
TWISTED LAX–OLEINIK FORMULAS AND WEAKLY COUPLED

SYSTEMS OF HAMILTON–JACOBI EQUATIONS

MAXIME ZAVIDOVIQUE

Abstract. We show that viscosity solutions of evolutionary weakly coupled sys-
tems of Hamilton–Jacobi equations can be approximated by iterated twisted Lax–
Oleinik like operators. We establish convergence to the solution of the iterated
scheme and discuss further properties of the approximate solutions.

Introduction

Representation formulas for solutions of Hamilton–Jacobi equations with Tonelli
Hamiltonians are the starting point of important theories studying the qualitative
properties of the PDE and of the associated dynamical system. Of course, we have
in mind Fathi’s weak KAM theory which builds a bridge between solutions of the
stationary equation (or cell problem) and Aubry-Mather theory which deals with
action minimizing trajectories and measures.

Establishing such a dual point of view has led to striking results, let us mention two
of them: the longtime convergence of solutions of the Hamilton–Jacobi equation (see
for example [14, 11]) and the convergence of solutions to the discounted equations
([10, 17]). For both of those examples, purely PDE proofs were later on found (for
instance in [4, 2, 5, 16] and references therein).

A natural generalization of Hamilton–Jacobi equations are systems of Hamilton–
Jacobi equations and more particularly, weakly coupled systems, meaning that the
coupling only appears on the 0 order terms. Ironically, weak KAM theory for those
systems evolved backward compared to what happened for a single equation. The
study of the critical equation was done first, from a purely PDE angle in [13], before
the dynamical aspects were highlighted ([18, 15]). Recently, Lax–Oleinik formulas,
combined with a random framework were studied for evolutionary equation in [12].
However deterministic approaches had been tried previously without success.

The goal of this paper is to take those deterministic formulas as a starting point
and see how to recover the solutions of the weakly coupled system from them. We
expect the reader to have some familiarity with viscosity solutions, see [1] for an
introduction on the subject.

0.1. Acknowledgement. The author wishes to thank A. Davini, with whom he
started thinking about this problem, for his insight and for enriching conversations.
This research was financed by ANR WKBHJ (ANR-12-BS01-0020).

1. Setting and main result

We will consider d Lagrangians on TN×RN . They will be denoted by Li, 1 6 i 6 d.
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Moreover, for technical reasons, we will make a couple of assumptions on the
growth of the Li and their derivatives.

Definition 1.1. In the following θ : R+ → R+ is a function (called Nagumo func-
tion) such that

∀M > 0, ∃KM > 0, ∀m 6M, ∀q > 0, θ(q +m) 6 KM

(
1 + θ(q)

)
. (N)

We will say that a function L : [0, T ]×TN ×RN is a good Lagrangian if it verifies
the following set of hypotheses

(L1) the Lagrangian L is a C1 function and for all (t, x) ∈ [0, T ] × TN , L(t, x, ·)
is a strictly convex function;

(L2) there exists constants c0 > 0 and A > 0 such that

∀(t, x, v) ∈ [0, T ]× TN × RN , L(t, x, v) > θ(|v|)− c0;
|∂xL(x, v)|+ |∂vL(x, v)| < Aθ(|v|).

We will hence assume that all the Li, 1 6 i 6 d are good Lagangians
(with a common Nagumo function θ and constants A and c0).

Definition 1.2. A matrix B ∈ Md(R) is a coupling matrix if its non–diagonal
entries are non–positive and the sum of the elements of each line is non negative.

It follows from the above definition that the diagonal entries of B verify bii > 0.

We recall that given a Lagrangian L on R+ × TN × RN , such that each L(t, ·, ·)
verifies the above hypotheses, its Hamiltonian is defined by

∀(t, x, p) ∈ R+ × TN × RN , H(t, x, p) = sup
v∈RN

〈p, v〉 − L(t, x, v).

