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Introduction

Given a finitely generated group Γ, its character variety will be
informally the space

X (Γ) = Hom(Γ, SL2(C))/SL2(C)

Character varieties have many applications including

I Geometrization in dimension 2: Teichmüller spaces of surfaces.

I Geometrization in dimension 3: hyperbolic manifold have a
”geometric representation” into SL2(C).

I 3-dimensional topology via ”Culler-Shalen” theory:
exceptional surgeries, Smith theorem, etc...

I Topological quantum field theory (Jones polynomials) is a
”quantization” of character varieties.
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Plan of the talk

First Part: Algebraic geometry of character varieties

I Construction as an algebraic quotient

I The skein module construction

I A theorem of K. Saito and its consequences

I Reidemeister torsion as a rational volume form

Second part: Skein module at first order

I Symplectic structure of character varieties of surfaces

I Character varieties of 3-manifolds with boundary

I A conjecture on the skein module at first order

I Formal second derivative and self intersection
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The structure of the character variety is that of a scheme. This
non-naive point of view has the following motivations:

I Study unreduced points: the tangent space of a representation
has a topological interpretation.

I Character varieties are ”defined over Z”. Its arithmetic
properties should have relations with topology.

I The algebra defining the character variety has a topological
interpretation (skein algebra).
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The GIT quotient

Fix a ring k with characteristic 0 once for all and set

A(Γ) = k[X γ
i ,j , i , j ∈ {1, 2}, γ ∈ Γ]/(det(X γ)− 1,X γδ − X γX δ)

This algebra defines the representation variety thanks to the
following universal property for any k-algebra R:

Homk−alg(A(Γ),R) = Hom(Γ,SL2(R))

Definition

Let SL2(k) act on the space Hom(Γ,SL2) by conjugation. We
define the character variety of Γ and denote by X (Γ) the spectrum
of the algebra A(Γ)SL2 of invariants.
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Standard arguments of Geometric Invariant theory implies the
following theorem:

Theorem

If k is algebraically closed, there is a bijection between the
following sets:

- The k-points of X (Γ) or equivalently Homk−alg(A(Γ)SL2 , k)

- The closed orbits of SL2(k) acting on Hom(Γ, SL2(k))

- The conjugacy classes of semi-simple representations of Γ into
SL2(k)

- The characters of representations in Hom(Γ,SL2(k)).

The scheme structure is encoded in the algebra A(Γ)SL2 . What are
generators and relations for this algebra?
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The skein algebra

Definition

We define the skein character variety Xs(Γ) as the spectrum of

B(Γ) = k[Yγ , γ ∈ Γ]/(Y1 − 2,Yαβ + Yαβ−1 − YαYβ with α, β ∈ Γ)

I B(Γ) is a finitely generated k-algebra.

I Any representation ρ : Γ→ SL2(k) gives rise to an algebra
morphism χρ : B(Γ)→ k by the formula χρ(Yγ) = Tr ρ(γ).

Remark

This is a consequence of the famous trace relation:

Tr(AB) + Tr(AB−1) = Tr(A) Tr(B) ∀A,B ∈ SL2(k)
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The character of the tautological representation ρ : Γ→ SL2(A(Γ))
defined by ρ(γ) = X γ gives a map

Φ : B(Γ)→ A(Γ)SL2

Theorem (P,B-H, P-S)

The map Φ is an isomorphism.

I Up to nilpotent elements in D. Bullock. Rings of
SL2(C)-characters and the Kauffman bracket skein module.
Comment. Math. Helv., 72, no.4, (1997), 521-542.

I J. H. Przytycki and A. S. Sikora. On skein algebras and
SL2(C)-character varieties. Topology, 39, (2000) citing

I G. W. Brumfiel and H.M. Hilden. SL2-Representations of
Finitely Presented Groups. Contemporary Mathematics, 187,
American Mathematical Society, Providence (1995) citing

I C. Procesi. A formal inverse to the Cayley-Hamilton Theorem.
Journal of algebra, 107, (1987), 63-74.
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The Kauffman bracket
If M is an oriented compact 3-manifold (maybe with boundary),
there is a topological interpretation of the algebra B(Γ).
Let R be a ring and t ∈ R× be an invertible element. We define
S(M, t) as the free R-module generated by banded links in M
quotiented by the relations

= t +t−1

= (−t2 − t−2) ∅

Proposition

If R = k and t = −1 then S(M,−1) ' B(Γ) (disjoint union
product) where Γ = π1(M).
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Let Σ be a surface (maybe with boundary) and L be a banded link
in M = Σ× [0, 1]. By resolving crossings of the projection on Σ
and removing trivial circles one get the following

Theorem

The skein module S(M, t) is a free R-module generated by
multicurves (embedded curves in Σ without trivial components).

