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Abstract. We introduce a notion of Aubry set for weakly coupled systems of
Hamilton–Jacobi equations on the torus and characterize it as the region where the
obstruction to the existence of globally strict critical subsolutions concentrates.
As in the case of a single equation, we prove the existence of critical subsolutions
which are strict and smooth outside the Aubry set. This allows us to derive in a
neat way a comparison result among critical sub and supersolutions with respect
to their boundary data on the Aubry set, showing in particular that the latter is a
uniqueness set for the critical system. Furthermore, we show that the trace of any
critical subsolution on this set can be extended to the whole torus in such a way
that the output is a critical solution. We also highlight some rigidity phenomena
taking place on the Aubry set: first, the values taken by the differences of the
components of a critical subsolution, on this set, are independent of the specific
subsolution chosen; second, for each point y in the Aubry set, there exists a vector
which is a reachable gradient at y of any critical subsolution.

Introduction

In the study of the Hamilton–Jacobi equation for Tonelli Hamiltonians, weak
KAM theory [14, 15, 16, 18] is a bridge between the PDE per se, and tools from
the theory of dynamical systems. The use of the Lax–Oleinik formula, which is a
variational formula to represent the viscosity solutions of the evolutionary equation,
allows one to make rigorous the intuition that a solution of the Hamilton–Jacobi
equation

∂tu+H(x,Dxu) = 0 in (0,+∞)× TN (1)

is deeply linked to the image of the graph of Dxu(0, ·) through the Hamiltonian
flow of H. It is therefore rather natural that some invariant and minimizing sets,
the Aubry and Mather sets, capture the long time behavior of the evolutionary
equation. These sets are included in what can be seen as generalized invariant
Lagrangian manifolds. They appear as graphs of differentials of weak KAM (or
critical) solutions, that is viscosity solutions of the equation

H(x,Dxu) = c in TN , (2)

where c is a real number also known as critical value.
From the PDE viewpoint the Aubry set turns out to be the region where the

obstruction to the existence of globally strict critical subsolutions concentrates. In
particular, the existence of a critical subsolution, smooth and strict outside the
Aubry set [3, 19, 20], implies that the latter is a uniqueness set for the critical
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equation: two critical solutions agree on the whole torus if they agree on the Aubry
set.

The purpose of the present paper is to generalize some PDE aspects of weak
KAM theory to the case of weakly coupled systems of first order Hamilton–Jacobi
equations. More precisely, we consider a family of systems of the form

Hi(x,Dui) +
m∑
j=1

bij(x)uj(x) = a in TN for every i ∈ {1, . . . ,m}, (3)

where a is a real constant, H1, . . . ,Hm are continuous Hamiltonians defined on
the cotangent bundle of TN , convex and coercive in the momentum variable, and
B(x) :=

(
bij(x)

)
is the coupling matrix, i.e. an m × m matrix with continuous

coefficients satisfying

bij(x) 6 0 for j 6= i,
m∑
j=1

bij(x) > 0 for every x ∈ TN and i ∈ {1, . . . ,m}.

The coupling matrix is additionally assumed irreducible, meaning, roughly speaking,
that the coupling is non–trivial and the system cannot be split into independent
subsystems, see Section 1.2 for the precise definition; and degenerate, i.e.

m∑
j=1

bij(x) = 0 for every x ∈ TN and i ∈ {1, . . . ,m}.

Under these assumptions, there exists a unique constant a ∈ R for which the
system (3) admits viscosity solutions. We characterize such a quantity, hereafter
denoted by c and termed critical value, as the minimal a ∈ R for which the corre-
sponding weakly coupled system admits viscosity subsolutions.

We then study the corresponding critical weakly coupled system and show that the
obstruction to the existence of a globally strict subsolution is not spread indistinctly
on the torus, but concentrates on a closed set A, that we call Aubry set in analogy
to the case of a single critical equation. In particular, we show the existence of
a critical subsolution (i.e. a viscosity subsolution of the critical weakly coupled
system), which is strict outside the Aubry set. Furthermore, any such subsolution
can be taken of class C∞ in the complementary of A. This is achieved by exploiting
the regularization procedure presented in [19, 20] in the case of a single equation. As
a byproduct, we obtain that all such subsolutions form a dense subset of the family
of critical subsolutions.

The analysis outlined above allows us to derive in a neat way a comparison result
among critical sub and supersolutions satisfying suitable “boundary” conditions on
A, see Theorem 5.3. This generalizes to our setting Theorem 3.3 in [5], therein
established for Hamiltonians of Eikonal type. In particular, we derive that the Aubry
set is a uniqueness set for the critical weakly coupled system. We furthermore show
that the trace of any critical subsolution on A can be extended on the whole torus
in such a way that the output is a critical solution, see Theorem 5.5.

Our study highlights a rigidity phenomenon taking place on the Aubry set, see
Theorem 5.1: any two critical subsolutions differ, at each point y of A, by a vector of
the form k (1, 1, . . . , 1), where k is a real number depending on y and on the critical
subsolutions itself. This means that the differences of the components of a critical
subsolution on A are actually independent of the specific subsolution chosen. The
proof relies on Proposition 2.3, which is a key remark for this and other results in
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the paper and which depends in a crucial way on the irreducible hypothesis assumed
on the matrix B(x). In the particular case when there exists a critical subsolution of
the kind

(
v(x), v(x), . . . , v(x)

)
, we infer that any other critical subsolution is of this

form on A. This accounts for the kind of symmetry already observed, in a weaker
form, in [5] for the particular class of Hamiltonians therein considered, see Section
6.1 for more details.

A second rigidity phenomenon that we point out is when the Hamiltonians are
additionally assumed strictly convex in the momentum: in this case we prove that,
at any point of the Aubry set, the intersection of the reachable gradients of all the
critical subsolutions is always nonempty, see Proposition 4.4. This can be regarded
as a weak version, for weakly coupled systems, of a result holding in the case of a
single equation. Under suitable regularity assumptions on the Hamiltonian, it is in
fact well known that the subsolutions of the critical equation (2) are all differentiable
on the Aubry set and have the same gradient, see [18, 19, 20].

We end our study by presenting a couple of situations where more explicit results
can be obtained for the critical value and for the Aubry set, see Section 6. In the
first example, we focus on the setting studied in [5] and we show that our notion of
Aubry set is consistent with the one therein given. The second example contains, as
a particular instance, the case when the Hamiltonians are all equal, say to H. In this
specific situation, we show that the critical value and the Aubry set of the weakly
coupled system agree with the critical value and the Aubry set of H. We furthermore
show that the solutions of the critical system are all of the form u(x)(1, . . . , 1), where
u is a critical solution for H, thus showing that, as far as critical solutions of the
system are concerned, the coupling is not playing any effective role.

Weakly coupled systems are a particular instance of monotone systems, see [4,
13, 23, 24], but our interest for the issues herein considered stems from a series
of recent papers [5, 25, 26, 28] addressed to understand the long–time behavior of
the solutions

(
u1(t, x), . . . , um(t, x)

)
to the evolutionary counterpart of (3), i.e. the

system

∂ui
∂t

+Hi(x,Dxui)+
m∑
j=1

bij(x)uj(t, x) = 0 in (0,+∞)× TN , ∀i ∈ {1, . . . ,m}. (4)

The issue is to find general conditions on the Hamiltonians and on the coupling
matrix sufficient to guarantee that

ui(t, x) + ct ⇒
t→+∞

vi in TN for every i ∈ {1, . . . ,m},

where c is the critical value and
(
v1(x), . . . , vm(x)

)
is a critical solution. The problem

is non–trivial due to the lack of a strong comparison principle for the critical system.

