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Abstract

This text is based on the notes of the lectures given by the author
at the 5th Franco-Japanese-Vietnamese Symposium on Singularities
in Kagoshima.

1 Topology of algebraic hypersurfaces in RP n

1.1 Hilbert 16-th problem

The questions concerning the topology of real algebraic hypersurfaces in RP n

were included by D. Hilbert in the 16-th problem of his famous list [10]. By
an algebraic hypersuface in RP n we mean a real homogeneous polynomial in
n + 1 variables which is considered up to multiplication by a non-zero real
constant. Such a polynomial has a zero locus RX ⊂ RP n and a zero locus
CX ⊂ CP n. The former zero locus is called the real part of the hypersurface.
The degree of an algebraic hypersurface in RP n is the degree of a defining
polynomial. All hypersurfaces considered in these notes are non-singular,
that is, their defining polynomials do not have critical points in Cn+1 \ {0}.

Fix positive integers n and d; what kind of topology can have the real
part RX of non-singular hypersurface X of degree d in RP n? In the case of
curves (n = 2), this question was solved by A. Harnack [9]. Each connected
component of a non-singular curve of degree d in RP 2 is a circle smoothly
embedded in RP 2. According to the Harnack theorem, the number of these
connected components can take any integer value between 0 (respectively, 1)
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and (d− 1)(d− 2)/2 + 1 if d is even (respectively, odd). The upper bound

b0(RX) ≤ (d− 1)(d− 2)

2
+ 1,

where b0(RX) is the number of connected components of the real part RX
a non-singular curve X of degree d in RP 2 is called the Harnack inequality.
The question about possible topology of the pair (RP 2,RX), where X is a
non-singular curve of degree d in RP 2, is much more difficult; the answer is
known only for d ≤ 7.

In the case n = 3, the answer to the question on possible topology of the
real part of a non-singular surface of degree d is known only for d ≤ 4 (in
fact, for non-singular surfaces of degree d ≤ 4, several finer classifications are
available). For non-singular surfaces of degree 5 in RP 3, even the maximal
possible number of connected components of the real part is not known (this
maximal number is at least 23 and at most 25; see [14], [17]).

1.2 Betti numbers

A natural question, a priori simpler than the one formulated above, concerns
the possible values of the Betti numbers of the real part of a non-singular
hypersurface of degree d in RP n. In these notes, we consider Betti numbers
with Z/2Z-coefficients: by the p-th Betti number of a topological space Y
we mean bp(Y ) = dimZ/2ZHp(Y ;Z/2Z).

A generalization of the Harnack inequality is the Smith-Thom inequality
for total Betti numbers (see [8] and [22]): for any algebraic hypersurface X
in RP n, one has

n−1∑
p=0

bp(RX) ≤
2n−2∑
p=0

bp(CX).

In fact, the inequality is valid for any (quasi-projective) real algebraic variety
of dimension n− 1 (and even in a more general situation); see, for example,
[5] and [27]. A real algebraic variety realizing equality in the Smith-Thom
inequality is said to be maximal.

Sharp upper bounds for individual Betti numbers of the real part of a non-
singular hypersurface of degree d in RP n are, in general, difficult to obtain. O.
Viro [24] proposed the following conjecture (related to the so-called Ragsdale
conjecture for real algebraic curves; see [19]): for any smooth projective real
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algebraic surface X with simply connected complex point set CX, one has

b1(RX) ≤ h1,1(CX),

where, as before, RX denotes the real part of X. Counter-examples to the
Ragsdale conjecture [11] give rise to counter-examples to the Viro conjecture,
in particular, among algebraic surfaces in RP 3 (see [12], [3], [4]). Neverthe-
less, the Viro conjecture is true for the primitive T -surfaces (see [12]), i.e.,
for algebraic surfaces in RP 3 that are close to non-singular tropical limit.

In these notes, we consider the question on possible values of Betti num-
bers of real parts of primitive T -hypersurfaces of degree d in RP n (see Section
2.1 for the definitions). The following upper bound (adapting the Viro con-
jecture to the case of primitive T -hypersurfaces in RP n) was proved very
recently by A. Renaudineau and K. Shaw [20] (see Section 4.2 for details):
for any integer 0 ≤ p ≤ n− 1 and any primitive T -hypersurface X of degree
d in RP n, we have

bp(RX) ≤

{
hp,n−1−p(CX), if p = (n− 1)/2,

hp,n−1−p(CX) + 1, otherwise.