Application

One has X (F2) = A3.

Proof.

Set F2 = 〈a, b〉 be the fundamental group of Σ, a disc with two
holes. A multicurve is a disjoint union of copies of a, b and ab,
hence B(F2) = k[Ya,Yb,Yab].
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K. Saito’s theorem

Lemma (Culler-Shalen)

A representation ρ : Γ→ SL2(k) is absolutely irreducible if and
only if there exists α, β ∈ Γ such that Tr ρ[α, β] 6= 2.

Definition

Set ∆α,β = Y[α,β] − 2 = Y 2
α + Y 2

β + Y 2
αβ − YαYβYαβ − 4

Theorem

Let R be a k-algebra, φ : B(Γ)→ R an algebra morphism,
α, β ∈ Γ, A,B ∈ SL2(R) such that

I φ(∆α,β) ∈ R×

I Tr A = φ(Yα),Tr B = φ(Yβ) and Tr(AB) = φ(Yαβ).

Then, there exists a unique representation ρ : Γ→ SL2(R) such
that ρ(α) = A, ρ(β) = B and Tr ρ(γ) = φ(Yγ) for all γ ∈ Γ.
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Idea of the proof:

I Set E1 = Id ,E2 = A,E3 = B,E4 = AB.
Compute det(Tr(EiEj)) = −φ(∆α,β)2 and deduce that these
matrices form a basis of M2(R).

I Given γ ∈ Γ, the traces Tr(ρ(γ)Ei ) are prescribed by φ.
Hence, one can write ρ(γ) in the basis (Ei ).

I Show that the formula obtained above is indeed a
representation of Γ.

Application

If k is algebraically closed, a point of Xs(Γ) is the character of a
representation ρ : Γ→ SL2(k).

Proof.

Set A =

(
φ(Yα) −1

1 0

)
and B =

(
0 u
−u−1 φ(Yβ)

)
where

u + u−1 = φ(Yαβ). Then apply Saito’s theorem.
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Julien Marché Character varieties and skein modules



Idea of the proof:

I Set E1 = Id ,E2 = A,E3 = B,E4 = AB.
Compute det(Tr(EiEj)) = −φ(∆α,β)2 and deduce that these
matrices form a basis of M2(R).

I Given γ ∈ Γ, the traces Tr(ρ(γ)Ei ) are prescribed by φ.
Hence, one can write ρ(γ) in the basis (Ei ).

I Show that the formula obtained above is indeed a
representation of Γ.

Application

If k is algebraically closed, a point of Xs(Γ) is the character of a
representation ρ : Γ→ SL2(k).

Proof.

Set A =

(
φ(Yα) −1

1 0

)
and B =

(
0 u
−u−1 φ(Yβ)

)
where

u + u−1 = φ(Yαβ). Then apply Saito’s theorem.
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Brauer group

If k is arbitrary, one can solve the equation u + u−1 = φ(Yαβ) only

in a quadratic extension k̂ of k . The space

M(ρ) = Spank{ρ(γ), γ ∈ Γ}

is a central semi-simple k-algebra (indeed a quaternion algebra).

Proposition

Given an irreducible character φ : B(Γ)→ k, there is a
representation ρ : Γ→ SL2(k) with character φ iff [M(ρ)] = 0 in
the Brauer group Br(k).

Example

There is a morphism φ : B(F2)→ Q given by
φ(Yα) = φ(Yβ) = φ(Yαβ) = 1. Is it a character of a representation
ρ : F2 → SL2(Q)?
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Tangent space
Let ρ : Γ→ SL2(k) be a representation and χρ : B(Γ)→ k be its
character. One has by definition the following
TχρX (Γ) = {D : B(Γ)→ k ,D(fg) = D(f )χρ(g) + χρ(f )D(g)}.

Theorem

If ρ is absolutely irreducible, the morphism z 7→ D where
D(Yγ) = Tr(ρ(γ)z(γ)) from H1(Γ,Adρ) to TχρX (Γ) is an
isomorphism.

Proof.

