Licence L3 de mathématiques 12-13 LM 323 - Géométrie affine et euclidienne

Examen du 12 juin 2013

Durée: 2 heures

Les documents, calculatrices, portables ... ne sont pas autorisés. Les 4 énoncés sont indépendants (et de valeurs sensiblement égales). Les réponses devront être justifiées (sauf pour la question de cours).

Ι

 $1^{\circ}/$ (Question de cours) On se place dans un espace vectoriel euclidien E, de dimension finie $n \geq 1$.

- i) Soit u une isométrie vectorielle de E. Rappeler sous quelle forme on peut mettre la matrice de u dans une base orthonormée convenablement choisie.
- ii) On suppose que n=3. Décrire les isométries vectorielles u qui possèdent un vecteur v non nul vérifiant u(v)=v? Même question pour celles qui possèdent un vecteur v non nul vérifiant u(v)=-v.
- $\overrightarrow{AB} = \overrightarrow{DC} \neq 0$. On note respectivement r_A, r_B, r_C, r_D les symétries centrales par rapport aux points A, B, C, D.
 - i) Décrire l'isométrie affine $r_B \circ r_A$.
 - ii) Décrire l'isométrie affine $r_D \circ r_C \circ r_B \circ r_A$.
 - iii) Décrire l'isométrie affine $r_C \circ r_B \circ r_A$.

II

Soient a et b deux nombres réels. On considère dans l'espace affine \mathbb{R}^4 les sous-ensembles \mathcal{F} et \mathcal{G} définis respectivement par les couples d'équations

$$(\mathcal{F}) \begin{cases} x+y+z-t=0 \\ x-y+z+t=a \end{cases} \qquad (\mathcal{G}) \begin{cases} x+y+2z+bt=1 \\ x-y+2z+3t=2a \end{cases}$$

- 1° / Montrer que \mathcal{F} et \mathcal{G} sont des sous-espaces affines, et calculer leur dimension.
- **2°**/ Montrer qu'il existe une unique valeur b_0 de b, que l'on déterminera, telle que pour $b \neq b_0$, l'intersection de \mathcal{F} et \mathcal{G} est réduite à un point.
- 3° / On suppose maintenant que $b = b_0$.
- i) Montrer qu'il existe une unique valeur a_0 de a, que l'on déterminera, telle que pour $a = a_0$, l'intersection de \mathcal{F} et \mathcal{G} est non vide.
- ii) On suppose que $a = a_0$. Donner la dimension du sous-espace affine $\mathcal{F} \cap \mathcal{G}$, un élément non nul \overrightarrow{v} de son espace vectoriel directeur, et un point P de $\mathcal{F} \cap \mathcal{G}$.

Soient \mathcal{E} un plan affine euclidien, d'espace euclidien directeur E, et $\{A, B, C\}$ un repère affine de \mathcal{E} . À tout point $P = P_0$ de \mathcal{E} , on associe la suite $\{P_n, n \in \mathbb{N}\}$ de points de \mathcal{E} telle que P_1 est le milieu de AP_0 , P_2 est le milieu de BP_1 , P_3 est le milieu de CP_2 , P_4 est le milieu de AP_3 , etc. On note P = xA + yB + zC (x+y+z=1) l'expression en coordonnées barycentriques du point de départ P dans le repère $\{A, B, C\}$.

- $\mathbf{1}^0$ / Déterminer les coordonnées barycentriques des points P_1, P_2, P_3 en fonction de x, y, z.
- 2^0 / Soit D le point de coordonnées barycentriques $(\frac{1}{7}, \frac{2}{7}, \frac{4}{7})$. Montrer que les points P, P_3 et D sont alignés.
- $\mathbf{3}^0/$ i) Calculer $||\overrightarrow{DP_3}||$ en fonction de $||\overrightarrow{DP}||$.
 - ii) Montrer que la suite $\{P_{3n}, n \in \mathbb{N}\}$ de points de \mathcal{E} converge vers le point D.
 - iii) Montrer que la suite $\{P_{3n+1}, n \in \mathbb{N}\}$ est convergente, et déterminer sa limite.

IV

On considère dans l'espace affine \mathbb{R}^3 les six points

$$A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, D = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, E = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, F = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$

On note (x, y, z) les coordonnées relatives au repère cartésien usuel $\{O; e_1, e_2, e_3\}$ de \mathbb{R}^3 .

- $\mathbf{1}^0/$ i) Déterminer l'isobarycentre du système (A,B,C,D,E,F).
- ii) Montrer qu'il existe une unique rotation r de \mathbb{R}^3 telle que r(A) = A, r(B) = B, r(C) = F, r(F) = D, r(D) = E et r(E) = C.
 - iii) Donner la matrice de cette rotation dans le repère cartésien $\{O; e_1, e_2, e_3\}$.
- $\mathbf{2}^0$ / Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par f(x,y,z) = (z,x,y). Montrer que f est une isométrie et déterminer ses caractéristiques.
- $\mathbf{3}^0$ / On considère l'ensemble $\mathcal{X} = \{A, B, C, D, E, F\}$, et on note G l'ensemble des isométries u de \mathbb{R}^3 qui vérifient $u(\mathcal{X}) = \mathcal{X}$.
- i) Montrer que G forme un groupe pour la composition et que r et f appartiennent à G. Quel est l'ordre de r (= plus petit entier n tel que $r^n = id_{\mathbb{R}^3}$)? Celui de f?

2

- ii) Trouver dans G un élément s d'ordre 2 ne fixant aucun des points de $\mathcal{X}.$
- iii) Montrer que G contient au moins 24 éléments.