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1 Introduction

The purpose of this note is to prove the following theorem.

Theorem 1. Let G be a finite group acting freely on a compact oriented surface
S by homeomorphisms preserving the orientation. There exists a G-invariant
Lagrangian subspace in H1(S,Z).

A Lagrangian subspace is a free abelian subgroup L of H1(S,Z) of rank g,
where g is the genus of S satisfying the following extra assumptions. It is a free
summand, meaning that there exists M ⊂ H1(S,Z) such that L⊕M = H1(S,Z),
and it is isotropic, meaning that x · y = 0 for and x, y ∈ L where · is the
intersection pairing on H1(S,Z).

The topological meaning of this theorem is that G can act in a unique way
on the rational homology of a surface, together with its intersection form.

Corollary 1. Let G be a finite group acting freely on two compact oriented
surfaces S1 and S2 of the same genus by homeomorphisms preserving the ori-
entation. There exists a G-equivariant linear map H1(S1,Q)→ H1(S2,Q) pre-
serving the intersection form.

In this way, it is a symplectic straightening of a celebrated theorem of Cheval-
ley and Weil stating that for any free action of G on S one has H1(S,Q) =
Q2 ⊕ Q[G]2g−2 as Q[G]-modules (see [2, 5]). When G is abelian, a complete
classification of G-actions on surfaces has been obtained by Edmonds in [3].
This problem seems to have not been addressed before. Its proof uses a mixture
of arguments coming from various fields, all of which are commonly used in
surgery theory. Let us give an overview of its steps, which gives also the plan
of the note.

1. We define a Witt group W−G (Q) for symplectic Q-vector space with an
action of G: the theorem states that the class of H1(S,Q) vanishes in
W−G (Q) whatever be the group G and its action on S.

2. A bordism argument: the action of G on S defines a fundamental class
[S/G] in H2(G,Z) and the class of H1(S,Q) in W−G (Q) only depends on
[S/G]. At this point we hoped to find an interesting map H2(G,Z) →
W−G (Q). The sequel consists in proving that this map vanishes.
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3. We decompose H1(S,Q) into pieces corresponding the the irreducible ra-
tional representations of G.

4. From the fact that H2(G,Z) is a torsion group and that W−G (Q) only has
2-primary torsion, we reduce the proof to the case of 2-groups.

5. We invoke results on rational representations of 2-group, precisely a the-
orem of Fontaine extending results of Roquette and Witt, to reduce the
result to four families of 2-groups for which the result is easily proved.

The question arose when studying representations of mapping class groups
of surfaces on the homology of their finite covers. Consider G as a subgroup of
Mod(S), the mapping class group of S, and let Γ be its normalizer. Elements
of Γ act on the quotient S/G, giving a map Γ → Mod(S/G) whose kernel is G
and whose image has finite index. The problem of identifying the image of the
symplectic representation ρ : Γ→ Sp(H1(S,Z)) has deserved a lot of attention,
see for instance [7, 5].

A modest consequence of our result is that one can describe in any case the
target group of ρ as the group SpG(L ⊕ L∗) where L = Q ⊕ Q[G]g−1. The
question whether the image of ρ is commensurable to the sugroup of integral
points stays a major one in the theory of representations of the mapping class
group, implying in particular the Ivanov conjecture, see [9].

To end this introduction, we would like to raise an analogy, pointed out by
Mathieu Florence. Given a finite Galois extension K of Q with group G, one
may ask if one can find a normal basis (i.e. of the form (gx)g∈G for some x ∈ K)
which is orthonormal for the trace form trK/Q. A theorem of Bayer and Lenstra
shows that it holds if G has odd order, see [1]. Both the statement and the
proof show a deep analogy with the main result of this note.

Acknowledgements: We would like to thank Arthur Bartels, Ian Hamb-
bleton, Wolfgang Lück, Oscar Randal-Williams for sharing their expertise and
Mathieu Florence for his support and interest.

2 The Witt group W−
G (Q)

As the notation suggest, we could replace Q by any field whose caracteristic
does not divide twice the cardinality of G. We refrain from doing this for the
sake of brevity.

Definition 1. A symplectic Q[G]-module is a finite dimensional Q-vector space
V , endowed with a symplectic form and an action of G which preserves the form.