The case of a single equation, i.e. equation (4), is by now well understood. The
first convergence results were obtained by Namah and Roquejoffre [27] for convex
Hamiltonians of Eikonal type, but the breakthrough is due to Fathi [17], maybe
historically one of the first PDE achievements of weak KAM theory. By making use
of the dynamical insight, Fathi established the long–time convergence for Hamilto-
nians of Tonelli type, i.e. smooth, strictly convex and superlinear in the momentum
variable. Related results can be also found in [29]. The dynamical approach was
subsequently relaxed to much less regular Hamiltonians (continuous, coercive and
strictly convex in the momentum variable) by Davini and Siconolfi [10], then simpli-
fied and extended by Ishii [22] to the non–compact setting. A completely different
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approach, based on PDE methods, was instead proposed by Barles and Sougani-
dis [2]: they establish the long–time convergence for continuous Hamiltonians that
are coercive and satisfy a convex–type inequality with respect to the momentum
variable. This condition includes the case of Tonelli Hamiltonians and also some
nonconvex functions.

Thanks to the qualitative analysis available for the critical equation, the asymp-
totic problem can be reduced to studying the convergence on the Aubry set. The
issue is however subtle: the afore mentioned references reveal that, in order to have
a general convergence result, some kind of strict convexity in the momentum has to
be required on the Hamiltonian.

The question whether a similar statement holds for weakly coupled systems was
first raised in [5] and answered positively by considering a setting analogous to [27].
More precisely, the Hamiltonians are assumed of the form

Hi(x, p) := Fi(x, p)− Vi(x) for every (x, p) ∈ TN × RN and i ∈ {1, . . . ,m},
where each Vi is a continuous, non–negative function on TN and each Fi is a con-
tinuous function on TN × RN , convex and coercive in p, and satisfying

Fi(x, p) > Fi(x, 0) = 0 for every (x, p) ∈ TN × RN .
The asymptotic convergence result is proved by assuming that the set

A0 :=

m⋂
i=1

V −1i ({0}) ∩
{
x ∈ TN : B(x) is degenerate

}
is non–empty (note that here the coupling matrix is not assumed degenerate on the
whole TN ). In particular, this implies that the critical value c is equal to 0. The
authors first prove that A0 is a uniqueness set for the critical weakly coupled system
with respect to suitable “boundary” conditions on A0. Then they exploit the special
structure of the Hamiltonians to show that an appropriate linear combination of the
components of the time–dependent solution asymptotically converges on A0, and
this is actually enough to conclude. Similar results have been also obtained in [26].

A significant step forward has been recently taken by Mitake and Tran [25] and
by Nguyen [28], independently. In both papers, the coupling matrix is assumed
independent of x and degenerate.

In [25], the convergence is established in the case m = 2 for continuous Hamilto-
nians that are strictly convex and coercive in the momentum variable. The analysis
is based on an interesting dynamic programming formula for systems whose states
are governed by random changes and on an adaptation of the techniques exploited
in [10, 22].

The same result has been proved in [28] for systems with an arbitrary number
of equations through a completely different approach based on PDE techniques.
Furthermore, the author is able to extend the convergence result under a different
set of assumptions in the same spirit of [2], thus including some examples of non–
convex Hamiltonians.

The case of a coupling matrix depending on x is widely open. The analysis carried
out herein sheds some light on the kind of phenomena occurring for the stationary
system at the critical level and, we hope, might be useful for further investigations
on the subject.

This paper is organized as follows. Section 1.1 contains the notation. In Section
1.2 we present some basic results of linear algebra on coupling matrices. In Section
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1.3, we precise the setting and the assumptions adopted throughout the paper, and
we present a brief overview of existing results on weakly coupled systems. In Section
2 we give the definition and establish some relevant properties of the critical value.
In particular, we prove the existence of viscosity solutions to the critical weakly
coupled system, see Theorem 2.12. Some proofs are postponed to the Appendix A.
In Section 3 we give the definition of Aubry set and explore its properties. This
is done by introducing an analogue of the Mañé potential, the Mañé matrix. The
first part of Section 4 is devoted to the regularization of subsolutions outside of the
Aubry set. In the second part, we prove the rigidity phenomenon enjoyed by the
reachable gradients of the critical subsolutions previously described. The fact that
the values assumed on the Aubry set by a critical subsolution depend very less on the
subsolution itself is instead proved at the beginning of Section 5. In the remainder
of the section we state and prove the comparison principle, Theorem 5.3, and we
show how the trace of a critical subsolution on the Aubry set can be extended to
the whole torus to produce a critical solution, see Theorem 5.5. Last, in Section 6
we illustrate our theory on two examples.
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visiting the Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie,
Paris, that he acknowledges for the kind hospitality. The first author has been sup-
ported by Sapienza Università di Roma through the Research Project 2011 Analisi
ed approssimazione di modelli differenziali nonlineari in fluidodinamica e scienza
dei materiali.

1. Preliminaries

1.1. Notations. Throughout the paper, we will denote by TN the N–dimensional
flat torus, where N is an integer number. The scalar product in RN will be denoted
by 〈 · , · 〉, while the symbol | · | stands for the Euclidean norm. Note that the latter
induces a norm on TN , still denoted by | · |, defined as

|x| := min
κ∈ZN

|x+ κ| for every x ∈ TN .

We will denote by BR(x0) and BR the closed balls in TN of radius R centered at x0
and 0, respectively.

With the symbol R+ we will refer to the set of nonnegative real numbers. We say
that a property holds almost everywhere (a.e. for short) in a subset E of TN if it
holds up to a negligible subset of E, i.e. a subset of zero N–dimensional Lebesgue
measure.

By modulus we mean a nondecreasing function from R+ to R+, vanishing and
continuous at 0. A function g : R+ → R will be termed coercive if lim

h→+∞
g(h) = +∞.

We will say that (ρn)n is a sequence of standard mollifiers if ρn(x) := nNρ(nx) in
RN for each n ∈ N, where ρ is a smooth, non–negative function on RN , supported
in B1 and such that its integral over RN is equal to 1.

Given a continuous function u on TN , we will call subtangent (respectively, su-
pertangent) of u at x0 a function φ of class C1 in a neighborhood U of x0 such that
φ(x0) = u(x0) and φ(x) 6 u(x) for every x ∈ U (resp., >). Its gradient Dφ(x0)
will be called a subdifferential (resp. superdifferential) of u at x0, respectively. The
set of sub and superdifferentials of u at x0 will be denoted D−u(x0) and D+u(x0),
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respectively. We recall that u is differentiable at x0 if and only if D+u(x0) and
D−u(x0) are both nonempty. In this instance, D+u(x0) = D−u(x0) = {Du(x0)},
where Du(x0) denotes the differential of u at x0. We refer the reader to [6] for the
proofs.

When u is locally Lipschitz in TN , we will denote by ∂∗u(x0) the set of reachable
gradients of u at x0, that is the set

∂∗u(x0) = {lim
n
Du(xn) : u is differentiable at xn, xn → x0 },

while the Clarke’s generalized gradient ∂cu(x0) is the closed convex hull of ∂∗u(x0).
The set ∂cu(x0) contains both D+u(x0) and D−u(x0), in particular Du(x0) ∈
∂cu(x0) at any differentiability point x0 of u. We refer the reader to [8] for a detailed
treatment of the subject.

We will denote by ‖g‖∞ the usual L∞–norm of g, where the latter is a measurable
real function defined on TN . We will write gn ⇒ g in TN to mean that the sequence
of functions (gn)n uniformly converges to g in TN . We will denote by

(
C(TN )

)m
the

Banach space of continuous functions u = (u1, . . . , um)T from TN to Rm, endowed
with the norm

‖u− v‖∞ = max
16i6m

‖ui − vi‖∞, u,v ∈
(
C(TN )

)m
.

We will write un ⇒ u in TN to mean that ‖un−u‖∞ → 0. A function u ∈
(
C(TN )

)m
will be termed Lipschitz continuous if each of its components is κ–Lipschitz contin-
uous, for some κ > 0. Such a constant κ will be called a Lipschitz constant for u.
The space of all such functions will be denoted by

(
Lip(TN )

)m
.

