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Abstract

We give a proof of Ilmanen’s lemma, which asserts that between a

locally semi-convex and a locally semi-concave function it is possible

to find a C1,1 function.

Introduction

This paper is essentially expository in nature. We will give a direct simple
proof of the following fact due to Ilmanen, see [8]: between a locally semi-
convex function (with a linear modulus) f and a locally semi-concave function
(with a linear modulus) g, with f ≤ g everywhere, we can insert a C1,1

function, i.e. we can find a C1,1 function h with f ≤ h ≤ g everywhere, see
Theorem 3.1 below. This problem is of course trivial when f < g everywhere,
and in that case one can find h of class C∞. In his paper [8] Ilmanen sketches
two proofs. There have been since then other proofs, see for example [3].
About the same time we obtained our proof, Patrick Bernard [1] gave a very
nice one using iterated Lasry-Lions regularization.

We give a proof via a result on smoothness of lower convex envelops of
coercive functions, see Theorem 2.3. This result is due to Kirchheim and
Kristensen [9], which itself builds up on the work of Griewank and Rabier
[6]. The authors of the present work discovered independently this fact, and
afterwards were able to point up at the earlier work. It is quite strange that
our scheme to obtain easily Ilmanen’s Lemma from [9] did not materialize
earlier. For sake of completeness we will derive a result on separation of
closed subsets in manifolds that is useful in viscosity theory of PDE’s, see for
example [3], from where we take the essential part of the argument.
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1 Semi-concave functions

For functions defined on an open subset of a Euclidean space, we briefly
recall the definition and properties of a locally semi-concave (or semi-convex)
function for a modulus ω.

Here by modulus ω we mean a continuous non-decreasing concave function
ω : [0, +∞[→ [0, +∞[, with ω(0) = 0. A linear modulus is a modulus t 7→ kt,
where k ≥ 0.

In this work, if O ⊂ R
n, a function f : O → R is said to be semi-concave

with modulus ω if we can find a constant C < +∞, such that for for every
x ∈ O we can find a linear map ℓx : R

n → R satisfying

∀y ∈ O, f(y)− f(x) ≤ ℓx(y − x) + C‖y − x‖ω(‖y − x‖).

We say that f is semi-convex with modulus ω if −f is semi-concave with
modulus ω. Note that a concave (resp. convex) function is semi-concave
(resp. semi-convex) for any modulus ω. The function f : O → R is locally
semi-concave (resp. semi-convex) with modulus ω, if for every x ∈ O, we can
find an open neighborhood Vx of x such that the restriction f |Vx is semi-
concave on Vx (resp. semi-convex) with modulus ω.

More generally, a function f : O → R is said to be locally semi-concave
(resp. convex) if for each x ∈ O, we can find an open neighborhood Vx of x,
and a modulus ωx, such that the restriction f |Vx is semi-concave on Vx (resp.
semi-convex) with modulus ωx.

A standard reference for semi-concave functions is the book [2]. A well
adapted treatment for this work is Appendix A of [5]. Note however that the
definition given here of a semi-concave function with modulus ω is slightly
more general than the one given in [5]. In fact what we call here a semi-
concave function with modulus ω, is a function for which there exists C such
that the function is semi-concave with modulus Cω in the sense of [5]. This
does not make significant difference but it allows to simplify somewhat the
statements.

We make one more observation. If ω : [0, +∞[→ [0, +∞[ is continuous
non-decreasing, and concave, then

∀λ ≥ 0, ∀t ≥ 0, ω(λt) ≤ max(1, λ)ω(t).
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Hence, if λ ≥ 0 is fixed, with the definition given any function (locally) semi-
concave with modulus t 7→ ω(λt) is also (locally) semi-concave with modulus
ω.

We know recall that a function f : O → R is said to be C1,ω, if it is
differentiable everywhere, and for every x ∈ O, we can find a neighborhood
Vx and a constant Kx such that

∀y, z ∈ Vx, ‖dy f − dz f‖ ≤ Kxω(‖y − z‖).

If the modulus ω is linear a C1,ω is simply a C1,1 function.
An extremely useful fact is that a function f : O → R is both locally semi-

concave and locally semi-convex for the modulus ω if and only if it is C1,ω. A
proof of this fact can be found for example in [5, A19, page 36]. Conversely,
any C1,ω is both locally semi-convex and concave for the modulus ω.

As explained in [5] the notions of locally semi-concave or semi-convex
functions (for a linear modulus) make perfect sense on a manifold.