It is called metabolic if there exists a G-invariant Lagrangian L ⊂ V .

We say that two symplectic Q[G]-modules V and W are Witt-equivalent if
one can find two metabolic Q[G]-modules E and F such that V ⊕E is isomorphic
to W ⊕ F . We will write V ∼W .

For instance, denote by −V the vector space V with the opposite symplectic
form and the same action. One check that V ⊕ (−V ) is metabolic, which shows

2



that the set of Witt-equivalence classes of symplectic Q[G]-modules form a group
with respect to the direct sum : we denote it by W−G (Q).

Remark 1. We can alternatively define a symplectic Q[G]-module as a Q[G]-
module V with a map ωG : V × V → Q[G] satisfying ωg(gx, hy) = gω(x, y)h−1

and ωG(y, x) = −ω(x, y) where we have set g = g−1. The form ωG is constructed
from a G-invariant symplectic form ω by putting

ωG(x, y) =
∑
g∈G

ω(x, gy)g.

In this form, the Witt group W−G (Q) is isomorphic to the standard skew-symmetric
Witt group of the ring with involution Q[G], usually denoted by W−(Q[G]).

The following lemma, adapted to our purposes, is the heart of the Witt
cancellation theorem.

Lemma 1. Let V be a symplectic Q[G]-module and I, J be two G-invariant
coisotropic subspaces, meaning that I ⊂ I⊥ and J ⊂ J⊥. Then I⊥/I⊕−(J⊥/J)
is metabolic.

Proof. The proof consists in showing that the image ∆ of the diagonal map
I⊥ ∩ J⊥ → (I⊥/I) ⊕ −(J⊥/J) is a G-invariant Lagrangian. It is left to the
reader.

As a consequence of this lemma, a symplectic module V vanishes in W−G (Q)
if and only if it is metabolic. Indeed, suppose that V ⊕W contains a Lagrangian
L and W contains a Lagrangian Λ. Take I = V ⊕Λ and J = L so that I⊥/I = V
and J⊥/J = 0. Lemma 1 claims that V is metabolic.

Suppose now that V = L ⊕ L′ contains two G-invariant transverse La-
grangians. The symplectic form gives an isomorphism L′ ' L∗ which has to
be G-invariant. We say that the symplectic Q[G]-module is hyperbolic. The
following lemma states that any metabolic Q[G]-module is hyperbolic.

Lemma 2. If L is a G-invariant Lagrangian in a symplectic Q[G]-module V ,
there exists a G-invariant Lagrangian transverse to L.

Proof. Forgetting the G-action, it is known that the set of Lagrangians trans-
verse to L is naturally an affine vector space directed by S2L. The stabilizer
of L in the symplectic group acts on this space by affine transformations. A
G-invariant transverse Lagrangian is obtained by considering the barycenter of
the G-orbit of any Lagrangian transverse to L.

3 A bordism argument

Suppose that G acts on the right and freely on S: the quotient map S → S/G is
a principal G-bundle, hence classified by a map f : S/G→ BG. Its fundamental
class is the class f∗([S/G]) ∈ H2(BG,Z) = H2(G,Z).
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Let us rephrase this using covering spaces, supposing that the quotient S/G
is connected. It forces us to make use of the following more suggestive notation.
Let p : S̃ → S be Galois covering with group G where S is a connected compact
oriented surface. Its monodromy is a morphism ρ : π1(S)→ G which determines
the covering completely.

As H2(π1(S),Z) = H2(S,Z) is generated by the fundamental class [S] we de-
fine the fundamental class of the covering to be the element ρ∗([S]) ∈ H2(G,Z).

Proposition 1. Given a finite group G, there exists a unique map

ΦG : H2(G,Z)→W−G (Q)

such that for any Galois covering p : S̃ → S with monodromy ρ : π1(S) → G,

the class of H1(S̃,Q) in W−G (Q) is equal to ΦG(ρ∗([S])).

Proof. Given any group G, we denote by BG a K(G, 1)-space and consider the
bordism group Ω2(BG). It is generated by pairs (S, f) where S is a compact
oriented surface and f : S → BG is a continuous map, considered up to ho-
motopy. Recall that if S is connected, it is equivalent to give f or to give a
representation ρ = f∗ : π1(S)→ G up to conjugation.

