi) ≥ kβ̄i
e1

. We now investigate, modulo

the defining ideal of D kniβ̄i
e1
−1,k

, the condition ordt(fi(γ)) ≥ m+ 1.

Note that the equation fi is weighted homogeneous of degree niβ̄i
e1

if we give xr the

weight β̄r
e1

for r = 0, . . . , i. Therefore,

fi(γ) ≡ fi

( m∑
l=

kβ̄0
e1

x
(l)
0 t

l,
m∑

l=
kβ̄1
e1

x
(l)
1 t

l, . . . ,
m∑

l=
kβ̄i
e1

x
(l)
i t

l

)
≡ t

kniβ̄i
e1

m− kniβ̄i
e1∑

l=0

F (l)
i t

l mod (tm+1),

where F (l)
i := F

(l)
i

(
x

(
kβ̄0
e1

)

0 , . . . , x
(
kβ̄i
e1

)

i , . . . , x
(
kβ̄0
e1

+l)

0 , . . . , x
(
kβ̄i
e1

+l)

i

)
. More precisely,

F (0)
i = x

(
kβ̄i
e1

)

i

ni

− x
(
kβ̄0
e1

)

0

bi0

· · ·x
(
kβ̄i−1
e1

)

i−1

bi(i−1)

,

and, for l = 1, . . . ,m− kniβ̄i
e1

,

F (l)
i = αlx

(
kβ̄i
e1

)

i

ni−1

x
(
kβ̄i
e1

+l)

i −Hl

(
x

(
kβ̄0
e1

)

0 , . . . , x
(
kβ̄i
e1

)

i , . . . , x
(
kβ̄0
e1

+l)

0 , . . . , x
(
kβ̄i−1
e1

+l)

i−1 , x
(
kβ̄i
e1

+l−1)

i

)
for some αl ∈ C\{0} and a polynomial Hl. The condition ordt(fi(γ)) ≥ m+1 is thus given

by the annihilation of F (l)
i for l = 0, . . . ,m− kniβ̄i

e1
. Because x

( kβ̄r
e1

)

r 6= 0 for r = 0, . . . , i− 1,

the equation F (0)
i = 0 gives that x

(
kβ̄i
e1

)

i 6= 0. Dividing x
(
kβ̄i
e1

)

i

ni−1

in F (l)
i for l ≥ 1, we again

see that the system of equations is triangular in the variables x
(
kβ̄i
e1

)

i , . . . , x
(
kβ̄i
e1

+m− kniβ̄i
e1

)

i ,
and both the description of the ideal and the statement of the proposition follow.
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The case where i = j(k). In this case, it is enough to prove that D kniβ̄i
e1

,k
= ∅.

Suppose there exists an element γ ∈ D kniβ̄i
e1

,k
and identify γ once more with its jet γ(t).

On the one hand, like in the previous case, the induction hypothesis implies that

x
( kβ̄r
e1

)

r 6= 0; r = 0, . . . , i− 1.

Therefore,

ordt(x
bi0
0 · · · x

bi(i−1)

i−1 (γ)) =
kniβ̄i
e1

.

On the other hand, from the assumption i = j(k) and the fact that ei = ni+1 · · ·ng,
we have kniβ̄i

e1
= k′β̄i

ei
for some k′ ≥ 1 which is not a multiple of ni. Since ni = ei−1

ei

and ei = gcd(ei−1, β̄i), we also know that ni and β̄i
ei

are coprime. It follows that ni does

not divide kniβ̄i
e1

= k′β̄i
ei
. As fi = xnii − x

bi0
0 · · ·x

bi(i−1)

i−1 and ordt(γi) ≥ kβ̄i
e1

by the induction

hypothesis, we can conclude that ordt(fi(γ)) = kniβ̄i
e1

. This contradicts that γ ∈ D kniβ̄i
e1

,k
.

In other words, D kniβ̄i
e1

,k
= ∅. �

We are now able to give the decomposition of π−1
m (0)red into irreducible components.

Theorem 3.7. Consider m ≥ 1. Let l ∈ N be such that ln0n1 < m ≤ (l + 1)n0n1 and let

Dm,k := π−1
m,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1−1)
0 = 0} ∩ {x(kn1)

0 6= 0})red, k = 1, . . . , l,

Bm := π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red.

The irreducible components of π−1
m (0)red are Cm,k := Dm,k for k = 1, . . . , l such that

m <
knj(k)β̄j(k)

e1
and Bm. Furthermore, Bm is a component of maximal dimension.

Proof. If l = 0, then π−1
m (0)red = Bm is irreducible, and there is nothing to prove. For

l ≥ 1, the stratification (3) and Proposition 3.5 tell us that

π−1
m (0)red =

( l⋃
k=1

Cm,k
)
∪Bm

is a decomposition in closed irreducible subvarieties, and that the extra condition on k

comes from the fact that Cm,k = ∅ for m ≥ knj(k)β̄j(k)

e1
. We still need to prove that there

are no inclusions between the closed sets in this union. We already have the following two
non-inclusions (assuming that Cm,k, Cm,k′ 6= ∅):

(1) Cm,k 6⊂ Cm,k′ for k < k′ ≤ l, because Cm,k′ ⊂ {x(kn1)
0 = 0} but Cm,k 6⊂ {x(kn1)

0 = 0}
by the definition of these closed sets; and

(2) Cm,k 6⊂ Bm for all k ≤ l because Bm ⊂ {x(ln1)
0 = 0} but Cm,k 6⊂ {x(ln1)

0 = 0}, again
by definition of these sets.

It remains to show that there are no inclusions in the other directions. This will follow
from the following inequalities in codimensions, considered in C(g+1)(m+1) (again assuming
that Cm,k, Cm,k′ 6= ∅):

(1) codim(Cm,k) ≥ codim(Cm,k′) for k < k′ ≤ l, and
(2) codim(Cm,k) ≥ codim(Bm) for all k ≤ l.

Indeed, the above non-inclusions tell us in particular that all these closed sets are not
equal. Because they are also irreducible, the inequalities in codimensions imply that
there are no inclusions in the other directions.
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We begin with remarking that the inequalities β̄2 > n1β̄1 and n2 ≥ 2 imply that

(5)
hn2β̄2

e1

> (h+ 1)n0n1

for all h ≥ 1. In particular, we have ln0n1 < m ≤ (l + 1)n0n1 <
ln2β̄2

e1
such that Cm,l 6= ∅

with codim(Cm,l) = c1,l(m). One can now verify with the formulas of the codimension
that codim(Cm,l) ≥ codim(Bm), but this can also been seen from the following short
argument. First, it is easy to check that Cln0n1+1,l and Bln0n1+1 have the same codi-
mension (note that Cln0n1+1,l 6= ∅ of codimension c1,l(ln0n1 + 1)). Second, for n ∈ N
satisfying ln0n1 + 2 ≤ n ≤ (l + 1)n0n1 <

ln2β̄2

e1
, it follows from Corollary 3.3 that the

equation F
(n)
1 contributes to the codimension of Bn if and only if n0 or n1 divides n (i.e.,

there is an extra variable x
( n
n0

)

0 or x
( n
n1

)

1 equal to 0), while from the proof of Proposi-

tion 3.5, F
(n)
1 always contributes to the codimension of Cn,l. Additionally, the equations

F
(n)
j for j = 2, . . . , g contribute to the codimension of Bn if and only if they contribute to

the codimension of Cn,l. Therefore, we have the inequality codim(Cn,l) ≥ codim(Bn) for

ln0n1 < n ≤ (l + 1)n0n1 <
ln2β̄2

e1
, and in particular for n = m.