The Hamiltonian is then a strictly convex function of p, it is also superlinear.
In what follows, Hi is the Hamiltonian associated to Li;

Definition 1.3. Let u0 : TN → Rd be a continuous initial datum. The unique
solution (see Proposition 2.6) to the evolutionary equation

∂ui
∂t

+Hi(x,Dxui) +
m∑
j=1

bijuj(t, x) = 0 in (0,+∞)× TN , ∀i ∈ {1, . . . , d}, (1)

with u(0, ·) = u0 will be denoted by (t, x) 7→ S(t)u0(x).

Existence and uniqueness results for this equation are established in [6] under ad-
ditional growth assumptions on the Hamiltonians. Those assumptions are removed
in [12, Proposition A.1].

Definition 1.4. We will denote by W (t) the twisted Lax–Oleinik formula which to
a function u0 associates:

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0
(
γ(−t)

)
+

∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds, (2)

where the infimum is taken over all absolutely continuous curves γ : [−t, 0] → TN
and where L = (Li)i∈[1,d].
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Note that in the previous definition, we use only one infimum to have a synthetic
formula, but there are actually d quantities to minimize hence possibly d different
minimizing curves.

The goal of this note is to show a link between W and S. As is easily seen, one
reason why W differs from S (apart from the fact that it does not provide a solution
of the weakly coupled system in any reasonable sense) is that it does not verify
the semi–group property (or sometimes also referred to as dynamical programming
property; an explicit counterexample is given in appendix). At the contrary, by the
uniqueness of viscosity solutions, S is indeed a semi–group, meaning that for all
s, t > 0 we have S(t+ s) = S(t) ◦ S(s).

Our main result is the following:

Theorem 1.5. Let u : TN → Rd be a Lipschitz function, then for any t > 0, the
following holds:

S(t)u = lim
n→+∞

W (t/2n)2
n
u.

The procedure of considering iterates of W is a natural way of forcing the semi–
group property. It has already appeared, for example making a link between vari-
ational and viscosity solutions associated to non–convex Hamiltonians (in the case
of a single equation). See the works of Wei ([20]) and also of Roos ([19]) for more
details on this subject.

This can also be seen as a result on the convergence of an approximate scheme
for the system. Many results in the literature of viscosity solutions justify that the
result can be expected to be true (see [3]). We will give a self contained proof of our
result in this particular setting which is an adaptation of the previous reference.

2. Preliminaries

2.1. About a single Hamilton–Jacobi equation. Given a continuous function
u : TN → R, let us define the Lax–Oleinik semi–group as follows: if 0 6 s < t and
x ∈ TN then

T t,sL u(x) = inf
γ(t−s)=x

u
(
γ(0)

)
+

∫ t−s

0
L
(
s+ σ, γ(σ), γ̇(σ)

)
dσ.

The infimum in the previous formula is taken amongst absolutely continuous curves
γ : [0, t − s] → TN . Clearly, this family of operators verifies a Markov property,

meaning that if 0 6 s < t < t′ then T t
′,t
L ◦ T t,sL u = T t

′,s
L .

Let us recall hereafter some properties verified by such Lagrangian functions and
their Lax–Oleinik semi–group.

Theorem 2.1. Let u : TN → R be a K-Lipschitz continuous function and L :
[0, T ]× TN ×RN be a good Lagrangian, we define the function U : [0, T ]× TN → R
by U(t, x) = T t,0u(x).

(1) The function U is a viscosity solution to the Cauchy problem{
∂tU +H(t, x,DxU) = 0,

U(0, ·) = u.
(3)

(2) For any x ∈ TN and 0 6 s < t 6 T , the infimum in the definition of the Lax–
Oleinik semi–group is a minimum. Moreover, there exists a constant M > 0
depending solely on θ, c0 and K such that any minimizer γ is M -Lipschitz
and even C1.
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(3) Finally, the function U is Lipschitz continuous (with Lipschitz constants
depending only on θ, c0 and K) in [0, T ]×TN hence it is the unique viscosity
solution to (3).

