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The Coxeter-Dynkin diagrams appear in many different classification con-
texts in mathematics: platonic solids, semi-simple Lie algebras, algebraic groups,
finite simple groups, quivers with finitely many indecomposables, cluster alge-
bras with finitely many seeds, singularities of hypersurfaces, and many others.

The most basic occurrence is the classification of finite Coxeter groups, or
equivalently of finite groups generated by reflections in a real vector space. It is
the purpose of the series of lectures to present this case. The plan is as follows

• Abstract characterisation of Coxeter groups.

• Finite real reflection groups are the finite Coxeter groups.

• All Coxeter groups are reflection groups.

• Classification of finite Coxeter groups.

Reflections, and real reflection groups

Let V be an R-vector space. An element s ∈ GL(V ) is a reflection if Hs :=
Ker(s − IdV ) is a hyperplane and s2 = 1. Thus s has a unique eigenvalue not
1, equal to −1.

A reflection takes the form s(x) = x − ř(x)r where ř ∈ V ∗ is a linear form
of kernel Hs, and where r is an eigenvector for the eigenvalue −1 of s, provided
that these data satisfy ř(r) = 2. We will call r (resp. ř) a root (resp. coroot)
attached to the reflection s. These data are unique up to multiplying r by some
scalar and ř by the inverse scalar.

Given a subgroup W ⊂ GL(V ), we denote Ref(W ) the set of reflections it
contains. We say that W is a real reflection group if it is generated by Ref(W ).
It is clear that the set Ref(W ) is stable by W -conjugacy.

Given a group W and morphism ρ : W → GL(V ) whose image is a reflection
group, we say that ρ is a reflection representation of W .

A reflection group is called irreducible if the representation V is an irreducible
representation of W , that is if V does not admit any proper W -invariant sub-
space. If W is finite, then V is a direct sum of irreducible representations, and
W is the direct product of the corresponding subgroups.
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4 Coxeter groups

Let W be a group generated by a set S of elements stable by taking inverses.
Let {wi, w′i}i∈I be words in the elements of S (finite sequences of elements of
S; the set of all words on S is denoted S∗ and called the free monoid on S). We
say that 〈S | wi = w′i for i ∈ I〉 is a presentation of W is W is the “most general
group” where the relation wi = w′i holds. Formally, we take for W the quotient
of S∗ by the congruence relation on words generated by the relations wi = w′i.

Let w ∈W be the image of s1 . . . sk ∈ S∗. Then this word is called a reduced
expression for w ∈W if it is a word of minimal length representing w; we then
write l(w) = k.

We assume now the set S which generates W consists of involutions, that
is each element of S is its own inverse. Notice that reversing words is then

equivalent to taking inverses in W . For s, s′ ∈ S we will denote ∆
(m)
s,s′ the

word ss′ss′ · · ·︸ ︷︷ ︸
m terms

. If the product ss′ has finite order m, we will just denote ∆s,s′

for ∆
(m)
s,s′ ; then the relation ∆s,s′ = ∆s′,s holds in W . Writing the relation

(ss′)m = 1 this way has the advantage that transforming a word by the use
of this relation does not change the length — this will be useful. This kind of
relation is called a braid relation because it is the kind of relations which defines
the braid groups, groups related to the Coxeter groups which have a topological
definition.

Definition 4.1. A pair (W,S) where S is a set of involutions generating the
group W is a Coxeter system if

〈s ∈ S | s2 = 1,∆s,s′ = ∆s′,s for pairs s, s′ ∈ S such that ss′ has finite order〉

is a presentation of W .

�

We may ask if a presentation of the above kind defines always a Coxeter

system. That is, given a presentation with relations ∆
(m)
s,s′ = ∆

(m)
s′,s , is m the

order of ss′ in the defined group? This is always the case, but it is not obvious.
We shall prove it by constructing a faithful representation of the group defined
by the above presentation where the image of elements of S are reflections and
where ss′ has the expected order.

If W contains a set S such that (W,S) is a Coxeter system we say that W is
a Coxeter group and that S is a Coxeter generating set. Considering that W has
a faithful reflection representation we will also some times call S the generating
reflections of W , and the set R of W -conjugates of elements of S the reflections
of W .

Coxeter groups are represented by their Coxeter graph which is a graph with
vertices S and an edge between s and s′ when the order m of ss′ is > 2. This
edge is labelled by the order of ss′. The label is ∞ if m is infinite. The label is
omitted if m = 3, and instead of a label the edge is doubled when m = 4 and
tripled when m = 6.
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Here is a preview of the classification: the finite irreducible Coxeter groups
are

An :© ©· · ·© (n vertices)

Bn/Cn :© ©· · ·© © (n vertices, n ≥ 2)

Dn :©

©

© ©· · ·© (n vertices, n ≥ 4)

En :© ©

©

© © ©· · ·© (n vertices, n = 6, 7, 8)

F4 :© © © ©

Hn :© 5 © ©· · ·© (n vertices, n = 3, 4)

I2(e) :© e © (e = 5 or e ≥ 7)

A finite Coxeter group is called a Weyl group if it has a reflection representa-
tion over Q. These groups are particularly important in mathematics; they are
those which occur in the classifications mentioned at the beginning. The Weyl
groups are the types A,B,D,E, F and G2 := I2(6) — note that I2(2) = A1×A1,
I2(3) = A2 and I2(4) = B2 are also Weyl groups.