2 Convex envelop of a coercive function

In this section, we state and prove a result due to Kirchheim and Kristensen
[9]. We will restrict ourselves to the case where the ambient space is an open
subset O ⊂ R

n, for some n ∈ N. In order to avoid problems coming from the
boundary, we will only consider coercive functions defined on O.

Definition 2.1. Let f : O → R. We will say that f is coercive on O, if for
any r ∈ R the set f−1(] −∞, r]) is relatively compact in O.

Remark 2.2. 1) A continuous function f : O → R is coercive on O if and
only if it is bounded from below, and proper, i.e. the set f−1(K) is compact,
for every compact subset K ⊂ R.

2) A function f : O → R is coercive on O if and only if f(x) → +∞, as
x → +∞ in the locally compact space O.

3) For a function f : R
n → R coercivity is therefore the usual concept

f(x) → +∞, as ‖x‖ → +∞.
4) If O is a bounded open set, then a coercive function on O is a function

f : O → R which verifies that

lim
x→Rn\O

‖f(x)‖ = +∞.

We are going to prove the following result, see [9, Theorem page 726]:
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Theorem 2.3. Suppose O is an open convex subset in R
n. If f : O → R

is coercive on O and locally semi-concave with modulus ω, then its (lower)
convex envelop f ∗ is C1,ω.

Proof. The proof is also taken from [9]. Note that f ∗ being convex is locally
semi-convex with modulus ω (in fact with any modulus). From a result
quoted above, it therefore suffices to show that f ∗ is also locally semi-concave
with modulus ω.

Since f is bounded below, subtracting a constant if necessary, we can
assume f ≥ 0 everywhere. We now recall that the epigraph of f is

Epi(f) = {(x, t) | x ∈ 0, t ≥ f(x)}.

As is well-known, the convex closure of Epi(f) in O × R is the epigraph of
f ∗. Since O × R ⊂ R

n × R = R
n+1, we can apply Caratheodory’s Theorem,

see [10, Theorem 17.1, page 155] to obtain that any point in the convex set
generated by Epi(f) is a convex combination of n + 2 points in Epi(f) (in
fact the number can be cut down to n+1 using instead [10, Corollary 17.1.5,
page 157], but this is not essential). This implies that, if x ∈ O is given, we
can find sequences xm

1 , . . . , xm
n+2 ∈ O, αm

1 , . . . , αm
n+2 ∈ [0, 1], m ≥ 1 such that

αm
1 ≥ · · · ≥ αm

n+2,
n+2
∑

i=1

αm
i = 1,

n+2
∑

i=1

αm
i xm

i = x

and
n+2
∑

i=1

αm
i f(xm

i ) → f ∗(x), when m → ∞. (1)

We now fix an arbitrary compact subset K ⊂ O. Set MK = sup{f(z) |
z ∈ K} < +∞. Since f is coercive the set

K ′ = {z ∈ O | f(z) ≤ (n + 2)(MK + 1)}

is compact. Since f is locally semi-concave with modulus ω and K ′ is
compact, we can find positive constants δ and λ such that the inclusion
B(y, δ) ⊂ O holds for every y ∈ K ′, and

∀y ∈ K ′, ∃ℓy ∈ R
n∗, ∀v ∈ B(0, δ), f(y+v) 6 f(y)+ℓy(v)+λ‖v‖ω(‖v‖), (2)

where R
n∗ is the dual of R

n, i.e. the set of linear maps from R
n to R.

Let us now assume x ∈ K. We consider the sequences xm
1 , . . . , xm

n+2 ∈

O, αm
1 , . . . , αm

n+2 ∈ [0, 1], m ≥ 1 obtained above. Since
∑n+2

i=1
αm

i f(xm
i ) →

f ∗(x) ≤ f(x) ≤ MK , dropping the first terms we can assume

∀m ≥ 1,

n+2
∑

i=1

αm
i f(xm

i ) ≤ MK + 1.
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Note that as we said in the beginning of the proof, we are assuming (without
loss of generality) that f ≥ 0. Therefore

∀m ≥ 1, αm
1 f(xm

1 ) ≤ MK + 1. (3)

We now use the assumed inequalities αm
1 ≥ · · · ≥ αm

n+2, to obtain (n+2)αm
1 ≥

∑n+2

i=1
αm

i = 1, hence
(n + 2)αm

1 ≥ 1. (4)

Together with (3), this yields

∀m ≥ 1, f(xm
1 ) ≤ (n + 2)(MK + 1). (5)

Therefore the sequence xm
1 lies in the compact set K ′. Extracting we can

assume
xm

1 → x1 ∈ K ′, αm
1 → α1.