If l = 1, we are done; we assume from now on that l > 1. For k = 1, . . . , l, we define

ck(m) := k(n0 + n1) +
i∑
l=2

kβ̄l
e1

+
i∑
l=1

(
m− knlβ̄l

e1

+ 1
)

+

g∑
l=i+1

([m
nl

]
+ 1
)
,

where i ∈ {1, . . . , g} such that kniβi
e1
≤ m < kni+1β̄i+1

e1
. We can always find such a unique

integer i because β̄g+1 = +∞ by convention. Furthermore, we know by Proposition 3.5
that codim(Cm,k) = ci,k(m) = ck(m) if Cm,k 6= ∅ or ,equivalently, if i < j(k). Consider now
a fixed k ∈ {2, . . . , l}. We will show that

ck−1(m) ≥ ck(m).

This leads to the series of inequalities

c1(m) ≥ c2(m) ≥ · · · ≥ cl(m) = codim(Cm,l) ≥ codim(Bm),

from which the above-mentioned inequalities in the codimension follow, and hence, the
non-inclusions that we wanted to prove. In particular, our proof implies that Bm is a
component of maximal dimension, being of smallest codimension.

We first compare ck−1(kn0n1+1) and ck(kn0n1+1). From inequality (5) for h = k−1, it

follows that i = 1 in ck−1(kn0n1), and that i = 1 in ck−1(kn0n1 +1) if kn0n1 +1 < (k−1)n2β̄2

e1

or i = 2 in ck−1(kn0n1 + 1) if kn0n1 + 1 = (k−1)n2β̄2

e1
. Using this, one can check that

ck−1(kn0n1 + 1)− ck−1(kn0n1) ≥ codim(Bkn0n1+1)− codim(Bkn0n1).

With a same reasoning as before, one can see that ck−1(kn0n1) = codim(Ckn0n1,k−1) ≥
codim(Bkn0n1). Together with ck(kn0n1 + 1) = codim(Ckn0n1+1,k) = codim(Bkn0n1+1), we
obtain that

ck−1(kn0n1 + 1) ≥ ck(kn0n1 + 1).

Now, note that

(1) the value of ck(n) increases when n varies in the interval
[
kniβ̄i
e1

, kni+1β̄i+1

e1

)
∩N and

it grows faster when n varies in
[
kniβ̄i
e1

, kni+1β̄i+1

e1

)
∩ N for greater i;
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(2) the growing of ck−1(n) and ck(n) is completely the same when n varies in the

interval
[

(k−1)niβ̄i
e1

, (k−1)ni+1β̄i+1

e1

)
∩ N and

[
kniβ̄i
e1

, kni+1β̄i+1

e1

)
∩ N, respectively;

(3) the length of the interval
[

(k−1)niβ̄i
e1

, (k−1)ni+1β̄i+1

e1

)
∩N is smaller than the length of[

kniβ̄i
e1

, kni+1β̄i+1

e1

)
∩ N.

For these reasons, ck−1(n) grows faster with n ≥ kn0n1+1 than ck(n). As ck−1(kn0n1+1) ≥
ck(kn0n1 + 1), we can indeed deduce that ck−1(m) ≥ ck(m). �

By comparing with Corollary 4.4 in [Mou1], one can see that this theorem is a gener-
alization of the case for g = 1. More precisely, if g = 1, we can also stratify π−1

m (0)red for
all m ∈ N with l ∈ N such that ln0n1 < m ≤ (l + 1)n0n1 by

(6) π−1
m (0)red =

( l⊔
k=1

Dm,k

)
tBm,

where

Dm,k = π−1
m,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1−1)
0 = 0} ∩ {x(kn1)

0 6= 0})red,

Bm = π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red.

The irreducible components are Cm,k := Dm,k for all k = 1, . . . , l and Bm. There is no
extra condition on k as all Dm,k are non-empty. In other words, we can define j(k) := 2
for all k ≥ 1. It is also easy to check that the codimension of Cm,k is given by the formula
of c1,k(m) in (4) and that the codimension of Bm is the same as in Corollary 3.4. In
particular, Bm is still a component of maximal dimension if g = 1.

As an easy corollary, we find the decomposition into irreducible components of Ym for
all g ≥ 1 and m ≥ 1.

Corollary 3.8. Consider a space monomial curve Y ⊂ Cg+1 defined by the equations (1).
Consider m ≥ 1, let l ∈ N be such that ln0n1 < m ≤ (l + 1)n0n1 and let

Dm,k := π−1
m,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1−1)
0 = 0} ∩ {x(kn1)

0 6= 0})red, k = 1, . . . , l,

Bm := π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red.

The irreducible components of Ym are π−1
m (Y \ {0}), Cm,k := Dm,k for k = 1, . . . , l such

that m <
knj(k)β̄j(k)

e1
and Bm. Furthermore, Bm is a component of maximal dimension.

Proof. Because Y \{0} ' C\{0} and πm restricted to π−1
m (Y \{0}) is a trivial fibration with

fiber isomorphic to Cm, we know that π−1
m (Y \ {0}) is irreducible of codimension g(m+1)

in C(g+1)(m+1). As π−1
m (Y \ {0}) is trivially not contained in any of the components of

π−1
m (0), it is now enough to prove the following inequalities in codimensions, considered

in C(g+1)(m+1) (assuming that Cm,k 6= ∅):
(1) codim(Cm,k) ≤ g(m+ 1) for k ≤ l, and
(2) codim(Bm) ≤ g(m+ 1).

In fact, we will show that strict inequality always holds in (1), while equality in (2) is
possible if g = 1.

Recall from Proposition 3.5 that the codimension of Cm,k (if non-empty) is given by

ci,k(m) for i ∈ {1, . . . , j(k)− 1} such that kniβ̄i
e1
≤ m < kni+1β̄i+1

e1
. Because nl ≥ 2, this can
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be bounded from above by

ci,k(m) ≤ k(n0 + n1) +
i∑
l=2

kβ̄l
e1

+
i∑
l=1

(
m− knlβ̄l

e1

+ 1
)

+ (g − i)
(m

2
+ 1
)

=
k

e1

(
β̄0 −

i∑
l=1

(nl − 1)β̄l

)
+ (g + i)

m

2
+ g,

where we also used that n0 = β̄1

e1
and n1 = β̄0

e1
. Because n0 > 1 and n1 > 1 are coprime,

we know that

β̄0 − (n1 − 1)β̄1 = n1β̄1

( 1

n0

+
1

n1

− 1
)
< 0.

It follows that ci,k(m) < (g + i)m
2

+ g, which implies that ci,k(m) < g(m + 1) as i ≤ g.
This proves the strict inequalities in (1).