We will denote by 1 = (1, · · · , 1)T the vector of Rm having all components equal
to 1, where the upper–script symbol T stands for the transpose. We consider the
following partial relations between elements a,b ∈ Rm: a 6 b if ai 6 bi (resp., <)
for every i ∈ {1, . . . ,m}. Given two functions u,v : TN → Rm, we will write u 6 v
in TN (respectively, <) to mean that u(x) 6 v(x)

(
resp., u(x) < v(x)

)
for every

x ∈ TN .

1.2. Linear algebra. Here we briefly present some elementary linear algebraic re-
sults concerning coupling matrices.

Definition 1.1. Let B = (bij)i,j be a m×m–matrix.

(i) We say that B is a coupling matrix if it satisfies the following conditions:

bij 6 0 for j 6= i,
m∑
j=1

bij > 0 for any i ∈ {1, . . . ,m}. (C)

It is additionally termed degenerate if
m∑
j=1

bij = 0 for any i = 1, . . . ,m.

(ii) We say that B is irreducible if for every subset I ( {1, . . . ,m} there exist
i ∈ I and j 6∈ I such that bij 6= 0.

When a coupling matrix is also irreducible, further information can be derived on
its elements. We have
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Proposition 1.2. Let B = (bij)i,j be an irreducible m ×m coupling matrix. Then
bii > 0 for every i ∈ {1, . . . ,m}.

Proof. Indeed, if bi0i0 = 0 for some i0 ∈ {1, . . . ,m}, condition (C) would imply
bi0j = 0 for every j ∈ {1, . . . ,m}, in contradiction with the fact that B is irreducible.

�
The following invertibility criterion holds:

Proposition 1.3. Let B = (bij)i,j be an m×m irreducible coupling matrix. Then

(i) Ker(B) ⊆ span{(1, . . . , 1)T } = R1;

(ii) Ker(B) = span{(1, . . . , 1)T } = R1 if and only if B is degenerate.

In particular, B is invertible if and only if
m∑
j=1

bij > 0 for some i ∈ {1, . . . ,m}.

Proof. We first remark that, by assumption (C),

bii >
∑
j 6=i
|bij | for every i ∈ {1, . . . ,m}. (5)

Let us prove (i). Let v = (v1, . . . , vm)T ∈ Ker(B) and set

I =
{
i ∈ {1, . . . ,m} : vi = max{v1, . . . , vm}

}
.

We claim that I = {1, . . . ,m}. Indeed, if this were not the case, by the irreducible
character of B there would exist i ∈ I and k 6∈ I such that bik 6= 0. Since Bv = 0,
we would get in particular

biivi =
∑
j 6=i

vj |bij | 6 vi
∑
j 6=i
|bij | 6 vibii.

Then the inequalities must be equalities. We infer

vj |bij | = vi|bij | for every j 6= i,

in particular vk = vi = max{v1, . . . , vm}, yielding that k belongs to I, a contradic-
tion.

The remainder of the statement trivially follows from item (i). �

The following proposition gives an obstruction to being in the image of a degen-
erate coupling matrix.

Proposition 1.4. Let B a coupling and degenerate m×m matrix. If a = (a1, . . . , am)T

satisfies ai > 0 for every i ∈ {1, . . . ,m}, then a 6∈ Im(B).

Proof. Let us assume by contradiction that there exists v = (v1, . . . , vm)T such
that

Bv = a.

Let vk = min{v1, . . . , vm}. We have

ak =

m∑
j=1

bkjvj 6
m∑
j=1

bkjvk = 0,

in contradiction with the hypothesis ak > 0. �
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1.3. Weakly coupled systems. Throughout the paper, we will call convex Hamil-
tonian a function H satisfying the following set of assuptions:

(H1) H : TN × RN → R is continuous;

(H2) p 7→ H(x, p) is convex on RN for any x ∈ TN ;

(H3) there exist two coercive functions α, β : R+ → R such that

α (|p|) 6 H(x, p) 6 β (|p|) for all (x, p) ∈ TN × RN .

The Hamiltonian H will be termed strictly convex if it additionally satisfies the
following stronger assumption:

(H2)′ p 7→ H(x, p) is strictly convex on RN for any x ∈ TN .

Moreover, we will denote by B(x) =
(
bij(x)

)
i,j

an m×m–matrix with continuous

coefficients bij(x) on TN . If not otherwise stated, the following hypotheses will be
always assumed:

(B1) B(x) is an irreducible coupling matrix for every x ∈ TN ;

(B2) B(x) is degenerate for every x ∈ TN .

Let H1(x, p), . . . ,Hm(x, p) be convex Hamiltonians, i.e. functions satisfying con-
ditions (H1)–(H3). We are interested in weakly coupled systems of the form

Hi(x,Dui) +
(
B(x)u(x)

)
i

= ai in TN for every i ∈ {1, . . . ,m}, (6)

for some constant vector a = (a1, . . . , am)T , where u(x) =
(
u1(x), . . . , um(x)

)T
and(

B(x)u(x)
)
i

denotes the i–th component of the vector B(x)u(x), i.e.(
B(x)u(x)

)
i

=

m∑
j=1

bij(x)uj(x).

Remark 1.5. The weakly coupled system (6) is a particular type of monotone
system, i.e. a system of the form

Gi
(
x, u1(x), . . . , um(x), Dui

)
= 0 in TN for every i ∈ {1, . . . ,m},

where suitable monotonicity conditions with respect to the uj–variables are assumed
on the functions Gi, see [4, 13, 21, 23, 24]. In the specific case considered in this
paper, the conditions assumed on the coupling matrix imply, in particular, that each
function Gi is strictly increasing in ui and non–increasing in uj for every j 6= i. This
kind of monotonicity will be exploited in many points of the paper.

Let u ∈
(
C(TN )

)m
. We will say that u is a viscosity subsolution of (6) if the

following inequality holds for every (x, i) ∈ TN × {1, . . . ,m}
Hi(x, p) +

(
B(x)u(x)

)
i
6 ai for every p ∈ D+ui(x).

We will say that u is a viscosity supersolution of (6) if the following inequality holds
for every (x, i) ∈ TN × {1, . . . ,m}

Hi(x, p) +
(
B(x)u(x)

)
i
> ai for every p ∈ D−ui(x).

We will say that u is a viscosity solution if it is both a sub and a supersolution. In
the sequel, solutions, subsolutions and supersolutions will be always meant in the
viscosity sense, hence the adjective viscosity will be omitted.
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Due to the convexity of the Hamitonian Hi, the following equivalences hold:

Proposition 1.6. Let a ∈ R, i ∈ {1, . . . ,m} and u ∈
(
Lip(TN )

)m
. The following

facts are equivalent:

(i) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ D+ui(x) and x ∈ TN ;

(ii) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ D−ui(x) and x ∈ TN ;

(iii) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ ∂cui(x) and x ∈ TN ;

(iv) Hi

(
x,Dui(x)

)
+
(
B(x)u(x)

)
i
6 a for a.e. x ∈ TN .

Next, we state a proposition that will be needed in the sequel, see also [13, 24,
21, 23] for similar results.

Proposition 1.7. Let F be a subset of
(
C(TN )

)m
and define the functions u, u on

TN by setting:

ui(x) = inf
u∈F

ui(x), ui(x) = sup
u∈F

ui(x) for every x ∈ TN and i ∈ {1, . . . ,m}.

Assume that u and u belong to
(
C(TN )

)m
and let a ∈ Rm. Then:

(i) if every u ∈ F is a subsolution of (6), then u is a subsolution of (6);

(ii) if every u ∈ F is a supersolution of (6), then u is a supersolution of (6).

The previous proposition is analogous to a well known fact for scalar Hamilton–
Jacobi equations, see for instance Section 2.6 in [1]. The proof can be easily recovered
by arguing similarly and by exploiting the monotonicity of the system.

We will be also interested in the evolutionary counterpart of (6), i.e. the system

∂ui
∂t

+Hi(x,Dxui)+
(
B(x)u(t, x)

)
i

= 0 in (0,+∞)× TN ∀i ∈ {1, . . . ,m}, (7)

where we have denoted by u(t, x) =
(
u1(t, x), . . . , um(t, x)

)T
.

