Sorbonne Université Master de Sciences et Technologies Mention *Mathématiques*, M1 Année 2020 - 2021 Cours MU4MA001

GÉOMÉTRIE AFFINE ET PROJECTIVE

Examen

Lundi 4 janvier 2021

Durée 3h

Téléphones portables sont interdits. L'usage du polycopié du cours et des feuilles d'exercices est autorisé.

Dans tous les exercices, les réponses doivent être justifiées.

Exercice 1

On se place dans un plan affine \mathcal{E} défini sur \mathbb{R} . Soient A_1 , A_2 , A_3 , A_4 , A_5 , A_6 des points de \mathcal{E} deux à deux distincts. Pour i = 1, 2, 3, 4, 5, notons O_i le milieu du segment $[A_iA_{i+1}]$, et notons O_6 le milieu du segment $[A_6A_1]$.

- (a) Trouver le vecteur $\overrightarrow{O_1O_2} + \overrightarrow{O_3O_4} + \overrightarrow{O_5O_6}$.
- (b) Montrer que l'isobarycentre des points O_1 , O_3 , O_5 coïncide avec l'isobarycentre des points O_2 , O_4 , O_6 .

Exercice 2

Soit \mathcal{E} un plan affine euclidien, et soit E la direction de \mathcal{E} . Considérons une isométrie affine $\varphi: \mathcal{E} \to \mathcal{E}$, et notons $\overrightarrow{\varphi}$ son application linéaire associée.

- (a) Peut-on affirmer que φ s'écrit comme composée d'un certain nombre de symétries centrales? (On rappelle que, si O est un point de \mathcal{E} , alors la symétrie centrale de centre O est l'application affine de \mathcal{E} dans \mathcal{E} qui associe à un point M quelconque de \mathcal{E} le point M' tel que $\overrightarrow{OM'} = -\overrightarrow{OM}$.)
- (b) Peut-on affirmer que φ s'écrit comme composée d'un certain nombre de symétries centrales et de translations ?
- (c) Soit $f: E \to E$ une isométrie vectorielle telle que $f \circ \overrightarrow{\varphi} = \overrightarrow{\varphi} \circ f$. Peut-on affirmer qu'il existe une isométrie affine $\psi: \mathcal{E} \to \mathcal{E}$ telle que l'application linéaire associée à ψ coïncide avec f et $\psi \circ \varphi = \varphi \circ \psi$?
- (d) Soit $\theta: \mathcal{E} \to \mathcal{E}$ une application affine telle que $\theta \circ \theta = \varphi$. Peut-on affirmer que θ est une isométrie?

Exercice 3

Soit \mathbb{K} un corps, et soit $\mathbf{P} = \mathbb{P}(E)$ un espace projectif de dimension 3 sur \mathbb{K} (ici E est un espace vectoriel de dimension 4 sur \mathbb{K}). Soient \mathbf{D} et \mathbf{D}' deux droites disjointes de \mathbf{P} . Considérons l'espace dual $\mathbb{P}(E^*)$ de \mathbf{P} et notons $\mathbf{D}^* \subset \mathbb{P}(E^*)$ le sous-ensemble formé des points correspondant aux plans \mathbf{H} de \mathbf{P} tels que $\mathbf{D} \subset \mathbf{H}$.

- (a) Justifier le fait que $\mathbf{D}^* \subset \mathbb{P}(E^*)$ est une droite projective.
- (b) Montrer que, pour tout plan \mathbf{H} de \mathbf{P} tel que $\mathbf{D} \subset \mathbf{H}$, l'intersection $\mathbf{H} \cap \mathbf{D}'$ est formée d'un point.
- (c) On définit l'application $\varphi : \mathbf{D}^* \to \mathbf{D}'$ en associant, à tout plan \mathbf{H} de \mathbf{P} tel que $\mathbf{D} \subset \mathbf{H}$, le point d'intersection de \mathbf{H} et \mathbf{D}' . Montrer que φ est une homographie.

Exercice 4

Partie A

Considérons la forme quadratique

$$q: \mathbb{C}^5 \to \mathbb{C}$$
$$(X_0, X_1, X_2, X_3, X_4) \mapsto X_0^2 + X_1 X_2 + X_3 X_4.$$

Notons b la forme bilinéaire symétrique associée à q. Soit Γ la quadrique définie par la forme quadratique q dans l'espace projectif $\mathbb{P}^4(\mathbb{C}) = \mathbb{P}(\mathbb{C}^5)$.

- (a) Déterminer la matrice de b dans la base canonique de \mathbb{C}^5 .
- (b) La quadrique Γ est-elle lisse?
- (c) Soit $\varphi: \mathbb{P}^4(\mathbb{C}) \to \mathbb{P}^4(\mathbb{C})$ l'application définie par

$$(X_0: X_1: X_2: X_3: X_4) \mapsto (X_0: X_1: X_2: -X_3: -X_4).$$

Montrer que φ est une transformation projective de $\mathbb{P}^4(\mathbb{C})$.

- (d) Montrer que $\varphi(\Gamma) = \Gamma$.
- (e) Quels sont les points fixes de φ ?
- (f) Considérons l'hyperplan $\mathbf{H}_0 \subset \mathbb{P}^4(\mathbb{C})$ défini par l'équation $X_0 = 0$. Montrer que l'intersection $\Gamma \cap \mathbf{H}_0$ est une quadrique dans \mathbf{H}_0 .
- (g) La quadrique $\Gamma' = \Gamma \cap \mathbf{H}_0$ dans \mathbf{H}_0 est-elle lisse?
- (h) Trouver deux droites projectives Δ_1 et Δ_2 dans \mathbf{H}_0 telles que $\Delta_1 \subset \Gamma'$, $\Delta_2 \subset \Gamma'$, et les droites Δ_1 et Δ_2 se coupent en un point.

Partie B

Dans l'espace projectif $\mathbb{P}^3(\mathbb{C}) = \mathbb{P}(\mathbb{C}^4)$, considérons trois sous-ensembles :

- L_1 défini par les équations $X_1 = 0$ et $X_2 = 0$,
- L_2 défini par les équations $X_0 = X_1$ et $X_2 = X_3$,
- L_3 défini par les équations $X_0 = 0$ et $X_2 = 2X_3$.
- (i) Montrer que chacun des sous-ensembles L_1 , L_2 , L_3 est une droite projective dans $\mathbb{P}^3(\mathbb{C})$.
- (j) Montrer que les droites projectives L_1 , L_2 et L_3 sont deux à deux disjointes.
- (k) Trouver une quadrique lisse $\widetilde{\Gamma}$ dans $\mathbb{P}^3(\mathbb{C})$ telle que $L_i \subset \widetilde{\Gamma}$ pour tout i = 1, 2, 3.
- (l) Soit $\mathbf{H}_2 \subset \mathbb{P}^3(\mathbb{C})$ le plan défini par l'équation $X_2 = 0$. Déterminer le pôle de \mathbf{H}_2 par rapport à $\widetilde{\Gamma}$.
- (m) Trouver une droite Δ dans $\mathbb{P}^3(\mathbb{C})$ telle que Δ coupe chaque droite L_1 , L_2 , L_3 en un point. (Indication : on peut d'abord considérer le plan tangent à la quadrique $\widetilde{\Gamma}$ en un point de L_1 .)