If there exists a non-empty Cm,k, then strict inequality in (2) follows immediately from
the fact that codim(Cm,k) ≥ codim(Bm), which was shown in Theorem 3.7. Otherwise,
recall the codimension of Bm determined in Corollary 3.4 and let us first consider the case
where g = 1. Because every Cm,k is non-empty for k = 1, . . . , l if l > 0, it remains to
study the case where l = 0. Then, 0 < m ≤ n0n1 and one can, for example with an easy
induction argument, show that

2 +
[m
n0

]
+
[m
n1

]
≤ m+ 1,

which implies the (possibly non-strict) inequality in (2). To conclude the proof for g ≥ 2,
it suffices to show that

g + 1 +

g∑
i=0

[m
ni

]
< g(m+ 1).

Since ni ≥ 2, this is trivially true for m = 1. For m ≥ 2, we can use that ni ≥ 2 and
n0 > n1 to find that

(7)

g∑
i=0

[m
ni

]
< (g + 1)

m

2
,

from which it is easy to see that the above inequality indeed holds. �

Remark 3.1. Because Bm is a component of maximal dimension (equivalently, of minimal
codimension) of Ym for m ≥ 1, we can apply Mustata’s formula [Mus1, Corollary 3.4] to
obtain the log canonical threshold of the pair (Cg+1, Y ):

lct(Y,Cg+1) = min
m≥0

codim(Ym,C(g+1)(m+1))

m+ 1
= min

(
g,min

m≥1

codim(Bm,C(g+1)(m+1))

m+ 1

)
.

We will obtain its value in Corollary 5.2 from the well-known fact that −lct(Y,Cg+1) is
the largest pole of the topological Igusa zeta function, see for instance [NX, Theorem 3.5].

In Section 1, we have defined the family η : (χ, 0) → (C, 0) whose special fiber is
(the germ of) Y and whose generic fiber is a plane branch, and which is equisingular as
all curves have the same semigroup. This (flat) family is also equisingular in the sense
that we have a simultaneous embedded resolution of all its fibers, see [GT, Theorem 6.1]
and [LMR, Theorem 33]. A third type of equisingularity criterion is to ask if this family
induces a flat family on the level of jet schemes in the following way. Put S := (C, 0). For
every m ∈ N, we can consider the relative mth jet scheme ((χ, 0)/S)m of η : (χ, 0) → S.
These kinds of jet schemes can be defined using Hasse-Schmidt derivations and generalize
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the jet schemes Xm = (X/C)m that we introduced for a complex affine variety in Section 2.
See for example [Voj] for an introduction to relative jet schemes. This yields a natural
morphism ηm : ((χ, 0)/S)m → S whose fibers are isomorphic to the mth jet schemes of
the fibers of η, see [Voj, Proposition 5.6]. In other words, this induces a family on the
level of the mth jet schemes and we can investigate whether this is a flat family. It follows
from [Mou1, Corollary 4.13] that this family (with the reduced structure on its fibers)
is flat outside the special fiber for every g ≥ 1 and m ∈ N. We will show below that
the whole family ηm : ((χ, 0)/S)m → S is not flat for g ≥ 2 and most values of m ∈ N.
This can be compared with the result in [Ley, Theorem 3.4] which states that a family of
hypersurfaces admitting a simultaneous embedded resolution of singularities does induce
a flat family on the level of jet schemes (with their reduced structures) for every m: in
our case, while the generic fibers are hypersurfaces, the embedding dimension of Y is g.

Theorem 3.9. For g ≥ 3 and m ≥ 1, the family ηm : ((χ, 0)/S)m → S is not flat. For
g = 2 and m big enough, the family ηm : ((χ, 0)/S)m → S is not flat.

Proof. For g ≥ 2 and m satisfying the conditions in the statement, we will prove that the
dimension of the special fiber of ηm : ((χ, 0)/S)m → S is strictly larger than the dimension
of its generic fiber by showing that the codimension of its generic fiber is strictly larger
than the codimension of its special fiber, both considered in C(g+1)(m+1). The codimension
of the special fiber in C(g+1)(m+1) is equal to the codimension of Bm, which we have found
in Corollary 3.4. The codimension of the generic fiber in C2(m+1) is given in Corollary
4.10 from [Mou1]; it is equal to

2 +
[m
β̄0

]
+
[m
β̄1

]
or 1 +

[m
β̄0

]
+
[m
β̄1

]
,

depending on some conditions on m. Since the jet schemes are independent of the em-
bedding, we can compute the codimension of the generic fiber in C(g+1)(m+1) by using the
fact that the dimension is the same in both embedding spaces. More precisely, we have

(g + 1)(m+ 1)− (codimension in C(g+1)(m+1)) = 2(m+ 1)− (codimension in C2(m+1)).

We distinguish three cases.

The case g ≥ 4. It is enough to prove for every m ≥ 1 that

(g − 1)(m+ 1) + 1 +
[m
β̄0

]
+
[m
β̄1

]
> g + 1 +

g∑
i=0

[m
ni

]
,

which is equivalent to

(8) (g − 1)m > 1 +

g∑
i=0

[m
ni

]
−
[m
β̄0

]
−
[m
β̄1

]
.

Since ni ≥ 2, this is clearly true if m = 1. If m ≥ 2, the upper bound (7) in the proof of
Corollary 3.8 yields

(9) (g + 1)
m

2
>

g∑
i=0

[m
ni

]
−
[m
β̄0

]
−
[m
β̄1

]
.

Therefore, it is sufficient to show that (g− 1)m ≥ 1 + (g+ 1)m
2
, which is true for g ≥ 4

and m ≥ 2.

The case g = 3. For m ≥ β̄0, we can again prove the inequality (8); because [m
β̄0

] ≥
1, this follows from decreasing the upper bound in (9) to 2m − 1. For m < β̄0, the
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inequality (8) is not true in general. However, the codimension in C2(m+1) of the generic
fiber in this case is given by

2 +
[m
β̄0

]
+
[m
β̄1

]
so that it is enough to show that

2m >
[m
n0

]
+
[m
n1

]
+
[m
n2

]
+
[m
n3

]
−
[m
β̄0

]
−
[m
β̄1

]
,

which is true by (9).

The case g = 2. In this case, our claim does not hold in general; it is easy to find
examples in which the (co)dimension of the generic fiber and the special fiber are equal
for some small m ≥ 1. However, we will prove that for m big enough, the claim does
always hold. We again consider the inequality (8). By using that [m

n
] ≤ m

n
< [m

n
] + 1 for

any positive integer n, it is enough to investigate

m ≥ 3 +
m

n0

+
m

n1

+
m

n2

− m

β̄0

− m

β̄1

.

Because β̄0 = n1n2 and β̄1 = n0n2 if g = 2, we can rewrite this as

n0n1n2m > 3n0n1n2 + (n1n2 + n0n2 + n0n1 − n0 − n1)m,

which is equivalent to m ≥ 3n0n1n2

(n2−1)(n0n1−n0−n1)
(note that n0n1−n0−n1 > 0 as n0 > n1 ≥ 2

are coprime). Hence, for m satisfying this lower bound, the codimension of the generic
fiber is certainly bigger than the codimension of the special fiber. �

4. Motivic zeta function of space monomial curves with plane semigroups

Using the results from the previous section, we are now able to compute the series

JY (T ) =
∑
m≥0

[Ym](L−(g+1)T )m+1

and to deduce the motivic Igusa zeta function of a space monomial curve Y ⊂ Cg+1.