The following comparison result holds, see for instance [4] for a proof.

Proposition 1.8. Let T > 0 and v, u ∈
(
Lip([0, T ]×TN )

)m
be, respectively, a sub

and a supersolution of (7). Then, for every i ∈ {1, . . . ,m},
vi(t, x)− ui(t, x) 6 max

16i6m
max
TN

(
vi(0, ·)− ui(0, ·)

)
, (t, x) ∈ [0, T ]× TN .

By making use of this proposition and of Perron’s method, it is then easy to prove
the following

Proposition 1.9. Let u0 ∈
(
Lip(TN )

)m
. Then there exists a unique function

u(t, x) in
(
Lip(R+×TN )

)m
that solves the system (7) subject to the initial condition

u(0, x) = u0(x) in TN . Moreover, the Lipschitz constant of u(t, x) in R+×TN only
depends on the Hamiltonians H1, . . . ,Hm and on the Lipschitz constant of u0.

We will denote by S(t)u0(x) the solution u(t, x) of (7) with initial datum u0.
This defines, for every t > 0, a map

S(t) :
(
Lip(TN )

)m → (
Lip(TN )

)m
.

We summarize in the next proposition the properties enjoyed by such maps, which
come as an easy application of the above results.
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Proposition 1.10. For every t, s > 0 and u,v ∈
(
Lip(TN )

)m
we have:

(i) (Semigroup property) S(s)
(
S(t)u

)
= S(t+ s)u in TN ;

(ii) (Monotonicity) if v 6 u in TN , then S(t)v 6 S(t)u in TN ;

(iii) (Non–expansiveness property) ‖S(t)v − S(t)u‖∞ 6 ‖v − u‖∞;

(iv) for every a ∈ R, S(t)(u + a1) = S(t)u + a1 in TN .

The fact that the coupling matrix B(x) is everywhere degenerate is crucial for
assertion (iv).

2. The critical value

The purpose of this section is to define the notion of critical value for weakly
coupled systems and to prove some relevant properties of the corresponding critical
system.

We start by proving some a priori estimates for the subsolutions of a weakly
coupled system of the form (6). The following notation will be assumed throughout
the section:

µi = min
(x,p)

Hi(x, p) for each i ∈ {1, . . . ,m}, µ = min
i∈{1,...,m}

µi.

Proposition 2.1. Let a = (a1, . . . , am)T ∈ Rm and u ∈
(
C(TN )

)m
such that(

B(x)u(x)
)
i
6 ai for every x ∈ TN and i ∈ {1, . . . ,m}. (8)

Then there exists a constant Ma only depending on a and B(x) such that

(i) ‖ui − uj‖∞ 6Ma for every i, j ∈ {1, . . . ,m};
(ii)

∣∣(B(x)u(x)
)
i

∣∣ 6Ma for every x ∈ TN and i ∈ {1, . . . ,m}.

Proof. It suffices to prove the assertion for a = a1. Let us set

β? = min
16i6m

min
x∈TN

bii(x), β? = max
16i,j6m

max
x∈TN

|bij(x)|.

Such quantities are finite valued. Moreover, β? is strictly positive in view of Propo-
sition 1.2 and of the fact that B(x) is, for every x ∈ TN , an irreducible coupling
matrix with continuous coefficients.

Let us now fix x ∈ TN and assume, without any loss of generality,

u1(x) 6 u2(x) 6 · · · 6 um(x). (9)

First notice that, by subtracting
m∑
j=1

bmj(x)um(x) = 0 from both sides of equation

(8) with i = m, one gets ∑
j 6=m
−bmj(x)

(
um(x)− uj(x)

)
6 a,

yielding (
um(x)−max

j 6=m
uj(x)

)∑
j 6=m
−bmj(x) 6 a.

By exploiting (9) and the degenerate character of the matrix B(x) we get

0 6 um(x)− um−1(x) 6
a

bmm(x)
6

a

β?
. (10)

10



This proves assertion (i) when m = 2. To prove it in the general case, we argue by
induction: we assume the result true for m and we prove it for m+ 1. To this aim,
we restate equation (8) as

m−1∑
j=1

bij(x)uj(x) +
(
bim(x) + bim+1(x)

)
um(x) + bim+1(x)

(
um+1(x)− um(x)

)
6 a,

then we exploit (10) to get

m−1∑
j=1

bij(x)uj(x) +
(
bim(x) + bim+1(x)

)
um(x) 6 a

(
1 +

β?

β?

)
(11)

for every i ∈ {1, . . . ,m + 1}. The irreducible character of B(x) applied to the set
I = {m,m+ 1} implies that

bim(x) + bim+1(x) > 0

for either i = m or i = m + 1, let us say i = m for definitiveness. Assertion (i)
now follows by applying the induction hypothesis to the system given by (11) with i
varying in {1, . . . ,m}, the corresponding coupling matrix being still irreducible and
degenerate.

To prove (ii) it suffices to note that, for every i ∈ {1, . . . ,m},

−
(
B(x)u(x)

)
i

= −bii(x)ui(x) +
∑
j 6=i

(
− bij(x)

)
uj(x)

6 −bii(x)ui(x) +
∑
j 6=i
−bij(x)

(
ui(x) + ‖ui − uj‖∞

)
6 (m− 1)β?‖ui − uj‖∞,

and the assertion follows from (i) and from hypothesis (8). �

As a consequence, we derive the following result:

Proposition 2.2. Let u = (u1, . . . , um)T ∈
(
C(TN )

)m
be a subsolution of (6) for

some a ∈ Rm. Then there exists costants Ca and κa, only depending on a, Hi and
the coupling matrix B(x), such that

(i) ‖ui − uj‖∞ 6 Ca for every i, j ∈ {1, . . . ,m};

(ii) u is κa–Lipschitz continuous in TN .

Proof. For each i ∈ {1, . . . ,m}, the following inequalities hold in the viscosity
sense:

µ+
(
B(x)u(x)

)
i
6 Hi(x,Dui) +

(
B(x)u(x)

)
i
6 ai in TN ,

yielding (
B(x)u(x)

)
i
6 ai − µ for every x ∈ TN .

In view of Proposition 2.1 we get (i) and∣∣(B(x)u(x)
)
i

∣∣ 6Ma for every x ∈ TN .

Plugging this inequality in (6) we derive that ui is a viscosity subsolution of

Hi(x,Dui) 6 ai +Ma in TN

and assertion (ii) follows as well via a standard argument that exploits the coercivity
of Hi(x, p) in p. �
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Next, we establish a remarkable property of weakly coupled systems.

Proposition 2.3. Assume that v, u ∈
(
C(TN )

)m
are, respectively a sub and a

supersolution of the weakly coupled system (6) for some a ∈ Rm. Let x0 ∈ TN be
such that

vi(x0)− ui(x0) = M := max
16i6m

max
TN

(vi − ui) for some i ∈ {1, . . . ,m}.

Then v(x0) = u(x0) +M1.

Proof. In view of Proposition 2.2, we know that v is Lipschitz continuous. Set

I =
{
i ∈ {1, . . . ,m} :

(
vi(x0)− ui(x0)

)
= M

}
.

We want to prove that I = {1, . . . ,m}. Indeed, if this were not the case, by the
irreducible character of the matrix B(x0) there would exist i ∈ I and k 6∈ I such
that

bik(x0) < 0.

We now make use of the method of doubling the variables to reach a contradiction.
For every ε > 0, we set

ψε(x, y) = vi(x)− ui(y)− |x− y|
2

2ε2
− |x− x0|

2

2
, x, y ∈ TN .

LetMε = max
TN×TN

ψε and denote by (xε, yε) a point in TN×TN where such a maximum

is achieved. By a standard argument in the theory of viscosity solution, see for
instance Lemma 2.3 in [1], the following properties hold:

xε, yε → x0,
|xε − yε|

ε
→ 0, |xε − x0| → 0 as ε→ 0. (12)

Furthermore,

p′ε :=
xε − yε
ε2

∈ D−ui(yε), pε := p′ε − (xε − x0) ∈ D+vi(xε) for every ε > 0.