It follows from (4) that we also have

(n + 2)α1 ≥ 1.

Therefore, if ‖h‖ ≤ δ/(n + 2), we get ‖α−1

1 h‖ ≤ δ, and by the choice of δ
above, we have xm

1 + α−1

1 h, x1 + α−1

1 h ∈ O. Therefore

f ∗

(

αm
1 (x1 + α−1

1 h) +
n+2
∑

i=2

αm
i xm

i

)

≤ αm
1 f(xm

1 + α−1

1 h) +
n+2
∑

i=2

αm
i f(xm

i ). (6)

Note now that αm
1 (x1 + α−1

1 h) +
∑n+2

i=2
αm

i xm
i = αm

1 α−1

1 h +
∑n+2

i=1
αm

i xm
i =

x + αm
1 α−1

1 h → x + h, as m → +∞. Since the function f ∗ is convex, it
is therefore continuous on the open set O. Together with (1) and (6), this
yields

f ∗(x + h) − f ∗(x) = lim
m→∞

f ∗

(

αm
1 (x1 + α−1

1 h) +
n+2
∑

i=2

αm
i xm

i

)

−
n+2
∑

i=1

αm
i f(xm

i )

≤ lim
m→∞

αm
1 f(xm

1 + α−1

1 h) +

n+2
∑

i=2

αm
i f(xm

i ) −

n+2
∑

i=1

αm
i f(xm

i )

= lim
m→∞

αm
1 f(xm

1 + α−1

1 h) − αm
1 f(xm

1 )

= α1[f(x1 + α−1

1 h) − f(x1)].

Since x1 ∈ K ′, and ‖α−1

1 h‖ ≤ δ, we can now use (2) to obtain a ℓx1
∈ R

n∗,
such that

f ∗(x + h) − f ∗(x) ≤ α1[ℓx1
(α−1

1 h) + λ‖α−1

1 h‖ω(‖α−1

1 h‖)]

= ℓx1
(h) + λ‖h‖ω(α−1

1 ‖h‖).
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Since ω is concave and non-decreasing, and α−1

1 ≤ n + 2, we conclude that
for all x ∈ K, we can find ℓx1

∈ R
n∗, such that for all h ∈ R

n with ‖h‖ ≤
δ/(n + 2), we have

f ∗(x + h) ≤ f ∗(x) + ℓx1
(h) + (n + 2)λ‖h‖ω(‖h‖).

This shows that f ∗ is locally semi-concave with modulus ω in a neighborhood
of K. Since K is an arbitrary compact subset of O, the convex function f ∗

is locally semi-concave on O with modulus ω. It is therefore C1,ω.

Remark 2.4. The condition of coercivity is not an artificial one. Here is an
interesting example. Consider the square [0, 1] × [0, 1]. We define a function
f : [0, 1] × [0, 1] → [0, 1] affine on the two triangles T≥ = {(x, y) | x, y ∈
[0, 1], x ≥ y}, T≤ = {(x, y) | x, y ∈ [0, 1], x ≤ y} with f(0, 0) = f(1, 1) = 1
and f(0, 1) = f(1, 0) = 0, see figure (2). It is concave, and hence semi-
concave for any modulus. Its graph in R

3 is the upper part of the tetrahedron
spanned by the four points (0, 0, 1), (1, 1, 1), (0, 1, 0), (1, 0, 0). Therefore its
lower convex envelop f ∗ is the lower part of the tetrahedron. Hence f ∗ is
affine on each of the two triangles T≥ = {(x, y) | x, y ∈ [0, 1], x+y ≥ 1}, T≤ =
{(x, y) | x, y ∈ [0, 1], x + y ≤ 1}. This function f ∗ is not differentiable at any
point of the diagonal ∆ = {(x, y) | x, y ∈ [0, 1], x = y}.

3 Ilmanen’s insertion lemma

In this section, we prove the main theorem of this article which is that be-
tween a locally semi-concave function and a locally semi-convex function both
for a linear modulus, there is a C1,1 function. More precisely, we prove the
following:

Theorem 3.1 (Ilmanen’s Insertion Lemma). Let M be a C2 manifold, and
let us consider f : M → R a locally semi-convex function for a linear modulus
and g : M → R a locally semi-concave function for a linear modulus. If f 6 g
then there exists a C1,1 function h : M → R such that f 6 h 6 g.