Characterizations of Coxeter groups

Theorem 4.2. Let W be a group generated by the set S of involutions. Then
the following are equivalent:

(i) (W,S) is a Coxeter system.

(ii) There exists a map N from W to the set of subsets of R, the set of W -
conjugates of S, such that N(s) = {s} for s ∈ S and for x, y ∈ W we have
N(xy) = N(y)+̇y−1N(x)y, where +̇ denotes the symmetric difference of two
sets (the sum (mod 2) of the characteristic functions).

(iii) (Exchange condition) If s1 . . . sk is a reduced expression for w ∈ W and
s ∈ S is such that l(sw) ≤ l(w), then there exists i such that sw = s1 . . . ŝi . . . sk.

(iv) W satisfies l(sw) 6= l(w) for s ∈ S, w ∈W , and (Matsumoto’s lemma) two
reduced expressions of the same word can be transformed one into the other by
using just the braid relations. Formally, given any monoid M and any morphism
f : S∗ → M such that f(∆s,s′) = f(∆s′,s) when ss′ has finite order then f is
constant on the reduced expressions of a given w ∈W .

Note that (iii) could be called the “left exchange condition”. By symmetry
there is a right exchange condition where sw is replaced by ws.

Proof. We first show that (i)⇒(ii). The definition of N may look technical and
mysterious, but the intuition is that W has a reflection representation where
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it acts on a set of roots stable under the action of W (there are two opposed
roots attached to each reflection), that these roots are divided into positive and
negative by a linear form which does not vanish on any root, and that N(w)
records the reflections whose roots change sign by the action of w.

Computing step by step N(s1 . . . sk) by the two formulas of (ii), we find

N(s1 . . . sk) = {sk}+̇{sksk−1}+̇ . . . +̇{sksk−1...s2s1}. (1)

Let us show that the function thus defined on S∗ factors through W which will
show (ii). To do that we need that N is compatible with the relations defining
W , that is N(ss) = ∅ and N(∆s,s′) = N(∆s′,s). This is straightforward.

We now show (ii)⇒(iii). We will actually check the right exchange condition;
by symmetry if (i) implies this condition it also implies the left condition. We
first show that if s1 . . . sk is a reduced expression for w, then |N(w)| = k,
that is all the elements of R which appear on the RHS of (1) are distinct.
Otherwise, there would exist i < j such that sk . . . si . . . sk = sk . . . sj . . . sk;
then sisi+1 . . . sj = si+1si+2 . . . sj−1 which contradicts that the expression is
reduced.

We next observe that l(ws) ≤ l(w) implies l(ws) < l(w). Indeed N(ws) =
{s}+̇s−1N(w)s thus by the properties of +̇ we have l(ws) = l(w) ± 1. Also, if
l(ws) < l(w), we must have s ∈ s−1N(w)s or equivalently s ∈ N(w). It follows
that there exists i such that s = sk . . . si . . . sk, which multiplying on left by w
gives ws = s1 . . . ŝi . . . sk q.e.d.

We now show (iii)⇒(iv). The exchange condition implies l(sw) 6= l(w)
because if l(sw) ≤ l(w) it gives l(sw) < l(w). Given f : S∗ → M as in (iv)
we use induction on l(w) to show that f is constant on reduced expressions.
Otherwise, let s1 . . . sk and s′1 . . . s

′
k be two reduced expressions for the same

element w whose image by f differ. By the exchange condition there exists
i such that s′1s1 . . . sk = s1 . . . ŝi . . . sk in W , thus s′1s1 . . . ŝi . . . sk is another
reduced expression for w. If i 6= k we may apply induction to deduce that
f(s1 . . . sk) = f(s′1s1 . . . ŝi . . . sk) and similarly apply induction to deduce that
f(s′1 . . . s

′
k) = f(s′1s1 . . . ŝi . . . sk), a contradiction. Thus i = k and s′1s1 . . . sk−1

is a reduced expression for w such that f(s′1s1 . . . sk−1) 6= f(s1 . . . sk).
Arguing the same way, starting this time from the pair of expressions s1 . . . sk

and s′1s1 . . . sk−1, we get that s1s
′
1s1 . . . sk−2 is a reduced expression for w such

that
f(s1s

′
1s1 . . . sk−2) 6= f(s′1s1 . . . sk−1);

Going on this process will stop when we get two reduced expressions of the

form ∆
(m)
s1,s′1

, ∆
(m)
s′1,s1

, such that f(∆
(m)
s1,s′1

) 6= f(∆
(m)
s′1,s1

). We cannot have m greater

that the order of s1s
′
1 since the expressions are reduced, nor less than that order,

because the order would be smaller. And we cannot have m equal to the order
of s1s

′
1 because this contradicts the assumption.

We finally show (iv)⇒(i). (i) can be stated as: given any group G and a
morphism of monoids f : S∗ → G such that f(s)2 = 1 and f(∆s,s′) = f(∆s′,s)
then f factors through a morphism g : W → G. Let us define g by g(w) =
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f(s1 . . . sk) when s1 . . . sk is a reduced expression for w. By (iv) the map g is
well-defined. To see that g factors f we need to show that for any expression
w = s1 . . . sk we have g(w) = f(s1 . . . sk). This will follow by induction on the
length of the expression if we show that f(s)g(w) = g(sw) for s ∈ S,w ∈W . If
l(sw) > l(w) this equality is immediate from the definition of g. If l(sw) < l(w)
we use f(s)2 = 1 to rewrite the equality g(w) = f(s)g(sw) and we apply the
reasoning of the first case. Finally l(sw) = l(w) is excluded by assumption.

