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Abstract. We provide an (almost) self-contained construction of the
Witten-Reshetikhin-Turaev representations of the mapping class group.
We describe its properties including its Hermitian structure, irreducibil-
ity and integrality (at prime level). The construction of these notes relies
only on skein theory (Kauffman Bracket) and does not use surgery tech-
niques. We hope that they will be accessible to non-specialists.

1. Introduction

The aim of these notes is to give a short and self-contained construction of
the quantum representations of the mapping class group of a surface. These
representations were discovered in the early 90’s as a byproduct of a more
general structure called topological quantum field theory (TQFT) that will
not be covered in these notes as will not be covered the various relations of
the quantum representations with arithmetic groups, semi-classical analysis,
non-abelian Hodge theory, etc. Although many constructions are available
now, none is easily accessible to non-specialists: most of them use surgery
techniques and a modular category based either on the Kauffman bracket
skein module or on the representation theory of quantum groups. Here we
provide a new construction based on old ideas. Formally, we will construct
a finite dimensional projective representation of the mapping class group
over the cyclotomic field of order 4r. This corresponds to the so-called SU2

TQFT of level r − 2, first introduced by Witten and Reshetikhin-Turaev
([W89, RT91]). Our approach is in the spirit of [BHMV95] and [R94] in
that it uses skein theory of the Kauffman bracket. It is simpler however in
that it uses only basics properties of the Jones-Wenzl idempotents, and no
surgery techniques. The main tool is the notion of reduced skein module,
studied independently by Roberts and Sikora, see [S94].

Let K be the cyclotomic field of order 4r. We define the reduced skein
module of a 3-manifold M - denoted by Sr(M) - as the K-vector space
generated by banded links in M modulo three relations, the first two are the
usual Kauffman relations, the third one involves a more complicated linear
combination of banded links encoded by the Jones-Wenzl idempotent fr−1.
These modules are compatible with gluing, meaning that if M and N are
two three manifolds that we glue along a part of their boundary, the disjoint
union operation induces a bilinear map Sr(M)× Sr(N)→ Sr(M ∪N).
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When M = Σ × [0, 1], the gluing operations endow Sr(M) - which we
denote from now on by Sr(Σ) - with the structure of a K-algebra. The
main result is the following:

Theorem. There exists n ∈ N such that the algebra Sr(Σ) is isomorphic to
the matrix algebra Mn(K).

This gives a construction of the quantum representation by the follow-
ing argument. Let Mod(Σ) be the mapping class group of Σ. Any element
in Mod(Σ) is represented by a diffeomorphism f which acts on Σ × [0, 1]
by (x, t) 7→ (f(x), t) and hence on Sr(Σ) by algebra automorphism. By the
Skolem-Noether theorem, this automorphism, viewed as an automorphism of
Mn(K) is a conjugation by some uniquely defined element ρ(f) ∈ PGLn(K).
The mapping f 7→ ρ(f) is the aforementioned quantum projective represen-
tation:

ρ : Mod(Σ)→ PGLn(K).

To go further, consider the diffeomorphism of Σ× [0, 1] given by (x, t) 7→
(x, 1− t). It is an involution reversing the orientation and commuting with
the action of Mod(Σ). This induces an anti-involution of Sr(Σ) which is
antilinear with respect to the involution of K mapping A to A−1. It is
well-known that such involutions in matrix algebras correspond to Hermit-
ian forms, see for instance [K98], p.1. Hence, we find that there exists a
Hermitian form h on Kn such that ρ takes values in PU(h).

We will prove the main theorem by observing that if Σ is the boundary of a
handlebodyH, then Sr(Σ) acts on Sr(H) by gluing Σ×[0, 1] to the boundary
of H. This defines a morphism of algebras Sr(Σ) → End(Sr(H)) and the
theorem follows once we prove that it is an isomorphism and that Sr(H)
is finite dimensional. In particular the latter space is naturally the space
on which the quantum representation acts projectively. Given a banded
trivalent graph Γ embedded inH such thatH retracts on Γ, we will construct
elements Γc ∈ Sr(H) for every map c : E(Γ) → {0, . . . , r − 2} which is r-
admissible, that is which satisfies the following relations for every triple of
edges e, e′, e′′ ∈ E(Γ) incident to a vertex:

c(e) + c(e′) + c(e′′) ∈ {0, 2, . . . , 2r − 4}, c(e) ≤ c(e′) + c(e′′).

We will show that these elements form an orthogonal basis of Sr(H) and
compute their norm. This will give the dimension of the representation
(known as the Verlinde formula) and the signature of the Hermitian form
given an embedding of K in C.

We will end the notes with some explicit formulas for the quantum repre-
sentations and a proof that these representations are irreducible when r is
an odd prime. We will see that in the latter case, the reduced skein modules
Sr(M) can be defined over the ring of integers O ⊂ K. Denoting by SrO(M)
this integral version, we find that the mapping class group Mod(Σ) preserves
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SrO(Σ) ⊂ Sr(Σ). The space SrO(Σ) is an order, meaning that it is both a sub-
algebra and a finitely generated sub-O-module which generates Sr(Σ) over
K. This implies that the quantum representation stabilizes a O-lattice in
Sr(H). In particular, its image lies in an arithmetic group. We then give
indications on how one can introduce marked points in this settings.

Acknowledgments: I would like to thank B. Deroin, P. Eyssidieux,
B. Klingler, M. Maculan, G. Masbaum (in particular), A. Sambarino, N.
Tholozan and M. Wolff for their encouragements and/or help during the
writing of these notes.

2. Skein Modules

2.1. Definition. Let M be a compact oriented 3-manifold with boundary
and P be a collection of disjoint oriented arcs embedded in ∂M (P and ∂M
may be empty).

Definition 2.1. A banded trivalent graph in M with boundary P is a
(possibly empty) pair (Γ, SΓ) where

- SΓ is an oriented surface with boundary embedded in M such that
SΓ ∩ ∂M = P . We assume that the intersection is transversal and
that the orientations of ∂SΓ and P cöıncide at the intersection.

- Γ is a graph with vertices of valency 1 or 3. The set of univalent
vertices is denoted by ∂Γ. Γ can contain circles, loops and multiple
edges.

- There is an embedding Γ ⊂ SΓ such that Γ∩ ∂SΓ = ∂Γ ⊂ P and SΓ

retracts on Γ by deformation preserving P .