We add the relation (S1 q S2, f1 q f2) ∼ (S1, f1) + (S2, f2) and for any
compact oriented 3-manifold M with boundary and map f : M → BG,

(∂M, f |∂M ) ∼ 0.

It is well-known that the map Ω2(BG)→ H2(G,Z) given by (S, f) 7→ f∗([S])
is an isomorphism. This can be proved by hand or as a by-product of the Atiyah-
Hirzebruch spectral sequence.

Using this point of view, the proposition reduces to showing that the map
sending (S, ρ) to the Witt class ofH1(S̃,Q) induces a linear map ΦG : Ω2(BG)→
W−G (Q).

If S is not connected, we define ΦG(S, f) to be the sum of the image of
its connected components. In this way, the first relation in Ω2(BG) is trivially
satisfied. We only need to show that if M is a connected 3-manifold with
boundary and ρ : π1(M) → G is a morphism, then H1(S̃,Q) is metabolic. For

that, we consider the G-covering M̃ →M corresponding to ρ.
The natural map H1(S̃,Q) → H1(M̃,Q) is G-equivariant and its kernel is

Lagrangian by Poincaré duality. Hence H1(S̃,Q) is metabolic as claimed.

4 Decomposition of the homology of the cover

4.1 Homology with twisted coefficients

Let p : S̃ → S be a galois G-cover, where G acts on the right. Given any
left Q[G]-module E, we define H∗(S,E) to be the homology of the complex

C∗(S̃,Q)⊗Q[G] E.
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Given two left Q[G]-modules E and F , there is an intersection product
H1(S,E)×H1(S, F )→ H0(S,E ⊗ F ) where E ⊗ F is the usual tensor product
over Q endowed with the diagonal action of G. It is defined as follows: sup-
pose that α, β are two 1-simplices in S̃ whose projections in S are transversal.
Denoting by εp(α, β) the sign of the intersection of α and β at p, we have:

α⊗ e · β ⊗ f =
∑
g∈G

∑
p∈α∩βg

εp(α, βg) p⊗ e⊗ g−1f. (1)

Our main example will be Q[G], viewed as a Q[G]-bimodule: it gives the

isomorphism of right Q[G]-modules H1(S̃,Q) = H1(S,Q[G]). Composing the
above product with the pairing Q[G] × Q[G] → Q given by 〈g, h〉 = 1 if g = h
and 0 else, gives back the intersection form

H1(S,Q[G])×H1(S,Q[G])→ H0(S,Q) = Q.

4.2 Decomposition into irreducible representations

Fix a finite group G and consider a family (ρi : G → GL(Vi))i∈I representing
every isomorphism class of irreducible rational finite dimensional representation.

By the Schur Lemma, the space of endomorphisms of Vi commuting with
ρi(G) is a division algebra, noted Di (setting φψ = ψ ◦ φ for φ, ψ ∈ Di). This
endows Vi with the structure of right Di-module. Averaging a scalar product,
we find that each Vi has an invariant scalar product, giving a G-isomorphism
φi : Vi → V ∗i . The dual space V ∗i has a structure of left Di-module hence,
there exists an involution on Di such that φi(xλ) = λφi(x). This data is better
encoded into a Hermitian form hi : Vi × Vi → Di satisfying for all x, y ∈ Vi and
λ, µ ∈ Di:

hi(xλ, yµ) = λhi(x, y)µ and hi(y, x) = hi(x, y).

Let S be a surface with a representation ρ : π1(S) → G: we may consider
as in Section 4.1 the homology H1(S, Vi). It has a structure of right Di-module
and the composition of the intersection form and the Hermitian form gives an
skew-Hermitian form

H1(S, Vi)×H1(S, Vi)→ Di.

These forms may be viewed as elements of a Witt group W−(Di) whose def-
inition is analogous to the definition of W−G (Q). As before, we can define a
map ΦiG : H2(G,Z) → W−(Di) such that for any ρ : π1(S) → G one has
ΦiG(ρ∗[S]) = H1(S, Vi).

In this section, we prove the following reduction.

Lemma 3. If the maps ΦiG : H2(G,Z) → W−(Di) vanish for all rational
irreducible G-modules Vi with Hermitian forms hi : Vi×Vi → Di, then ΦG = 0.