By the Lipschitz character of vi we derive that the vectors { pε : ε > 0 } are equi–
bounded, hence, up to subsequences and in view of the estimates (12), we infer

pε, p
′
ε → p0 as ε→ 0

for some vector p0 ∈ RN . We now use the fact that v and u are a sub and superso-
lution of (16), respectively, to get

Hi(xε, pε) +
(
B(xε)v(xε)

)
i
6 0,

Hi(yε, p
′
ε) +

(
B(yε)u(yε)

)
i
> 0.

By subtracting the above inequalities and by passing to the limit for ε→ 0 we end
up with (

B(x0)
(
v(x0)− u(x0)

))
i
6 0,

that is, since i ∈ I and the matrix B(x0) is degenerate,

M bii(x0) 6
∑
j 6=i
|bij(x0)|

(
vj(x0)− uj(x0)

)
6M

∑
j 6=i
|bij(x0)| = Mbii(x0).

Hence the above inequalities are equalities, in particular vk(x0)− uk(x0) = M since
bik(x0) 6= 0, in contrast with the fact that k 6∈ I. �
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Definition 2.4. For every a ∈ Rm, we denote by H(a) the set of subsolutions of
the weakly coupled system (6). We will more simply write H(a) whenever a = a1
for some constant a ∈ R, .

Lemma 2.5. The sets H(a) are convex, closed (with respect to the topology of
uniform convergence) and increasing with respect to the partial ordering on Rm.

Proof. Convexity and monotonicity are straightforward. The fact that the H(a)
are closed is a direct consequence of stability of viscosity subsolutions. �

We now focus our attention to the case a = a1. As a direct consequence of the
definition of the semigroup S(t), we get the following assertion:

Proposition 2.6. Let a ∈ R and u ∈
(
Lip(TN )

)
. Then u is a viscosity solution of

(6) with a = a1 if and only if

u = S(t)u + t a1 in TN for every t > 0.

We have the following characterization:

Proposition 2.7. Let a ∈ R. The following facts are equivalent:

(i) u ∈ H(a);

(ii) the map t 7→ S(t)u + t a1 is non–decreasing on [0,+∞).

In particular, the sets H(a) are stable under the action of the semigroup S(t), in the
sense that S(t)

(
H(a)

)
⊂ H(a).

The proof of this proposition is rather technical and it is postponed to the Ap-
pendix A.

Definition 2.8. The critical value c of the weakly coupled system (6) is defined as

c = inf{a ∈ R : H(a) 6= ∅ }. (13)

The following holds:

Proposition 2.9. The critical value c is finite and H(c) 6= ∅.

Proof. By the growth assumptions on the Hamiltonians Hi it is easily seen that
the function u ≡ (0, . . . , 0)T is a subsolution of (6) for a01 with a0 ∈ R big enough.

Let us proceed to show that c is finite valued and that H(c) 6= ∅. Let (an)n be
a decreasing sequence converging to c and let un ∈ H(cn) for each n ∈ N. Up to
neglecting the first terms, we can assume that an 6 a0 for every n ∈ N. Arguing as
in the proof of Proposition 2.2, we obtain that the following inequalities are satisfied
in the viscosity sense:

µi 6 Hi(x,Du
n
i ) 6 an +Ma0 in TN

for every i ∈ {1, . . . ,m} and n ∈ N, showing that c is finite. We now exploit
Proposition 2.2: by the monotonicity of the sets H(a) with respect to a, we infer
that the functions un are equi–Lipschitz. Up to subtracting a vector of the form
kn1 to each un, we can furthermore assume that un1 (0) = 0 for every n ∈ N, yielding
supn ‖un1‖∞ 6 L for some L ∈ R by the equi–Lipschitz character of the sequence.
Moreover,

‖unj − un1‖∞ 6 Ca0 for every j ∈ {1, . . . ,m} and n ∈ N,

yielding
‖unj ‖∞ 6 Ca0 + L for every j ∈ {1, . . . ,m} and n ∈ N.
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Up to subsequences, by the Arzela–Ascoli theorem, we infer that

un ⇒ u in TN

and u ∈ H(c) by stability of the notion of viscosity subsolution. �

We now proceed to show that the stationary equation (3) possesses solutions of
the corresponding weakly coupled system if and only if a equals the critical value c.

We start with a preliminary result.

Proposition 2.10. Let B(x) be a continuous irreducible coupling matrix on TN and
let us assume that B(x) is invertible for every x ∈ TN . Let v, u ∈

(
C(TN )

)m
be,

respectively, a sub and a supersolution of the weakly coupled system (6), for some
a ∈ Rm. Then

v(x) 6 u(x) for every x ∈ TN .

Proof. Arguing as in the proof of Proposition 2.2, we easily see that v is Lipschitz.
Set

M = max
16i6m

max
TN

(vi − ui).

We want to prove that M 6 0. Assume by contradiction that M > 0 and pick a
point x0 ∈ TN where such a maximum is attained. Set

I =
{
i ∈ {1, . . . ,m} :

(
vi(x0)− ui(x0)

)
= M

}
.

Arguing as in the proof of Proposition 2.3 we infer that(
B(x0)

(
v(x0)− u(x0)

))
i
6 0 for every i ∈ I. (14)

If I = {1, . . . ,m}, inequality (14) is in contradiction with the fact that B(x0) is
invertible, in view of Proposition 1.3. If I 6= {1, . . . ,m}, we choose i ∈ I and k 6∈ I
such that bik(x0) < 0. From (14) and the assumption that M > 0 we infer that

M bii(x0) 6
∑
j 6=i
|bij(x0)|

(
vj(x0)− uj(x0)

)
6M

∑
j 6=i
|bij(x0)| 6Mbii(x0),

which implies that vk(x0)− uk(x0) = M , in contrast with the fact that k 6∈ I. �

Next, we prove that solutions to a weakly coupled system of the kind (6) with
a = a1 may exist only if a equals the critical value.

Proposition 2.11. Let a, b ∈ R and v, u ∈
(
C(TN )

)m
such that the following

inequalities are satisfied in the viscosity sense:

Hi(x,Dvi) +
(
B(x)v(x)

)
i
6 a in TN

Hi(x,Dui) +
(
B(x)u(x)

)
i
> b in TN

for every i ∈ {1, . . . ,m}. Then b 6 a.

Proof. Let us assume by contradiction that b > a. Up to replacing v with v + k1
with k > 0 big enough, we can assume

v > u in TN .

Let ε > 0 such that b− ε > a+ ε. By continuity of the functions v and u, we can
find λ > 0 such that

‖λ vi‖∞, ‖λui‖∞ < ε for every i ∈ {1, . . . ,m}.
14



Then the following inequalities hold in the viscosity sense in TN :

Hi(x,Dui) +
(
(B(x) +λ I)u(x)

)
i
> b− ε > a+ ε > Hi(x,Dvi) +

(
(B(x) +λ I)v(x)

)
i
.

For ever x ∈ TN , the matrix B(x) + λ I is irreducible, satisfies (C) and the sum of
the elements of each of its rows is strictly positive, hence it is invertible in view of
Proposition 1.3. By Proposition 2.10 we conclude that

v 6 u in TN ,

achieving a contradiction. �

We are now able to prove a weak KAM theorem, following the lines of Fathi [18].
This result has been already obtained in literature in similar settings by making use
of the so called ergodic approximation, see [26, 5].

Theorem 2.12. There exists a function u ∈ H(c) that solves the weakly coupled
system

Hi(x,Dui) +
(
B(x)u(x)

)
i

= c in TN for every i ∈ {1, . . . ,m} (15)

in the viscosity sense.

