Table of maximal eigenspaces

Gunter Malle and Jean Michel

September 2012

For each irreducible complex reflection coset $W \phi$ and each $w \phi \in W \phi$ which has a non-trivial ζ-eigenspace V for a root of unity ζ of order d which is maximal among such eigenspaces, we give the types of $W_{d}:=N_{W}(V) / C_{W}(V)$ and of the $\operatorname{coset} C_{W}(V) w \phi$.

Imprimitive groups

The degrees of $G(n e, e, r)$ are $n e, 2 n e, \ldots,(r-1) n e$ and $r n$. The codegrees are $0, n e, 2 n e, \ldots,(r-2) n e$ and $(r-1) n e$ when $n>1$ or $(r-1) e-r$ when $n=1$.

The coset ${ }^{t} G(n e, e, r), t \mid e$ is defined by the automorphism realized by $s_{1}^{\frac{e}{t}}$ where s_{1} is the first generator (of order $n e$) of $G(n e, 1, r)$. The only generalized reflection degree with a non-trivial factor is $\left(r n, \zeta_{t}^{-1}\right)$. There is a generalized codegree with a non-trivial factor only when $n=1$, which is $\left((r-1) e-r, \zeta_{t}\right)$.

When $n>1$ the regular ζ are such that $\zeta^{r n}=\zeta_{t}$, in which case $W_{d}=$ $G\left(\operatorname{lcm}(n e, d), e, \operatorname{gcd}\left(\frac{r n}{d} e, r\right)\right)$ where $G(n e, e, 1)=G(n, 1,1)=\mathbb{Z} / n$.

- For general d we give the result when $e=1$, the case $G(n, 1, r)$. If we set $d^{\prime}=\frac{d}{\operatorname{gcd}(n, d)}$ then $W_{d}=G\left(\operatorname{lcm}(n, d), 1,\left\lfloor\frac{r}{d^{\prime}}\right\rfloor\right)$ and $C_{W}(V) w$ is of type $G\left(n, 1, r \bmod d^{\prime}\right)($ see $[$ Malle, 3 C$])$.

When $n=1$, we set $d^{\prime}=\frac{d}{\operatorname{gcd}(e, d)}$.

- The regular ζ are either such that $\zeta^{r}=\zeta_{t}$, then $W_{d}=G\left(\operatorname{lcm}(e, d), e, \frac{r}{d^{\prime}}\right)$, or such that $d \mid(r-1) e$, then if $\zeta^{r} \neq \zeta_{t}$ then $W_{d}=G\left(\operatorname{lcm}(e, d), 1, \frac{r-1}{d^{\prime}}\right)$.
- For general d such that $\zeta^{r} \neq \zeta_{t}$ we have $W_{d}=G\left(\operatorname{lcm}(e, d), 1,\left\lfloor\frac{r-1}{d^{\prime}}\right\rfloor\right)$ and if we set $m=1+\left((r-1) \bmod d^{\prime}\right)$ then $C_{W}(V) w$ is of type $G(e, e, m) s_{1}^{p^{\prime}}$ where $\zeta_{e}^{p^{\prime}}=\zeta_{t} \zeta^{m-r}$ (see [Malle, (5.3), (5.4)]); note that $G(e, e, 1)$ is the trivial group.

Reference
[Malle] G. Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (1995), 768-826.

Primitive groups

In the list below, each W_{d} is given followed by a colon and the list of d for which it is W_{d}. If ζ_{d} is not regular the type of the coset $C_{W}(V) w \phi$ is given in square brackets before d. In this type, we note $G^{(i)}$ a descent of scalars (the product of i copies of G permuted cyclically in the coset).