Exercise 4.3. Show that (Sn, {(i, i+ 1)}i=1...n−1) is a Coxeter system (of type
An−1) by showing that N(w) = {(i, j) | i < j and w(i) > w(j)} satisfies the
assumptions of 4.2(ii)).

Exercise 4.4. This time we look at the hyperoctaedral group Bn which is the
group W of permutations of {−n, . . . ,−1, 1, . . . , n} which preserves the pairs
{−i, i}. Show that (W,S) is a Coxeter system where

S = {(−1, 1), (1, 2)(−1,−2), . . . , (n− 1, n)(−n+ 1,−n)}

by showing that

l(w) = 1/2|{−n ≤ i < j ≤ n | w(i) > w(j)}|+ 1/2|{1 ≤ i ≤ n | w(i) < 0}|.

Exercise 4.5. The group Dn is the subgroup of Bn where elements have an even
number of sign changes. This time the Coxeter generating set is

S = {(−1, 2)(1,−2), (1, 2)(−1,−2), . . . , (n− 1, n)(−n+ 1,−n)}

and

l(w) = 1/2|{−n ≤ i < j ≤ n | w(i) > w(j)}| − 1/2|{1 ≤ i ≤ n | w(i) < 0}|.

Finite Coxeter groups: the longest element

Proposition 4.6. Let (W,S) be a Coxeter system. Then the following proper-
ties are equivalent for an element w0 ∈W :

(i) l(w0s) < l(w0) for all s ∈ S.

(ii) l(w0w) = l(w0)− l(w) for all w ∈W .

(iii) w0 has maximal length amongst elements of W .

If such an element exists, it is unique and it is an involution, and W is finite.

Proof. It is clear that (ii) implies (iii) and that (iii) implies (i).
To see that (i) implies (ii), we will show by induction on l(w) that w0 as in

(i) has a reduced a expression ending by a reduced expression for w−1. Write
w−1 = vs where l(v) + l(s) = l(w). By induction we may write w0 = yv where
l(w0) = l(y) + l(v). The (right) exchange condition, using that l(w0s) < l(w0)
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but vs is reduced, shows that w0s = ŷv where ŷ represents y with a letter
omitted. It follows that ŷvs is a reduced expression for w0.

An element satisfying (ii) is an involution since l(w2
0) = l(w0)− l(w0) = 0 an

is unique since another w1 has same length by (iii) and l(w0w1) = l(w0)−l(w1) =
0 thus w1 = w−10 = w0.

If w0 as in (i) exists then S is finite since S ⊂ N(w0) and W is then finite
by (iii).

Exercise 4.7. Let (W, {s, s′}) be a Coxeter system with m = ms,s′ < ∞ (type
I2(m)). Show that if m ≡ 2 (mod 4) then (W, {s, w0s

′, w0}) is also a Coxeter
system.

5 Finite real reflection groups

In this section W ⊂ GL(V ) is a finite reflection group on a finite-dimensional
space V = Rn. It is associated to the W -invariant hyperplane system AW =
{Hs}s∈Ref(W ).

Lemma 5.1. Given H ∈ AW , there is a unique reflection sH ∈ W such that
HsH = H.

Proof. A reflection of hyperplane H belongs to CW (H). Since CW (H) is finite,
H has a CW (H)-stable complement (Maschke’s theorem), which is a line. The
finite group CW (H) is determined by its action on this line, which is ±1 since
they are the only elements of finite order of R.

We will see that this lemma definitely fails when W is infinite.
The connected components of V −

⋃
H∈AW

H are called chambers of the
arrangement AW ; given a chamber C the walls of C are the H ∈ AW such that
H ∩ C contains a nonempty open set of H.

We show now W is a Coxeter group by using yet another characterization
of Coxeter groups:

Lemma 5.2. Let W be group generated by the set S of involutions and let
{Ds}s∈S be a set of subsets of W such that:

• Ds 3 1.

• Ds ∩ sDs = ∅.

• If for s, s′ ∈ S we have w ∈ Ds, ws
′ /∈ Ds then ws′ = sw.

Then (W,S) is a Coxeter system, and Ds = {w ∈W | l(sw) > l(w)}.

Proof. We will show the exchange condition. Let s1 . . . sk be a reduced expres-
sion for w /∈ Ds and let i be minimal such that s1 . . . si /∈ Ds; we have i > 0 since
1 ∈ Ds. From s1 . . . si−1 ∈ Ds and s1 . . . si /∈ Ds we get ss1 . . . si−1 = s1 . . . si,
whence sw = s1 . . . ŝi . . . sk thus l(sw) < l(w) and we have checked the exchange
condition in this case. If w ∈ Ds then sw /∈ Ds by the first part l(w) < l(sw)
so we have nothing to check.
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Notice that V affords a W -invariant scalar product, by the

Lemma 5.3. If W ⊂ GL(V ) is a finite subgroup, there exists a symmetric
definite positive bilinear form on V (a scalar product) which is W -invariant.

Proof. Choose a formB which has the required properties exceptedW -invariance.
Then

∑
w∈W B(wx,wy) is W -invariant and inherits the required properties from

B.