Assume first that g ≥ 2. We start with recalling the stratification (3) of π−1
m (0)red for

m ∈ N and l ∈ N such that ln0n1 < m ≤ (l + 1)n0n1 given by

π−1
m (0)red =

( l⊔
k=1

Dm,k

)
tBm,

where

Dm,k = π−1
m,kn0n1

({x(0)
0 = x

(1)
0 = · · · = x

(kn1−1)
0 = 0} ∩ {x(kn1)

0 6= 0})red,

Bm = π−1
m,ln0n1

({x(0)
0 = x

(1)
0 = · · · = x

(ln1)
0 = 0})red.

If ln0n1 < m < (l + 1)n0n1, Corollary 3.3 implies that Bm ' C(g+1)(m+1)−c(m) with
c(m) := g + 1 +

∑g
i=0[m

ni
]. For m = (l + 1)n0n1, the same corollary gives us the defining

equations of Bm, which is not isomorphic to C(g+1)(m+1)−c(m), but to the product of an

affine space and the hypersurface defined by x
((l+1)n0))n1

1 − x((l+1)n1))n0

0 = 0. However, the
singular part of B(l+1)n0n1 ,

B(l+1)n0n1 ∩ {x
((l+1)n1)
0 = 0},
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is isomorphic to C(g+1)((l+1)n0n1+1)−c((l+1)n0n1). Furthermore, it is easy to see that the reg-
ular part,

B(l+1)n0n1 ∩ {x
((l+1)n1)
0 6= 0},

is equal to D(l+1)n0n1,l+1. Hence, if we define

Bm :=


{0} if m = 0

Bm ∩ {x(ln1)
0 = 0} if m = ln0n1 for some l > 0

Bm if ln0n1 < m < (l + 1)n0n1 for some l ≥ 0,

then each Bm ' C(g+1)(m+1)−c(m), and we find for all m, l ∈ N with ln0n1 ≤ m < (l+1)n0n1

that

π−1
m (0)red =

( l⊔
k=1

Dm,k

)
t Bm.

This is a stratification in locally closed subvarieties for which Dm,k = ∅ if m >
knj(k)β̄j(k)

e1
.

These new stratifications can be visualized with a tree as in Figure 1. On the vertical
axis, we collect Bm for all m ∈ N, but to shorten the notation, we only write m instead of
Bm. This axis will be referred to as the main axis or main branch. For each k ≥ 1, we con-

struct a side branch at kn0n1 consisting of Dm,k for all m such that kn0n1 ≤ m <
knj(k)β̄j(k)

e1
,

where β̄g+1 = +∞. We again use a shorter notation and call this the side branch asso-

ciated with k. If j(k) < g + 1, this side branch stops at Dm,k for m =
knj(k)β̄j(k)

e1
− 1; if

j(k) = g + 1 (i.e., n2 · · ·ng divides k), this side branch never stops, and the part starting

from kngβ̄g
e1

is called the infinite branch associated with k. In such a general picture, it is
hard to give the side branches the correct length, and the tree should be interpreted as if
the decomposition of π−1

m (0)red for some m ∈ N can be reconstructed by drawing a hor-
izontal line starting from the main axis and taking all intersections with the side branches.

If we add a last side branch at 0 containing π−1
m (Y \ {0}) for every m ∈ N, then the

tree contains all information needed to compute JY (T ). More precisely, we have for every
m ∈ N and l ∈ N satisfying ln0n1 ≤ m < (l + 1)n0n1 that

[Ym] = [π−1
m (Y \ {0})] + [π−1

m (0)red] = [π−1
m (Y \ {0})] + [Bm] +

l∑
k=1

[Dm,k].

Hence, to sum [Ym] over all m ≥ 0, we can first consider the side branch of 0, the main
branch, and the side branches for k ≥ 1 separately, and then collect these totals to find
the whole series JY (T ).

Let us first take a look at the side branch of 0. Because Y \{0} ' C\{0} and πm induces
a trivial fibration over Y \ {0} with fiber Cm, we have that [π−1

m (Y \ {0})] = (L − 1)Lm
by Remark 2.1, and a simple calculation leads to the following expression.

Proposition 4.1. We have∑
m≥0

[π−1
m (Y \ {0})](L−(g+1)T )m+1 =

(L− 1)L−(g+1)T

1− L−gT
.

The computations for the main axis are also easy. Let N1 := lcm(n0, . . . , ng) be the
least common multiple of n0, . . . , ng and put ν1 :=

∑g
l=0

N1

nl
.



THE MOTIVIC ZETA FUNCTION OF A SPACE MONOMIAL CURVE 21

0

n0n1

2n0n1

n2n0n1

(n2 + 1)n0n1

2n2n0n1

n2n3n0n1

n2 · · ·ngn0n1

m

··
·

··
·

··
·

··
·

m
ai
n
b
ra
n
ch

co
nt
ai
n
in
g
B m

sid
e
br
an
ch
of
0
co
nt
ai
ni
ng
π
−1
m
(Y
\ {
0})

n2β̄2
e1

−1

2n2β̄2
e1

−1

n2n2β̄2
e1

−1

n2n3β̄3
e1

−1

(n2+1)n2β̄2
e1

−1

2n2n3β̄3
e1

−1

n2n3n4β̄4
e1

−1

n2···ngngβ̄g
e1

−1

sid
e
br
an
ch
es
as
so
cia
te
d
wi
th
k
≥
1
co
nt
ai
ni
ng
D m

,k

infinite branch

Figure 1. Visualization of the stratification of Ym for all m ≥ 0.

Proposition 4.2. The contribution of the main branch to JY (T ) is

∑
m≥0

[Bm](L−(g+1)T )m+1 =
L−(g+1)T

1− L−ν1TN1

N1−1∑
r=0

L
−

g∑
i=0

[ r
ni

]
T r.

Proof. Because Bm ' C(g+1)(m+1)−c(m), we need to compute∑
m≥0

L−c(m)Tm+1 = L−(g+1)T
∑
m≥0

L−c̃(m)Tm,
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where c(m) = g + 1 +
∑g

i=0[m
ni

] and c̃(m) =
∑g

i=0[m
ni

]. To this end, note that

ν1 = c̃(m+N1)− c̃(m)

for all m ∈ N. Hence, we can rewrite∑
m≥0

L−c̃(m)Tm =

N1−1∑
r=0

∑
m≥0

L−c̃(mN1+r)TmN1+r

=

N1−1∑
r=0

∑
m≥0

L−(mν1+c̃(r))TmN1+r

=
1

1− L−ν1TN1

N1−1∑
r=0

L−c̃(r)T r,

which gives the desired expression. �

Remark 4.1. In the proof of Proposition 4.2, we found that ν1 = c̃(m+N1)− c̃(m) for all
m ∈ N by looking for a positive integer N such that c̃(m) is linear on congruence classes
modulo N . That is,

c̃(m+N) = c̃(m) + c̃(N)

for all m ∈ N. In order to make c̃(m) =
∑g

i=0[m
ni

] linear on congruence classes modulo
N for any choice of n0, . . . , ng, we need to impose that ni divides N for all i = 0, . . . , g.
Clearly, N = N1 = lcm(n0, . . . , ng) is the smallest integer satisfying this condition. In
fact, the ‘period’ N could be any common multiple of n0, . . . , ng. This does not make

any difference for the poles of the motivic zeta function because the ratio c̃(N)
N

stays the
same. However, it is more natural to take the smallest period as this leads to the smallest

remaining sum
∑N−1

r=0 L−
∑g
i=0[ r

ni
]
T r.