Remark 2.2. Lipschitz continuity of U is a direct consequence of the Lipschitz
continuity of the minimizing curves. The C1 property of minimizing curves is a
conesquence of the strict convexity of the Lagrangians (see [9, Ex. 18.5 p. 351]).
Actually, finer properties can be obtained, as semi–concavity estimates (see for in-
stance [7, Theorems 6.4.2, 6.4.3 and 6.4.4]) but we will not need them. The fact
that existence of a Lipschitz solution to (3) implies uniqueness is a folklore result
(see [8] and references therein or [12, Proposition A.2]).

2.2. About systems. Recall that the matrix B ∈ Md(R) is a coupling matrix if
its non–diagonal entries are non–positive and the sum of the elements of each line is
non negative. We denote by 1 = (1, · · · , 1)T the vector with all entries equal do 1.

Proposition 2.3. Under the above hypotheses, for all s > 0, the entries of e−sB

are all non–negative.

Proof. This is an immediate consequence of the formula

e−sB = lim
n→+∞

(
Idd −

s

n
B
)n
.

�

It follows from the previous proposition and the fact that the exponential is
smooth that:

Proposition 2.4. Let T > 0, then for all 1 6 i 6 d, the Lagrangian Li(s, x, v) =
[esBL(x, v)]i is a good Lagrangian on [−T, 0]× TN × RN .

Corollary 2.5. For all s > 0, the following inequalities hold:

01 6 e−sB1 6 1.

Proof. The left inequality follows from Proposition 2.3. For the right inequality,
write

d

ds
e−sB1 = e−sB(−B1) 6 01.

It follows that all entries are decreasing as s increases. As equality holds for s = 0
this proves the result. �

We now come back to the Definition 1.3. The fact that such a solution exists and
is unique is a consequence of the following more general comparison principle (see
[12, Proposition 2.5]):

Proposition 2.6. Let u and u be respectively a lower semicontinuous supersolution
and a bounded upper semicontinuous subsolution of (1). Assume they are bounded
on [0, T ]× TN , then u > u on [0, T ]× TN .

Let us now come back to the twisted Lax–Oleinik formula

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0
(
γ(−t)

)
+

∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds.

Using the notation Li(s, x, v) = [esBL(x, v)]i the twisted Lax–Oleinik formula
may be interpreted as follows:
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[W (t)u0(x)]i = T t,0Li(·−t,·,·)[e
−tBu0]i(x).

Hence, as by Proposition 2.4, the Li are good Lagrangians (when restricted to
t ∈ [−T, 0]), Theorem 2.1 applies to the twisted Lax–Oleinik formula.

3. Proof of Theorem 1.5

Definition 3.1. Given n > 0 and t ∈ (0, T ], let us define the iterated operator

Wn(t) = W (s) ◦
(
W (T/2n)

)k
where s > 0 and k > 0 are such that t = kT/2n + s

and s 6 T/2n.

Following [3], we state some fundamental properties of the operators W and Wn.

Proposition 3.2. The operator W verifies the following:

• Monotonous: if u 6 v and t > 0 then W (t)(u) 6W (t)(v),
• Continuity: if k ∈ R then for any function u and t > 0, W (t)(u + k1) =

W (t)(u) + ke−tB1. In particular, W (t) is 1–Lipschitz for the sup norm.

It follows immediately that Wn enjoys the same properties.

The second property follows from Corollary 2.5.
The last property we state is fundamental as it links the operators W with the

original system (1):

Proposition 3.3. The operator W is consistent in the sense that if Φ : TN → Rd
is a C1 function then

lim
t→0+

W (t)Φ− Φ

t
= −H(·, DΦ)−BΦ.