M

P

Γ

SΓ

Figure 1. An example of banded trivalent graph

In the sequel we will remove SΓ from the notation although it will be
always present. Also, in the next figures, we only show Γ. The surface will
be understood to be a tubular neighbourhood of the graph in the plane were
it is drawn. In particular, the system of arcs P will appear as a system of
points. If Γ has no trivalent vertices we will say that Γ is a banded tangle
and denote it preferably by L. If Γ has no vertices at all (hence P = ∅ and
Γ is a union of circles), Γ will be called a banded link.
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Let R be a commutative ring with unit and A ∈ R× be an invertible
element. We will denote by Ŝ(M) the free R-module generated by isotopy
classes of banded tangles with boundary P . This R-module comes with a
simple gluing operation described below.

Let M and N be two 3-manifolds with PM ⊂ ∂M and PN ⊂ ∂N two
system of arcs. Let Σ be a surface with two embeddings iM : Σ → ∂M
and iN : Σ→ ∂N respectively preserving and reversing the orientation. We
suppose that the arcs are compatible in the sense that i−1

M (PM ) = i−1
N (PN ).

Then, mapping (Γ, SΓ), (Γ′, SΓ′) to (Γ ∪ Γ′, SΓ ∪ SΓ′) induces a R-bilinear
map

(1) Ŝ(M,PM )× Ŝ(N,PN )→ Ŝ(M ∪Σ N,P
′
M ∪ P ′N )

where P ′M and P ′N denote the remaining system of arcs. We will denote by
〈·, ·〉M,N this map.

Let M be a 3-manifold and P ⊂ ∂M be a system of arcs. We will consider
two kinds of elements of Ŝ(M,P ).

- For the first kind, we consider a ball B3 embedded in M with Q ⊂
∂B3 a system of four arcs and we let L×, L0, L∞ ∈ Ŝ(B3, Q) be
the elements showed in the left of Figure 2. Then for any x ∈
Ŝ(M \B3, Q) we consider the linear combination

〈L× −AL0 −A−1L∞, x〉B3,M\B3 ∈ Ŝ(M,P )

- For the second kind, we consider a ball B3 embedded in M with no
arcs and the banded links LU and L∅ showed in the right of Figure

2. For any x ∈ Ŝ(M \B3, P ) we consider the linear combination

〈LU + (A2 +A−2)L∅, x〉B3,M\B3 ∈ Ŝ(M,P ).

L× L0 L∞ LU L∅

Figure 2. Kauffman relations

Definition 2.2. The Kauffman skein module S(M,P ) is by definition the

quotient of Ŝ(M,P ) by the submodule generated by the above elements
called Kauffman relations of the first and second kind respectively.

A key property of this definition is that all relations have the form 〈r, x〉 =
0 where r is in a ball B3 in the interior of M and x is in M \ B3. If M
is glued to another manifold N , B3 is still a ball in M ∪ N and x may be
viewed in M ∪N \B3: it follows that the gluing operations (1) are still well-
defined and will be denoted in the same way. Skein modules were introduced
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independently by Przytycki and Turaev. We refer to [P99] for details of the
proof sketched in this section.

2.2. Skein module of thickened surfaces. At this point, it is not clear
whether the skein module is a manageable R-module. In this section, we
will sketch the proof that when M = Σ × [0, 1] for some compact oriented
surface Σ, the module S(M) is free, generated by banded links embedded
in Σ× {1/2}. Here comes the precise statement.

Let Σ be a surface and P ⊂ ∂Σ be a system of arcs. The pair (Σ, P ) will
also denote the pair Σ × [0, 1], P × {1

2} to simplify the notation. A simple
tangle L is by definition a 1-manifold L ⊂ Σ such that no component of L
bounds a disc embedded in Σ. The surface SL is a tubular neighbourhood
of L in Σ such that SL ∩ ∂Σ = P .

Theorem 2.3. For any pair (Σ, P ) as above, the skein module S(Σ, P ) is
freely generated by isotopy classes of simple tangles.

Proof. The proof is very instructive but too long to be given in detail. It
relies on (a version of) the Reidemeister theorem which states that any
banded tangle can be represented by a diagram in Σ, that is a submanifold
L ⊂ Σ with simple crossings and - at each crossing - the information of
which branch goes above. By taking a tubular neighborhood of L in Σ and
separating the branches at each crossing as indicated, one gets indeed a
banded tangle. The second part of the Reidemeister theorem is that two
banded tangles associated to the diagrams L and L′ are isotopic if and only
if they are related by a sequence of one of the three moves shown at the top
of Figure 3.

↔ ↔ ↔

→ →

ξ(c) = 1 ξ(c) = −1

Figure 3. Reidemeister moves

Consider then a diagram L ⊂ Σ and a map ξ : c(L) → {±1} where c(L)
denotes the set of crossings of L. We denote by Lξ the banded tangle ob-
tained by smoothing the crossings of L as showed at the bottom of Figure
3. We also denote by n(Lξ) the number of components of Lξ bounding a
disc and by L′ξ the sub-tangle obtained by removing those trivial compo-
nents. Then, the proof of the theorem consists in showing that the map
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Φ : Ŝ(Σ, P )→
⊕

L simple

RL given by

Φ(L) =
∑

ξ:c(L)→{±1}

A
∑
c∈c(L) ξ(c)(−A2 −A−2)n(L)L′ξ

is well-defined, that is invariant by Reidemeister moves and sends a Kauff-
man relation to 0. Both are simple to show, we refer to [P99] for details. �

We end this section by the following observation: suppose that P = ∅
and take L1, L2 two banded links in Σ × [0, 1]. By shrinking [0, 1] into
[0, 1/2] for L1 and into [1/2, 1] for L2, one can consider their disjoint union
L1 ∪ L2 ∈ Σ × [0, 1]. This is again a gluing operation which induces an
structure of associative algebra on S(Σ). Its unit is given by the empty link.