The proof of this theorem is mainly local, it is enough to prove that for
each x ∈ M there is a neighborhood of x, Vx and a C1,1 function hx : Vx → R

such that f 6 hx 6 g on Vx. As a matter of fact, if (ϕx)x∈M is a C∞ partition
of unity subordinated to (Vx)x∈M then the function

h =
∑

x∈M

ϕxhx

clearly satisfies the requirements of 3.1.
>From the discussion above, it is enough to prove the following:
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Figure 1: A counter example in the non super-linear case
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Lemma 3.2. Suppose B(x, R) is the open Euclidean ball centered in x ∈ R
n

of radius R < +∞. If f, g : B(x, R) → R are respectively semi-convex and
semi-concave for a linear modulus, and if moreover f 6 g, then we can find
a C1,1 function h : B(x, R) → R with f 6 h 6 g.

Proof. We will denote by 〈·, ·〉 and by ‖ · ‖ the usual scalar product and
Euclidean norm on R

n. Because f is assumed semi-concave (rather than just
locally semi-concave) with a linear modulus, we can find a constant K ≥ 0,
such that for every y ∈ B(x, R), we can find ℓy ∈ R

n∗ such that

∀z ∈ B(x, R), f(z) − f(y) ≥ ℓy(z − y) − K‖z − y‖2.

Therefore, if we define the function F on B(x, r) by

F1(z) = f(z) +
1

2
K‖z‖2,

a simple computation yields

∀z ∈ B(x, R), F1(z) − F1(y) ≥ ℓy(z − y) + 〈y, z − y〉.

Therefore F1 is convex on B(x, R). Since B(x, R) is a bounded convex set,
we also obtain that F1 is bounded from below. Using that the function
y 7→ 1/(R2 − ‖y − x‖2) is convex and coercive on B(x, R), we conclude that
the function F : B(x, R) → R defined by

F (y) = F1(y) +
1

R2 − ‖y − x‖2
= f(y) +

1

2
K‖y‖2 +

1

R2 − ‖y − x‖2

is convex and coercive on B(x, R). We now define the function G by

∀y ∈ B(x, r), G(y) = g(y) +
1

2
K‖y‖2 +

1

R2 − ‖y − x‖2
.

This function G is locally semi-concave for a linear modulus, because it is the
sum of the semi-concave function for a linear modulus g and of a C∞ function.
Since F is convex, coercive, and F ≤ G, it follows that G is coercive and
F ≤ G∗, where G∗ is the lower convex envelop of G. We get F 6 G∗ 6 G.
By Theorem 2.3, this convex envelop G∗ is C1,1. It remains to set

∀y ∈ B(x, r), h(y) = G(y) −
1

2
K‖y‖2 −

1

R2 − ‖y − x‖2
,

then f 6 h 6 g, and h is again C1,1 as the sum of a C1,1 function and a C∞

function.
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As an easy corollary we obtain the following more precise statement:

Corrolary 3.3. Under the hypothesis of Theorem 3.1 above, denote by E
the set

E = {x ∈ M, f(x) = g(x)} .

There exists a C1,1 function h : M → R such that f 6 h 6 g and such that
f < h < g on M \ E.

Proof. The function Φ = (g − f)/3 is by definition a continuous function
which is non negative and vanishes exactly on E. Consider a covering of
M \ E by open sets

M \ E =
⋃

i∈A

Oi,

such that each open set has a compact closure Oi contained in M \ E. We
choose (φi)i∈A a partition of unity subordinated to the covering (Oi)i∈A. Note
that each φi has compact support disjoint from E. It follows that we can
extend it to a C∞ function on M , with φi ≡ 0 on E. Finally, for each i ∈ A,
set αi = infOi

Φ. Note that each αi is positive because Oi is compact and
contained in M \ E. If 0 < βi ≤ αi, the function

φ =
∑

i∈A

βiφi (7)

is continuous and > 0 on M \ E, obviously 0 on E. It also satisfies

∀x ∈ M, 0 6 φ(x) 6 Φ(x)

therefore φ is continuous on M . Moreover, up to taking βi rapidly decreasing
to 0, see for example [4, Lemma 3.2, page 722], we can assume without loss of
generality that the sum (7) is convergent for the compact open C∞ topology
on C∞(M, R), and therefore that the function φ is C∞.

Now let us consider the functions F = f + φ and G = g − φ. These
functions still verify the hypothesis of 3.1 therefore there is a function ϕ
between F and G, but since φ is positive on M \E, this proves the corollary.