The case n = 3 is treated in [12]. A proof of an asymptotic version of the
above inequalities for primitive T -hypersurfaces can be found in [15].

2 Combinatorial patchworking

2.1 Construction

The special class of real algebraic hypersurfaces we are interested in is de-
scribed by the combinatorial patchworking. This construction is a particular
case of so-called Viro method. Let n and d be positive integers, and let T n(d)
be the simplex in Rn with vertices (0, 0, . . . , 0), (0, 0, . . . , 0, d), (0, . . . , 0, d, 0),
. . . , (d, 0, . . . , 0). We shorten the notation of T n(d) to T , when n and d are
unambiguous and call T n(d) the standard n-simplex of size d. Take a trian-
gulation τ of T with straight edges and integer vertices (i.e., vertices having
integer coordinates). Suppose that a distribution of signs at the vertices of τ
is given. The sign (plus or minus) at the vertex with coordinates (i1, . . . , in)
is denoted by σi1,...,in .

Denote by T∗ the union of all symmetric copies of T under reflections and
compositions of reflections with respect to coordinate hyperplanes. Extend
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the triangulation τ to a symmetric triangulation τ∗ of T∗, and the distribution
of signs σi1,...,in to a distribution at the vertices of the extended triangulation
by the following rule: passing from a vertex to its mirror image with respect
to a coordinate hyperplane we preserve the sign if the distance from the
vertex to the plane is even, and change the sign if the distance is odd.

If an n-simplex of the triangulation of T∗ has vertices of different signs,
select a piece of hyperplane being the convex hull of the middle points of
the edges having endpoints of opposite signs. Denote by Γ the union of the
selected pieces. It is a piecewise-linear hypersurface contained in T∗. It is not
a simplicial subcomplex of T∗, but can be deformed by an isotopy preserving
τ∗ to a subcomplex Υ of the first barycentric subdivision τ ′∗ of τ∗. Each n-
simplex of τ ′∗ has a unique vertex belonging to τ∗. Denote by τ+∗ the union
of all the n-simplices of τ ′∗ containing positive vertices of τ∗ and by τ−∗ the
union of all the remaining n-simplices. The subcomplex Υ is the intersection
of τ+∗ and τ−∗ .

Identify by the symmetry with respect to the origin the faces of T∗. The
quotient space T̃ is homeomorphic to the real projective space RP n. Denote
by Γ̃ the image of Γ in T̃ . (An example for n = 2 and d = 10 is shown in
Figure 1.)

A triangulation τ of T is said to be convex if there exists a convex
piecewise-linear function ν : T −→ R whose domains of linearity coincide
with the n-simplices of τ .

Theorem 1 (O. Viro) (see [23], [25]) If τ is convex, there exists a non-

singular hypersurface X of degree d in RP n and a homeomorphism RP n → T̃
mapping the real part RX of X onto Γ̃.

Consider a family (depending on positive real parameter t) of polynomials

Pt(x0, . . . , xn) =
∑

(i1,...,in)∈V

σi1,...int
−ν(i1,...in)xd−i1−...−in0 xi11 . . . x

in
n ,

where V is the set of vertices of τ and ν is a convex piecewise-linear function
certifying that the triangulation τ is convex. If t is big enough, the polynomial
Pt is called Viro polynomial and defines a hypersurface that satisfies the
properties described in Theorem 1. The hypersurface X defined by a Viro
polynomial is called a T -hypersurface. If the triangulation τ is primitive
(that is, each n-simplex of τ is of volume 1

n!
), then X is called a primitive

T -hypersurface.
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Figure 1: Construction of a counter-example to the Ragsdale conjecture

2.2 Euler characteristic of primitive T -hypersurfaces

A smooth real algebraic variety X is said to be distinguished if the Euler
characteristic of the real part RX of X is equal to the signature of the
complex point set CX of X. If X is of even (complex) dimension, then by
the signature of CX we mean the signature of the intersection form in the
middle homology; if the dimension of X is odd, we say that the signature of
CX is 0. An example of distinguished real algebraic varieties is provided by
primitive T -hypersurfaces in RP n (of course, this statement is immediate if
n is even).