$$
\begin{aligned}
& G_{4}: 1,2 \quad Z_{6}: 3,6 \quad Z_{4}: 4 \\
& G_{5}: 1,2,3,6 \quad Z_{12}: 4,12 \\
& G_{6}: 1,2,4 Z_{12}: 3,6,12 \quad G_{7}: 1,2,3,4,6,12 \\
& G_{8}: 1,2,4 Z_{12}: 3,6,12 Z_{8}: 8 \quad G_{9}: 1,2,4,8 Z_{24}: 3,6,12,24 \\
& G_{10}: 1,2,3,4,6,12 \quad Z_{24}: 8,24 \\
& G_{11}: 1,2,3,4,6,8,12,24 \\
& G_{12}: 1,2 \quad Z_{6}: 3,6 \quad Z_{8}: 4,8 \\
& G_{14}: 1,2,3,6 Z_{24}: 4,8,12,24 \quad G_{15}: 1,2,3,4,6,12 Z_{24}:\left[A_{1} \cdot \zeta_{8}^{-1}\right] 8,\left[A_{1} \cdot \zeta_{24}^{19}\right] 24 \\
& G_{16}: 1,2,5,10 Z_{30}: 3,6,15,30 Z_{20}: 4,20 \quad G_{17}: 1,2,4,5,10,20 Z_{60}: 3,6,12,15,30,60 \\
& G_{18}: 1,2,3,5,6,10,15,30 Z_{60}: 4,12,20,60 \quad G_{19}: 1,2,3,4,5,6,10,12,15,20,30,60 \\
& G_{20}: 1,2,3,6 Z_{12}: 4,12 Z_{30}: 5,10,15,30 \quad G_{21}: 1,2,3,4,6,12 Z_{60}: 5,10,15,20,30,60 \\
& G_{22}: 1,2,4 Z_{12}: 3,6,12 Z_{20}: 5,10,20 \quad H_{3}: 1,2 Z_{6}: 3,6 Z_{10}: 5,10 \\
& G_{24}: 1,2 Z_{6}: 3,6 Z_{14}: 7,14 Z_{4}:\left[A_{1}\right] 4 \quad G_{25}: 1,3 G_{5}: 2,6 \quad Z_{12}: 4,12 \quad Z_{9}: 9 \\
& G_{26}: 1,2,3,6 \quad Z_{18}: 9,18 \quad Z_{12}:\left[A_{1}\right] 4,\left[A_{1} \cdot \zeta_{3}\right] 12 \quad G_{27}: 1,2,3,6 \quad Z_{30}: 5,10,15,30 \quad Z_{12}:\left[A_{1}\right] 4,\left[A_{1} \cdot \zeta_{3}\right] 12 \\
& { }^{3} D_{4}: G_{2}: 1,2 \quad G_{4}: 3,6 \quad Z_{4}: 12 \quad{ }^{3} G_{3,3,3}: G_{3,1,2}: 1,3 \quad Z_{6}: 2,6 \quad Z_{3}: 9 \\
& F_{4}: 1,2 G_{5}: 3,6 G_{8}: 4 Z_{8}: 8 Z_{12}: 12 \quad{ }^{2} F_{4}: I_{2}(8): 1,2 G_{12}: 4 G_{8}: 8 \quad Z_{6}: 12 Z_{12}: 24 \\
& G_{29}: 1,2,4 Z_{20}: 5,10,20 Z_{12}:\left[A_{1}\right] 3,\left[A_{1}\right] 6,\left[A_{1} \cdot \zeta_{4}^{-1}\right] 12 Z_{8}:\left[{ }^{2} B_{2} \cdot \zeta_{8}^{3}\right] 8 \\
& H_{4}: 1,2 G_{20}: 3,6 G_{22}: 4 G_{16}: 5,10 Z_{12}: 12 Z_{30}: 15,30 Z_{20}: 20 \\
& G_{31}: 1,2,4 G_{10}: 3,6,12 Z_{20}: 5,10,20 G_{9}: 8 Z_{24}: 24 \\
& G_{32}: 1,2,3,6 G_{10}: 4,12 Z_{30}: 5,10,15,30 Z_{24}: 8,24 Z_{18}:\left[Z_{3}\right] 9,\left[Z_{3} \cdot-1\right] 18 \\
& G_{33}: 1,2 G_{26}: 3,6 \quad Z_{10}: 5,10 Z_{18}: 9,18 G_{6}:\left[A_{1}\right] 4 Z_{12}:\left[A_{1} \cdot \zeta_{3}\right] 12 \\
& G_{34}: 1,2,3,6 \quad Z_{42}: 7,14,21,42 G_{10}:\left[A_{1}^{2}\right] 4,\left[\left(A_{1} \cdot \zeta_{3}\right)^{2}\right] 12 Z_{30}:\left[A_{1}\right] 5,\left[A_{1}\right] 10,\left[A_{1} \cdot \zeta_{3}^{2}\right] 15,\left[A_{1} \cdot \zeta_{3}\right] 30 \\
& Z_{24}:\left[A_{1}^{(2)}\right] 8,\left[A_{1}^{(2)} \cdot \zeta_{3}\right] 24 Z_{18}:\left[{ }^{3} G_{3,3,3}\right] 9,\left[{ }^{3} G_{3,3,3} \cdot-1\right] 18 \\
& E_{6}: 1 F_{4}: 2 G_{25}: 3 G_{8}: 4 G_{5}: 6 Z_{8}: 8 \quad Z_{9}: 9 \quad Z_{12}: 12 Z_{5}:\left[A_{1}\right] 5 \\
& { }^{2} E_{6}: 2 F_{4}: 1 G_{25}: 6 G_{8}: 4 G_{5}: 3 \quad Z_{8}: 8 \quad Z_{9}: 18 \quad Z_{12}: 12 \quad Z_{5}:\left[A_{1}\right] 10 \\
& E_{7}: 1,2 \quad G_{26}: 3,6 \quad Z_{14}: 7,14 Z_{18}: 9,18 \quad G_{8}:\left[A_{1}^{3}\right] 4 Z_{10}:\left[A_{2}\right] 5,10 \quad Z_{8}:\left[A_{1} \times A_{1}^{(2)}\right] 8 \quad Z_{12}:\left[A_{1}^{(3)}\right] 12 \\
& E_{8}: 1,2 G_{32}: 3,6 G_{31}: 4 G_{16}: 5,10 G_{9}: 8 G_{10}: 12 Z_{30}: 15,30 \quad Z_{20}: 20 Z_{24}: 24 Z_{14}\left[A_{1}\right]: 7,14 \\
& Z_{18}:\left[A_{2}\right] 9,\left[{ }^{2} A_{2}\right] 18
\end{aligned}
$$

An observation on the table is that in every split case all regular numbers divide a regular degree. Is this clear a priori?

