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The results presented build up on previous results [6] and were since extended in
various settings [6, 8, 1, 4].

Let M be a closed compact manifold and H : T ∗M → R be a continuous
Hamiltonian, convex and coercive with respect to the momentum variable p. It
is then known that if λ > 0 there exists a unique viscosity solution uλ to the
discounted Hamilton–Jacobi equation λu(x) + H(x,Dxu) = 0, x ∈ M . We prove
the following:

Theorem 1. There exists a unique constant c(H) for which the functions uλ +
c(H)/λ uniformly converge to a function u0 (as λ → 0) which then solves the
stationary undiscounted equation H(x,Dxu0) = c(H).

Such a function u0 is called a weak KAM solution. In a way, this result closes a
loop in the history of weak KAM theory. Let us describe the setting and explain
why.

1. History of the problem

In 1987, Lions, Papanicolaou and Varadhan issue a (never published) preprint
[7] on the Homogenization of Hamilton–Jacobi equations. They study the following
equation with unknown uε : [0,+∞)× RN → R:

∂uε

∂t
+H

(x
ε
,Dxu

ε
)

= 0

with initial condition uε(0, x) = u0(x). In the above, H : RN × RN → R is
a continuous function, which is 1-periodic in the first variable x (meaning it is
the lift of a function on TN × RN ) and uniformly coercive with respect to the
second variable p. The initial condition u0 : RN → R is a bounded uniformly
continuous function on RN . It is then known there exists a unique continuous
solution1 uε : [0,+∞)× RN to the above equation.

Theorem (Lions, Papanicolaou, Varadhan). The functions uε uniformly converge

to a function u0 which solves a new Hamilton–Jacobi equation ∂u0

∂t +H(Dxu
0) = 0,

with same initial condition. The effective Hamiltonian, H : RN → R, is character-
ized as follows: for any P ∈ RN , H(P ) is the only constant for which the following
equation admits a 1- periodic solution:

(1) H(x, P +Dxu) = H(P ).

1All solutions subsolutions or supersolutions will be implicitly continuous and in the viscosity

sense and the terms will be omitted from now on.
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Solutions to (1) were later on independently introduced by Fathi as weak KAM
solutions. In order to prove such a constant exists, they use an ergodic perturbation
and solve λu + H(x, P + Dxu) = 0, where λ > 0 is a parameter that will be
sent to 0. It is known that such an equation admits a unique periodic solution
uλ. Moreover, because of the coercivity of H, the family uλ is equi–Lipschitz.
Therefore, the functions ûλ = uλ −minuλ admit converging subsequences. They
then prove that up to extracting, the λuλ uniformly converge to a constant −H(P )
and ûλ converges to a function u which then solves (1).

Our theorem is that under the extra condition of convexity, no extraction is
needed.

2. A formula for the solutions of the discounted equation

Our proof of Theorem 1 relies on an explicit formula for uλ when H is convex
in p. Let us introduce the Lagrangian function: L : TM → R ∪ {+∞} by

∀(x, v) ∈ TM, L(x, v) = sup
p∈TxM

p(v)−H(x, p).

Then the following holds for all t > 0 and λ > 0 and x ∈M ,

uλ(x) = inf
γ
e−λtuλ

(
uλ(γ(−t)

)
+

∫ 0

−t
eλsL

(
γ(s), γ̇(s)

)
ds

= inf
γ

∫ 0

−∞
eλsL

(
γ(s), γ̇(s)

)
ds.

Where the infima are taken amongst absolutely continuous curves such that γ(0) =
x.

Note that the function u0 given by Theorem 1 will then verify a similar relation
for all t > 0:

(2) ∀x ∈M, u0(x) = inf
γ
u0
(
γ(−t)

)
+

∫ 0

−t

[
L
(
γ(s), γ̇(s)

)
+ c(H)

]
ds.

This is Fathi’s original characterization of weak KAM solutions. The (inf,+)
convolution it involves is called Lax-Oleinik semi–group.

3. The discrete setting

At this point, we may introduce a discrete analogue of the previous problem.
The philosophy is that the Lagrangian represents a cost to pay to move infinites-
imally in a direction v. This is replaced by discretizing the time variable and
introducing a cost function which evaluates the cost to go between two points in
time 1.

Let (X, d) be a compact metric space, and c : X × X → R be a continuous
function. The Lax–Oleinik operator, acting on continuous functions u : X → R is
defined by u 7→ T u:

∀x ∈ X, T u(x) = inf
y∈X

u(y) + c(y, x).
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It is easily verified that T has values in (equi–)continuous functions, is 1-Lipschitz
for the sup–norm, is order preserving and commutes with addition of constants.
Therefore

Proposition 2 (weak KAM). There exists a unique constant c0 such that there
is a continuous function u : X → R verifying u = T u+ c0.

The discounted operators are defined as follows: given a constant µ ∈ (0, 1)
(which may be seen as e−λ in the continuous setting) Tµ acts on continuous func-
tions by Tµu = T (µu). This operator is now µ–Lipschitz for the sup–norm, hence
it admits a unique fixed point which may be computed taking the limit of iterates
starting with any function u, for instance the 0 function. A computation gives
that this unique fixed point is given by the formula

∀x ∈ X, uµ(x) = inf
(xn)n60

−1∑
n=−∞

µn+1c(xn, xn+1),

where the infimum is taken on all sequences such that x0 = x.
Our second theorem is then:

Theorem 3. There exists a function u0 such that uµ+ c0/(1−µ) converges to u0
as µ→ 1. Moreover, u0 verifies u0 = T u0 + c0.

The characterization of u0 and the proof of the convergence heavily rely on
the notion of closed minimizing measures, that is probability measures m on X ×
X which have the same projection on both factors and minimize the quantity∫
c(x, y)dm(x, y). They are discrete analogues of Mather measures in the classical

Hamiltonian setting. Similar ideas previously appeared in [5] and were recovered
independently in the present works..
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