Proof. We have already proved in Proposition 2.9 that H(c) 6= ∅. Let us introduce

the quotient space Ĥ = H(c)\R1. Arguing as in the proof of Proposition 2.9, it is

easily seen that Ĥ is compact for the topology of uniform convergence. Indeed, it
is isomorphic to the subset of H(c) of subsolutions whose first component vanishes
at the point x = 0. Moreover, since the viscosity semigroup commutes with the
addition of vectors of the form λ1 and leaves H(c) stable, it induces a continuous

semigroup, denoted Ŝ, on Ĥ.
By the Schauder–Tychonoff fixed point theorem (see [12]), Ŝ possesses a fixed

point, that is, there exists an element û ∈ Ĥ such that

∀t > 0, Ŝ(t)û = û.

Lifting these relations to H(c), we get

∀t > 0 there exists ct ∈ R such that S(t)u = u + ct1,

where u is any element in the equivalence class of û. Since S is a semigroup, one
readily realizes that the following relations are verified:

ct+s = ct + cs for every t, s > 0.

Since S is continuous, we necessarily deduce that ct = −tc̃ for all t > 0 for some
constant c̃ ∈ R.

The identity S(t)u = u− tc̃1, for all t > 0, implies that u is a viscosity solution of
(15) with c̃ in place of c, see Proposition 2.6. But then c̃ = c in view of Proposition
2.11 and the statement is proved. �

3. The Aubry set

In this section we start our qualitative analysis on the critical weakly coupled
system

Hi(x,Dui) +
(
B(x)u(x)

)
i

= 0 in TN for every i ∈ {1, . . . ,m}. (16)

Here and in the remainder of the paper we assume that the critical value c defined
via (13) is equal to 0. This renormalization is always possible by replacing each
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Hi with Hi − c. Solutions, subsolutions and supersolutions of the weakly coupled
system (16) will be termed critical in the sequel. The family of critical subsolutions,
we recall, is denoted by H(0).

Our qualitative analysis on the critical weakly coupled system is based on the
notion of Mañé matrix, defined in analogy with that of the Mañé potential.

Definition 3.1. For all (x, y, i, j) ∈ TN × TN × {1, . . . ,m} × {1, . . . ,m}, we define

Φi,j(x, y) = sup
v∈H(0)

vi(y)− vj(x).

The following properties hold:

Proposition 3.2. The Mañé matrix verifies the following properties:

(i) it is everywhere finite and Lipschtiz continuous;

(ii) Φ·,j(y, ·) ∈ H(0) for every (y, j) ∈ TN × {1, . . . ,m};

(iii) for every (y, j) ∈ TN × {1, . . . ,m} and v ∈ H(0),

v − vj(y)1 6 Φ·,j(y, ·) in TN ,

namely Φ·,j(y, ·) is the maximal critical subsolution whose j–th component
vanishes at y;

(iv) the entries of the Mañé matrix are linked by the following triangular inequal-
ity:

Φi,k(x, z) 6 Φj,k(x, y) + Φi,j(y, z)

for every i, j, k ∈ {1, . . . ,m} and x, y, z ∈ TN .

Proof. The fact that the Mañé matrix is well defined directly follows from Propo-
sition 2.2. Lipschitz continuity comes from the equi–Lipschitz character of critical
subsolutions.

The second assertion comes from the fact that Φ·,j(y, ·) is, for every fixed (j, y), a
supremum of critical subsolutions, hence itself a critical subsolution by Proposition
1.7.

The third point is a direct consequence of the definition.
The last point comes from the fact that Φ·,j(y, ·) is the greatest subsolution whose

j–th component vanishes at y. Since Φ·,k(x, ·) − Φj,k(x, y)1 is a subsolution whose
j–th component vanishes at y we obtain that

Φ·,k(x, ·)− Φj,k(x, y)1 6 Φ·,j(y, ·),

which is the triangular inequality to be proved. �

As in the case of a single critical equation, the Mañé vectors are “almost” critical
solutions, in the sense precised below:

Proposition 3.3. Let y0 ∈ TN and i0 ∈ {1, . . . ,m}. Then the function u =
Φ·,i0(y0, ·) satisfies

Hi0(x,Dui0) +
(
B(x)u(x)

)
i0

= 0 in TN \ {y0}.

and

Hi(x,Dui) +
(
B(x)u(x)

)
i

= 0 in TN for every i 6= i0

in the viscosity sense.
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Proof. We argue by contradiction, following the classical argument of [18] for the
classical Mañé potential.

Let (i, y) be such that either i 6= i0 or y 6= y0. Let us assume that the viscosity
supersolution condition is violated at (i, y). This means that there exists a C1

function ψ such that ψ(x) 6 Φi,i0(y0, x) for all x, with equality if and only if x = y,
and

Hi

(
x,Dψ(y)

)
+
(
B(y)Φ·,i0(y0, y)

)
i
< 0.

Since ψ is C1, and B(·) and Φ·,i0(x0, ·) are continuous, it is clear that this strict
inequality continues to hold in a neighborhood of y. We infer that it is possible to
find ε > 0 small enough such that the function wi := max{Φi,i0(y0, ·), ψ+ ε} verifies

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
6 0 for a.e. x ∈ TN ,

where w is the vector whose i–th coordinate is wi and whose other coordinates are
those of Φ·,i0(y0, ·). In the case when i = i0 and y 6= y0, we choose ε > 0 small
enough in such a way that wi(y0) = Φi,i0(y0, y0) = 0. Moreover, for every j 6= i,

Hj

(
x,Dwj(x)

)
+
(
B(x)w(x)

)
j
6 0 for a.e. x ∈ TN ,

as it is easily seen from the fact that bji(·) 6 0 in TN and wi > Φi,i0(y0, ·).
We have thus shown that w is a critical subsolution with wi0(y0) = 0, w >

Φi,i0(y0, ·) and w 6≡ Φi,i0(y0, ·), thus contradicting the maximality of Φi,i0(y0, ·)
amongst subsolutions whose i0–th coordinate vanishes at y0. �

Next, we show a strong invariance property enjoyed by the rows of the Mañé
matrix.

Proposition 3.4. Let i, j ∈ {1, . . . ,m} and y ∈ TN . If Φ·,i(y, ·) is a critical solution
on TN , then Φ·,j(y, ·) is too.

Proof. Let us set v := Φ·,j(y, ·) and u := Φ·,i(y, ·) + Φi,j(y, y)1. In view of
Proposition 3.3, we only need to show that

Hj(y, p) +
(
B(y)v(y)

)
j
> 0 for every p ∈ D−vj(y).

According to Proposition 3.2, v 6 u in TN and vi(y) = ui(y). The functions v and u
being respectively a critical subsolution and a solution, we can apply Proposition 2.3
to infer that v(y) = u(y). This also implies that D−vj(y) ⊆ D−uj(y). Exploiting
again the fact that u is a critical solution we finally get

0 6 Hj(y, p) +
(
B(y)u(y)

)
j

= Hj(y, p) +
(
B(y)v(y)

)
j

for every p ∈ D−vj(y).

�
In view of the previous proposition, the following definition is well posed:

Definition 3.5. The Aubry set A for the weakly coupled system (16) is the set
defined as

A =
{
y ∈ TN : Φ·,i(y, ·) is a critical solution

}
,

where i is any fixed index in {1, . . . ,m}.

By the continuity of the Mañé matrix and the stability of the notion of viscosity
solution, it is easily seen that A is closed. The analysis we are about to present will
show that the Aubry set is nonempty: as in the corresponding critical scalar case,
we will see that A is the set where the obstruction to the existence of globally strict
critical subsolutions concentrates.
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Definition 3.6. Let v ∈ H(0). We will say that vi is strict at y ∈ TN if there exist
an open neighborhood V of y and δ > 0 such that

Hi

(
x,Dvi(x)

)
+
(
B(x)v(x)

)
i
< −δ for a.e. x ∈ V .

We will say that vi is strict in an open subset U of TN if it is strict at y for every
y ∈ U .

We start by establishing an auxiliary result that will be needed in the sequel.

Lemma 3.7. Let w ∈ H(0) such that wi is strict at y ∈ TN . Then there exists
w̃ ∈ H(0) such that w̃i is C∞ and strict in a neighborhood of y.