The rest of this section will be mainly devoted to the contribution of the side branches
associated with k ≥ 1, which is by Proposition 3.5 given by

∑
k≥1

j(k)−1∑
i=1

kni+1β̄i+1
e1

−1∑
m=

kniβ̄i
e1

[Dm,k](L−(g+1)T )m+1 =
∑
k≥1

j(k)−1∑
i=1

kni+1β̄i+1
e1

−1∑
m=

kniβ̄i
e1

(L− 1)L−(ci,k(m)+1)Tm+1,

where ci,k(m) is defined in (4). Let us consider for a moment the part where i = 1 for all
k ≥ 1: ∑

k≥1

kn2β̄2
e1
−1∑

m=kn0n1

(L− 1)L−(c1,k(m)+1)Tm+1.

Each interval
[
kn0n1,

kn2β̄2

e1

[
∩ N can be partitioned in k intervals

I
(p)
1,k :=

[
kn0n1 + (p− 1)

(n2β̄2

e1

− n0n1

)
, kn0n1 + p

(n2β̄2

e1

− n0n1

)[
∩ N,

p = 1, . . . , k, of the same length l1 := n2β̄2

e1
− n0n1 as in Figure 2. Using these intervals,

the part for i = 1 can be rewritten as∑
p≥1

∑
κ≥0

∑
I

(p)
1,p+κ

(L− 1)L−(c1,p+κ(m)+1)Tm+1,

where, from now on, a sum over all m ∈ I for some interval I ⊂ N is written in a shorter
way as

∑
I . We will first concentrate on computing the sum over all κ and m for p fixed.
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In other words, we will first sum for each interval I
(p)
1,k over all suitable k, meaning that I

(p)
1,k

appears in the partition of
[
kn0n1,

kn2β̄2

e1

[
∩N. We will refer to this as vertical summation

inspired by Figure 2. Afterwards, we will sum these totals over all p ≥ 1, called horizontal
summation.

For i = 2, . . . , g − 1, we need to consider all k ≥ 1 with i < j(k) or, in other words,
all multiples of n2 . . . ni. For each such k = k′n2 · · ·ni, we can partition the interval[
kniβ̄i
e1

, kni+1β̄i+1

e1

[
∩ N in k′ intervals

I
(p)
i,k :=

[
kniβ̄i
e1

+ (p− 1)
(ni+1β̄i+1

ei
− niβ̄i

ei

)
,
kniβ̄i
e1

+ p
(ni+1β̄i+1

ei
− niβ̄i

ei

)[
∩ N,

p = 1, . . . , k′, of length li := n2 · · ·ni
(ni+1β̄i+1

e1
− niβ̄i

e1

)
= ni+1β̄i+1

ei
− niβ̄i

ei
. With this notation,

the part for i is equal to∑
p≥1

∑
κ≥0

∑
I

(p)
i,(p+κ)n2···ni

(L− 1)L−(ci,(p+κ)n2···ni (m)+1)Tm+1.

We will again first sum vertically (for fixed p) and then horizontally (over p ≥ 1).

0

n0n1

2n0n1

3n0n1

4n0n1

m

n2β̄2
e1

−1

I
(1)
1,1

2n2β̄2
e1

−1

2n0n1 + l1 − 1

I
(1)
1,2

2n0n1 + l1

I
(2)
1,2

3n2β̄2
e1

−1

I
(1)
1,3

I
(2)
1,3

I
(3)
1,3

4n2β̄2
e1

−1

I
(1)
1,4

I
(2)
1,4

I
(3)
1,4

I
(4)
1,4

p = 1 p = 2 p = 3 p = 4

··
·

··
·

··
·

··
·

··
·
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m
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horizontal summation

Figure 2. Visualization of the intervals I
(p)
1,k for k ≥ 1 and p ≤ k.



24 H. MOURTADA, W. VEYS, AND L. VOS

For i = g, we study the infinite branches for k = k′n2 · · ·ng and j(k) = g + 1. With

I
(1)
g,k :=

[
kngβ̄g
e1

,+∞
[
∩ N,

the infinite branches lead to∑
κ≥0

∑
I

(1)
g,(1+κ)n2···ng

(L− 1)L−(cg,(1+κ)n2···ng (m)+1)Tm+1.

This consists of only one vertical sum.

To find the vertical summation, we start with a lemma. Recall that N1 is the least
common multiple of n0, . . . , ng and that ν1 =

∑g
l=0

N1

nl
. We can generalize these numbers

by introducing for i = 1, . . . , g the positive integers

Ni := lcm
( β̄i
ei
, ni, . . . , ng

)
,

and

νi := Ni

(
1

niβ̄i

( i∑
l=0

β̄l −
i−1∑
l=1

nlβ̄l

)
+ (i− 1) +

g∑
l=i+1

1

nl

)
;

for i = 1, we recover the earlier expressions since n0 = β̄1

e1
and n1 = β̄0

e1
. Using the

definition (4) of ci,k(m), the next lemma is a straightforward calculation.

Lemma 4.3. (1) For all k ≥ 1 and 0 ≤ m < kl1 = k
(
n2β̄2

e1
− n0n1

)
, we have

ν1 = c
1,k+

N1
n0n1

((
k +

N1

n0n1

)
n0n1 +m

)
− c1,k(kn0n1 +m).

(2) For i = 2, . . . , g and k ≥ 1, we have for every m ∈ N lying in the interval
[
0, kli[=

[0, kn2 · · ·ni
(ni+1β̄i+1

e1
− niβ̄i

e1

)[
that

νi = c
i,(k+

eiNi
niβ̄i

)n2···ni

((
k +

eiNi

niβ̄i

)
n2 · · ·ni

niβ̄i
e1

+m
)
− ci,kn2···ni

(
kn2 · · ·ni

niβ̄i
e1

+m
)
.

Note that K1 := N1

n0n1
is an integer as n0 and n1 are coprime divisors of N1. Further-

more, it is the smallest integer (for general n0, . . . , ng) such that K1n0n1 is divisible by
n2, . . . , ng or, in other words, such that the sum

∑g
l=2[m

nl
] in c1,k(m) is linear on congruence

classes modulo K1n0n1. Similarly, every Ki := eiNi
niβ̄i

for i = 2, . . . , g is the smallest integer

(for general n0, . . . , ng) making
∑g

l=i+1[m
nl

] linear modulo Kin2 · · ·ni niβ̄ie1
= Ki

niβ̄i
ei

. This
idea was used in the proof of Proposition 4.2, and we will continue following the approach
of this proof to show the results in the next proposition. The first two results say that for
each i = 1, . . . , g − 1 and p ≥ 1, we only need to know the behavior on the first Ki side
branches associated with suitable k (i.e., the partition of the side branch of k contains

I
(p)
i,k ) in order to know the whole vertical summation. This motivates our choice for the

smallest integers Ki, and it is again easy to check that this does not influence the ratios νi
Ni

.