2.3. Jones-Wenzl idempotents. For any n ∈ N, we fix a standard collec-
tion Pn of arcs of cardinality n in (0, 1)× {1/2} and set

Tn = S([0, 1]3, Pn × {0, 1}).
If x, y ∈ Tn, we can view x in S([0, 1]2 × [0, 1/2], Pn × {0, 1/2}) and y in
S([0, 1]2× [1/2, 1], Pn×{1/2, 1}). Gluing them endows Tn with the structure
of an algebra called the Temperley-Lieb algebra. Its unit is the class of
Pn×[0, 1] that we denote by 1n. We further define ei ∈ Tn for i = 1, . . . , n−1
as in Figure 4.

i i+ 1

Tr
(

x x
)

=ei =

Figure 4. Generators and trace of the Temperley-Lieb algebra

Let In ⊂ Tn be the submodule generated by tangles which intersect (up
to isotopy) the middle square [0, 1]2 × {1/2} in strictly less than n points.
It is clearly a two-sided ideal containing the ei.

Finally, we observe that the unique simple tangle in Tn which is not in
In is the trivial one. Hence, Tn/In ' R1n and we denote by ε : Tn → R the
unique map such that x = ε(x)1n mod In. The Jones-Wenzl idempotents
appear when one tries to decompose Tn as a product algebra In ×R.

To that aim, we observe that the juxtaposition of tangles gives a morphism
Tn ⊗ Tm → Tn+m. We will identify x ∈ Tn with x⊗ 11 ∈ Tn+1 . It consists
in adding a trivial strand on the right of a diagram. We also define a trace
Tr : Tn → R by “closing” the tangle in a standard way in B3 as in the
right hand side of Figure 4 (by identifying S(B3) with R). We also set

[n] = A2n−A−2n

A2−A−2 .
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Theorem 2.4. Let r ∈ N be such that [1], . . . , [r−1] are invertible in R and
set f0 = 10 and for all 0 < n < r (setting e−1 = 0)

fn = fn−1 +
[n− 1]

[n]
fn−1en−1fn−1 ∈ Tn

These elements satisfy the following properties:

(1) f2
n = fn.

(2) fnei = eifn = 0 for all i < n.
(3) fn − 1n ∈ In.
(4) Tr fn = (−1)n[n+ 1].

We skip the proof of the three first items which follows easily by induction
(see [L97], Chap.13) and postpone the last item to the end of this section.

The main property of the idempotents is that xfn = fnx = 0 whenever
x ∈ In since one can show that In is generated by the ei as an algebra
(without unit). This implies the following equation: fnx = xfn = ε(x)fn.
In practice, ε(x) can be computed by solving the crossings of x in all possible
ways that avoid back-tracking. The following examples will be useful.

Lemma 2.5. Let xn, yn, zn be the elements of Tn showed in Figure 5. Then

ε(xn) = − [n+2]
[n+1] , ε(yn) = −A2n+2 −A−2n−2 and ε(zn) = (−1)nAn(n+2).

Proof. By considering the recursive definition of fn+1, we get immediately

ε(xn) = −[2] + [n]
[n+1] . From the formula [n+ 1][m+ 1] = [n][m] + [n+m+ 1]

we get the result. We refer to [L97], Lemma 14.1 and Lemma 14.2 for the
last two. �

xn = yn = zn =fn+1

Figure 5. Partial trace, embracing and twisting

Let S be the annulus obtained by gluing the opposite sides of [0, 1] ×
{1/2} × [0, 1]. Thanks to Theorem 2.3, the algebra Sr(S) is isomorphic to
R[z] where z denotes the core of the annulus S, formally [1/3, 2/3]×{1/2}×
[0, 1].

Let us recall the definition of the Tchebychev polynomials of the second
kind. They satisfy S0 = 1, S1 = z and Sn+1 = zSn − Sn−1 for all n > 0 and

the identity Sn(−y − y−1) = (−1)n y
n+1−y−n−1

y−y−1 .

Lemma 2.6. Let f̂n be the closure of the idempotent fn obtained by identi-
fying the opposite sides of the cube. Then f̂n = Sn(z).
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Proof. The recursion formula for fn implies f̂n+1 = zf̂n+ [n]
[n+1] x̂n−1 using the

notation of Lemma 2.5. From the equality fnfn+1 = fn+1 and Lemma 2.5,

we get x̂n−1 = − [n+1]
[n] f̂n−1. This shows that f̂n satisfies the same recursion

relation as Sn. As f̂0 = 1 and f̂1 = z, the conclusion follows. �

This lemma proves the last item of Theorem 2.4 by the following obser-
vation. The standard embedding of S in B3 induces a map i : S(S) →
S(B3) = R. As zn is a collection of disjoint trivial circles, we have i(zn) =

(−A2 −A−2)n. Hence Tr(fn) = i(f̂n) = Sn(−A2 −A−2) = (−1)n[n+ 1].

3. The r-reduced skein module

We fix r ≥ 2 and suppose in this section that R is equal to the cyclotomic
field K = Q[A]/(φ4r(A)) where φ4r denotes the cyclotomic polynomial of
order 4r. This implies that [n] 6= 0 for all n < r and [r] = 0. In particular,
only the idempotents f0, . . . , fr−1 exist. The last one has the following
crucial vanishing property:

Lemma 3.1. For all x ∈ Tr−1, Tr(fr−1x) = 0.

Proof. One write x = 1r−1 + y with y ∈ Ir−1. By Property 2 of Theorem
2.4, we have fr−1y = 0 and by Property 4, Tr fr−1 = (−1)r−1[r] = 0, hence
the result. �

This suggests the following definition for any 3-manifold M with system
of arcs P .

Definition 3.2. For any embedding of [0, 1]3 → M , and any x ∈ S(M \
[0, 1]3, Pr−1 × {0, 1} ∪ P ) we call (r − 1)-relation the following element:

〈fr−1, x〉[0,1]3,M\[0,1]3 ∈ S(M,P ).

We define Sr(M,P ) to be the quotient of S(M,P ) by the K-subspace
generated by the (r − 1)-relations.

As for the standard skein module, the relations being local, the reduced
skein module is still compatible with gluing. Moreover, thanks to Lemma
3.1, the (r−1)-relation hold in B3, or in other terms we still have Sr(B3) '
K.

Remark 3.3. Let M be the manifold M with opposite orientation. The
image of a Kauffman relation in M is no longer a Kauffman relation in M
unless we exchange A and A−1. Formally, there is an isomorphism S(M) '
S(M) which maps λL to λL where the involution λ 7→ λ of K is defined
by A = A−1. We observe that the idempotents are constructed recursively
with quantum integers [n] which are fixed by the involution. This shows
that the same map induces an anti-linear isomorphism Sr(M) ' Sr(M).
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3.1. The reduced skein module of a handlebody. Let H be a handle-
body, that is a 3-manifold which retracts by deformation to a graph. Our
first task is to find a finite generating set for Sr(H).