Theorem 2 (B. Bertrand) Let n and d be positive integers. Then, any
primitive T -hypersurface of degree d in RP n is a distinguished real algebraic
variety.

In the case n = 3 this statement was proved in [12]. The general statement
was proved by B. Bertrand [2]. A simpler proof can be found in [1].
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3 Tropical hypersurfaces in Rn

The construction of combinatorial patchworking is directly related to tropical
geometry (for tropical reformulations of the combinatorial patchworking, see
[6] and [20]). We recall here several basic tropical notions.

3.1 Tropical operations

Tropical geometry can be seen as an algebraic geometry based on so-called
tropical numbers. The set T of tropical numbers is the set R of real numbers
completed with negative infinity: T = R ∪ {−∞}. Thus, T has a natural
topology and is homeomorphic to a (closed) half-line. The tropical numbers
are equipped with two arithmetic operations: tropical addition and tropical
multiplication. The tropical addition is the operation of taking maximum,
and the tropical multiplication is the ordinary addition:

”a+ b” = max{a, b}, ”a · b” = a+ b.

(We use the quotation marks when operations are tropical.) The set T
equipped with these two operations is a semi-field, which means that

• (T, ” + ”) is a commutative monoid (with the neutral element −∞),

• (T×, ” ·”), where T× = T\{−∞}, is an abelian group (with the neutral
element 0),

• and the tropical multiplication is distributive with respect to the trop-
ical addition:

”a · (b+ c)” = ”(a · b) + (a · c)”

for any a, b, c ∈ T.

This semi-field is called tropical.

3.2 Maslov’s dequantization

The tropical arithmetic operations can be seen as results of deformation of
standard addition and multiplication. For any real number t > 1, consider
the base t logarithmic map

logt : R≥0 → T.

6



This map establishes a bijection between the set R≥0 of non-negative real
numbers and the set T. Thus, logt allows one to introduce new arithmetic
operations on T:

a⊕t b = logt(t
a + tb), a�t b = a+ b.

These operations degenerate to the tropical operations when t tends to +∞.

3.3 Tropical hypersurfaces in Rn

Let n be a positive integer. In the tropical framework, the space Rn = (T×)n

can be seen as tropical analog of the complex torus (C×)n, where C× =
C \ {0}.

Let V ⊂ (Z≥0)n be a finite set. Consider a tropical polynomial

p(u1, . . . , un) = ”
∑

(i1,...,in)∈V

ai1,...,inu
i1
1 . . . u

in
n ”,

where all coefficients ai1,...,in are tropical numbers (assume that all these
coefficients are different from −∞). Such a tropical polynomial gives rise
to a tropical polynomial function

fp : (u1, . . . , un) 7→ max
(i1,...,in)∈V

{ai1,...,in + i1u1 + . . .+ inun}.

This is a convex piecewise-linear function. It is defined on Rn = (T×)n and
it takes values in R = T×.

Denote by Xp the corner locus in Rn of the function fp, that is, the subset
of Rn formed by the points where the function fp is not locally affine-linear.
Figure 2 shows an example of such a corner locus appearing in the case of a
tropical polynomial of degree 1 (with three monomials).

The graph of fp has a natural structure of polyhedral complex, so the
corner locus Xp is also a polyhedral complex. It defines a subdivision Φp

of Rn. This subdivision is dual to a certain subdivision Ψp of the convex
hull ∆p of V ⊂ Rn; the convex hull ∆p is called the Newton polytope of p;
this definition makes sense for any field or semi-field of coefficients. The
latter subdivision can be described as follows. For any strata δ of Φp, take
a point (u01, . . . , u

0
n) in the relative interior of δ and evaluate at (u01, . . . , u

0
n)

the affine-linear functions ai1,...,in + i1u1 + . . . + inun, (i1, . . . , in) ∈ V . The
convex hull of the points of V that correspond to the affine-linear functions
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Figure 2: Tropical line

ai1,...,in + i1u1 + . . .+ inun realizing the maximum is the polytope dual to δ.
If δ is of dimension `, then the dual polytope is of dimension n− `. The dual
polytopes form a subdivision Ψp of ∆p (see, for example, [6] for details).