Proposition 4.4. (1) For i = 1 and all p ≥ 1, the vertical summation gives

L− 1

1− L−ν1TN1

N1
n0n1

−1∑
r=0

∑
I

(p)
1,p+r

L−(c1,p+r(m)+1)Tm+1.
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(2) For every i = 2, . . . , g − 1 and p ≥ 1, the vertical summation gives

L− 1

1− L−νiTNi

eiNi
niβ̄i
−1∑

r=0

∑
I

(p)
i,(p+r)n2···ni

L−(ci,(p+r)n2···ni (m)+1)Tm+1.

(3) For the infinite branches, we find

(L− 1)L−(νg+g+1)TNg+1

(1− L−gT )(1− L−νgTNg)
.

Proof. For the first part, we need to consider∑
κ≥0

∑
I

(p)
1,p+κ

(L− 1)L−(c1,p+κ(m)+1)Tm+1

=
∑
κ≥0

pl1−1∑
m=(p−1)l1

(L− 1)L−(c1,p+κ((p+κ)n0n1+m)+1)T (p+κ)n0n1+m+1

As in Proposition 4.2, we can rewrite this sum with the period K1 = N1

n0n1
found in

Lemma 4.3 as

L− 1

1− L−ν1TN1

N1
n0n1

−1∑
r=0

pl1−1∑
m=(p−1)l1

L−(c1,p+r((p+r)n0n1+m)+1)T (p+r)n0n1+m+1.

This is equal to the result in (1). The second part of the proposition follows from similar

arguments. To prove (3), we can again use Lemma 4.3 (note that Ng = ngβ̄g
eg

= ngβ̄g) for∑
κ≥0

∑
I

(1)
g,(1+κ)n2···ng

(L− 1)L−(cg,(1+κ)n2···ng (m)+1)Tm+1

=
∑
κ≥0

∑
m≥0

(L− 1)L−(cg,(1+κ)n2···ng ((1+κ)n2···ng
ngβ̄g
e1

+m)+1)
T

(1+κ)n2···ng
ngβ̄g
e1

+m+1

together with∑
m≥0

L−(cg,n2···ng (n2...ng
ngβ̄g
e1

+m)+1)
T
n2...ng

ngβ̄g
e1

+m+1
=
∑
m≥0

L−(νg+g+gm+1)T ngβ̄g+m+1

=
L−(νg+g+1)T ngβ̄g+1

1− L−gT
.

�

It remains to sum the first two expressions of Proposition 4.4 horizontally over all p ≥ 1.
We again begin with a lemma that follows from simple computations.

Lemma 4.5. (1) For all k ≥ 1, r ≥ 0 and 0 ≤ m < (r + 1)l1 = (r + 1)
(
n2β̄2

e1
− n0n1

)
, we

have

ν2 = c
1,k+

e2N2
β̄2

+r

((
k +

e2N2

β̄2

+ r
)
n0n1 +

(
k +

e2N2

β̄2

− 1
)
l1 +m

)
− c1,k+r((k + r)n0n1 + (k − 1)l1 +m).
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(2) For i = 2, . . . , g − 1 and k ≥ 1, we have for all r ≥ 0 and m ∈ N in the interval[
0, (r + 1)li[= [0, (r + 1)n2 · · ·ni

(ni+1β̄i+1

e1
− niβ̄i

e1

)[
that

νi+1 = c
i,(k+

ei+1Ni+1
β̄i+1

+r)n2···ni

((
k +

ei+1Ni+1

β̄i+1

+ r
)
n2 · · ·ni

niβ̄i
e1

+
(
k +

ei+1Ni+1

β̄i+1

− 1
)
li +m

)
− ci,(k+r)n2···ni

(
(k + r)n2 · · ·ni

niβ̄i
e1

+ (k − 1)li +m
)
.

Using similar arguments as in the proof of Proposition 4.4 with this lemma, the hor-
izontal summation leads to the next result. With the visualization of Figure 2, we can
rephrase the first line as follows. In order to calculate the whole contribution of the first

intervals [kn0n1,
kn2β̄2

e1
[∩N for k ≥ 1, we only need to consider the block of intervals I

(p)
1,k

for p = 1, . . . , e2N2

β̄2
and the first N1

n0n1
suitable k (i.e., k = p, . . . , p+ N1

n0n1
). The second line

can be interpreted in the same way, and the last line is the part of the infinite branches.

Proposition 4.6. The contribution to JY (T ) of the side branches for k ≥ 1 is

L− 1

(1− L−ν1TN1)(1− L−ν2TN2)

N1
n0n1

−1∑
r=0

e2N2
β̄2∑
r′=1

∑
I

(r′)
1,r′+r

L−(c1,r′+r(m)+1)Tm+1

+

g−1∑
i=2

L− 1

(1− L−νiTNi)(1− L−νi+1TNi+1)

eiNi
niβ̄i
−1∑

r=0

ei+1Ni+1
β̄i+1∑
r′=1

∑
I

(r′)
i,(r′+r)n2···ni

L−(ci,(r′+r)n2···ni
(m)+1)Tm+1

+
(L− 1)L−(νg+g+1)TNg+1

(1− L−gT )(1− L−νgTNg)
.

Combining all propositions of this section with the relation

Zmot
Y (T ) = 1− 1− T

T
JY (T ),

we are now ready to give an explicit expression for the motivic zeta function of Y ⊂ Cg+1.

Theorem 4.7. Consider a space monomial curve Y ⊂ Cg+1 defined by the equations (1).
Let Ni and νi for i = 1, . . . , g be the positive integers defined as

Ni := lcm
( β̄i
ei
, ni, . . . , ng

)
,

and

νi := Ni

(
1

niβ̄i

( i∑
l=0

β̄l −
i−1∑
l=1

nlβ̄l

)
+ (i− 1) +

g∑
l=i+1

1

nl

)
.

The motivic Igusa zeta function associated with Y ⊂ Cg+1 is given by

Zmot
Y (T ) = 1− (1− T )

(
(L− 1)L−(g+1)

1− L−gT
+

L−(g+1)

1− L−ν1TN1

N1−1∑
r=0

L
−

g∑
i=0

[ r
ni

]
T r

+

g−1∑
i=1

(L− 1)Zi(T )

(1− L−νiTNi)(1− L−νi+1TNi+1)
+

(L− 1)L−(νg+g+1)TNg

(1− L−gT )(1− L−νgTNg)

)
.
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Here, Zi(T ) for i = 1, . . . , g − 1 are polynomials with coefficients in Z[L,L−1]. More
precisely,

Z1(T ) :=

N1
n0n1

−1∑
r=0

e2N2
β̄2∑
r′=1

∑
I

(r′)
1,r′+r

L−(c1,r′+r(m)+1)Tm,

Zi(T ) :=

eiNi
niβ̄i
−1∑

r=0

ei+1Ni+1
β̄i+1∑
r′=1

∑
I

(r′)
i,(r′+r)n2···ni

L−(ci,(r′+r)n2···ni
(m)+1)Tm, i = 2, . . . , g − 1,

where, for i = 1, . . . , g − 1 and k,m, p ∈ N,

I
(p)
i,k :=

[
kniβ̄i
e1

+ (p− 1)
(ni+1β̄i+1

ei
− niβ̄i

ei

)
,
kniβ̄i
e1

+ p
(ni+1β̄i+1

ei
− niβ̄i

ei

)[
∩ N,

and

ci,k(m) := k(n0 + n1) +
i∑
l=2

kβ̄l
e1

+
i∑
l=1

(
m− knlβ̄l

e1

+ 1
)

+

g∑
l=i+1

([m
nl

]
+ 1
)
.