It follows that the reflections in W are orthogonal, since different eigenspaces
are orthogonal for an invariant scalar product.

Proposition 5.4. Let W be a finite reflection group in a finite-dimensional
vector space V . Then

(i) Let C be a chamber, M the set of its walls, and let S = {sH | H ∈ M}.
Then (W,S) is a Coxeter system, and msH ,sH′ = |{H ′′ ∈ AW | H ′′ ⊃ H ∩H ′}|.

(ii) Let x ∈ V and let C be a chamber such that x ∈ C. Then the group
CW (x) is generated by reflections with respect to the walls of C containing x,
and CW (x) = CW (F ) where F is the intersection of the walls of C containing
x.

Proof. Let W ′ be the subgroup of W generated by S. We first show that for
any x ∈ V , there exists an element of the W ′-orbit of x in C. Choose a ∈ C and
let y an element of the W ′-orbit of x at minimal distance of a. Then we claim
y ∈ C. Otherwise, there exists a wall Hs of C which separates a and y, hence
sH(y) is closer to a than y (remember that the reflections are orthogonal).

It follows that any chamber is in the W ′-orbit of C. Indeed, for a chamber
C ′ we have seen there exists w ∈ W ′ such that w(C ′) ∩ C 6= ∅, which implies
w(C ′) = C. It follows also that W ′ contains all reflections of S. Indeed take any
sH ∈ W , let C ′ be a chamber which has H as a wall and let w ∈ W ′ be such
that w(C ′) = C. Then w(H) is a wall of C, thus wsHw

−1 ∈ S which implies
sH ∈W ′. We get thus W ′ = W .

To show (i) we now apply lemma 5.2 by defining for s ∈ S the set Ds to
consist of the w ∈W such that C and w(C) are on the same side of Hs. The first
two items of 5.2 are trivial. It remains to show that if w ∈ Ds and ws′ /∈ Ds,
then ws′ = sw. By assumption ws′(C) and w(C) are on different sides of Hs,
thus s′(C) and C are on different sides of w−1(Hs). But Hs′ is the only wall
separating s′(C) and C thus Hs′ = w−1(Hs), i.e. s = w−1sw q.e.d.

Before showing the stated value for msH ,sH′ , let us show (ii). We consider
the Coxeter system defined by C and show by induction on l(w) (the length
for this Coxeter system) that w(x) = x implies that w belongs to the subgroup
generated by the sH where H is a wall of C containing x. If w 6= 1, there exists
a wall H of C such that l(sHw) < l(w). Since w(x) = x we have x ∈ C ∩w(C);
on the other hand, since w /∈ DsH , the hyperplane H separates w(C) and C,
which implies x ∈ H. Finally by the conclusion of (iii) any element of CW (x)
fixes F .
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Finally, to show the stated value for msH ,sH′ we can reduce to the case of
rank 2: we replace V by the plane V ′ = (H ∩ H ′)⊥ and W by the subgroup
CW (H ∩ H ′) of GL(V ′). By (ii) this group is generated by sH and sH′ . In
the plane V ′ the product sHsH′ acts by a rotation of angle 2θ, if θ is the angle
between H and H ′; thus the order of sHsH′ is π/θ. A finite group of GL(R2)
generated by reflections is dihedral, with m hyperplanes if π/m is the smallest
angle between two hyperplanes, which is the case of θ since H and H ′ are walls
of a chamber.

Remark 5.5. The proof that we get a Coxeter group can be extended to the
case of groups generated by affine reflections, but finite modulo the translations
they contain. One gets this way in particular the affine Weyl groups.

It will follow from (ii) that CW (x) is a Coxeter groups: we will show in the
next lecture that the subgroup generated by a subset of S is a Coxeter group.

From the above theorem, it follows that W is in bijection with the set of
chambers: each chambers is uniquely of the form w(C).

The chamber −C is the unique chamber separated from C by all the elements
of M. It follows that −C = w0(C), where w0 is the longest element of W
introduced in 4.6.

Lemma 5.6. Assume that W ⊂ GL(V ) is an irreducible group which contains
at least one reflection. Then the only elements of End(V ) which commute with
W are the scalars.

Proof. Let u ∈ End(V ) commute with W , thus in particular to a reflection s of
W . Then u stabilizes the line Ker(1−s), thus acts by some scalar α on it. Then
u− α Id is still W -invariant and has a non-trivial kernel, which is stabilized by
W . As W acts irreducibly on V this kernel must be the whole of V , thus u is a
scalar.

As a particular case, note that if a finite reflection group contains a non-
trivial central element, this element is a scalar, thus equal to −1 since it is of
finite order. And by the remark above lemma 5.6, it is w0.

Lemma 5.7. Let W ⊂ GL(V ) be a finite subgroup such that the only elements
of End(V ) which commute with W are the scalars. Then there is a unique
bilinear form invariant by W up to a scalar.

Proof. First notice that W is irreducible, otherwise there is a W -invariant non-
trivial subspace V ′ and there is a W -invariant projector to V ′.

Then notice that a W -invariant bilinear form B is non-degenerate otherwise
the orthogonal of V for B would be a proper W -invariant subspace. It follows
that B is an isomorphism between V and V ∗. As two such isomorphisms differ
by an element of GL(V ), another W -invariant bilinear form must be of the
form (x, y) 7→ B(u(x), y) for some u ∈ GL(V ). Now for w ∈ W we have
B(u(x), y) = B(u(w(x)), w(y)) = B((w−1uw)(x), y) from which it results that
w−1uw = u, thus u is a scalar.
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Proposition 5.8. Let W be as in 5.4 and irreducible. Let B be a W -invariant
scalar product and for H ∈ M let eH be the unit (B(eH , eH) = 1) vector
orthogonal to H pointing towards C. Then

(i) The eH are linearly independent.