The tropical hypersurface defined by p in Rn is the polyhedral complex Xp
whose (n− 1)-dimensional facets are equipped with positive integer weights
equal to integer lengths of the dual segments (the integer length of a segment
with integer endpoints is the number of its integer points diminished by 1).
We use the same notation Xp for this tropical hypersurface. The degree and
Newton polytope of Xp are, respectively, the degree and Newton polytope of
the defining tropical polynomial p. Figure 3 contains examples of tropical
curves of small degrees in R2 (only the weights different from 1 are indicated);
Figure 4 presents examples of dual subdivisions.

The subdivision Ψp can be described in a different way. Consider the
convex hull in Rn+1 of the graph of the function (i1, . . . , in) 7→ −ai1,...,in
defined on V . The projection to ∆p of the lower part of the boundary of this
convex hull gives the subdivision Ψp. In particular, Ψp is convex in the sense
of Section 2.1: there exists a convex piecewise-linear function ν : ∆p −→ R
whose domains of linearity coincide with the n-dimensional polytopes of Ψp.
The tropical polynomial function

fp : (u1, . . . , un) 7→ max
(i1,...,in)∈V

{ai1,...,in + i1u1 + . . .+ inun}

is the Legendre transform of the function (i1, . . . , in) 7→ −ai1,...,in defined on
V .
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2

Figure 3: Examples of tropical curves of degrees 1, 2 et 3 in R2

The tropical hypersurface Xp is said to be non-singular, if the dual subdi-
vision Ψp is a primitive triangulation. In this case, the weights of all (n− 1)-
dimensional facets of Xp are equal to 1, but the latter property does not
guarantee that the tropical hypersurface is non-singular.

3.4 Geometric interpretation

Tropical hypersurfaces in Rn are (n − 1)-dimensional weighted polyhedral
complexes. Any face of such a tropical hypersurface Xp has rational direction
(that is, direction defined over Q). With any face we associate the intersection
of the direction of the face with the integral lattice; the intersection is a lattice
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2

Figure 4: Examples of tropical conics and their dual subdivisions

whose rank coincides with the dimension of the face. Furthermore, at any
face δ of Xp of dimension n− 2, the following balancing condition is satisfied:
the vector ∑

κ

wκvκ

belongs to the direction of δ, where the sum is taken over all (n − 1)-
dimensional faces κ of Xp that are adjacent to δ, the positive integer wκ
is the weight of κ, and vκ is a vector belonging to the direction of κ such that

• vκ together with a basis of the lattice associated with δ form a basis of
the lattice associated with κ,

• vκ points towards the (n− 1)-dimensional half-space determined by κ.

This statement can be deduced, for example, from the duality formulated
in Section 3.3. The other way around, it is easy to see that any (n − 1)-
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dimensional finite weighted polyhedral complex in Rn (the weights are posi-
tive integers associated with the faces of dimension n− 1) satisfying the two
conditions above (all faces have rational directions and the balancing condi-
tion holds at each face of dimension n − 2) is a tropical hypersurface, that
is, it can be defined by a tropical polynomial.

3.5 Limits of amoebas

Another description of tropical hypersurfaces in Rn is via limits of amoebas.
For any real number t > 1, consider the base t logarithmic map Logt :
(C×)n → Rn defined by

(z1, . . . , zn) 7→ (logt |z1|, . . . , logt |zn|).

If Z is an algebraic variety in (C×)n, the amoeba (more precisely, t-amoeba) of
Z is Logt(CZ) ⊂ Rn, where CZ is the complex point set of Z. Any tropical
hypersurface X in Rn can be approximated by a family Logt(CZt), t→ +∞,
of amoebas of algebraic hypersurfaces having the same Newton polytope as
X . Indeed, if

p(u1, . . . , un) = ”
∑

(i1,...,in)∈V

ai1,...,inu
i1
1 . . . u

in
n ”

is a tropical polynomial defining the tropical hypersurface X , then an ap-
proximating family Zt is given by the Viro polynomials

Pt(z1, . . . , zn) =
∑

(i1,...,in)∈V

tai1,...,inzi11 . . . z
in
n .