We see that the motivic zeta function is indeed a rational function in T and we can take
a look at its poles. Since MC is not an integral domain, see for instance the appendix
of [Cau], one has to be careful with defining a pole. However, for example with the
definition given in [RV], one can see that a complete list of possible poles for Zmot

Y (T ) is

Lg, L
νi
Ni , i = 1, . . . , g,

which could intuitively be expected from the above expression. In the next section, we
will prove that all these candidates are actual poles, as we already notice in the following
examples.

Example 4.1. (1) Consider the irreducible plane curve given by (x2
1 − x3

0)2 − x5
0x1 = 0.

Its semigroup has (4, 6, 13) as unique minimal set of generators, and the corresponding
space curve Y1 ⊆ C3 in three variables (g = 2) is defined by{

x2
1 − x3

0 = 0
x2

2 − x5
0x1 = 0.

Using Theorem 4.7, one can compute that

Zmot
Y1

(T ) =
(L− 1)P1(T )

L47(1− L−2T )(1− L−8T 6)(1− L−37T 26)

where P1(T ) is the polynomial

(L + 1)T 31 − L3T 30 + L3T 29 − (L6 + L5)T 28 + (L6 + L5)T 27 − 2L8T 26 + (−L9 + L8)T 25

+ (L12 − L11)T 24 + (−L12 + L11)T 23 + (L15 − L14)T 22 + (−L15 + L14)T 21 + L18T 20

− L18T 19 − L25T 14 + L25T 13 + (L29 − L28)T 12 + (−L29 + L28)T 11 + (L32 − L31)T 10

+ (−L32 + L31)T 9 + (L35 − L34)T 8 + (−L35 + L34)T 7 − (L38 + L37)T 5 + L40T 4

− L40T 3 + (L43 + L42)T 2 − (L43 + L42)T + L46 + L45.

This expression has three poles, L2,L 8
6 and L 37

26 , corresponding to g = 2, ν1

N1
= 8

6
and

ν2

N2
= 37

26
, respectively. These are precisely the set of candidate poles from Theorem 4.7.
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(2) The polynomial ((x2
1− x3

0)2− x5
0x1)2− x10

0 (x2
1− x3

0) defines an irreducible plane curve
whose semigroup is minimally generated by (8, 12, 26, 53), and it induces the curve Y2 ⊆ C4

given by  x2
1 − x3

0 = 0
x2

2 − x5
0x1 = 0

x2
3 − x10

0 x2 = 0.

For this curve, Theorem 4.7 gives

Zmot
Y2

(T ) =
(L− 1)P2(T )

L299(1− L−3T )(1− L−11T 6)(1− L−50T 26)(1− L−235T 106)
,

for a concrete polynomial P2(T ) of degree 137 with coefficients in Z[L], which occupies
more than half a page. Again, all candidate poles turn out to be actual poles.

Both results in Example 4.1 were also obtained using other methods in [Pot, Chapter
7]; there, the local p-adic zeta function of Yi was calculated in terms of a principalization
of its defining ideal. From the data of the same principalization, one can deduce an
expression for the global p-adic zeta function of Yi, to which the above expression for the
global motivic zeta function specializes.

Remark 4.2. For a general monomial curve Y ⊂ Cg+1, we do not see how to construct
an explicit principalization of its defining ideal in order to deduce the motivic Igusa zeta
function from it. We would also like to point out that using the resolution constructed
in [MVV, Section 5], one can compute part of the motivic zeta function of Y , but not its
whole zeta function. More precisely, in [MVV], the problem of studying the monodromy
eigenvalues of Y is handled by considering Y as a Cartier divisor on a generic embedding
surface S ⊂ Cg+1 and constructing an embedded Q-resolution of Y ⊂ S. This Q-resolution
could be used to compute a part of the motivic zeta function of Y, corresponding to the
contribution of some Zariski open of a principalization space.

The approach in this section also provides a way to compute the local motivic zeta
function associated with a space monomial curve Y ⊂ Cg+1. As in Section 2, one can
check that the relations [X0,0] = ∅ and [Xm,0] = Lg+1[π−1

m−1(0)red] − [π−1
m (0)red] for m ≥ 1

imply that

L−(g+1)
∑
m≥0

[Xm,0](L−(g+1)T )m = L−(g+1) − 1− T
T

∑
m≥0

[π−1
m (0)red](L−(g+1)T )m+1.

Therefore, the local version is equal to the above expression with the first 1 replaced by
L−(g+1) and without the term

−(1− T )(L− 1)L−(g+1)

1− L−gT
,

which comes from the side branch of 0 consisting of [Ym \ π−1
m (0)red].

For g = 1, we can repeat most steps of these computations: we can change the stratifi-
cation (6) of π−1

m (0)red in exactly the same way such that Bm ' C(g+1)(m+1)−c(m) for every
m ∈ N; we can split the calculations in a side branch of 0 with π−1

m (Y \{0}) for all m ≥ 0,
a main branch containing Bm for all m ≥ 0, and side branches at kn0n1 for all k ≥ 1; and
we get the same results for the side branch of 0 and the main branch as in Proposition 4.1
and Proposition 4.2, respectively. The only difference is that each k ≥ 1 has an infinite
branch consisting of Dm,k with codimension c1,k(m) for all m ≥ kn0n1. However, this can
be treated similarly as the infinite branches for g ≥ 2, and we obtain the same expression
as in Proposition 4.4, part (3). In other words, the motivic zeta function of the plane
curve Y = V (xn1

1 − xn0
0 ) ⊂ C2 is given by the expression in Theorem 4.7 with g = 1.



THE MOTIVIC ZETA FUNCTION OF A SPACE MONOMIAL CURVE 29

5. Poles of the motivic zeta function of a space monomial curve

The explicit expression for the motivic Igusa zeta function associated with a space
monomial curve Y ⊂ Cg+1 in Theorem 4.7 provides the following g + 1 candidate poles
for all g ≥ 1:

Lg, L
νi
Ni , i = 1, . . . , g.

We will now show that all these possible poles are actual poles.

Instead of proving this for the motivic zeta function directly, we will work with the
topological Igusa zeta function associated with Y . This zeta function was first introduced
by Denef and Loeser [DL1] for one polynomial f in terms of an embedded resolution of f .
Such a resolution can also be used to express the motivic zeta function of f and to show
that this function specializes to the topological one, see for example [DL2]. In particular,
a pole of the topological zeta function induces a pole of the motivic zeta function. For an
ideal, one can obtain a similar formula in terms of a principalization of the ideal, where
the topological version is again a specialization of the motivic one. The generalization to
ideals by using a principalization is mentioned in [VZ].

Roughly speaking, we obtain the topological zeta function Ztop
Y (s) for s ∈ C by sub-

stituting T = L−s in Zmot
Y (T ) and taking the limit L → 1. Formally, one should first

specialize to the Hodge zeta function, using Hodge polynomials, and then to the topolog-
ical zeta function. In this way, we get the following expression for the topological zeta
function associated with a space monomial curve Y ⊂ Cg+1:

Ztop
Y (s) =

ν1

ν1 + sN1

−
g−1∑
i=1

ei+1NiNi+1

niβ̄iβ̄i+1

(ni+1β̄i+1 − niβ̄i)
s

(νi + sNi)(νi+1 + sNi+1)

− s

(g + s)(νg + sNg)
.