Construct the inverse map:

I from a derivation D : B(Γ)→ k form the morphism
φε = χρ + εD : B(Γ)→ k[ε]/ε2.

I Invoke Saito’s theorem to find a representation
ρε : Γ→ SL2(k[ε]/ε2) with character φε.

I Set z(γ) = d
dε |ε=0ρε(γ)ρ−1(γ).
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D(Yγ) = Tr(ρ(γ)z(γ)) from H1(Γ,Adρ) to TχρX (Γ) is an
isomorphism.

Proof.

Construct the inverse map:

I from a derivation D : B(Γ)→ k form the morphism
φε = χρ + εD : B(Γ)→ k[ε]/ε2.

I Invoke Saito’s theorem to find a representation
ρε : Γ→ SL2(k[ε]/ε2) with character φε.

I Set z(γ) = d
dε |ε=0ρε(γ)ρ−1(γ).
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Application

Let Γ be a finitely generated group and k be algebraically closed.
The following properties are equivalent.

(i) X irr(Γ) is reduced of dimension 0

(ii) For all irreducible representations ρ : Γ→ SL2(k) one has
H1(Γ,Adρ) = 0.

Example

If ρ is trivial, the previous result does not hold.
However the tangent space of X (Γ) at the trivial representation is
the space of maps f : Γ→ k satisfying the parallelogram identity
for any γ, δ ∈ Γ.

f (γδ) + f (γδ−1) = 2f (γ) + 2f (δ)
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Tautological representations
Let Y be an irreducible component of X (Γ) containing the
character of an irreducible representation.

Question

Can we find a tautological representation i.e. ρ : Γ→ SL2(k(Y ))
such that Tr ρ(γ) = Yγ?

Answer

Let B(Γ)→ k[Y ] be the quotient map. There is an obstruction in
Br(k(Y )) for the existence of a tautological representation. If k is
alg. closed and Y has dimension 1, then Br(k(Y )) = 0.

Example

The trefoil knot has fundamental group Γ = 〈u, v |u2 = v 3〉. The

representation ρ(u) =

(
t −1

−1− t2 −t

)
, ρ(v) =

(
ω 0
0 −ω2

)
is

tautological where ω2 − ω + 1 = 0.
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Reidemeister torsion
Let Γ be the fundamental group of a 3-manifold M with boundary.
Let Y be a component of X (Γ) and ρ : Γ→ SL2(k(Y )) be a
tautological representation.
The Reidemeister torsion of M is an element of

det H0(Γ,Adρ)⊗ det H1(Γ,Ad ρ)∗ ⊗ det H2(Γ,Adρ).

Proposition (Some technical assumptions omitted)

I H1(M,Adρ) ' Ω1
k(Y )/k that is rational differential forms on Y .

I H2(M,Adρ) ' H2(∂M,Adρ) ' H0(∂M,Adρ)∗.

Proposition

Choosing a natural basis for the latter space, one gets the following
The Reidemeister torsion of M on Y , a d-dimensional component
of X (M) is a rational volume form on Y i.e. τ(M) ∈ Ωd

k(Y )/k .
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Julien Marché Character varieties and skein modules



Example

Let M be a genus 2 handlebody.
Its fundamental group is F2 = 〈a, b〉 and its character variety is
B(F2) = k[x , y , z ] where x = Ya, y = Yb, z = Yab. Then

τ(M) =
1

2
dx ∧ dy ∧ dz

Example

Let N be the complement of the figure eight knot.
Its fundamental group is Γ = 〈t, a, b|t−1at = ab, t−1bt = bab〉.
One has:

τ(N) = −dYa − dYb.

Question
I Study poles and residues of the torsion (including at ideal

points).

I Find differential equations satisfied by the torsion (to follow).
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Goldman Bracket
Let Σ be a closed surface. The Goldman bracket is a Poisson
bracket {·, ·} : B(Γ)⊗ B(Γ)→ B(Γ) defined for simple curves γ, δ
intersecting transversely by

{Yγ ,Yδ} =
∑

p∈γ∩δ
εp(Yγp∪δp − Yγp∪δ−1

p
)

{ } = −,

It comes from an (algebraic) symplectic structure ω on X (Σ).
There are two other ways for introducing it

I A cohomological one which will show that the form ω is
non-degenerate.