If t → +∞, the amoebas Logt(CZt) converge to X on any compact subset
of Rn (with respect to the Hausdorff metric on closed subsets, Rn being
equipped with the Euclidean metric). This statement can be viewed as a
version of the Mikhalkin-Rullg̊ard theorem (see, [16, 21]). The coefficients of
monomials of Pt can be multiplied by arbitrary non-zero complex numbers
αi1,...,in , this does not change the limit of amoebas of the family: only the
powers of t are important for a description of the limit. In Section 3.7, we
will deal with real coefficients, and since we will be interested in the real
part of the limiting object, we will have to take into account the signs of the
coefficients of monomials.
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3.6 Hypersurfaces in tropical projective spaces

Let n be a positive integer. The tropical projective space TP n is defined as
the quotient of Tn+1 \ {(−∞, . . . ,−∞)} by the equivalence relation

(u0, . . . , un) ∼ (u0 + λ, . . . , un + λ)

for any (u0, . . . , un) ∈ Tn+1 \ {(−∞, . . . ,−∞)} and any λ ∈ R = T×. The
space TP n is homeomorphic to n-dimensional simplex. Each point of TP n

has a sedentarity: this is the collection of indices of the coordinates that
take value −∞ at this point. All points of an open face of TP n have the
same sedentarity; the latter is called the sedentarity of the face. Each closed
face of TP n is naturally identified with the tropical projective space of the
corresponding dimension. For any pair (A,B) of disjoint closed faces of TP n

such that the sum of dimensions of A and B is equal to n − 1 (in such a
situation, we write A = Bop), there is a natural projection

prA,B : TP n \ A→ B.

One can, of course, describe tropical projective spaces by gluing affine
charts: each of the n + 1 affine charts of TP n is defined by the condition
uj 6= −∞, where j is one of the integers 0, . . ., n. For example, the tropical
projective line TP 1 can be obtained in the following way: take two copies of
T with coordinates u

(1)
1 and u

(2)
1 , and glue these copies along T× using the

identification u
(2)
1 = −u(1)1 . Similarly, the tropical projective space TP n can

be constructed by gluing n + 1 copies of Tn. The intersection of all these
n+ 1 charts (that is, the interior of the simplex TP n) can be identified with
Rn (once one of the charts is chosen; we always assume that the chosen chart
is the one defined by u0 6= −∞).

If x ∈ TP n is a point, denote by D(x) ⊂ TP n the open strata containing
x. The tangent space T (x) of D(x) at x is identified with Rk, where k is the
dimension of D(x).

Let d be a positive integer, and let X ⊂ Rn be a (non-singular) tropical
hypersurface of degree d having the standard n-simplex of size d as New-
ton polytope. The closure X ⊂ TP n of X is called regular (non-singular)
tropical hypersurface of degree d in TP n. Naturally extending the map
Logt : (C×)n → Rn to the logarithmic map from CP n to TP n, we can
represent X as limit of amoebas of hypersurfaces of degree d in CP n. These
considerations can be generalized to other convex lattices polytopes and the
corresponding toric varieties (see, for example, [6]).
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3.7 Combinatorial patchworking revisited

A proof of the combinatorial patchworking theorem (Theorem 1) can be
obtained along the following lines (see [26] for details). Consider a Viro
polynomial

Pt(x0, . . . , xn) =
∑

(i1,...,in)∈V

σi1,...int
−ν(i1,...in)xd−i1−...−in0 xi11 . . . x

in
n ,

where t is sufficiently big (we use the notation of Section 2.1). The statement
is proved orthant by orthant, so let us study the zero set of Pt in the open
positive orthant of the affine chart x0 6= 0 with the affine coordinates

y1 = x1/x0, . . . , yn = xn/x0.