Proof. Let us fix x ∈ TN and i ∈ {1, . . . , d}. For t 6 T , let us denote by γt :
[−t, 0] → TN a curve realizing the minimum in (2) for the i-th equation. Recall
that the curve γt is then C1. Moreover, for any s ∈ [−t, 0], the function x 7→
v(s, x) := T s,0Li(·−t,·,·)[e

−tBu0]i(x) is differentiable at γt(−t+ s) and setting pt(−t+ s)

this differential, the couple (γt, pt) solves Hamilton’s equations with Hamiltonian
function Hi(· − t, ·, ·)

(
associated to the Lagrangian Li(· − t, ·, ·)

)
, see [7, Theorem

6.3.3 and 6.4.7].
We may then compute

[W (t)Φ− Φ]i(x) =
[
e−tBΦ

(
γt(−t)

)
− Φ

(
γ(0)

)
+

∫ 0

−t
esBL

(
γt(s), γ̇t(s)

)
ds
]
i

= −
[(

Φ− e−tBΦ
)(
γ(0)

)]
i

−
∫ 0

−t

( d

ds
v
(
s, γt(s)

)
−
[
esBL

(
γt(s), γ̇t(s)

)
ds
]
i

)
ds

= −
[(

Φ− e−tBΦ
)
(x)
]
i
−
∫ 0

−t
Hi(s, γt, pt)

= [−tBΦ(x)]i − tHi(0, x,Dxϕi) + tε(t)

= [−tBΦ(x)]i − tHi(0, x,Dxϕi) + tε(t),

where ε is a function going to 0 as t→ 0. Note that the function ε depends on t, x,
i, but due to the fact that the Lipschitz constant of γt (and of pt) depends only on
‖DΦ‖∞ the convergence of ε to 0 is uniform with respect to i and x.
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This proves the proposition.
�

As proved in [3], consistency, monotonicity and continuity are enough to ensure
that Theorem 1.5 holds. For the sake of completeness, we reproduce the proof
(adapted to our setting) below:

proof of Theorem 1.5. Let u0 : TN → Rd be a Lipschitz continuous initial data and
T > 0. Let u(t, x) = S(t)u0(x), for (t, x) ∈ [0, T ] × TN . For n > 0 we define
un : [0, T ]× TN → Rd by

un(t, x) = Wn(t)u0(x) = W (r) ◦W (T/2n)ku0(x),

where kT/2n + r = t and 0 < r 6 T/2n, and un(0, ·) = u0. We will in fact prove
that un converges to u as n→ +∞.

Finally, let us set u(t, x) = lim inf un(tn, xn) and u(t, x) = lim sup un(tn, xn)
where the liminf and limsup are taken with respect to sequences tn → t and xn → x.

Obviously, u 6 u. The core of the proof is to show that u (resp. u) is a subsolution
(resp. supersolution) of (1). Proposition 2.6 will then entail the reverse inequality,
proving the convergence.

Let us prove that u is a subsolution, the proof for u being the same. Note
that u is upper semi–continuous. Let i ∈ {1, . . . , d}, (t0, x0) ∈ (0, T ) × TN and
φ : [0, T ) × TN → R be a C1 function such that ui − φ 6 0 attains a global
strict maximum at (t0, x0) by vanishing at this point. It follows there exists an
extraction mn and points (tn, xn) converging to (t0, x0) such that (umn)i−φ attains
a global maximum at (tn, xn) and such that (umn)i(tn, xn) → ui(t0, x0). Denoting
by ξn = (umn)i(tn, xn)− φ(tn, xn) we obtain that ξn → 0 and that (umn)i 6 φ+ ξn.
Write kT/2mn + rn = tn and 0 < rn 6 T/2mn .

Let us fix an ε > 0 and construct a C1 test function Φ : [0, T ] × TN → Rd as
follows: φi = φ, φj > uj + ε/2 for j 6= i and finally Φ(t0, x0) 6 u(t0, x0) + ε1. Up
to taking n large enough, we still have the following property: (umn)j − φj attains
a global maximum at (i, tn, xn).