I A skein module approach which will show that ω is closed.
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Twisted cohomology perspective
Set Γ = π1(Σ) and pick ρ : Γ→ SL2(k) irreducible. Then
TχρX (Γ) ' H1(Σ,Adρ) and the cup product followed by the trace
gives a non degenerate pairing:

ωρ : H1(Σ,Adρ)⊗ H1(Σ,Adρ)→ H2(Σ, k) ' k

This is related to the Goldman bracket by the formula

{f , g}(χρ) = 〈ω−1
ρ , df ∧ dg〉

Remark

If M is a 3-manifold with boundary Σ and ρ : Γ→ SL2(k) is a
representation, the natural map H1(M,Adρ)→ H1(Σ,Adρ) is the
derivative of the restriction map r : X (M)→ X (Σ).

Theorem (Consequence of Poincaré duality)

The image of Dρr : H1(M,Adρ)→ H1(Σ,Adρ) is a Lagrangian
subspace of H1(Σ,Adρ).
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Skein module perspective
Let M = Σ× [0, 1] and R = k[t, t−1]. The skein module S(M, t)
has the structure of an associative algebra (stacking product): it
becomes commutative when t goes to −1.
Let ε : R → k be the evaluation at −1:

Theorem

For any f , g ∈ S(M, t) one has ε( fg−gft+1 ) = {ε(f ), ε(g)}.

Definition

Let M be a 3-manifold bounding Σ and denote by p the kernel of
the map S(Σ,−1)→ S(M,−1).
This ideal defines the variety r(X (M)) ⊂ X (Σ).

Proposition

The ideal p is Lagrangian in the sense that

∀f , g ∈ p one has {f , g} ∈ p.
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Julien Marché Character varieties and skein modules



The derived skein module

Definition

For a 3-manifold M, we call derived skein module and denote by
S ′(M,−1) the module S(M, t) where we have set R = k[ε]/(ε2)
and t = −1 + ε.

Question

As S(M,−1) represents the character variety X (π1(M)), what
extra structure encodes S ′(M,−1)?

Example

If M = Σ× [0, 1], using the basis given by multicurves, we get an
isomorphism S ′(M,−1) ' S(M,−1)⊗ k[ε]/(ε2). The
multiplication law reads
(f + εf ′) · (g + εg ′) = fg + ε(fg ′ + f ′g + 1

2{f , g})
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Julien Marché Character varieties and skein modules



The derived skein module

Definition

For a 3-manifold M, we call derived skein module and denote by
S ′(M,−1) the module S(M, t) where we have set R = k[ε]/(ε2)
and t = −1 + ε.

Question

As S(M,−1) represents the character variety X (π1(M)), what
extra structure encodes S ′(M,−1)?

Example

If M = Σ× [0, 1], using the basis given by multicurves, we get an
isomorphism S ′(M,−1) ' S(M,−1)⊗ k[ε]/(ε2). The
multiplication law reads
(f + εf ′) · (g + εg ′) = fg + ε(fg ′ + f ′g + 1

2{f , g})
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A conjecture on the derived skein module
Let M be a 3-manifold with boundary Σ and let BΣ ' Σ× [0, 1]
be a tubular neighborhood of Σ in M.
Let p′ be the kernel of the map induced by the inclusion
S ′(BΣ,−1)→ S ′(M,−1). An element of p′ reads f + εf ′ with
f ∈ p.

Definition

The quotient RY = S(BΣ,−1)/p is the ring of functions on
Y = r(X (M)), a Lagrangian submanifold of X (Σ). Given f ∈ p,
the equation ω(Xf , ·) = df defines a vector field Xf on Y called
Hamiltonian vector field of f .

Conjecture

I There is an algebraic operator P from vector fields on Y to
functions on Y such that f + εf ′ ∈ p′ ⇐⇒ f ′ = P(Xf ).

I This operator is determined by the Reidemeister torsion
through the equation P(X ) = divτ (X ) = LX τ

τ .
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Julien Marché Character varieties and skein modules



Evidences

Example (The handlebody)

If H is a handlebody with boundary Σ and γ is a curve on Σ
bounding a disc in H then Yγ − 2 ∈ p′ by the first Kauffman
relation.
Hence writing f = Xγ − 2 we should have P(Xf ) = 0. However
any representation ρ : π1(H)→ SL2(k) satisfies ρ(γ) = Id hence
df = γ ⊗ ρ(γ)0 = 0. This implies that f vanishes identically on
X (H) and Xf = 0.