(The other orthants can be treated using the obvious coordinate changes.)
So, from now on, we assume that y1 > 0, . . ., yn > 0. The equality
Pt(y1, . . . , yn) = 0 can be rewritten as

P+
t (y1, . . . , yn) = P−t (y1, . . . , yn),

where P+
t (respectively, P−t ) is formed by the monomials of Pt that have

positive (respectively, negative) coefficients.
When t tends to +∞, the graphs of the polynomials P+

t and P−t in the
logarithmic coordinates

u1 = logt y1, . . . , un = logt yn, un+1 = logt yn+1

tend, respectively, to the graphs

un+1 = p+(u1, . . . , un) and un+1 = p−(u1, . . . , un)

of the tropical polynomials

p±(u1, . . . , un) = ”
∑

(i1,...,in)∈V ±

−ν(i1, . . . in)ui11 . . . u
in
n ”,

where V + (respectively, V −) is the set of vertices of τ that have positive
(respectively, negative) sign.
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The projection that forgets the coordinate un+1 sends the intersection of
the graphs of p+ and p− to a part Xpositive of the tropical hypersurface X
defined in Rn (with the coordinates u1, . . ., un) by the tropical polynomial

p(u1, . . . , un) = ”
∑

(i1,...,in)∈V

−ν(i1, . . . in)ui11 . . . u
in
n ”.

To describe Xpositive, recall that each connected component of the complement
of X ⊂ Rn corresponds to a vertex of τ . Since the vertices of τ have signs,
the connected components of the complement of X ⊂ Rn are divided into two
classes: positive and negative. The part Xpositive is the common boundary of
the union of positive components and the union of negative components.

Since P+
t and P−t tend, respectively, to the graphs of the tropical poly-

nomials p+ and p−, it can be shown that the projection (that forgets the
coordinate un+1) of the intersection of the graphs of P+

t and P−t is isotopic
(in the stratified sense) to Xpositive. Furthermore, under a natural identifi-
cation of TP n and the simplex T , the closure of Xpositive in TP n is isotopic
(again in the stratified sense) to the intersection of the piecewise-linear hy-
persurface Γ with the simplex T (see Section 2.1 for notation).

4 Tropical homology

4.1 Definition and properties

This section contains a short introduction to tropical homology. We restrict
our attention to the case of regular non-singular tropical hypersurfaces in
TP n. For a general and more detailed presentation of tropical homology and
cohomology, the reader is referred to [13] and [6].

Let k be a non-negative integer, and let Σ =
⋃
ς ⊂ Rk be a rational

polyhedral fan (that is, each cone of this fan is generated by a finite collection
of integer vectors). For each cone ς ⊂ Σ, we denote by < ς >Z the integral
lattice in the vector subspace linearly spanned by ς.

For any non-negative integer p, the group ZFp(Σ) is the subgroup of ∧pZk
generated by the elements v1 ∧ · · · ∧ vp, where v1, . . . , vp ∈< ς >Z for some
cone ς ∈ Σ. It is important that all p vectors v1, . . . , vp come from the same
cone.

Let X be a regular non-singular tropical hypersurface in TP n. The poly-
hedral decomposition of X into faces gives it a natural cell structure. Let
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x ∈ X be a point; denote by I its sedentarity, and denote by |I| the number
of elements in I. We define Σ(x), the tangent cone to X at x, to be the cone
in T (x) ∼= Rn−|I| consisting of vectors r ∈ T (x) such that x+ εr ∈ X ∩D(x)
for a sufficiently small ε > 0 (depending on r).

For any abelian group G and any non-negative integer p, we define the
coefficient group GFp(x) to be ZFp(Σ(x))⊗G. We will be particularly inter-
ested in the cases G = Q and G = Z/2Z. For any point x′ belonging to the
same open strata θ of X as x, the groups GFp(x′) and GFp(x) are naturally
identified; so we use the notation GFp(θ) for these groups. The geometric
meaning of the groups GFp(x) is as follows. The cone Σ(x) can be seen as
limit of t-amoebas of a constant family Lt = L, where L is a hypersurface
defined in (C×)n−|I| by a polynomial whose Newton polytope is dual (in the
sense of Section 3.3) to the open face containing x. The monomials of such
a defining polynomial are in a natural bijection with the regions of TP n \ X
that are adjacent to x. Up to monomial coordinate change, the hypersur-
face L is a hyperplane in (C×)n−|I| (that is, the complement of a hyperplane
arrangement in CP n−|I|−1). The group GFp(x) is isomorphic to Hp(CL;G).