Proof. Recall the Artin-Wedderburn decomposition

Q[G] =
∏
i∈I

EndDi
(Vi) =

⊕
i∈I

Vi ⊗Di
V ∗i .
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We write it in two ways to insist that it is both an isomorphism of algebras and
of Q[G]−Q[G]-bimodules.

The pairing 〈·, ·〉 on Q[G] is G-invariant, hence it induces a G-invariant
map Q[G] → Q[G]∗. As all the Vis are self-dual, this map must preserve the
decomposition. In other terms, the decomposition is orthogonal. Moreover, a
computation shows that the pairing in restriction to EndDi(Vi) has to be

〈f, g〉 =
ni
|G|

tr(fg∗) ∀f, g ∈ EndDi(Vi) (2)

where g∗ is the adjonction with respect to the Hermitian form hi, ni =
dimDi

Vi and Vi has to be though of as a Q-vector space when taking the trace.
Consider now a morphism ρ : π1(S)→ G. We can write

H1(S,Q[G]) =
⊕
i∈I

H1(S,End(Vi)) =
⊕
i∈I

H1(S, Vi)⊗Di
V ∗i .

In the last formula, we applied the universal coefficients theorem to write
H1(S, Vi⊗Di

V ∗i ) = H1(S, Vi)⊗Di
V ∗i , noting that the homology with coefficients

only depends on the left G-action.
By assumption, H1(S, Vi) vanishes in W−(Di) hence there exist Lagrangians

Li ⊂ H1(S, Vi) for all i ∈ I. One can check from Equation 2 that the following
space

L =
⊕
i∈I

Li ⊗Di
V ∗i

is a G-invariant Lagrangian in H1(S,Q[G]), proving the lemma.

5 Reduction to 2-groups

5.1 Induction

Suppose that H is a subgroup of G and we have a morphism ρ : π1(S) → H.
We may compare H1(S,Q[H]) and H1(S,Q[G]) as symplectic Q[G]-modules.

To this aim, we observe that for any symplectic Q[H]-module V , the induced
module IndV = V ⊗Q[H]Q[G] has a natural symplectic structure when viewed as
a direct sum of copies of V indexed by representatives ofH\G. This construction
gives a morphism Ind : W−H (Q) → W−G (Q) and satisfies the following lemma,
whose proof is left to the reader.

Lemma 4. If ρ : π1(S)→ H is a morphism and H is a subgroup of G, then

H1(S,Q[G]) = IndH1(S,Q[H]) ∈W−G (Q).

5.2 Witt groups have 2-primary torsion

We will need the following result:
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Theorem 2. For any finite group G, the Witt group W−G (Q) has only 2-primary
torsion.

This statement seems well-known to specialists although we couldn’t find
a proof of it in the literature. By decomposing into irreducible pieces as in
Section 4.2, it reduces to the same statement for all W−(Di) where the Di’s are
involved in Q[G]. As such, it is proved by Wall in [11]: we follow the formulation
of Ranicki (Proposition 22.11 in [10]).

Theorem 3. Let D be a division ring with involution such that Mn(D) is a
simple factor of Q[G] for some finite group G and some integer n, then W−(D)
is a countable abelian group of finite rank with countable 2-primary torsion only.

Proof. The proof consists in reducing the statement to the case of the standard
Witt group of a field which is classical, see for instance [8]. For the interested
reader, we sketch the steps of the proof.

First case: If D is a field with trivial involution, then W−(D) = 0 as any
symplectic form over a field has a Lagrangian.

Second case: If D is a field with a non trivial involution, pick an element
i ∈ D such that i = −i. The map h 7→ ih induces an isomorphism from
W−(D) to W+(D). Let K denote the subfield of D preserved by the involution.
Jacobson theorem tells that the map h(x, y) 7→ h(x, x) gives an embedding
W+(D)→W+(K), hence the result follows from the case of W+(K).

Third case: If D is not commutative, it is a quaternion algebra over its
center (mainly because D is isomorphic to its opposite thanks to the involu-
tion, see for instance [11]). The proof reduces to the previous case by applying
Jacobson theorem, see [6].