We then compute

0 =
1

rn

[
(umn)(tn, xn)−W (rn)

[
umn(kT/2mn , ·)

]
(xn)

]
i

>
1

rn

(
ϕ(tn, xn) + ξn −W (rn)

[
Φ(kT/2mn , ·) + ξn1

]
i
(xn)

)
=

1

rn

(
φ(tn, xn)− φ(kT/2mn , xn) + φ(kT/2mn , xn)−W (rn)

[
Φ(kT/2mn , ·)

]
i
(xn)

)
+
ξn
rn

(
1− (e−rnB1)i

)
As rn, ξn → 0 the last term ξn

rn

(
1− (e−rnB1)i

)
converges to 0 as n→ +∞.

By making use of Proposition 3.3 and letting n→ +∞ we infer that

0 >
∂φ

∂t
(t0, x0) +Hi

(
x0, Dxφ(t0, x0)

)
+ [BΦ(t0, x0)]i

>
∂φ

∂t
(t0, x0) +Hi

(
x0, Dxφ(t0, x0)

)
+ [Bu(t0, x0)]i − ε

∑
j 6=i
|bij |.

Letting ε→ 0 shows that u is a subsolution. �
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4. Further properties and extensions of Theorem 1.5

In this final section, we discuss some nice properties of the twisted operators W .
Then we show how to weaken the hypotheses of our main theorem and propose some
possible variations.

4.1. Properties of W .

Proposition 4.1. If a function u : [0, T ] × TN → Rd is a Lipschitz subsolution of
the evolutionary equation then for any t 6 T and any absolutely continuous curve
γ : [−t, 0]→ TN the following holds:

u
(
t, γ(t)

)
− e−tBu

(
0, γ(0)

)
6
∫ t

0
e(s−t)BL

(
γ(s), γ̇(s)

)
ds.

In particular, u
(
t, γ(t)

)
6W (t)u(0, ·). More generally, for any positive integer n

and positive times t1, · · · , tn such that
∑
ti = t,

u
(
t, γ(t)

)
6W (tn) ◦ · · · ◦W (t1)u(0, ·).

Proof. Assume that u is differentiable almost everywhere on the image of γ, then

u
(
t, γ(t)

)
− e−tBu

(
0, γ(0)

)
=

∫ t

0

d

ds
eB(s−t)u

(
s, γ(s)

)
ds

=

∫ t

0
e(s−t)B

[
Bu
(
s, γ(s)

)
+
∂u

∂t

(
s, γ(s)

)
+Dxu

(
s, γ(s)

)
· γ̇(s)

]
ds

6
∫ t

0
e(s−t)B

[
Bu
(
s, γ(s)

)
+
∂u

∂t

(
s, γ(s)

)
+ H

(
γ(s), Dxu

(
s, γ(s)

))
+ L

(
γ(s), γ̇(s)

)]
ds

6
∫ t

0
e(s−t)BL

(
γ(s), γ̇(s)

)
ds.

Note that for the last inequality, we use the fact that all entries of the matrices
e(s−t)B are non negative. The general case is then proved by an approximation
argument of γ by curves on which u is differentiable almost everywhere.

The second point is then the result of a straightforward induction on n. �

Remark 4.2. It can actually be proved that the converse is also true in the above
Proposition (see [12]).

Proposition 4.3. Let u : TN → Rd then, for all s, t > 0,

W (s+ t)u >W (s) ◦W (t)u.
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Proof. Let γ be a curve realizing the infimum for the first component of W (s +
t)u(x). We then have

[W (s+ t)u(x)]1 =
[
e−(t+s)Bu

(
γ(−(t+ s))

)
+

∫ 0

−(t+s)
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]
1

=
[
e−sB

(
e−tBu

(
γ(−(t+ s))

)
+

∫ 0

−t
eσBL

(
γ(σ − s), γ̇(σ − s)

)
dσ
)

+

∫ 0

−s
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]
1

>
[
e−sBW (t)u

(
γ(−s)

)
+

∫ 0

−s
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]
1

> [W (s) ◦W (t)u]1.