Let θ1 and θ2 be adjacent open faces of X such that dim θ2 = dim θ1 − 1.
There are two options: either θ1 and θ2 have the same sedentarity, or the
sedentarity of θ2 is equal to the sedentarity of θ1 increased by 1. In the first
case, denote by ∂θ1,θ2 : GFp(θ1)→ GFp(θ2) the inclusion map. In the second
case, denote by ∂θ1,θ2 : GFp(θ1) → GFp(θ2) the morphism induced by the
restriction to θ1 of the projection prθop2 ,θ2 .

The groups GFp can play the role of coefficient system. Considering
the singular simplices compatible with the stratification of X (that is, the
singular simplexes such that the image of each open face of the standard
simplex is contained in a face of X ) and using the coefficient maps ∂θ1,θ2 :
GFp(θ1) → GFp(θ2), we obtain a simplical chain complex C(X ; GFp) and
tropical homology groups Hq(X ; GFp), q = 0, 1, . . . .

Consider a family of Viro polynomials

Pt(x0, . . . , xn) =
∑

(i1,...,in)∈V

αi1,...int
−ν(i1,...in)xd−i1−...−in0 xi11 . . . x

in
n ,

such that the amoebas of the corresponding hypersurfaces Zt ⊂ CP n ap-
proximate X . A corollary of a more general statement proved in [13] is the
following statement: for any non-negative integers p and q, the dimension
(over Q) of the group Hq(X ; QFp) is equal to the Hodge number hp,q(Zt) of
Zt for sufficiently big t.
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4.2 Inequalities for Betti numbers

As already mentioned in Section 1.2, in the case of primitive T -hypersurface
X in RP n, there are the following upper bounds for individual Betti numbers
bp(RX).

Theorem 3 (A. Renaudineau and K. Shaw) Let n and d be positive in-
tegers. Then, for any integer 0 ≤ p ≤ n−1 and any primitive T -hypersurface
X of degree d in RP n, we have

bp(RX) ≤

{
hp,n−1−p(CX), if p = (n - 1)/2,

hp,n−1−p(CX) + 1, otherwise.

Remark 4.1 The inequalities of Theorem 3 are false in general (for non-
singular real algebraic hypersurfaces in RP n). For example,

• the real part of a non-singular cubic surface in RP 3 can have two con-
nected components, while the geometric genus h2,0(Y3) of such a surface
Y3 is zero;

• the real part of a non-singular quartic surface in RP 3 can have 10
connected components, while the geometric genus h2,0(Y4) of such a
surface Y4 is equal to 1.

Furthermore, the inequalities of Theorem 3 are false even for T -hypersurfaces
in RP n (without assumption of primitivity). Examples (for the first Betti
number in the case of T -surfaces in RP 3) can be found in [12].

The idea of the proof of Theorem 3 is as follows (for details, the reader
is referred to [20]). The hypersurface X is produced by the combinatorial
patchworking; let

Pt(x0, . . . , xn) =
∑

(i1,...,in)∈V

σi1,...int
−ν(i1,...in)xd−i1−...−in0 xi11 . . . x

in
n ,

be the corresponding family of Viro polynomials, and let X be the limiting
tropical hypersurface of degree d in TP n. On X , one can introduce a real
version Sp of the coefficient system Z/2ZFp, p = 0, 1, . . . . For each point
x ∈ X , we can choose a hypersurface L in (C×)n−|I|, where I is the sedentarity
of x (see Section 4.1), in such a way that a defining polynomial of L is real and
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the signs of its coefficients coincide with the signs of the corresponding regions
of TP n \X (and, thus, with the signs of the corresponding monomials of Pt).
For any non-negative integer p, we put Sp(x) = Hp(RL;Z/2Z), where RL is
the real part of L. Thus, Sp(x) = 0 if p > 0, and the dimension (over Z/2Z) of
S0(x) is equal to the number of connected components of RL. The definition
of the morhisms ∂θ1,θ2 given in Section 4.1 can be easily adapted to the groups
S0(x), and we obtain a simplicial chain complex C(X ,S0) and homology
groups Hq(X ,S0) for any non-negative integer q. One has Hq(RX;Z/2Z) '
Hq(X ;S0).