4 Geometric form

If (X, d) is a metric space, as usual for a non-empty subset C ⊂ X, and
x ∈ X, we define

d(x, C) = inf{d(x, c) | c ∈ C}.
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As is well known, the function x 7→ d(x, C) is continuous (and even Lipschitz).
Moreover, we have

d(c, C) = d(x, C), and C = {x ∈ X | d(x, C) = 0},

where C is the closure of C.
If A, B ⊂ X, we define

d(A, B) = inf{d(x, y) | x ∈ A, y ∈ B} = inf
x∈A

d(x, B) = inf
y∈B

d(y, A).

We will need the following lemma which we state and prove for a Riemannian
manifold. From the proof it is clear that it holds for metric length spaces.
Note also that this lemma does not hold for a general metric space.

Lemma 4.1. Suppose that the distance d on the connected manifold M comes
from a Riemannian metric. Let A, B and S be non-empty subsets of M , with
A ⊂ S, and B ∩ S̊ = ∅, then

d(A, B) ≥ d(A, ∂S) + d(∂S, B),

where ∂S is the boundary of S in M . (Note that ∂S is not empty since the
non-empty set B is contained in M \ S̊.)

Proof. Since the distance d is obtained from Riemannian length of curves,
we can find a sequence of smooth curves γn : [0, 1] → M , such that γn(0) ∈
A, γn(1) ∈ B, and length(γn) → d(A, B). For every n, we have γn([0, 1]) ∩
∂S 6= ∅. In fact, if this were not true, for some n, we would have that
the connected set γn([0, 1]) is contained in the disjoint union of open subsets
S̊ ∪ (M \ S) = M \ ∂S. This would imply that γn([0, 1]) is included in
exactly one of the two sets. This is impossible, because γn(0) ∈ A, therefore
γn(0) /∈ M \ S, and γn(1) ∈ B, therefore γn(1) /∈ S̊.

Since γn([0, 1]) ∩ ∂S 6= ∅, for each n, we can find tn ∈ [0, 1] such that
γn(tn) ∈ ∂S. We have

length(γn) ≥ d(γn(0), γn(tn)) + d(γn(tn), γn(0))

≥ d(A, ∂S) + d(∂S, B)

It suffices to let n → ∞ to finish the proof.

This lemma has several consequences. To obtain them, we recall the
following facts. If C 6= ∅ is a subset of the metric space X, and r > 0, we
set

Vr(C) = {x ∈ X | d(x, C) < r}.
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Obviously, the set Vr(C) is open in M , and its closure V r(C) is contained in
the closed subset {x ∈ X | d(x, C) ≤ r}. This implies that

∂Vr(C) ⊂ {x ∈ X | d(x, C) = r}.

In particular, if ∂Vr(C) 6= ∅, then

d(∂Vr(C), C) = r.

For a general metric, the inclusions V r(C) ⊂ {x ∈ X | d(x, C) ≤ r}, ∂Vr(C) ⊂
{x ∈ X | d(x, C) = r} are usually strict. We will now obtain as a consequence
of Lemma 4.1 that they are equality for the case of Riemannian manifolds.

Corrolary 4.2. Suppose M is a connected manifold endowed with a distance
d coming from a Riemannian metric. Let C ⊂ M be a non-empty subset,
and let r be a > 0 number. We have

(1) if x /∈ C̊, then d(x, C) = d(x, C) = d(x, ∂C).

(2) for every x /∈ Vr(C), we have d(x, C) = d(x, ∂Vr(C)) + r;

(3) V r(C) = {x ∈ X | d(x, C) ≤ r}, and ∂Vr(C) = {x ∈ X | d(x, C) = r};

Moreover if A, B are non-empty subsets of M ,

(4) for every r such that 0 < r ≤ d(A, B), we have

d(B, Vr(A)) = d(B, V r(A)) = d(B, ∂Vr(A)),

and
d(A, B) = r + d(B, Vr(A)) = r + d(B, ∂Vr(A)).

Proof. To prove (1), we apply Lemma 4.1, A = S = C, B = {x} to obtain

d(x, C) ≥ d(x, ∂C) + d(∂C, C).

But d(∂C, C) = 0. Therefore, we obtain d(x, C) ≥ d(x, ∂C). Note that the
opposite inequality is true, since d(x, C) = d(x, C), and ∂C ⊂ C.

For (2), notice that C ⊂ Vr(C), and {x} is disjoint from the open subset
Vr(C). Therefore, we can apply Lemma 4.1, with A = C, S = Vr(C), B = {x}
to obtain

d(x, C) ≥ d(C, ∂Vr(C)) + d(x, ∂Vr(C)).