We observe first that there exists a trivalent banded graph (Γ, SΓ) em-
bedded in H such that H is homeomorphic to SΓ × [0, 1]. Consider for any
edge e of Γ a disc De embedded in H satisfying ∂De ⊂ ∂H and intersecting
Γ in one point: we will say that De is dual to e. One can suppose that these
discs are disjoint and that the complement of their union is a collection of
balls.

Lemma 3.4. The vector space Sr(H) is generated by banded links which
intersect each dual disc in at most r − 2 points.

Proof. We proceed by induction: any time we find r−1 points on L∩De for
some edge e, we can find up to isotopy a cube [0, 1]3 embedded in De× [0, 1]
such that [0, 1]3∩L = 1r−1. By writing fr−1 = 1r−1+xr−1 with xr−1 ∈ Ir−1,
one can replace modulo a (r − 1)-relation 1r−1 by −xr−1 which has strictly
less crossing points with De. The result follows. �

Definition 3.5. A r-coloring of a trivalent graph Γ is a map c : E(Γ) →
{0, . . . , r − 2} satisfying for all edges e, e′, e′′ incident to a vertex v the fol-
lowing triangular conditions:

c(e) + c(e′) + c(e′′) is even and c(e) ≤ c(e′) + c(e′′).

These properties ensure that at each vertex there exists i, i′, i′′ ∈ N such
that c(e) = i′+ i′′, c(e′) = i+ i′′ and c(e′′) = i+ i′. These integers are called
the internal colors at the vertex v.

We can associate to each coloring c the skein expansion Γc ∈ Sr(SΓ) by
the following gluing procedure. Put fc(e) along each edge e and join the
remaining strands around the vertices in the unique way that avoid crossing
and back-tracking. For instance, at a vertex where e, e′, e′′ are incident, i′′

strands will go from e to e′, etc. as in Figure 6.

fc(e) fc(e′)

fc(e′′)

i

i′

i′′
e e′

e′′
→

Figure 6. Skein expansion around a vertex

Lemma 3.6. The elements Γc where c runs over r-colorings generate Sr(SΓ).
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Proof. We proceed again by induction. By Lemma 3.4, Sr(SΓ) is generated
by simple links which cross each dual disc De at n(e) points where n(e) <
r−1. Inserting a cube, one can write 1n(e) = fn(e)−xn(e). If we replace 1n(e)

by fn(e), we observe that the only way for joining the strands around a vertex
which does not vanish is the one shown in Figure 6. Hence the element we
obtained is proportional to some Γc. By induction, as the element obtained
by inserting xn(e) has strictly less crossing points withDe, it can be expressed
by skein expansions of colored graphs. �

We will even reduce this generating family by using the identities shown in
Figure 7. All these identities are understood in S(B3, P ) where P is a fixed
collection of points with a cardinality coherent with the diagram (2n+ 2 in
the first one, for instance). If no color is indicated, it is understood to be
1. The first line comes from the definition of the skein expansion of colored
graphs and the recursion formula for the Jones-Wenzl idempotents. The last
ones can be derived by induction. We refer to [MV94] for a proof.

a

b c

b− 1 c+ 1

= [(a+b−c)/2]
[b]

a

b− 1 c+ 1

a

b− 1 c− 1

a

b c

b− 1 c− 1

= − [(a+b+c)/2+1][(b+c−a)/2]
[b][c]

n+ 1
n 1

= − [n]
[n+1]

n− 1

b+ 1 c+ 1

a

b c =

a

b+ 1 c+ 1

Figure 7. Simple fusion rules

Lemma 3.7. Let a, b, c ∈ {0, . . . , r − 2} be a triangular triple satisfying
a+ b+ c ≥ 2r− 2. A Y -shaped trivalent graph colored with (a, b, c) vanishes
in the r-reduced relative skein module of the ball.

Proof. Let us call this Y -shaped graph a (a, b, c)-triad. Using the second
line of Figure 7, we see that the vanishing of an (a, b, c)-triad implies the
vanishing of the (a, b − 1, c + 1)-triad provided one has a + b − c < 2r and
b < r. As we may write a = j + k, b = i+ k, c = i+ j, these conditions read
i+ k < r and k < r and hence are automatically satisfied.

Suppose that we have a ≤ b ≤ c: if a = 0, then b = c = r − 1 and the
triad vanishes as it contains a (r − 1)-relation. If c = r − 1, we stop for the
same reason. Else, we replace the triad (a, b, c) with (a− 1, b, c+ 1) and use
induction. �
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Definition 3.8. We will say that a r-coloring c is r-admissible if for any
triple (e, e′, e′′) of edges incident to a same vertex one has c(e)+c(e′)+c(e′′) <
2r − 2.

The lemmas of these sections imply that the family (Γc) for c a r-admissible
coloring is a generating set for Sr(H). We will show in the next section that
they form a basis.

3.2. A Hermitian form on Sr(H). Let us consider a standard embedding
of [0, 1]2 into S2 and take a point in the complement called∞. We define the
spherical reduced Temperley-Lieb algebra TSn = Sr(S2× [0, 1], Pn×{0, 1})
and observe that this induces a surjection π : Tn → TSn as any tangle in
S2 × [0, 1] avoid {∞} × [0, 1] up to isotopy.

Lemma 3.9. For any n ∈ 2N, there is an element Pn =
∑

i λiLi ∈ Tn where
each tangle Li does not intersect [0, 1]2 × {1/2} such that π(Pn − 1n) = 0.
If n is odd, we set Pn = 0 and the same equation holds.

Proof. Let us prove the lemma by a double induction by setting P0 = 10.
Take n satisfying 0 < n < r− 1. One can write 1n = fn + zn where zn ∈ In.
As zn can be written as a sum of tangles with less than n crossings with
[0, 1]2×{1/2}, we can apply the induction hypothesis and reduce the problem
to fn. The key point is that the tangle xn of Lemma 2.5 is isotopic in S2 ×
[0, 1] to the disjoint union of 1n with a trivial circle. Using the corresponding
formula we get in TSn (−A2n+2 − A−2n−2)fn = (−A2 − A−2)fn. This
implies that fn = 0 thanks to our assumptions on n. In particular, we have
π(f1) = π(11) = 0 which allows to start the double induction. Suppose now
that n ≥ r − 1. We can as in Lemma 3.6 join (r − 1) parallel strands and
use the vanishing of fr−1 to reduce the number of intersection points and
apply the induction hypothesis. �

Corollary 3.10. For any g ≥ 1, let Mg = (S2 × S1)#g be the connected
sum of g copies of S2 × S1. Then Sr(Mg) is naturally isomorphic to K.