For L, or for the corresponding complement of hyperplane arrangement,
one can consider the so-called Viro homomorphisms bvp, p = 0, 1, . . .
(see [7] for the definition of these homomorphisms). The complement of
any hyperplane arrangement is a maximal variety in the sense of the Smith-
Thom inequality (see [18]); thus, the target space of bvp is Hp(CL;Z/2Z) =
Z/2ZFp(x), see [7] for explanations. The homomorphism bv0 is defined on
S0(x) = H0(RL;Z/2Z), and for each p ≥ 1, the homomorphism bvp is defined
on the kernel Kp of bvp−1. We obtain a filtration

S0(x) = K0 ⊃ K1 ⊃ . . . ⊃ Kn−|I|−1 ⊃ Kn−|I| = 0.

The maximality of L implies that all the homomorphisms bvp are isomor-
phisms: for any integer 0 ≤ p ≤ n− |I| − 1, one has Kp/Kp+1 ' Z/2ZFp(x).

The above filtration gives rise to a filtration of the simplicial chain com-
plex C(X ;S0) and produce a spectral sequence that calculates the homology
groups Hq(RX;Z/2Z) ' Hq(X ;S0). The first page of the spectral sequence
is formed by the groups Hq(X , Z/2ZFp). Thus, we obtain the inequalities

bp(RX) ≤
n−1∑
q=0

dimZ/2ZHq(X , Z/2ZFp).

As it was shown by Ch. Arnal, A. Renaudineau and K. Shaw, for any non-
negative integers p and q, one has

dimZ/2ZHq(X , Z/2ZFp) = dimQHq(X , QFp).

Thus, one can use the interpretation given in [13] for tropical homology
groups (see Section 4.1) in order to obtain the inequality

bp(RX) ≤
n−1∑
q=0

hp,q(CX).
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It remains to notice that hp,q(CX) = 0 if p 6= q and p+q 6= n−1; in addition
hp,p(CX) = 1 if p 6= (n− 1)/2.
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[11] I. Itenberg, Contre-exemples à la conjecture de Ragsdale, C. R. Acad.
Sci. Paris, Sér. I, Math. 317 (1993), no. 3, 277-282.

18



[12] I. Itenberg, Topology of real algebraic T-surfaces, Rev. Mat. Univ. Com-
plut. Madrid 10 Real algebraic and analytic geometry (Segovia, 1995),
1997, pp. 131-152.

[13] I. Itenberg, L. Katzarkov, G. Mikhalkin, and I. Zharkov, Tropical ho-
mology, Math. Annalen, 2018 DOI: 10.1007/s00208-018-1685-9.

[14] I. Itenberg and V. Kharlamov, Towards the maximal number of com-
ponents of a nonsingular surface of degree 5 in RP 3, Topology of real
algebraic varieties and related topics, volume 173 of Amer. Math. Soc.
Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 1996, pp. 111-118.

[15] I. Itenberg and O. Viro, Asymptotically maximal real algebraic hyper-
surfaces of projective space, Proceedings of Gökova Geometry-Topology
Conference 2006 (GGT), 2007, 91-105.

[16] G. Mikhalkin, Decomposition into pairs-of-pants for complex algebraic
hypersurfaces, Topology 43 (2004), no. 5, 1035-1065.

[17] S. Orevkov, Real quintic surface with 23 components, C. R. Acad. Sci.
Paris, Sér. I, Math. 333 (2001), no. 2, 115-118.

[18] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der
Mathematischen Wissenschaften 300, Springer-Verlag, Berlin, 1992.

[19] V. Ragsdale, On the arrangement of the real branches of plane algebraic
curves, Amer. J. Math. 28 (1906), 377-404.

[20] A. Renaudineau and K. Shaw, Bounding the Betti numbers of real hyper-
surfaces near the tropical limit. Preprint arXiv:1805.02030, 2018, 1-24.

[21] H. Rullg̊ard, Stratification des espaces de polynômes de Laurent et la
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