But, as we have noticed above d(C, ∂Vr(C)) = r. Hence, we obtain d(x, C) ≥
d(C, ∂Vr(C))+r to prove the converse inequality, we consider y ∈ Vr(C), and
write

d(x, C) ≤ d(x, y) + d(y, C) ≤ d(x, y) + r.
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Taking the infimum over y ∈ ∂Vr(C), we obtain d(x, C) ≤ d(C, ∂Vr(C)) + r
For (3), since V r(C) = Vr(C)∪∂Vr(C), and ∂Vr(C) ⊂ {x ∈ X | d(x, C) =

r}, we only need to show that ∂Vr(C) ⊃ {x ∈ X | d(x, C) = r}. If d(x, C) =
r, we have x /∈ Vr(C), and by (2) above d(x, ∂Vr(C)) = 0. Since ∂Vr(C)) is
closed, we obtain x ∈ ∂Vr(C).

To prove (4) we notice that for any y ∈ B, we have y /∈ Vr(A), hence
by (1) above we obtain d(y, Vr(A)) = d(y, ∂Vr(A)). Taking the infimum
over y ∈ B yields d(B, Vr(A)) = d(B, ∂Vr(A)) Moreover, by (2), for y ∈ B,
we get d(y, A) = d(y, ∂Vr(A)) + r. Taking the infimum over y ∈ B yields
d(B, A) = r + d(B, ∂Vr(A)).

The following theorem is basically the geometric form of Ilmanen’s lemma,
even if it is stated under somewhat different hypothesis.

Theorem 4.3 (Geometric Form of Ilmanen’s Lemma). Suppose M is a con-
nected manifold, endowed with a Riemannian metric of class C 2. We denote
by d the distance associated to the Riemannian metric. If the closed non-
empty subset A of M , and a > 0 are such that Va(A) 6= M (or equivalently
∂Va(M) 6= ∅ by the connectedness of M), then for every ρ ∈]0, a[, we can
find a closed domain Σρ such that

(i) the boundary ∂Σρ of Σρ is C 1,1 submanifold;

(ii) Σρ ⊃ V ρ(A);

(iii) Σρ ⊂ {x | d(x, M \ Va(A)) ≥ a − ρ} ⊂ Va(A);

(iv) d(∂Σρ, A) = ρ and d(∂Σρ, M \ Va(A)) = a − ρ.

(v) {x ∈ M | d(x, A) = ρ, d(x, M \ Va(A)) = a − ρ)} ⊂ ∂Σρ.

Proof. Note that both A and M\Va(A) are not empty. We also have d(A, M\
Va(A)) ≥ a, Moreover, since ∂V a(A) 6= ∅, we can find an x0 such that
d(x0, A) = a. This x0 is in M \ Va(A). Hence, we get

d(A, M \ Va(A)) = a.

In particular, we obtain

∀x ∈ M, d(x, A) + d(x, M \ Va(A)) ≥ d(A, M \ Va(A)) = a. (8)

Therefore, if we define f, g : M → R by

f(x) = a − d(x, M \ Va(A)), and, g(x) = d(x, A),
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we have f ≤ g everywhere. If B is a closed subset of M , as is well-known
x 7→ d(x, B) is a viscosity solution on M \ B of the eikonal equation

‖dx u‖x = 1, (9)

where ‖·‖x is the norm obtained from the Riemannian metric on the cotangent
space T ∗

x M at x. Since we are assuming the Riemannian metric to be C2,
this implies that x 7→ d(x, B) is locally semi-concave with linear modulus on
M \ B. We obtain from this that the restrictions of f and g to the open
set Ua = Va(A) \ A are respectively locally semi-convex and locally semi-
concave with a linear modulus. Therefore, by Corollary 3.3, we can find a
C1,1 function h : Ua → R with f ≤ h ≤ g, and f < h < g outside of the set

E = {x ∈ Ua | f(x) = g(x)} = {x ∈ Ua | d(x, A) + d(x, M \ Va(A)) = a}.

In fact, if ρ was a regular value of h, we could finish with Σρ = A∪{x ∈ Ua |
h(x) ≤ ρ}. Unfortunately, a C1,1 function may not even have regular values
if the dimension of M is ≥ 3.

We now proceed to modify h in order to have ρ as a regular value. We
will need to use the strong topology on space of differentiable maps. This
topology is also called the Whitney topology. On these matter, we refer to
[7, Chapter 2, §1]. If N, P are manifolds we will use the notation Cr

S(N, P ),
introduced in [7], for the space of Cr maps from N to P endowed with the
strong (or Whitney) topology.