(ii) We have B(eH , eH′) = − cos(π/msH ,sH′ ).

Proof. As in the proof of 5.4 to see (ii) one can look at the situation in the
2-dimensional space V ′ = (H ∩H ′)⊥.

To see (i), notice first that (ii) says that H 6= H ′ implies B(eH , eH′) ≤ 0.
By contradiction, assume there was a dependence relation. By separating the
positive and negative coefficients, this relation can be written

∑
H∈M1

cHeH =∑
H∈M2

cHeH . Let v be the common sum on both sides. If v = 0 then we
compute the scalar product with some element w ∈ C; the choice of eH implies
B(w, eH) > 0 so since the cH on each side are positive they have to be 0. If
v 6= 0 then 0 < B(v, v) =

∑
H∈M1,H′∈M2

cHcH′B(eH , eH′), a contradiction
since B(eH , eH′) ≤ 0.

We see in particular that |S| = dimV when W is irreducible.

Geometric representation of Coxeter groups

A Coxeter system W,S is defined by the Coxeter matrix {ms,s′}s,s′∈S where
ms,s′ is the order of ss′ (thus the entries are in N ∪ {∞}).

The following proposition “implements” the remark after the definition 4.1:

Theorem 5.9. Any symmetric matrix whose entries off-diagonal are in N≥2 ∪
{∞} and on the diagonal are 1 is the Coxeter matrix of some Coxeter group W .

We will show this theorem by constructing W as a reflection group in a
vector space with basis indexed by S.

Proof. The construction is suggested by the case of finite reflection groups.
On V = RS , with basis {es}s∈S , we define a bilinear form by 〈 es, es′ 〉 =
− cos(π/ms,s′), where by convention π/ms,s′ = 0 if ms,s′ =∞.

Lemma 5.10. The map s 7→ (x 7→ x − 2〈x, es 〉es) defines a reflection repre-
sentation on V of W = 〈s ∈ S | s2 = 1, (ss)ms,s′ = 1〉 for which 〈−,−〉 is a
W -invariant bilinear form.

Proof. In the constructed representation it is clear that s acts by a reflection.
Let us check that a reflection s preserves 〈−,−〉:

〈 sx, sy 〉 = 〈x− 2〈x, es 〉es, y − 2〈 y, es 〉es 〉
= 〈x, y 〉 − 2〈x, es 〉〈 es, y 〉 − 2〈 y, es 〉〈x, es 〉+ 4〈x, es 〉〈 y, es 〉〈 es, es 〉
= 〈x, y 〉

where the last equality uses 〈 es, es 〉 = 1.

9



Let us compute the order of ss′. Let λ = 〈 es, es′ 〉. We get

ss′(es) = s(es − 2λe′s) = −es − 2λ(es′ − 2λes) = (4λ2 − 1)es − 2λes′

and ss′(es′) = 2λes − es′ . If λ = −1, then ss′(es + es′) = es + es′ , whence,
iterating the first formula which can be written ss′(es) = 2(es + es′) + es, we
get (ss′)m(es) = 2m(es + es′) + es thus ss′ has infinite order.

When λ 6= −1, we do the computation in C ' R2 with the usual scalar
prodict: we identifying es to 1 and es′ to −e−iθ where θ = π/ms,s′ . We find

ss′(es) = (4 cos2 θ− 1)− 2 cos θe−iθ = (eiθ + e−iθ)2− 1− (eiθ + e−iθ)e−iθ = e2iθ

and ss′(es′) = −2 cos θ + e−iθ = −eiθ = e2iθes′ , thus ss′ acts by a rotation
by 2π/ms,s′ . Since ss′ acts trivially on the 〈−,−〉-orthogonal of the subspace
spanned by es and es′ , its order is indeed ms,s′ .

We have already seen the claim that our matrix is a Coxeter matrix since
ms,s′ is the order of ss′ in the constructed group. But we have not yet seen the
claim that W is a reflection group since we have not shown that our represen-
tation is injective.

For this, we will get the analogous result to 5.4, that W acts faithfully on
the set of chambers, but for the contragredient representation on V ∗ (which is
not isomorphic in general to the representation on V when W is infinite). For
f∗ ∈ V ∗, the contragredient action is given by (sf∗)(x) = f∗(sx). If {e∗s}s∈S is
the dual basis to {es}s∈S , since for s′ 6= s we have e∗s′(sx) = e∗s′(x−2(x, es)es) =
e∗s′(x) we have that se∗s′ = e∗s′ for s′ 6= s, thus the reflecting hyperplane for the
contragredient action on V ∗ of s is defined by the linear form es. For I ⊂ S let
CI = {x∗ ∈ V ∗ | x∗(es) > 0∀s ∈ I}, and let C = CS , a chamber for the dual
hyperplane system. The faithfulness of the representation will follow from the

Lemma 5.11. (Tits) If w 6= 1, then w(C) ∩ C = ∅.

Proof. We start with a general lemma on parabolic subgroups of Coxeter groups.