Proof. By hypothesis, there exist r > 0 and δ > 0 such that

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
< −δ for a.e. x ∈ B2r(y).

Let φ : TN → [0, 1] be a C∞–function, compactly supported in Br(y) and such that
φ ≡ 1 in Br/2(y). Let us denote by κ a Lispchitz constant for the critical subsolutions

and by ω a continuity modulus of Hi in TN × BR for some fixed R > κ + ‖Dφ‖∞.
Let (ρn)n be a sequence of standard mollifiers on RN and define

ψn(x) = (ρn ∗ wi)(x) + ‖ρn ∗ wi − wi‖∞, x ∈ TN .

Note that ψn > wi in TN for every n ∈ N and

dn := ‖ψn − wi‖∞ → 0 as n→ +∞.

Up to neglecting the first terms, we furthermore assume that all the dn are less than
1. For every n ∈ N, we define a function w̃n ∈

(
Lip(TN )

)m
by setting

w̃nj (x) = wj(x) if j 6= i, w̃ni (x) = φ(x)ψn(x) +
(
1− φ(x)

)
wi(x)

for every x ∈ TN . It is apparent by the definition that w̃ni is of class C∞ in Br/2(y).
Moreover the functions (w̃ni )n, and hence the (w̃n)n, are equi–Lipschitz. Indeed, for
almost every x ∈ TN ,

Dw̃ni (x) = φ(x)Dψn(x) +
(
1− φ(x)

)
Dwi(x) +

(
ψn(x)− wi(x)

)
Dφ(x) (17)

that is ‖Dw̃ni ‖∞ 6 κ+‖Dφ‖∞. We want to show that n can be chosen sufficiently
large in such a way that w̃n ∈ H(0) and

Hi

(
x,Dw̃ni (x)

)
+
(
B(x)w̃n(x)

)
i
< −2

3
δ for a.e. x ∈ Br(y). (18)

We first note that, since w̃ni > wi and bji 6 0 in TN for every j 6= i, we have

Hj(x,Dw̃
n
j (x)) +

(
B(x)w̃n(x)

)
j
6 0 in TN for every j 6= i. (19)

Moreover, since w̃n agrees with w outside Br(y), in order to show that w̃n satisfies
(19) also for j = i, it will be enough, by the convexity of Hi, to prove (18).

To this aim, we start by noticing that

Hi

(
x,Dw̃ni (x)

)
6 φ(x)Hi

(
x,Dψn(x)

)
+
(
1− φ(x)

)
Hi

(
x,Dwi(x)

)
+ ω (dn ‖Dφ‖∞)

(20)
18



for almost every x ∈ TN , in view of (17) and of the convexity of Hi. By Jensen’s
inequality, for every n > 1/r and every x ∈ Br we have

Hi

(
x,Dψn(x)

)
= Hi

(
x,

∫
B1/n

Dwi(x− y)ρn(y) dy

)

6
∫
B1/n

Hi

(
x,Dwi(x− y)

)
ρn(y) dy

6 ω(1/n) +

∫
B1/n

Hi

(
x− y,Dwi(x− y)

)
ρn(y) dy

6 −
∫
B1/n

(
B(x− y)w(x− y)

)
i
ρn(y) dy − δ + ω(1/n)

6 −
(
B(x)w̃n(x)

)
i
− δ + ω(1/n) + εn, (21)

where

εn := sup
|z|61/n

∥∥(B(·+ z)w(·+ z)−B(·)w̃n(·)
)
i

∥∥
∞.

Since w̃n ⇒ w in TN and all these functions are equi–Lipschitz, it is easily seen that
limn εn = 0. Furthermore

Hi

(
x,Dwi(x)

)
6 −

(
B(x)w̃n(x)

)
i
− δ + εn for a.e. x ∈ Br(y). (22)

We now choose n > 1/r sufficiently large such that

ω (dn ‖Dφ‖∞) + ω(1/n) + εn <
δ

6

and plug (21) and (22) into (20) to finally get (18). The assertion follows by setting
w̃ := w̃n for such an index n. �

The next proposition shows that the i–th component of any critical subsolution
fulfills the supersolution test on A.

Proposition 3.8. Let y ∈ A. Then, for every i ∈ {1, . . . ,m} and w ∈ H(0),

Hi(y, p) +
(
B(y)w(y)

)
i

= 0 for every p ∈ D−wi(y). (23)

Proof. Pick w ∈ H(0) and set u = Φ·,i(y, ·) + wi(y)1. According to Proposition
3.2, w 6 u and, by definition of u, wi(y) = ui(y), in particular D−wi(y) ⊆ D−ui(y).
Now we exploit the fact that u and w are a critical solution and subsolution, re-
spectively: from Proposition 2.3 we infer that w(y) = u(y), while Proposition 1.6
implies

0 > Hi(y, p) +
(
B(y)w(y)

)
i

= Hi(y, p) +
(
B(y)u(y)

)
i
> 0 ∀p ∈ D−wi(y).

Hence all the inequalities must be equalities and the statement follows. �

A converse of this result is given by the following

Proposition 3.9. Let i ∈ {1, . . . ,m}. The following facts are equivalent:

(i) y 6∈ A;

(ii) there exists w ∈ H(0) such that wi is strict at y.
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Proof. Let us assume (i). Since y 6∈ A, the supersolution test for Φ·,i(y, ·) is violated
at (i, y). This means that there exists a C1 function ψ such that ψ(x) 6 Φi,i(y, x)
for all x, with equality if and only if x = y, and

Hi

(
x,Dψ(y)

)
+
(
B(y)Φ·,i(y, y)

)
i
< 0.

We define a function w ∈
(
Lip(TN )

)m
by setting

wi(·) = max{Φi,i(y, ·), ψ + ε}, wj(·) = Φj,i(y, ·) for j 6= i.

Arguing as in the proof of Proposition 3.3 we see that it is possible to choose ε > 0
in a such a way that w is a critical subsolution. Moreover, since wi agrees with ψ+ε
in a neighborhood of y, there exist δ > 0 and an open neighborhood W of y such
that wi is of class C1 in W and

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
< −δ for every x ∈W.

Conversely, let assume (ii). According to Lemma 3.7, there exists w̃ ∈ H(0) such
that w̃i is smooth and strict in a neighborhood of y, in particular

Hi

(
y,Dw̃i(y)

)
+
(
B(y)w̃(y)

)
i
< 0.

In view of Proposition 3.8 we conclude that y 6∈ A. �

Remark 3.10. Proposition 3.8 expresses the fact, roughly speaking, that the i–
th component of a critical subsolution cannot be strict at y. However, since the
supersolution test (23) is void when D−ui(y) is empty, this fact cannot be directly
used to prove the equivalence stated in Proposition 3.9. This is precisely the reason
why we needed the regularization Lemma 3.7.

We proceed by proving a global version of the previous proposition. We give a
definition first.

Definition 3.11. Let v ∈ H(0). We will say that v is strict at y if vi is strict at y
for every i ∈ {1, . . . ,m}. We will say that v is strict in an open subset U of TN if
it is strict at y for every y ∈ U .

Theorem 3.12. There exists v ∈ H(0) which is strict in TN \A. In particular, the
Aubry set A is closed and nonempty.

Proof. Fix i ∈ {1, . . . ,m}. We first construct a critical subsolution vi whose i–th
component is strict in TN \ A. According to Proposition 3.9, for every y ∈ TN \ A
there exist an open neighborhood Wy of y, a critical subsolution wy and δy > 0 such
that

Hi

(
x,Dwyi (x)

)
+
(
B(x)wy(x)

)
i
< −δy for a.e. x ∈Wy (24)

The family {Wy : y ∈ TN \ A} is an open covering of TN \ A, from which we can
extract a countable covering (Wn)n of TN \ A. For each n ∈ N, let us denote by
(wn, δn) the corresponding pair in H(0)× (0,+∞) that satisfies (24) in Wn. Up to
subtracting to each critical subsolution wn a vector of the form kn1, we can moreover
assume that wn1 (0) = 0. Hence the functions wn are componentwise equi–Lipschitz
and equi–bounded in view of Proposition 2.2, in particular the function

vi(x) =
∞∑
n=1

1

2n
wn(x), x ∈ TN
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is well defined and belongs to
(
Lip(TN )

)m
. By convexity of the Hamiltonians, for

almost every x ∈ TN we get

Hi

(
x,Dvii(x)

)
+
(
B(x)vi(x)

)
i
6
∞∑
n=1

1

2n

(
Hi

(
x,Dwni (x)

)
+
(
B(x)wn(x)

)
i

)
6 0.