The candidate poles of this rational function are clearly −g and − νi
Ni

for i = 1, . . . , g,
which correspond to the possible poles for the motivic zeta function. Therefore, we will
prove the stronger result that each of these candidates is an actual pole of Ztop

Y (s).

Example 5.1. We consider the two curves Y1 and Y2 from Example 4.1. Applying the
above specialization yields

Ztop
Y1

(s) =
4(47s2 + 169s+ 148)

(2 + s)(8 + 6s)(37 + 26s)
,

and

Ztop
Y2

(s) =
2(14176s3 + 103282s2 + 246789s+ 193875)

(3 + s)(11 + 6s)(50 + 26s)(235 + 106s)
,

from which we clearly see that all candidate poles are actual poles. Again, both these
topological zeta functions were also found using a principalization in [Pot, Chapter 7].

We start with remarking the following inequalities between the candidate poles.

Lemma 5.1. The candidate poles can be ordered as

−g < − νg
Ng

< − νg−1

Ng−1

< · · · < − ν1

N1

.

In particular, this implies that every candidate pole is possibly an actual pole of order 1.
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Proof. Let g ≥ 2 and take i ∈ {1, . . . , g − 1} fixed. The difference between νi+1

Ni+1
and νi

Ni

can be rewritten as

(10)
νi+1

Ni+1

− νi
Ni

=

(
1

niβ̄i
− 1

ni+1β̄i+1

)(
− β̄0 +

i∑
l=1

(nl − 1)β̄l

)
.

From the proof of Corollary 3.8, we know that −β̄0 + (n1 − 1)β̄1 > 0. Together with
niβ̄i < β̄i+1 and nl > 1 for all l = 1, . . . , i, we indeed see that νi+1

Ni+1
− νi

Ni
> 0. Similarly,

both the inequality −g < − νg
Ng

and the case for g = 1 follow from the positive difference

g − νg
Ng

=
1

ngβ̄g

(
− β̄0 +

g∑
l=1

(nl − 1)β̄l

)
. �

This relation between the candidate poles immediately yields the log canonical threshold
of the pair (Cg+1, Y ). The log canonical threshold is an important invariant in birational
geometry, and we refer to [Kol] or [Mus2] for more about it. See also Remark 3.1.

Corollary 5.2. The log canonical threshold of the pair (Cg+1, Y ) is ν1

N1
=

g∑
l=0

1
nl

.

We can now state and prove the main result of this section.

Theorem 5.3. A complete list of the poles of the topological Igusa zeta function associated
with a space monomial curve Y ⊂ Cg+1 is given by

−g, − νi
Ni

= −

(
1

niβ̄i

( i∑
l=0

β̄l −
i−1∑
l=1

nlβ̄l

)
+ (i− 1) +

g∑
l=i+1

1

nl

)
, i = 1, . . . , g,

and all these poles have order 1. Consequently, the motivic Igusa zeta function associated
with Y has poles

Lg, L
νi
Ni , i = 1, . . . , g,

which are all poles of order 1.

Proof. We will show that the residue of each candidate pole is non-zero. For every g ≥ 1,
this is trivial for the residue of the smallest pole, −g, given by

g

νg − gNg

.

To investigate the remaining residues, we denote the residue corresponding to − νi
Ni

by Ri

for i = 1, . . . , g, and we list them, up to a factor of νi
N2
i
, in the next table.

g residues

g = 1 R1 = N1 + 1
g− ν1

N1

g ≥ 2

R1 = N1 + e2N1

n1β̄1β̄2
(n2β̄2 − n1β̄1) 1

ν2
N2
− ν1
N1

Ri,i=2,...,g−1 = eiNi
ni−1β̄i−1β̄i

(niβ̄i − ni−1β̄i−1) 1
νi−1
Ni−1

− νi
Ni

+ ei+1Ni
niβ̄iβ̄i+1

(ni+1β̄i+1 − niβ̄i) 1
νi+1
Ni+1

− νi
Ni

,

Rg = Ng
ng−1β̄g−1β̄g

(ngβ̄g − ng−1β̄g−1) 1
νg−1
Ng−1

− νg
Ng

+ 1
g− νg

Ng
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From the relation between the candidate poles in Lemma 5.1, it immediately follows
for all g that R1 > 0, being the sum of two positive numbers. We claim that all the other
residues for g ≥ 2 are strictly negative, which is less trivial as they consist of a negative
and a positive part. We take a look at Ri for i = 2, . . . , g − 1 and g ≥ 3; the last residue
Rg for g ≥ 2 can be treated in a similar way. The inequality Ri < 0 is equivalent to

ei
ni−1β̄i−1

(niβ̄i − ni−1β̄i−1)
( νi+1

Ni+1

− νi
Ni

)
>

ei+1

niβ̄i+1

(ni+1β̄i+1 − niβ̄i)
( νi
Ni

− νi−1

Ni−1

)
.

Using formula (10) from the proof of Lemma 5.1, this can be rewritten as

ei
ni−1β̄i−1

(niβ̄i − ni−1β̄i−1)
( 1

niβ̄i
− 1

ni+1β̄i+1

)(
− β̄0 +

i∑
l=1

(nl − 1)β̄l

)
>

ei+1

niβ̄i+1

(ni+1β̄i+1 − niβ̄i)
( 1

ni−1β̄i−1

− 1

niβ̄i

)(
− β̄0 +

i−1∑
l=1

(nl − 1)β̄l

)
.

Finally, multiplying both sides by ni−1nini+1β̄i−1β̄iβ̄i+1

ei
= ni−1niβ̄i−1β̄iβ̄i+1

ei+1
gives the condition

(niβ̄i − ni−1β̄i−1)(ni+1β̄i+1 − niβ̄i)
(
− β̄0 +

i∑
l=1

(nl − 1)β̄l

)
>

1

ni
(ni+1β̄i+1 − niβ̄i)(niβ̄i − ni−1β̄i−1)

(
− β̄0 +

i−1∑
l=1

(nl − 1)β̄l

)
,

which is easily seen to hold. �

Remark 5.1. Applying the same specialization to the local version of the motivic zeta
function, one obtains a local version for the topological zeta function. Because the limit
for L→ 1 of

(1− T )(L− 1)L−(g+1)

1− L−gT
|T=L−s

is equal to 0, the global and local topological zeta function of Y are identical. Hence, the
results in this section are true for both the global and the local motivic zeta function.

Theorem 5.3 implies in particular that the motivic (resp. topological) zeta function of
the special fiber Y of the family η : (χ, 0) → (C, 0) has the same number of poles as the
motivic (resp. topological) zeta function of a generic fiber in the family, whose poles are
equal to the poles associated with the plane branch times a factor Lg+1 (resp. with an
integer shift of −(g−1)). This is intriguing as the induced family on the jet schemes is in
most cases not flat by Theorem 3.9, and the motivic zeta function is calculated in terms of
the codimensions of the (irreducible components of) the jet schemes. The poles, however,
are in general not equal; one can check, using for instance the expressions in [NV, Section

2], that only the poles Lg and L
νg
Ng of the motivic (resp. −g and − νg

Ng
of the topological)

zeta function associated with Y are also poles associated with a generic fiber.
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