Lemma-Definition 5.12. Let (W,S) be a Coxeter system, let I be a subset of
S, and let WI be the subgroup of W generated by I. Then (WI , I) is a Coxeter
system. An element w ∈W is said I-reduced if it satisfies one of the equivalent
conditions:

(i) For any v ∈WI , we have l(vw) = l(v) + l(w).

(ii) For any s ∈ I, we have l(sw) > l(w).

(iii) w is of minimal length in the coset WIw.
There is a unique I-reduced element in WIw.

Proof. It is clear that (WI , I) satisfies the exchange condition (a reduced ex-
pression in WI is reduced in W by the exchange condition, and then satisfies
the exchange condition in WI) thus is a Coxeter system.

It is clear that (iii)⇒(ii) since (iii) implies l(sw) ≥ l(w) when s ∈ I. Let
us show that not (iii)⇒ not (ii). If w′ does not have minimal length in WIw

′,
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then w′ = vw with v ∈ WI and l(w) < l(w′); adding one by one the terms of a
reduced expression for v to w, applying at each stage the exchange condition, we
find that w′ has a reduced expression of the shape v̂ŵ where v̂ (resp. ŵ) denotes
a subsequence of the chosen reduced expression. As l(ŵ) ≤ l(w) < l(w′), we
have l(v̂) > 0, thus w′ has a reduced expression starting by an element of I,
thus w′ does not satisfy (ii).

(i)⇒(iii) is clear. Let us show not (i)⇒ not (iii). If l(vw) < l(v) + l(w)
then a reduced expression for vw has the shape v̂ŵ where l(ŵ) < l(w). Then
ŵ ∈WIw and has a length smaller than that of w.

Finally, an element satisfying (i) is clearly unique in WIw.

For I ⊂ S and w ∈ W , let hI(w) ∈ WI be the unique element such that
hI(w)−1w is I-reduced. We will show by induction on l(w) that

w(C) ⊂ hI(w)CI for all w ∈W and all I ⊂ S, |I| ≤ 2. (∗)

Tit’s lemma will follow since for w 6= 1, there exists s ∈ S such that h{s}(w) = s,
whence w(C) ⊂ sC{s} = −C{s} and −C{s} ∩ C = ∅.

The start of the induction is for w = 1 where (*) reduces to C ⊂ CI , which
is clear.

Assume now that l(w) > 0 and (*) holds for all w′ ∈ W such that l(w′) <
l(w). We first show (*) for I = {s}. If h{s}(w) = s then w = sw′ with
l(w′) < l(w) and h{s}(w

′) = 1 whence w(C) = sw′(C) ⊂ sC{s} by induction
q.e.d.

If h{s}(w) = 1 let s′ ∈ S be such that h{s′}(w) = s′ and write w =
h{s,s′}(w)w′. Since l(w′) < l(w) induction gives w(C) = h{s,s′}(w)w′(C) ⊂
h{s,s′}(w)(C{s,s′}). It is thus sufficient to solve the question for the dihe-
dral group W{s,s′}, that is to show that if w′ = h{s,s′}(w) ∈ W{s,s′} satisfies
h{s}(w

′) = 1 then w′C{s,s′} ⊂ C{s}. Further, we can work in the quotient V ′∗ of
V ∗ by the e∗s′′ for s′′ /∈ {s, s′} (which is dual to the subspace V ′ ⊂ V generated
by es and es′) since C{s,s′} and C{s} are preimages of the analogous sets C ′ and
C ′{s} in this quotient.

It is easy to compute explicitly the contragredient action in V ′∗: as before
we have s(e∗s′) = e∗s′ and

(se∗s)(es) = e∗s(ses) = −1

(se∗s)(es′ = e∗s(ses′) = e∗s(es′ − 2(es′ , es)es) = −2(es′ , es)

thus s(e∗s) = −e∗s−2(es′ , es)e
∗
s′ ; and we have a symmetric formula for the action

of s′.
When ms,s′ = ∞ we have s(e∗s) = −e∗s + 2e∗s′ and both reflections preserve

the affine line λe∗s + (1 − λ)e∗s′ through e∗s and e∗s′ . On this line s (resp. s′)
acts as as a reflection with respect to e∗s′ (resp e∗s). The intersection of C ′ with
this affine line is the segment I between e∗s and e∗s′ . The chamber system is
described by its intersection with this affine line. The picture looks like

11



• •
e∗s

s′I I •
e∗s′

sI • ss
′I •

from which it can readily be seen that if w′ has a reduced expression starting
with s, the image of I by w′ is on the right side of e∗s′ , and this right side is the
intersection of the line with sC ′{s}.

Remark 5.13. In the subspace V ′, the reflection hyperplanes of s and s′ are
both spanned by es + es′ , and the fundamental chamber is fixed by ss′. This
shows the need to go to the dual space.

If ms,s′ < ∞ we can make a similar picture intersecting this time with the
unit circle. The intersection I of C ′ with the unit circle is the arc between
e∗s and e∗s′ ; the transforms sI,s′I,etc. . . are arcs as above, with ∆s,s′I = −I.

es

e∗s′
e∗s

•
s′I
•
I
•
sI •
ss′I •es′

θ

We finally show (*) for I = {s, s′}. If h{s,s′}(w) = 1 then h{s}(w) =
h{s′}(w) = 1 and by the previous case w(C) ⊂ C{s} ∩ C{s′} = C{s,s′} q.e.d.
Otherwise w = h{s,s′}(w)w′ where w′(C{s,s′}) = C{s,s′} whence the result.