�
Notice that in the previous inequality, there is no hope to obtain an equality, for

the curve γ has no reason to realize W (s+ t)u(x) on other coordinates than the first
one.

Corollary 4.4. The sequence Wn(t)u is decreasing with n.

Proof. Using notations of the corollary, let t = kT/2n + s = k′T/2n+1 + s′. Either
s < T/2n+1, then k′ = 2k and s = s′, or T/2n+1 6 s < T/2n, then k′ = 2k + 1 and
s− T/2n+1 = s′. Let us deal with the first case, the second one being similar.

Wn+1(t)u = W s◦W (T/2n+1)2ku = W s◦
(
W (T/2n+1)2

)k
u 6W s◦W (t/2n)ku = Wn(t)u.

Moreover, by proposition 4.1 it is greater than S(t)u. �

Remark 4.5. (1) The previous results explain our choice of subdivision of the
interval [0, T ] in our construction of Wn. Indeed, Theorem 1.5 holds true
for any sequence of partitions such that the length of the subdivisions uni-
formly converge to 0. However, taking nested partitions (as we did) gives a
decreasing family of operators.

(2) The corollary, along with Proposition 4.1 immediately imply that Wnu con-
verges given a Lipschitz function u. One alternative idea of proof would then
be to establish that the limit is itself a subsolution. It would hence be the
solution by maximality. However, to do so, we need to be able to keep track
of the Lipschitz constants of the Wnu which we were not able to do without
requiring much stronger hypotheses on the Lagrangians.

4.2. Weakening the hypotheses of Theorem 1.5. The following Theorem weak-
ens the Lipschitz hypothesis on the initial data u0:

Theorem 4.6. Assume u0 : TN → Rd is a continuous function, then the sequence
W (t/2n)2

n
u0 converges to S(t)u0.

Proof. All the operators S, W and Wn are 1-Lipschitz, hence approximating u0 by
Lipschitz functions and using Theorem 1.5 yields that again,

W (t/2n)2
n
u0 → S(t)u0.

�

Finally, we show how to weaken the hypotheses on the Lagrangians:
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Theorem 4.7. Assume that the Lagrangians Li are Lipschitz continuous, convex
in the p variable and that there exists a Nagumo function θ verifying (N) for which
the Li satisfy (1.1) in the almost everywhere sense.

Then the conclusions of Theorems 1.5 and 4.6 still hold.

Proof. The proof follows from the following simple observations. Assume that L̃ =

(L̃i)i are other Lagrangians such that ‖Li − L̃i‖∞ 6 ε for all 1 6 i 6 d. We infer,

by monotonicity of the Legendre transform, that ‖Hi − H̃i‖∞ 6 ε for all 1 6 i 6 d
(with obvious notations).

We then observe that if u is an initial data, then (t, x) 7→ S̃(t)u(x) − εt1 is a
subsolution for the weakly coupled system (1). Hence, by the comparison principle,

we conclude that S̃(t)u − εt1 6 S(t)u. By a symmetric argument, we infer that

‖S(t)u− S̃(t)u‖ 6 εt.
Moreover, using the explicit formulas defining W , Wn and there analogues for L̃

denoted by W̃ and W̃n we obtain that for any continuous initial data u, we have as

well that ‖W (t)u− W̃ (t)u‖ 6 εt and ‖Wn(t)u− W̃n(t)u‖ 6 εt.
Hence, approximating uniformly L by strictly convex, smooth Lagrangians veri-

fying the hypotheses of theorems 1.5 and 4.6 gives the result. �

4.3. An alternative approximation scheme. We conclude this section by propos-
ing another way of approximating solutions to the weakly coupled system. The
proofs being similar (even simpler with some respect) we omit them and leave them
as an exercise to the motivated reader.

As in some respect, the structure of the schemes below are more simple, the
proofs also work in the case of coupling matrices depending on the space variable.
We henceforth consider a continuous, coupling matrix valued function B : TN →
Md(R).

