Contrôle Continu 3 - 12/03/2014

QUESTION DE COURS

Soit \mathcal{E} un espace affine réel d'espace vectoriel directeur E.

- (1) Définir une homothétie de centre O et de rapport $\lambda > 0$.
- (2) Soit h une homothétie de rapport $\lambda > 0$ et de centre O et h' une homothétie de rapport $\lambda' > 0$ et de centre O'. Décrire précisément l'application $h' \circ h$.

Exercice 2:

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par

$$f(x,y) = (1+y, 1+x).$$

- (1) Ecrire la matrice de f dans le repère canonique.
- (2) Montrer que \overrightarrow{f} est une isométrie vectorielle ; déterminer $\ker(\overrightarrow{f}-\operatorname{Id})$ et $\operatorname{Im}(\overrightarrow{f}-\operatorname{Id})$.
- (3) Trouver l'unique vecteur $\overrightarrow{u} \in \ker(\overrightarrow{f} \operatorname{Id})$ tel que $f = t_{\overrightarrow{u}} \circ s$ où s est une symétrie qu'on précisera.

Exercice 3:

Soit d un entier strictement positif et U_d l'ensemble des polynômes P(X) à coefficients réels, de degré d et de coefficient dominant 1.

- (1) Montrer que U_d est un espace affine. Expliciter son espace vectoriel directeur et sa dimension.
- (2) Donner un repère affine de U_d .
- (3) Montrer que l'application $\Phi: P(X) \mapsto (-1)^d P(-X)$ est affine et la décrire.
- (4) Montrer que l'application $\Psi: P(X) \mapsto P(X+1)$ est affine et déterminer ses points fixes. Est-ce une translation?