Classification of finite Coxeter groups

Proposition 5.14. Let Γ be a Coxeter graph, W the corresponding Coxeter
group, V the geometric representation of W defined in 5.9 and B(Γ) the corre-
sponding W -invariant bilinear form. Then

(i) V is irreducible if and only if Γ is connected.

(ii) W is finite if and only if B(Γ) is definite positive.

Proof. For (i), it is clear that V is the direct sum of representations correspond-
ing to different connected components of Γ. Conversely, assume that U ⊂ V is
a W -stable subspace. For any s ∈ S, either es ∈ U or B(es, U) = 0: if U is
s-stable and is not a subspace of Hs then U 3 es (since if x ∈ U, x /∈ Hs, then
s(x) − x ∈ U and is a multiple of es); and if U ⊂ Hs then B(es, U) = 0 by
definition. Thus U defines a partition S = S1

∐
S2 where S1 = {s | es ∈ U}

and S2 = {s | B(es, U) = 0} such that if s ∈ S1 and S′ ∈ S2 then 〈 es, es′ 〉 = 0,
i.e. a partition of Γ into two connected components.

For (ii), we may assume V irreducible since B(Γ) is definite positive (resp.
W (Γ) is finite) if and only if this holds for each connected component of Γ. If W
is finite then any invariant bilinear form is definite positive by 5.3 and 5.7(ii).
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Conversely, if B(Γ) is definite positive its orthogonal group is compact and W
is a discrete subgroup of this orthogonal group, thus finite.

Here discrete means that there is an open neighbourhood of 0 in GL(V ∗)
meeting only one element of W : take, for x ∈ C, the set {g ∈ GL(V ∗) | g(x) ∈
C}.

A discrete subgroup of a compact group is finite otherwise it would con-
tain a convergent sequence {wn}n. Then w−1n wn+1 would converge to 0 which
contradicts discreteness.

Theorem 5.15. The only Coxeter graphs giving rise to discrete groups are the
graphs of type A,B,D,E, F,G,H, I.

Proof. The proof has two parts. The first proves that these graphs actually
define finite groups. The second proves that only these graphs are possible.

Bothe parts will need the values of − cosπ/m and of its square for small
values of m, which are in the following table

m 2 3 4 5 6

− cosπ/m 0 −1/2 −1/
√

2 −(1 +
√

5)/4 −
√

3/2

(cosπ/m)2 0 1/4 1/2 (3 +
√

5)/8 3/4
Let us do the first part of the proof: the diagrams A–I give positive definite

forms. It sufficient to prove that the determinants of B(Γ) are positive, since
subgraphs of graphs as in the theorem are unions of graphs of the same type,
which proves the positivity of principal minors, which is sufficient to have a
positive definite bilinear form.

To compute the determinant, it will be convenient to:

• multiply by 2 the matrix of B(Γ) (this corresponds to replacing es by√
2es).

• conjugate by a diagonal matrix, which does not change the principal mi-
nors; this will get rid of the irrational entries in types B,F,G.

These operations will bring the matrix B(Γ) to the “Cartan matrix” C(Γ) (at-
tached to a “root system”); note that we obtain an integral matrix for types
A–G, which proves that the corresponding groups are defined over Q.

If the graph with n vertices Γn ends with a subgraph of type A2, we have

the pattern

(
2 −1
−1 2

)
on the bottom right corner. If Γn−1 (resp. Γn−2) is

obtained by removing the last vertex (resp. the last 2 vertices) developing with
respect to the last line gives the induction formula: detC(Γn) = 2 detC(Γn−1)−
detC(Γn−2).

• Starting from: detC(A1) = 2, detC(A2) = 3 this gives detC(An) = n+1.

• Starting from: detC(B1) = detC(A1) = 2, detC(B2) = 2 we get detC(Bn) =
2.

• Starting from: detC(D3) = detC(A3) = 4, detC(D2) = detC(A1×A1) =
(detC(A1))2 = 4 we get detC(Dn) = 4.
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• Starting from: detC(D5) = 4, detC(A4) = 5 we get detC(E6) = 3,
detC(E7) = 2, detC(E8) = 1.

• Starting from: detC(B3) = 2, detC(A2) = 3 we get detC(F4) = 1.

• We have detC(I2(m)) = 4(1− cos2(π/m)).

• Finally starting from: detC(A1) = 2, detC(I2(5)) = 4(1− (3 +
√

5)/8) =
(5−

√
5)/2 we get detC(H3) = 3−

√
5 and detC(H4) = (7− 3

√
5)/2.

Note that the values for types A–G are the connexion index of the cor-
responding root system, which is the order of the fundamental group of the
corresponding algebraic group.

We now do the second part of the proof: we assume (−,−) is a scalar product
and see the conditions this imposes on Γ. We will call spherical such a graph.

From the above table of cosines it follows that if there is an edge between i
and j then (ei, ej) ≤ −1/2.

We now observe the following properties of a connected spherical graph Γ:

(i) Any subgraph defined by all the edges delimited by a subset of the vertices
is spherical (since it defines a parabolic subgroup).

(ii) Γ is a tree. Indeed, if s1, . . . , sr is a circuit (we may assume there is no
bond between the si excepted between si and si+1, shortening if need be
the circuit) and v = es1 + . . .+esr , then 〈 v, v 〉 = r+2

∑r−1
i=1 〈 esi , esi+1

〉+
2〈 esr , es1 〉 ≤ 0 since if ei and ej are connnected then 〈 ei, ej 〉 ≤ −1/2.