Proof. Consider the map K → Sr(Mg) mapping 1 to the empty link. We
wish to construct an inverse. To that aim, let S2 ⊂ Mg be an essential
sphere. Up to isotopy, a link L in Mg crosses the sphere at say n points.
As π(1n − Pn) = 0 ∈ TSn, we can replace 1n with Pn without changing the
value in the reduced skein module. But this has the effect of removing all
the intersection points. This proves that the natural map Sr(Mg \ S2) →
Sr(Mg) is an isomorphism. By removing sufficiently many essential sphere,
the manifold reduces to an union of balls for which the result is already
known. �

Let H be a handlebody. The manifold H ∪ H is homeomorphic to a
connected sum of copies of S2 × S1. Hence, by the preceding corollary the
gluing map 〈·, ·〉H,H : Sr(H) × Sr(H) → Sr(H ∪ H) can be viewed as a

Hermitian form on Sr(H).
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Proposition 3.11. Let (Γ, SΓ) be a banded trivalent graph and set H = SΓ×
[0, 1]. The skein expansions Γc are orthogonal with respect to the Hermitian
form and satisfy

〈Γc,Γc〉 =

∏
v∈V (Γ)

〈c(ev), c(e′v), c(e′′v)〉∏
e∈E(Γ)

〈c(e)〉
.

In this formula ev, e
′
v, e
′′
v are the three edges incident to a vertex v and 〈a, b, c〉

is the skein expansion in B3 of a standard graph Θ with colors a, b, c. We
have also set 〈n〉 = Tr fn = (−1)n[n+ 1].

This proposition shows the linear independence of the family (Γc) pro-
vided that one has 〈Γc,Γc〉 6= 0. Using induction and the formulas of Figure
7, we can show the following formula whose proof can be found in [MV94].

Lemma 3.12. For any r-admissible triple a, b, c with corresponding internal
colors i, j, k we have

〈a, b, c〉 = (−1)i+j+k
[i+ j + k + 1]![i]![j]![k]!

[a]![b]![c]!

where we have set [n]! = [n][n− 1] · · · [1]. In particular, 〈a, b, c〉 6= 0.

Proof. (Of Proposition 3.11) Let c and c′ be two r-admissible colorings and
let us compute 〈Γc,Γc′〉 ∈ Sr(H ∪H). Fix an edge e of Γ and consider the
disc De dual to e in H and De the same disc in H. Their union form an
essential sphere S2 in H ∪H. The union Γc ∪Γc′ cut this disc at c(e) + c′(e)
points and contains the juxtaposition of fc(e) and fc(e′).

Let us compute fa ⊗ fb in TSa+b. As 1a+b = Pa+b in TSa+b by Lemma
3.9, we compute instead (fa ⊗ fb)Pa+b. Recall that one can write Pa+b as
a linear combination of simple tangles without any component going from
one side to the other. A the same time, if any strand of fa (resp. fb) goes
back to fa (resp. fb), then we get 0. The only way to have some non-zero
term is to have a = b and all the strands of fa are connected to strands of
fb. Hence, we have the identity shown in Figure 8.

fa

= λ

fa fa
fa

fa fa

P2afa fa =

Figure 8. Disconnecting formula
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By closing it at both sides, we get 〈a〉 = λ〈a〉2 hence λ = 1
〈a〉 . This

proves orthogonality and shows that up to the λ factors, 〈Γc,Γc〉 reduces to
a disjoint union of Theta graphs. The result follows. �

Let us notice that the vector space Sr(H) we just defined is indeed the
same as the vector space V2r(Σ) of [BHMV95]. In particular, we get the
following (Verlinde) formula for its dimension where g denotes the genus of
Σ:

dimSr(H) =
(r

2

)g−1
r−1∑
j=1

(
sin

πj

r

)2−2g
.

3.3. Linking form on handlebodies. Let H be a handlebody embedded
in S3 in such a way that its complement H ′ is also a handlebody. Then the
gluing map 〈·, ·〉H,H′ : Sr(H) × Sr(H ′) → Sr(S3) ' K can be viewed as a
bilinear form.

Proposition 3.13. The bilinear form 〈·, ·〉H,H′ is non-degenerate.

Proof. We first prove the case when H has genus 1, the general case will
follow easily. If S3 = H ∪H ′ with H,H ′ of genus 1, then they form a Hopf
link as in the left hand side of Figure 9. Take standard banded links Γ and
Γ′ in H and H ′ such that the handlebodies retract on them. The vectors
(Γi) and (Γ′j) for i, j ∈ {0, . . . , r − 2} form a basis of Sr(H) and Sr(H ′)
respectively so that we have to prove that the matrix Πij = 〈Γi,Γj〉H,H′
is non-degenerate. This will follows from an explicit computation that we
explain now.

fi fj

Figure 9. Hopf link and a generalised Theta graph

From Lemma 2.5, we know that encircling fi with z = f̂1 multiplies it
by −A2i+2 − A−2i−2. As f̂j = Sj(z), encircling fi with fj will multiply

it with Sj(−A2i+2 − A−2i−2) = (−1)j A
2(j+1)(i+1)−A−2(i+1)(j+1)

A2i+2−A−2i−2 . This gives

finally Πij = (−1)i+j [(i+1)(j+1)]. This matrix is a kind of discrete Fourier
transform: in particular, one computes

Π2 =
−2r

(A2 −A−2)2
Id .