Definition 4.8. Given a continuous initial condition u0, we define the operator

W(t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tB(x)u0
(
γ(−t)

)
+

∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds.

Theorem 4.9. Let u0 : TN → Rd be a continuous function, then for any t > 0, the
following holds:

S(t)u = lim
n→+∞

W(t/2n)2
n
u.

Remark 4.10. Actually, the proof of consistency of this scheme is easier and the
hypotheses on the Nagumo functions and derivatives of the Lagrangians are not even
needed. Indeed, as the Lagrangians appearing in the operator W are autonomous
(contrarily to the ones in W that depend on time because of the exponential term),
conservation of energy gives the Lipschitz estimates on minimizing curves by only
assuming that each Li is continuous, convex in p and superlinear.

However, this operator is less natural and does not enjoy the nice properties
established for W . And it was not wrongly used in literature.

The last scheme we propose consists in only taking the first terms of the expo-
nential term:

9



Definition 4.11. Given a continuous initial condition u0, we define the operator

W(t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

(
Idd − tB(x)

)
u0
(
γ(−t)

)
+

∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds.

Theorem 4.12. Let u0 : TN → Rd be a continuous function, then for any t > 0,
the following holds:

S(t)u = lim
n→+∞

W(t/2n)2
n
u.

Appendix A. An explicit computation

We conclude this article by giving a very simple example showing W does not
provides the viscosity solution operator. For sake of simplicity and of nice formulas,
we consider here a problem on RN .

We will consider the simple system with H =

(
H1

H2

)
where H1 = H2 = 1

2‖ · ‖
2

on RN and B =

(
1 −1
−1 1

)
. It then holds that

∀t ∈ R, etB =

(
1+e2t

2
1−e2t

2
1−e2t

2
1+e2t

2

)
.

We will also make use of that fact that if H : Rn → R is independent of the first
variable and if p ∈ Rn, then the solution to

∂u

∂t
+H(Dxu) = 0 (4)

with initial condition u(0, x) = 〈p, x〉 is given by

u(t, x) = −tH(p) + 〈p, x〉. (5)

We now proceed to computing

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0
(
γ(−t)

)
+

∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds

= inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0
(
γ(−t)

)
+

∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds. (6)

As there is no exponential term in the integral, in formula (6), we recognize there
a classical Lax–Oleinik formula and we can interpret that both lines of W (t)u0(x)
are respectively solutions at time t of the simple Hamilton–Jacobi equation (4) with
initial conditions, respectively the entries of e−tBu0. It follows that to compute
W (t) we have to compute the solution, at time t, of two classical Hamilton-Jacobi
equations, with initial conditions given by the entries of e−tBu0.

In our case, we take u0(x) =

(
0
〈p, x〉

)
therefore, e−tBu0(x) = 〈p, x〉

(
1−e2t

2
1+e2t

2

)
.

We deduce from (5) that

u(t, x) := W (t)u0(x) =
〈p, x〉

2

(
1− e−2t

1 + e−2t

)
− t‖p‖2

8

(
(1− e−2t)2

(1 + e−2t)2

)
.
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To conclude, we compute that

∂u

∂t
+ H(Dxu) +B(u) = e−2t〈p, x〉

(
1
−1

)
− ‖p‖

2

8

(
(1− e−2t)2

(1 + e−2t)2

)
+
t‖p‖2

2

(
−(1− e−2t)e−2t

e−2t(1 + e−2t)

)
+
‖p‖2

8

(
(1− e−2t)2

(1 + e−2t)2

)
+
〈p, x〉

2

(
1 −1
−1 1

)(
1− e−2t

1 + e−2t

)
− t‖p‖2

8

(
1 −1
−1 1

)(
(1− e−2t)2

(1 + e−2t)2

)
=
t‖p‖2e−4t

2

(
1
−1

)
6= 01.

Hence u is not a solution to the Hamilton–Jacobi system.
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