Licence L3 de mathématiques 12-13 LM 323 - Géométrie affine et euclidienne

Examen du 23 Mai 2013

Durée: 2 heures

Les documents, calculatrices, portables ... ne sont pas autorisés. Les 4 énoncés sont indépendants (et de valeurs sensiblement égales). Les réponses devront être justifiées (sauf pour la question de cours).

T

1º/ (**Question de cours**). Soient \mathcal{E} un espace affine réel et n un entier ≥ 3. On considère un système $\{(A_1, \alpha_1), ..., (A_n, \alpha_n)\}$ de n points pondérés de \mathcal{E} , et un entier $m \in [2, n-1]$.

- i) Qu'entend-on par la "propriété d'associativité" des barycentres ? On commencera par préciser les hypothèses à faire sur $\sum_{i=1}^{n} \alpha_i$, $\sum_{i=1}^{m} \alpha_i$ et $\sum_{i=m+1}^{n} \alpha_i$ pour pouvoir énoncer cette propriété (qu'on ne demande pas de démontrer).
- ii) Quel énoncé classique cette propriété entraı̂ne-t-elle sur les médianes d'un triangle ABC (non plat) ?
- **2º**/ On considère un tétraèdre (non aplati) ABCD de \mathbb{R}^3 , et on note G l'isobarycentre du système $\{A, B, C, D\}$.
- i) Soient M le milieu du segment AB, et N celui de CD. Montrer que $M \neq N$, et que la droite (MN) passe par G.
 - ii) Déterminer l'intersection du plan (ABC) avec la droite (DG).

II

Soit a un paramètre réel. On considère dans l'espace affine \mathbb{R}^3 les sous-ensembles Δ, Δ' définis respectivement par les couples d'équations

$$(\Delta) \begin{cases} x - 2y - z - 2 = 0 \\ 2x + y + z + 1 = 0 \end{cases} \qquad (\Delta') \begin{cases} x - 3y - 1 = 0 \\ 3x - 5y + a = 0 \end{cases}$$

- $\mathbf{1}^0$ i) Montrer que Δ et Δ' sont des droites affines.
 - ii) Trouver un vecteur \overrightarrow{v} non nul de la droite directrice $D = \overrightarrow{\Delta}$ de Δ .
 - iii) Même question par la droite Δ' .
- $2^0/$ i) Montrer que Δ et Δ' ne sont pas parallèles, et déduire de cette propriété que les trois conditions suivantes sont ici équivalentes :
- (C_1) : $<\Delta, \Delta'>$ est un plan ; (C_2) : $\Delta \cap \Delta'$ est un point ; (C_3) : $\Delta \cap \Delta'$ n'est pas vide.
- ii) Montrer qu'il existe une unique valeur a_0 de a, que l'on calculera, telle que $\Delta \cap \Delta'$ ne soit pas vide.
- $\mathbf{3}^0$ / On suppose désomais que $a=a_0$.
 - i) Calculer les coordonnées cartésiennes du point $P = \Delta \cap \Delta'$.
 - ii) Donner une équation cartésienne du plan $\mathcal{H}=<\Delta,\Delta'>$ engendré par Δ et $\Delta'.$

III

Soient \mathcal{E} un espace affine euclidien de dimension 3, $\mathcal{B} = \{e_1, e_2, e_3\}$ une base orthonormée de son espace vectoriel directeur E, et A, B deux points de \mathcal{E} tels que $\overrightarrow{AB} = e_3$. Soient par ailleurs Δ_1 la droite de \mathcal{E} passant par A, de vecteur directeur e_1 , et Δ_2 la droite de \mathcal{E} passant par B, de vecteur directeur e_2 .

Pour i = 1, 2, on note f_i la rotation de \mathcal{E} d'axe Δ_i , d'angle π , et on pose $f = f_2 \circ f_1$. $\mathbf{1}^{\mathbf{o}}$ / Donner les matrices représentatives dans la base \mathcal{B} de E des parties linéaires \overrightarrow{f}_1 , \overrightarrow{f}_2 , \overrightarrow{f}_3

 ${f 1^o}/$ Donner les matrices représentatives dans la base ${\cal B}$ de E des parties linéaires f_1 , f_2 , f des trois isométries affines f_1 , f_2 , f.

- $2^{\circ}/i$) Montrer que f est un vissage (ou une rotation).
 - ii) Déterminer l'axe, l'angle et le vecteur de glissement de f.
- $3^{\circ}/i$) Calculer $f \circ f$.
 - ii) On pose $f' = f_1 \circ f_2$. Décrire les isométries affines $f_2 \circ f_2$, $f' \circ f$ et $f' \circ f'$.

IV

Soient $\mathcal{R} = \{A, B, C\}$ un repère affine d'un plan affine réel \mathcal{E} . Les coordonnées barycentriques des points de \mathcal{E} seront relatives à ce repère. On fixe un point P situé sur la droite (BC).

 $\mathbf{1}^{\mathbf{o}}/$ Dire pourquoi il existe un unique nombre réel λ tel que $\overrightarrow{CP} = \lambda \overrightarrow{CB}$, et calculer en fonction de λ les coordonnées barycentriques (x, y, z) de P.

 $2^{\circ}/i$) Soit Δ_1 la droite parallèle à (BA) passant par P. Montrer que $\Delta_1 \cap (CA)$ est un point P_1 , et que $\overrightarrow{CP_1} = \lambda \overrightarrow{CA}$.

- ii) Calculer en fonction de λ les coordonnées barycentriques (x_1, y_1, z_1) de P_1 .
- 3° / Soit de même $P_2 \in (AB)$ l'intersection de (AB) avec la parallèle Δ_2 à (CB) passant par P_1 , et $P_3 \in (BC)$ l'intersection de (BC) avec la parallèle à (AC) passant par P_2 .
 - i) Faire un dessin de cette configuration.
- ii) Calculer en fonction de λ les coordonnées barycentriques de P_2 , puis de P_3 , dans le repère \mathcal{R} .
- 4° / Soit $f:(BC) \to (BC)$ l'application qui attache au point P de (BC) le point $P_3:=f(P)$ de (BC).
- i) Exprimer f en coordonnées barycentriques dans le repère affine $\{B,C\}$ de la droite affine (BC).
 - ii) Déterminer l'ensemble des points fixes de f, et calculer le point f(f(P)).