This shows that Π is invertible, concluding the case g = 1.
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Let S be a standard annulus. The preceding computation shows that for
all i ∈ {0, . . . , r − 2}, there exists ti ∈ Sr(S) such that encircling fj with
ti yields δijfj . Let H be a standard genus g handlebody in S3 and Γ be a
banded trivalent graph obtained by duplicating the central edge of a theta
graph as in the right hand side of Figure 9. Denote by δe ⊂ H ′ the boundary
of the dual disc of e. For any r-admissible coloring of Γ, consider the element
∆c of Sr(H ′) obtained by inserting tc(e) along δe for all e ∈ E(Γ). We observe
that 〈Γc′ ,∆c〉H,H′ is zero unless c = c′ and in that case it is equal to the
evaluation of Γc in S3 which is non zero (as a product of Theta coefficients).
We conclude that any combination of Γc which is in the radical of the form
〈·, ·〉 must vanish, hence the form 〈·, ·〉H,H′ is non-degenerate. �

3.4. The reduced skein module of a surface. Let H be a handlebody
in S3 such that its complement H ′ is also a handlebody. We denote by Σ
their common boundary. We take i : Σ × [0, 1] → S3 an embedding such
that Im(i) ∩H = Σ.

The usual gluing map defines an action of the algebra Sr(Σ) on Sr(H).
We will denote by Φ(L) the action of L ∈ Sr(Σ) : this is called the curve
operator associated to L. The main result of this article is the following.

Theorem 3.14. The natural map Φ : Sr(Σ) → End(Sr(H)) is an isomor-
phism of algebras.

Proof. Let D be a disc embedded in Σ and set H1 = Φ((Σ \D)× [0, 1]) and
H2 its complement in S3. We can find trivalent banded graphs Γ1 ⊂ H1 and
Γ2 ⊂ H2 on which they retract by deformation, and we can suppose that
there is a unique edge e ∈ E(Γ2) which intersect D in one point, see Figure
10.

D

Γ1

Γ2

Figure 10. The graphs Γ1 and Γ2

As any graph in Σ × [0, 1] can be made disjoint from D × [0, 1] up to
isotopy, the natural map Ψ : Sr(H1) → Sr(Σ) is surjective. Denote by γ
the boundary of the disc D. It may be pushed into H1 or H2, defining two
endomorphisms T1, T2 acting respectively on Sr(H1) and Sr(H2). These
endomorphisms are adjoint with respect to the linking form of H1 and H2
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i.e.

(2) 〈T1(x), y〉H1,H2 = 〈x, T2(y)〉H1,H2 for all x ∈ Sr(H1) and y ∈ Sr(H2).

As γ bounds a disc in Σ, we see that Ψ(T1(x)) = −(A2 +A−2)Ψ(x) for all
x ∈ Sr(H1). Thanks to Formula 2, the subspace Im(T1+(A2+A−2) Id) is the
orthogonal of ker(T2+(A2+A−2) Id) with respect to the linking form. But as

γ encircle the edge e of Γ2 we have T2((Γ2)c) = (−A2c(e)+2−A−2c(e)−2)(Γ2)c.
It follows that ker(T2 + (A2 + A−2) Id) is generated by graphs Γ2 with a r-
admissible coloring c satisfying c(e) = 0. Such colorings are in bijection
with colorings of Γ2 \ e which is the disjoint union of two graphs Γ,Γ′ on
which H and H ′ = S3 \H retract respectively. We conclude that we have
the inequality dimSr(Σ) ≤ dimSr(H q H ′) = dimSr(H) dimSr(H ′) =
dim EndSr(H).

Reciprocally, the non-degeneracy of 〈·, ·〉H1,H2 tells us the following. Given
r-admissible colorings c, c′ on Γ and Γ′, there exists x ∈ Sr(H1) such
that 〈x,Γd ∪ Γd′〉H1,H2 = δcc′δdd′ for all d, d′. But 〈x,Γd ∪ Γd′〉H1,H2 =
〈Ψ(x)Γd,Γd′〉H,H′ . As 〈·, ·〉H,H′ is also non-degenerate, we conclude that Ψ
is surjective and the theorem follows. �

Let us derive from this theorem a formula for the action of Dehn twists.
Let f ∈ Mod(H) be a diffeomorphism of H preserving ∂H = Σ. It induces
a diffeomorphism of Σ that we denote by the same letter. By naturality of
the action of Sr(Σ) on Sr(H), we have the following relation:

Φ(f(x))(f(y)) = f(Φ(x)(y)), ∀x ∈ Sr(Σ),∀y ∈ Sr(H).

Stated differently, this gives Φ(f(x)) = f ◦Φ(x) ◦ f−1, and hence ρ(f) = f .
This shows that the representation ρ restricted to Mod(H) coincides with
the natural action of Mod(H) on Sr(H). In particular, it is linear, not only
projective.

Suppose that Γ is a trivalent banded graph embedded in H as usual.
Then, for any edge e of Γ and dual disc De, the Dehn twist along De is
an element of Mod(H) which restricts on the boundary to the Dehn twist
on ∂De. Using the formula for zn in Lemma 2.5, we get immediately the
following proposition.

Proposition 3.15. For any edge e of Γ, the Dehn twist te along the dual
disc De acts diagonally on the standard basis of Sr(H). More precisely, we
have

te(Γc) = (−1)c(e)Ac(e)(c(e)+2)Γc.

4. Further topics

4.1. Explicit formulas. Suppose that S3 = H ∪H ′ where H and H ′ are
two handlebodies with common boundary Σ. We showed in the last section
how the group Mod(H) acts on Sr(H). Roberts approach of the quantum
representation is to use the duality between Sr(H) and Sr(H ′) given by the
linking form to get an action of Mod(H ′) on Sr(H), see [R94]. As Mod(H)
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and Mod(H ′) generate the mapping class group (see [FM12], Chap. 4), this
is enough to compute the representation. Unfortunately, the formulas for
the linking form are intractable in practice as soon as the genus of H is
greater than 1.

We explain here a more efficient way for computing the quantum rep-
resentation. Suppose that (Γ, SΓ) is a banded trivalent graph such that
H = SΓ × [0, 1] and such that SΓ has genus 0 and Γ has no disconnecting
edge. This implies that each boundary component γ of SΓ passes at most
once along each edge of Γ (under the retraction of SΓ on Γ). We will iden-
tify the component γ with the corresponding subgraph of Γ. Using simple
fusion rules of Lemma 7, we observe that the endomorphism Φ(γ) has a
simple “tridiagonal” expression in the standard basis. Formally, we have
the following lemma:

Lemma 4.1. For any component γ of ∂SΓ as above, one can write for any
r-admissible coloring c : E(Γ)→ {0, . . . , r − 2}

Φ(γ)(Γc) =
∑

ξ:E(γ)→{±1}

F (c, ξ)Γc+ξ

where F (c, ξ) 6= 0 if and only if c+ ξ is r-admissible.