(iii) Let s∗ be the set of neighbours of s ∈ S in Γ; then
∑
j∈s∗ 〈 es, ej 〉

2
< 1.

Indeed this inequality expresses that es is strictly longer that its orthogonal
projection to the subspace generated by the ej for j ∈ s∗, of which the ej
are an orthonormal basis by (ii).

As a consequence of (iii) the possibilities for s∗ are:

• |s∗| = 1,

• |s∗| = 2 with an edge of label 3 and the other of label ≤ 5,

• |s∗| = 3 with 3 edges of label 3.

(iv) The graph Γ′ obtained by removing an edge of label 3 and gluing the
delimited vertices is still spherical. Indeed let B′ = B(Γ′); we have to
show that B′(w,w) > 0 for any w. If (s, s′) is the removed edge, and e is
the basis vector for s = s′ in Γ′, then w is of te form v + λe where v is in
the span of es′′ for s′′ 6= s, s′′ 6= s′. We have

B′(v + λe, v + λe) = B′(v, v) + 2B′(v, λe) + λ2

= 〈 v, v 〉+ 2λ〈 v, es + es′ 〉+ λ2

= 〈 v + λ(es + es′), v + λ(es + es′) 〉 − λ2(1 + 2〈 es, es′ 〉)
= 〈 v + λ(es + es′), v + λ(es + es′) 〉
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where the second line uses that v = v1 + v2 where v1 is on the es-side of
Γ and v2 on the es′ -side, so that B′(v1, e) = (v1, es) = (v1, es + es′) and
similarly B′(v2, e) = (v2, es′) = (v2, es + es′).

(v) Γ has at most one edge of label > 3. Otherwise using (iv) we may move
the edges of label > 3 together and get a configuration excluded by (iii).
By a similar reasoning Γ if gamma has an edge with label > 3 it is a chain;
and Γ has a most one order 3 vertex (otherwise similarly these 2 vertices
could be moved together to make an order ≥ 4 vertex).

(vi) Given an oriented chain C = s1, . . . , si, define e(C) := es1 +2es2 . . .+ iesi .

Notice that (e(C), e(C)) =
∑i
k=1 k

2 −
∑i−1
k=1 k(k + 1) = i2 − i(i− 1)/2 =

i(i + 1)/2. Assume now that Γ is a chain with one edge (s, s′) of label
m > 3. The complement is the union of two chains C,C ′ such that (say)
C 3 s and C ′ 3 s′. Orient C (resp. C ′ so that its last vertex is s (resp.
s′). Let i (resp. j) be the length of C (resp C ′) and assume i ≤ j. We get
〈 e(C), e(C) 〉 = i(i+1)/2, 〈 e(C ′), e(C ′) 〉 = j(j+1)/2 and 〈 e(C), e(C ′) 〉 =

−ij cosπ/m. The inequality 〈 e(C), e(C ′) 〉2 < 〈 e(C), e(C) 〉〈 e(C ′), e(C ′) 〉
gives (i + 1)(j + 1) > 4ij cos2 π/m. Since 2ij ≤ 4ij cos2 π/m, we have
(i− 1)(j − 1) < 2 which, since i ≤ j leaves (1, j) and (2, 2) as possibilities
for (i, j). Feeding back these values in (i + 1)(j + 1) > 4ij cos2 π/m, we
find for (2, 2) that cos2 π/m < 9

16 which implies m = 4. For (1, j) we find
1
2 + 1

2j > cos2 π/m which for j = 1 leaves any value of m allowed, for
j = 2, 3 leaves m ≤ 5 and for greater j leaves only m = 4.

(vii) We finally consider the case where Γ has only edges of label 3 and there
exists s ∈ Γ such that Γ−{s} is the union of 3 chains C,C ′,C ′′ of lengths p,
q, r respectively. Orient C,C ′, C ′′ so their last vertex is a neighbour of s.
Let u = e(C), v = e(C ′), w = e(C ′′). Notice that u, v, w are orthogonal to
each other. Writing that es is longer than its projection on the subspace
generated by u, v, w we get

〈 es, es 〉2 = 1 > 〈 es, u 〉2/〈u, u 〉+ 〈 es, v 〉2/〈 v, v 〉+ 〈 es, w 〉2/〈w,w 〉,

which, taking in account 〈 es, u 〉 = −p/2, 〈u, u 〉 = p(p+1)/2, and similarly
for v, w can be written 1/(p+1)+1/(q+1)+1/(r+1) > 1, which describes
exactly the tri-chains of the theorem.

Exercise 5.16. Let V be the geometric representation of a Coxeter group W as
in 5.9. We assume that dimV <∞ and that the representation is defined over
Z, that is there exists a W -invariant lattice in V . Then

• All ms,s′ are in {2, 3, 4, 6,∞}. Indeed, complete {es, es′} by vectors or-
thogonal to the plane they span to make a basis. Then by the formulae
in the proof of 5.10 we get Trace(ss′) = dimV + 4(cos2 π/m− 1) which is
integral only for the stated values.

• Conversely, if all ms,s′ are in {2, 3, 4, 6} and we can rescale the bilinear
form to get an integral Cartan matrix, the group is defined over Z.
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