Since h ≤ g, with equality on E, and g is a viscosity solution of the
eikonal equation, we obtain

∀x ∈ E, ‖dx h‖x ≥ 1.

(In fact, using f ≤ h, we could show equality on E in the above inequality,
but we will not need this). In particular dx h 6= 0 on the closed subset E of
Ua. Therefore we can find an open subset W ⊂ Ua such that the derivative
of h is never 0 on the closure W in Ua. Note that this imply that we can
find a neighborhood V of h in C1

S(Ua, R) (the space C1(Ua, R) endowed with
Whitney or strong topology) such that for every h̃ ∈ V, we have dxh̃ 6= 0,
for every x ∈ W . We now pick a function θ : Ua → [0, 1] such that θ ≡ 1
on a neighborhood of Ua \ W , and whose support F is contained in Ua \ E.
If h̃ : Ua \ E → R converges in the C1 strong topology on C1

S(Ua \ E, R) to
the restriction h|Ua \ E, then θh̃ converges to θh in C1

S(Ua \ E, R). Since
all these functions are 0 outside of the closed set F which is disjoint from
E, in fact, we obtain that θh̃ converges to θh in C1

S(Ua, R). It follows that
θh̃ + (1 − θ)h converges to h in C1

S(Ua, R). Therefore we can find an open

13



neighborhood W of h|Ua \ E in C1
S(Ua \ E, R), such that for every h̃ ∈ W,

we have θh̃ + (1 − θ)h ∈ V and therefore θh̃ + (1 − θ)h has no critical point
in W . Since f < h < g on Ua \ E cutting down on the neighborhood W of
h|Ua \ E in C1

S(Ua \ E, R), we may also assume that we have f < h̃ < g,
for every h̃ ∈ W. We now use the fact, see [7, Exercise 2 (a), page 74], that
C∞ functions with a given prescribed value as a regular value are dense in
the strong (or Whitney) topology to obtain a C∞ map h̃ ∈ W with ρ as a
regular value on Ua \ E. Wet set h = θh̃ + (1 − θ)h. Since θ is equal to 1
on a neighborhood of Ua \ W , it follows that h = h̃ on this neighborhood,
and therefore ρ is a regular value of h on a neighborhood of Ua \ W . Since
h̃ ∈ W, we know that h has no critical point in W . Therefore ρ is a regular
value of the C1,1 function h. Note that by construction, we have

f ≤ h ≤ g

everywhere on Ua (even with strict inequalities on Ua \ E). This can be
rewritten

∀x ∈ Va(A) \ A, a − d(x, M \ Va(A)) ≤ h ≤ d(x, A). (10)

We now set
Σρ = A ∪ {x ∈ Va(A) \ A | h(x) ≤ ρ}.

>From the right hand side inequality in (10), we obtain the point (ii) of the
theorem

V ρ(A) ⊂ Σρ.

Note that this implies that ∂Σρ is disjoint for A. >From the left hand side
inequality in (10), taking into account that d(A, M \ Va(A)) = a, we obtain
that

∀x ∈ Σρ, d(x, M \ Va(A)) ≥ a − ρ > 0,

which is point (iii) of the theorem. Note that is implies that ∂Σρ is contained
in the open set Va(A). Since it is also disjoint from A, we get ∂Σρ ⊂ Va(A) \
A = Ua. But Ua ∩ Σρ = {x ∈ Ua | h(x) ≤ ρ}. Since ρ is a regular value of

the C1,1 map h : Ua → R, the implicit function theorem implies that h
−1

(ρ)

is a C1,1 hypersurface and that ∂Σρ = h
−1

(ρ) ⊂ Σρ. This proves that Σρ is
closed and also point (i) of the theorem.

It is clear now that point (v) of the theorem follows from the inequalities
(10).

It remains to prove point (iv) of the theorem. From (ii) and (iii), it follows
that

∀x ∈ ∂Σρ, d(x, A) ≥ ρ, and d(x, M \ Va(A)) ≥ a − ρ.
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Therefore
d(∂Σρ, A) ≥ ρ, and d(∂Σρ, M \ Va(A)) ≥ a − ρ.

To finish the proof of (iv) it suffices to show that

d(∂Σρ, A) + d(∂Σρ, M \ Va(A)) ≤ a = d(A, M \ Va(A)).

But this follows Lemma 4.1 . Since A ⊂ Σρ, and the closed set Σρ is disjoint
from M \ Va(A).