The coefficients F (c, ξ) are cumbersome quotients of quantum integers.
Let us look at the example where H is a handlebody of genus 2 which
retracts on a Theta graph Γ. Denote by Γa,b,c the skein expansion of Γ with
colors a, b, c and by γ the curve passing along the edges colored by a and b
as in Figure 11.

a b c = a+ 1 b+ 1c

a
b

a
b

a+ 1 b− 1 c

a
b

a
b

a− 1 b− 1c

a
b

a
b

a− 1 b+ 1c

a
b

a
b

− [a]
[a+1] − [b]

[b+1]

+ [a][b]
[a+1][b+1]

Figure 11. Curve operator on a genus 2 surface
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Reducing the graph using fusion rules, we get the following formula for
Φ(γ).

Φ(γ)(Γa,b,c) =Γa+1,b+1,c −
[(c+ a− b)/2]2

[a][a+ 1]
Γa−1,b+1,c −

[(c+ b− a)/2]2

[b][b+ 1]
Γa+1,b−1,c

+
[(a+ b+ c)/2 + 1]2[(a+ b− c)/2]2

[a][a+ 1][b][b+ 1]
Γa−1,b−1,c.

If γ were bounding a dual disc De, we would have instead Φ(γ)(Γc) =

−(A2c(e)+2 + A−2c(e)+2)Γc and tγ(Γc) = (−1)c(e)Ac(e)(c(e)+2). This shows
that given a polynomial Q ∈ K[X] satisfying Q(−A2n+2 − A−2n−2) =

(−1)nAn(n+2) for all n ∈ {0, . . . r − 2} we have the practical formula:

ρ(tγ) = Q(Φ(γ)).

As all Dehn twists are conjugate by the mapping class group to a Dehn twist
bounding a dual disc, the above formula is always true and can be used to
compute the image of Dehn twists from the expression of Lemma 4.1. This
algorithm is already implemented in [AM]. The tridiagonal form of the curve
operator Φ(γ) generalises to all elements of Sr(Σ). This gives a reinterpre-
tation of the curve operators as Toeplitz operators, a key ingredient for
understanding the semi-classical properties of the quantum representations,
see [MP15, D16].

4.2. Irreducibility. Let us use the formulas of the last section to reprove
the following theorem of Roberts (see [R01]).

Proposition 4.2. Let r be an odd prime. The quantum projective repre-
sentation of Mod(Σ) on Sr(H) is irreducible.

Proof. We start with the following lemma.

Lemma 4.3. For all n,m ∈ {0, . . . , r− 2}, (−1)nAn(n+2) = (−1)mAm(m+2)

if and only if n = m.

Proof. Writing −1 = A2r, the equality is equivalent to 2nr + n(n + 2) =
2mr + m(m + 2) modulo 4r or 4r|(n − m)(2r + n + m + 2). If n 6= m, r
should divide 2r+n+m+2. As 2 ≤ n+m+2 ≤ 2r−2, we have n+m+2 = r
and the condition is 4r|(n − m)3r. Hence n and m have the same parity
which contradicts the previous equality. �

As a consequence of this lemma, we find that ρ(tγ) and Φ(γ) have exactly
the same eigenspaces, hence an element Ψ ∈ End(Sr(H)) which commutes
with ρ(tγ) for all simple curves γ also commutes with Φ(γ). Consider such an
endomorphism. As Ψ should preserve the eigenspaces of Φ(γe) for all edges
e, it must be diagonal in the basis (Γc). Hence we can write Φ(Γc) = λcΓc.
Using the formula of Lemma 4.1, the commutation of Ψ and Φ(γ) for γ a
component of ∂SΓ reads F (c, ξ)(λc − λc+ξ) = 0 for all ξ : E(γ) → {±1}
hence λc = λc+ξ if both c and c+ ξ are r-admissible.
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It remains to show that this implies that λc is constant. It is easy to show
by induction for a generalised Theta graph: we left it as an exercise for the
reader. �

4.3. Integral structure. Let r be an odd prime and set as usual K =
Q[A]/φ4r(A) the cyclotomic field of order 4r. We denote by O the ring of
integers of K. We will make use of the following lemma.

Lemma 4.4. The quantum integers [1], [2], . . . , [r − 1] are units of O.

Proof. Write q = A4: it satisfies qr = 1 and we have [n] = A2−2n qn−1
q−1 .

Hence it is sufficient to prove that 1 + q + · · · + qn−1 is a unit in the ring
Z[q]/(1 + q + · · · + qr−1) for n < r. Hence we want to show that the
greatest common divisor of 1 + · · ·+ qr−1 and 1 + q+ · · ·+ qn−1 in Z[q] is 1.
When applying the Euclidean division algorithm, we find that the situation
is similar to the computation of the greatest common divisor of r and n in
Z. As these numbers are coprime by hypothesis, the conclusion follows. �

This lemma and a simple induction implies that the Jones-Wenzl idem-
potents f0, . . . , fr−1 have coefficients in O, hence one can define an integral
version SrO(M) of the reduced skein module simply by taking the ground
ring R = O instead of K. It clearly satisfies SrO(M)⊗K = Sr(M).

Proposition 4.5. For any manifold M , SrO(M) is a finitely generated O-
module, free if M is a handlebody.

Proof. One can assume that M is connected and that there exists a han-
dlebody H ⊂ M such that any banded link in M lives in H up to isotopy.
Hence the map SrO(H)→ SrO(M) is surjective and it is sufficient to deal with
the case when M is a handlebody.

Pick a banded trivalent graph Γ ⊂ S ⊂ M such that M retracts on S
which retracts on Γ. As in Theorem 2.3, by solving the crossings of a diagram
and removing trivial components, we observe that SrO(Σ) is generated as an
O-module by simple links in S. We can then reproduce the proof of Lemma
3.6 thanks to the integral properties of the idempotents. It follows that the
standard basis (Γc) is also a basis as an O-module. �

This proves that SrO(Σ) is an order, preserved by the quantum representa-
tion. If the map ΦO : SrO(Σ) → EndO SrO(H) were an isomorphism, it would
follow that the quantum representation preserves the lattice SrO(H) ⊂ Sr(H)
(recall that by lattice we mean a finitely generated O-submodule of Sr(H),
hence without torsion). Although this is not the case, the experts will imme-
diately see that the representation must preserve a lattice. For convenience,
we provide a proof below.