Remark

The operator P should satisfy P(fX ) = fP(X ) + X · f .
If f + εf ′ ∈ p′, and g + εg ′ ∈ S ′(BΣ,−1) then
(f + εf ′) · (g + εg ′) ∈ p′. Hence one should verify
P(Xfg ) = fg ′ + f ′g + 1

2{f , g} = P(Xf )g + Xf · g mod p.
But we check Xfg = fXg + gXf = gXf mod p.
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Motivations

The question comes from asymptotics of quantum invariants. Let
K be a knot in S3 and (JK

l ) be the sequence of colored Jones
polynomials. We let L and M act on such sequences by the
formulas

(Lf )l = fl+1, (Mf )n = t2nfn.

Theorem (q-holonomic Garoufalidis-Le)

There exists a non-commutative polynomial A such that

A(t, L,M)JK = 0.

Conjecture (AJ-conjecture)

Let p be the kernel of the inclusion S(BΣ,−1)→ S(S3 \ K ,−1).
The set of polynomials A(−1, L,M) for A annihilating the colored
Jones polynomial generates p.
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Proposition

Writing t = −1 + ε+ o(ε), one has A = f + εf ′ = o(ε). The
quantum polynomial A annihilates JK at first order iff f + εf ′ ∈ p′.

Remark
I The conjecture on the derived skein module states that the

derived A-polynomial is related to the A-polynomial through
the Reidemeister torsion.

I Such formulas are already conjectured by S. Garoufalidis, S.
Gukov and T. Dimofte. We give here a more precise form.

I The relation between derived A-polynomial and torsion should
shed some light on both invariants which are not fully
understood.

Julien Marché Character varieties and skein modules



Proposition

Writing t = −1 + ε+ o(ε), one has A = f + εf ′ = o(ε). The
quantum polynomial A annihilates JK at first order iff f + εf ′ ∈ p′.

Remark
I The conjecture on the derived skein module states that the

derived A-polynomial is related to the A-polynomial through
the Reidemeister torsion.

I Such formulas are already conjectured by S. Garoufalidis, S.
Gukov and T. Dimofte. We give here a more precise form.

I The relation between derived A-polynomial and torsion should
shed some light on both invariants which are not fully
understood.
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Julien Marché Character varieties and skein modules



The 2-jet of the holonomy function

Let M be a 3-manifold and γ be a knot in M. For a 1-form
α ∈ Ω1(M,SL2(C)), its holonomy may be computed through

Tr Holγ α =
∑
n≥0

∫
0<t1<···<tn<1

Tr(α(t1) · · ·α(tn)).

From which we get
Dα Tr Holγ(β) =

∫
γ Tr β Holγ(α) = 〈β, γ ⊗ ρ(γ)0〉. Where

γ ⊗ ρ(γ)0 ∈ C1(M,Adρ) is a twisted cycle.
In the same way we have

D2
α Tr Holγ(β1, β2) =

∫
γ×γ

Tr(β1 Holγ(α)′β2 Holγ(α)′′)

We will interpret this formula with the help of a twisted 2-chain.
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The formal second derivative

Let γ be a curve in M and γ+ be a parallel of γ.

Definition

For a manifold N we denote by C2N the space N2 blown-up along
the diagonal. We denote by SN the preimage of the diagonal.

Definition

Let ρ : π1(M)→ SL2(k) be an irr. representation. We endow
C2M with the coefficient system Bilρ of bilinear maps on SL2(k).

Definition

The z2(γ) is the twisted-two chain supported by C2γ which
associates to ξ ∈ (Adρ)x and η ∈ (Adρ)y the element Tr(ξAηB)
where A (resp. B) is the holonomy of ρ from x to y (resp. from y
to x).
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Proposition

I One has ∂z2γ = γ ⊗ φ where φ(ξ, η) = Tr(ρ(γ)[ξ, η]). Hence
z2(γ) ∈ Λ = H2(C∗(C2M,Bilρ)/C∗(SM,Altρ))

I The map γ → k + εΛ given by γ 7→ −Tr ρ(γ) + εz2(γ) is a
well-defined morphism.

Remark
I The cycle z2(γ) may be seen both like a formal second

derivative of the trace function Yγ and the ”linking number”
Lk(γ, γ+).

I This construction proves half of the conjecture, i.e. the
existence of the operator P.

I If M is closed and H1(M,Adρ) = 0 then Λ ' k, generated by
the fiber of SM → M. This gives an interpretation of the
derived Kauffman bracket in that case.
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