Given a finite group G and a 2-sylow H, we have the following commutative
square:

H2(H,Z)
α //

ΦH

��

H2(G,Z)

ΦG

��

T
vv

W−H (Q)
Ind // W−G (Q)

Here α is the map induced by the inclusion H ⊂ G and T is the transfer map.
Let 2d+ 1 be the index of H in G: we have α ◦ T = (2d+ 1) Id.

Suppose that ΦH is trivial. Given x ∈ H2(G,Z), the equation above and
the commutativity of the diagram gives (2d + 1)ΦG(x) = 0. By Theorem 2,
multiplying by an odd number is injective in W−G (Q), hence ΦG(x) = 0. This
shows that if ΦG is trivial for all 2-groups G, then it is trivial for any finite
group.
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6 The case of 2-groups

6.1 Special 2-groups

We consider the following list of 2-groups together with their unique rational
irreducible and faithful representation E. They represent all possible extensions
of Z/2Z by Z/2n−1Z.

6.1.1 Cyclic group

The group C2n = 〈x|x2n

= 1〉 (n ≥ 1) acts on E = Q(ζ) by xu = ζu where ζ
has order 2n. The action commutes with the involution defined by ζ = ζ−1.

6.1.2 Dihedral group

In the remaining examples, we choose a root ζ of order 2n−1. The group D2n =
〈x, y|x2n−1

= y2 = 1, yxy−1 = x−1〉 (n ≥ 2) acts on Q(ζ) by xu = ζu and
yu = u. Viewing Q(ζ) as a 2-dimensional vector space E over Q(ζ + ζ−1) gives
the unique faithful rational representation of D2n. It preserves a quadratic form
over Q(ζ + ζ−1) for which 1, i is an orthogonal basis.

6.1.3 Semi-dihedral group

The group SD2n = 〈x, y|x2n−1

= y2 = 1, yxy−1 = x2n−2−1〉 (n ≥ 4) acts on
Q(ζ)2 by x(u, v) = (ζu,−ζ−1v) and y(u, v) = (v, u), preserving the standard
Hermitian form. Setting E to be the Q(ζ − ζ−1)-vector space generated by the
SD2n orbit of (1, 1), we get a faithful representation defined over Q(ζ − ζ−1)
preserving the standard Hermitian form over that field.

6.1.4 Generalized quaternion group

The group Q2n = 〈x, y|x2n−2

= y2 = (xy)2〉 (n ≥ 3) acts on Q(ζ)2 by x(u, v) =
(ζu, ζ−1v) and y(u, v) = (−v, u). The image of Q(ζ + ζ−1)[Q2n] in M2(Q(ζ))
is isomorphic to the quaternion algebra E = H ⊗ Q(ζ + ζ−1) where H is the
standard quaternion algebra over Q. The action of Q2n by left multiplication
is the unique irreducible faithful representation of Q2n.

6.2 General 2-groups

Let us recall the following theorem due to Fontaine, see [4, Theorem 1.3].

Theorem 4. Let G be a 2-group and V be an irreducible Q[G]-module. Then
there exists subgroups K C H of G such that H/K is isomorphic to one of
the 4 families of groups of Section 6.1 and V = Q[G] ⊗Q[H] E where E is
the corresponding faithful irreducible representation, viewed as a Q[H]-module
through the quotient map H → H/K.
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Let us prove now that ΦG = 0 for any finite 2-group G. From Lemma 3, it
is sufficient to prove that H1(S, V ) = 0 in W−(D) for any map π1(S)→ G and
any irreducible rational representation V of G with division algebra D.

Let H,K,E be as in Fontaine Theorem and denote by D the division algebra
involved in E. One has

H1(S, V ) = H1(S,Q[G]⊗Q[H] E) = H1(S′, E)

where S′ = S̃/H is the intermediate covering of S with Galois group H. More-
over, this isomorphism preserves the skew-Hermitian forms and the homology
group H1(S′, E) can defined directly through the composition π1(S′) → H →
H/K.

In particular, we can suppose that G is one of the groups in the list and E
is the corresponding irreducible faithful representation.

In the cases G = C2n, SD2n and Q2n we have H2(G,Z) = 0 which proves
that H1(S′, E) vanishes in W−(D).

Let us treat the remaining case of G = D2n. In this case D = Q(ζ + ζ−1)
with trivial involution. The group W−(D) is then trivial as any symplectic
vector space over a field has a Lagrangian.
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