Proposition 4.6. Suppose that Σ has genus g ≥ 3. Then there exists a
lattice Λ ∈ Sr(H) which is (projectively) preserved by Mod(Σ).
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Proof. We suppose that g ≥ 3 to simplify the proof but one can adapt it so
that it works for all g ≥ 1. Recall from [FM12] that Mod(Σ) is a perfect

group as g ≥ 3 and denote by M̃od(Σ) its universal central extension (by

Z). By the universal property, there is a lift ρ̃ : M̃od(Σ) → GL(Sr(H)).

Composing with the determinant map and observing that M̃od(Σ) is also
perfect, we can replace ρ with the following representation:

ρ̃ : M̃od(Σ)→ SL(Sr(H)).

The cokernel of the map ΦO is a finitely generated torsion O-module.
Hence one can write Coker ΦO =

⊕m
i=1R/P

αi
i where P1, . . . , Pm are prime

ideals in O and the α1, . . . , αm are positive integers. Fix i ∈ {1, . . . ,m},
and denote by Ki the Pi-adic completion of K and Oi its valuation ring.
We also denote by vi : K×i → Z the valuation and chose a uniformizer
πi ∈ O such that vi(πi) = 1. Fixing a basis of SrO(H), we may view ρ̃ as a
representation in SLn(Ki). If we set SrOi(Σ) = SrO(Σ) ⊗ Oi and denote by
Φi : SrOi(Σ)→Mn(Oi) the natural map, our assumptions imply that

παii Mn(Oi) ⊂ Φi(SrOi(Σ)) ⊂Mn(Oi).
As ρ̃ preserves Φi(SrOi(Σ)) by conjugation, we get

(3) ρ̃(f)Mn(Oi)ρ̃(f)−1 ⊂ 1

παii
Mn(Oi) for any f ∈ M̃od(Σ).

As Oi is a principal ideal domain, the invariant factors theorem implies that
one can write ρ̃(f) = K1AK2 where K1,K2 ∈ SLn(Oi) and A is a diagonal
matrix with entries a1, . . . , an ∈ Ki. As Mn(Oi) is invariant by conjugation
by K1 and K2, we get the same equation as (3) if we substitute ρ̃(f) with
A.

This equation implies vi(ara
−1
s ) ≥ −αi for all r, s ∈ {1, . . . , n}. Hence we

have |vi(ar) − vi(as)| ≤ αi for all r, s and
∑
vi(ar) = 0 because detA = 1.

This shows vi(ar) ≥ 1−n
n αi ≥ −αi. Recalling that ρ̃(f) = K1AK2, we get

finally ρ̃(f) ∈ 1
π
αi
i

Mn(Oi). Writing D =
∏m
i=1 π

αi
i ∈ O, we get ρ̃(f) ∈

1
DMn(O).

Consider Λ the O-submodule of Sr(H) generated by ρ̃(f)SrO(H) for f ∈
M̃od(Σ). We found SrO(H) ⊂ Λ ⊂ 1

DS
r
O(H) hence Λ is a lattice, obviously

preserved by ρ̃. �

Remark 4.7. One can get information on the denominator D provided by
the proof by the following observation. Take P a prime ideal in O with
residue field k. Tensoring the integral reduced skein module with k gives yet
a new version of the theory, in particular a map Φk : Srk(Σ) → EndSrk(H).
The proof that Φk is an isomorphism works provided that the Π-matrix
of Proposition 3.13 is invertible over k. Hence D can be chosen to be a
power of −2r/(A2 − A−2)2. This simplifies further once we notice that
r = (A2 −A−2)r−1 modulo a unit of O.
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One can find a lattice which is free as a O-module and find an explicit
basis, see [GM07]. This integral structure gives the most interesting appli-
cations of the quantum representations, see [GM17, MR12, KS16].

4.4. Marked points. The theory extends to the case where the surface is
endowed with colored marked points. A collection of marked points on a
surface Σ indexed by I is a family of embeddings φi : [0, 1]2 → Σ for i ∈ I
with disjoint images. The colors of the marked points are given by a map
c : I → {0, . . . , r − 2} which correspond the the system of arcs

P =
⋃
i∈I

φi(Pc(i)).

We define the element fc ∈ Sr(Σ, P ) by the formula fc =
⊗

i∈I φi(fc(i)).
This is an idempotent in the algebra Sr(Σ, P ) where the product is given as
usual by stacking. We then define the subalgebra

Sr(Σ, c) = fcSr(Σ, P )fc ⊂ Sr(Σ, P ).

Given a handlebody H with boundary Σ, this algebra acts on Sr(H, c) =
Im(Φ(fc)) ⊂ Sr(H,P ) and we can show the following proposition.

Proposition 4.8. The natural action of Sr(Σ, c) on Sr(H, c) induces an iso-
morphism Sr(Σ, c) ' EndSr(H, c). In particular, the mapping class group
Mod(Σ, P ) which is the identity on φi([0, 1]2) acts on Sr(Σ, c) by automor-
phisms, which produces a projective representation

ρc : Mod(Σ, P )→ PGL(Sr(H, c)).

Moreover, one can show that the reduced colored skein module Sr(H, c)
has a basis given by skein expansions of graphs Γ embedded in H with
univalent vertices lying on the marked points. The r-admissible colorings of
these graphs are colorings which coincide with c on the boundary points.

For instance, in the case of the once-punctured torus, one can consider
the banded graph shown in Figure 1. If one gives the color c to the marked
point, the color a of the remaining edge should satisfy c ≤ 2a ≤ 2r − 4− c.
Hence, most of what we showed in these notes generalise to the case of
marked points.

References

[AM] N. A’Campo and G. Masbaum. A package that computes the matrices of
the action of the mapping class group on Verlinde modules of a surface
http://www.geometrie.ch/TQFT/

[BHMV95] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel. Topological quantum
field theories derived from the Kauffman bracket. Topology 34 (1995), no. 4, 883-927

[D16] R. Detcherry. Asymptotic formulae for curve operators in TQFT. Geom. Topol. 20
(2016), no. 6, 3057-3096.

[FM12] B. Farb and D. Margalit. A Primer on Mapping Class Groups. Princeton Mathe-
matical Series, 49. Princeton University Press, Princeton, NJ, 2012.

[GM07] P. M. Gilmer and G. Masbaum. Integral lattices in TQFT. Ann. Sci. École Norm.
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