>From Theorem 4.3, we could obtain apparently stronger statements.
We will only give this one:

Theorem 4.4. Suppose M is a connected manifold, endowed with a Rie-
mannian metric of class C 2. We denote by d the distance associated to the
Riemannian metric. If A, B ⊂ M are closed non-empty disjoint subsets, we
can find a closed domain Σ whose boundary ∂Σ is a C 1,1 submanifold, such
that

A ⊂ Σ̊, Σ ∩ B = ∅,

d(A, ∂Σ) = d(∂Σ, B) =
d(A, B)

2
,

{

x ∈ M | d(x, A) = d(x, B) =
d(A, B)

2

}

⊂ ∂Σ.

Moreover, if a = d(A, B) > 0, we can assume that Σ ⊂ Va(A). In particular,
if A is compact and the Riemannian metric on M is complete, we can assume
also that Σ is compact.

Proof. We first assume d(A, B) = a > 0. We use Theorem 4.3, with A, a and
ρ = a/2 to obtain Σ = Σa/2. We have A ⊂ Σ̊ ⊂ Σ ⊂ Va(A), and also

d(A, ∂Σ) = d(∂Σ, M \ Va(A)) =
a

2
,

{

x ∈ M | d(x, A) = d(x, M \ Va(A)) =
a

2

}

⊂ ∂Σ.

In particular, we have Σ∩B = ∅, because B ⊂ M \Va(A). This last inclusion
implies that

∀x ∈ M, d(x, B) ≥ d(x, M \ Va(A)). (11)

Therefore d(∂Σ, B) ≥ d(∂Σ, M \ Va(A)) = a/2. Since d(A, ∂Σ) = a/2, to
prove that d(∂Σ, B) = a/2, it now suffices to show that

d(∂Σ, B) + d(A, ∂Σ) ≤ a = d(A, B).
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but this follows from Lemma 4.1, since the closed set Σ contains A, and is
disjoint from B.

We now show that any x satisfying d(x, A) = d(x, B) = a/2 is necessarily
in ∂Σ. By the definition of Σ it suffices to show d(x, M \ Va(A)) = a/2. By
the inequality (11), we know that d(x, M \ Va(A)) ≤ a/2. therefore we get

a =
a

2
+

a

2
≥ d(x, A) + d(x, M \ Va(A)) ≥ d(A, M \ Va(A)) ≥ a.

This implies that we have the equality d(x, M \ Va(A)) = a/2. This finishes
the proof in the case d(A, B) = a > 0.

Suppose d(A, B) = 0. Since A ∩ B = ∅, we can find a C∞ function
ϕ : M → [0, 1] such that ϕ is 0 on A and 1 on B. We pick a regular
value r ∈]0, 1[ of ϕ. The closed set Σ = {x ∈ M | ϕ(x) ≤ r} has a C∞

boundary, contains A and is disjoint from B. By Lemma 4.1, we obtain
0 = d(A, B) ≥ d(A, ∂Σ)+d(∂Σ, B). It follows that d(A, ∂Σ) = d(∂Σ, B) = 0.
Note that since A, B are closed and disjoint the set {x ∈ M | d(x, A) =
d(x, B) = 0 = d(A, B)/2} is empty.

Suppose now that A is compact, since it is disjoint from B, we must
have d(A, B) = a > 0. The Σ constructed above is contained in Va(A).
If the Riemannian metric is complete, then Va(A) is, like any bounded set,
relatively compact. Therefore its closed subset Σ is compact.

Remark 4.5. In the last part of the previous theorem (4.4), even if the
metric is not assumed to be complete, it is possible to find a compact set Σ
whose boundary ∂Σ is a C1,1 submanifold, such that

A ⊂ Σ̊, Σ ∩ B = ∅,

d(A, ∂Σ) + d(∂Σ, B) = d(A, B),

∃ε > 0, {x ∈ M | ε = d(x, A) = d(A, B) − d(x, B)} ⊂ ∂Σ.

In fact, it is enough to pick ε > 0 small enough for the neighborhood V2ε(A)
to be relatively compact in M and to repeat the previous proof with ρ = ε.

5 Open problem

We would like to conclude the paper with an open problem:

Open Problem 5.1. Suppose that ω is a modulus, that f and g are respec-
tively a locally semi-convex semi-concave function for the modulus ω, with
f ≤ g. Is it always possible to find a C1,ω function h with f ≤ h ≤ g? What
about the Hölder moduli ωα(t) = tα, α < 1.
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