Moreover, the above inequalities hold with −δk/2k in place of 0 almost everywhere
in Wk, for every k ∈ N. This shows that vi is a critical subsolution, strict in TN \A.
Now set

v(x) =
m∑
i=1

1

m
vi(x), x ∈ TN .

A similar argument shows that v is a critical subsolution that satisfies the assertion.
IfA = ∅, by compactness we would haveH(−δ) 6= ∅ for some δ > 0, contradicting

the definition of the critical value c = 0. �

In view of Proposition 3.9, we have the following characterization:

Theorem 3.13. Let y ∈ TN . The following are equivalent facts:

(i) y /∈ A;

(ii) there exists w ∈ H(0) which is strict at y;

(iii) there exists w ∈ H(0) and i ∈ {1, . . . ,m} such that wi is strict at y.

We end this section by extending to weakly coupled systems a result which is well
known in the case of a single critical equation.

Proposition 3.14. A =
⋂

w∈H(0)

{
y ∈ TN :

(
S(t)w

)
(y) = w(y) for every t > 0

}
.

Proof. Let us denote by A′ the set appearing at the right–hand side of the above
equality. Fix a point y ∈ A and let w be any critical subsolution. For every fixed
index i ∈ {1, . . . ,m}, the function ui = Φ·,i(y, ·) + wi(y)1 satisfies w 6 ui in TN
and wi(y) = ui(y). Moreover, ui is a critical solution, hence it is a fixed point for
the semigroup S(t) by Proposition 2.6. By monotonicity of the semigroup, we have

wi(y) 6
(
S(t)w

)
i
(y) 6

(
S(t)ui

)
i
(y) = uii(y) for every t > 0,

hence all the inequalities must be equalities, in particular
(
S(t)w

)
i
(y) = wi(y) for

every t > 0. This being true for every i ∈ {1, . . . ,m} and w ∈ H(0), we conclude
that y ∈ A′.

To prove the converse inclusion, we take a critical subsolution v which is strict
outside A. According to Proposition A.3, for every y 6∈ A there exists ty > 0 such
that

(
S(ty)v

)
(y) > v(y), that is y 6∈ A′. �

4. Regularization

The aim of this section is to show how a strict critical subsolution can be regular-
ized outside the Aubry set. In the case of a single critical equation, it is known that
such procedure can be performed in such a way that the output is a strict critical
subsolution which is, in addition, of class C1 on the whole torus, see [3, 19, 20]. This
result holds for Hamiltonians that are locally Lipschitz in (x, p) and strictly convex
in p and the proof relies on the following two facts: first, any critical subsolution
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is differentiable on the Aubry set and, second, its gradient is independent of the
specific subsolution chosen. This latter rigidity property holds for weakly couples
systems too, as we will show at the end of the current section. What prevents us
to extend to systems the existence of C1 strict critical subsolutions is the lack of
information on differentiability properties of critical subsolutions on the Aubry set.

We first deal with the regularization issue. The tools are not new and are mainly
borrowed from [19, 20]. However, we provide a proof for the reader’s convenience.

We start with a local regularization argument.

Lemma 4.1. Let u ∈ H(0) and assume that, for some r > 0, δ > 0 and y ∈ TN \A
and for every i ∈ {1, . . . ,m},

Hi

(
x,Dui(x)

)
+
(
B(x)u(x)

)
i
< −δ for a.e. x ∈ B2r(y).

Then, for every ε > 0, there exists uε ∈ H(0) such that

(i) ‖uε − u‖∞ < ε;

(ii) uε = u in TN \Br(y);

(iii) uε is of class C∞ in Br/2(y) and satisfies

Hi

(
x,Duεi (x)

)
+
(
B(x)uε(x)

)
i
< −2

3
δ for every x ∈ Br/2(y). (25)

Proof. Let φ : TN → [0, 1] be C∞ function, compactly supported in Br(y) and such
that φ ≡ 1 in Br/2(y). Let (ρn)n be a sequence of standard mollifiers on RN . For

every n ∈ N, we define a function wn ∈
(
Lip(TN )

)m
by setting

wni (x) = φ(x)(ρn ∗ui)(x)+
(
1−φ(x)

)
ui(x) for every x ∈ TN and i ∈ {1, . . . ,m}.

It is apparent by the definition that wn is of class C∞ in Br/2(y) and agrees with u
outside Br(y). Arguing as in the proof of Lemma 3.7, we see that it is possible to
choose n large enough in such a way that wn is a critical subsolution and satisfies
(25). Since wn ⇒ u in TN , the assertion follows by seting uε := wn for a sufficiently
large n. �

We now prove the announced regularization result.

Theorem 4.2. There exists a critical subsolution which is strict and C∞ in Tn \A.
More precisely, for every critical subsolution v which is strict in TN \ A and for
every ε > 0, there exists vε ∈ H(0) such that

(i) ‖vε − v‖∞ < ε;

(ii) vε = v on A;

(iii) vε is C∞ and strict in Tn \ A.

Moreover, the set of such smooth and strict subsolutions is dense in H(0).

Proof. We first show how to regularize a subsolution which is strict outside the
Aubry set. Let v be such a subsolution (given by Theorem 3.12) and fix ε > 0.
Since v is strict in TN \ A, there exists a continuous and non–negative function
δ : TN → R with δ−1 ({0}) = A such that

Hi(x,Dvi) +
(
B(x)v(x)

)
i
6 −δ(x) in TN

for every i ∈ {1, . . . ,m}. Clearly, it is not restrictive to assume that the inequality
δ(x) < ε holds for every x ∈ TN . In view of Lemma 4.1, we can find a locally finite
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covering (Un)n of TN \A by open sets compactly contained in TN \A and a sequence
(un)n of critical subsolutions such that each un is C∞ in Un and satisfies

Hi(x,Du
n
i ) +

(
B(x)un(x)

)
i
6 −2

3
δ(x) for every x ∈ Un,

|un(x)− v(x)| 6 δ(x) for every x ∈ TN . (26)

Set

δn := inf
x∈Un

δ(x) for every n ∈ N

and choose a sequence (ηn)n in (0, 1) such that, for every x ∈ TN and n ∈ N, the
following holds:

|H(x, p)−H(x, p′)| < δn
6

for all p, p′ ∈ Bκ+1 with |p− p′| < ηn, (27)

where κ denotes a common Lipschitz constant for the critical subsolutions, in par-
ticular for all the un. Last, take a smooth partition of unity (ϕn)n subordinate to
(Un)n and choose the functions un in such a way that the quantities ‖un − v‖∞,
which can be be made as small as desired, satisfy∑

k∈N
Uk∩Un 6=∅

‖uk − v‖∞ ‖Dϕk‖∞ < ηn for every n ∈ N. (28)

That is always possible since the covering (Un)n is locally finite.
We now define vε : TN → Rm by setting

vε(x) =

∞∑
n=1

ϕn(x)un(x) in TN \ A and vε(x) = v(x) on A.

By definition, vε satisfies assertion (ii) and is C∞ in TN \ A. From (26) we infer
that |vε(x)− v(x)| 6 δ(x) in TN \ A, which shows at once that vε is continuous in
TN and that it satisfies assertion (i). Moreover, by taking into account (28) and the
fact that

∑
Dϕk ≡ 0, one obtains, for every x ∈ Un and i ∈ {1, . . . ,m}, that∣∣∣Dvεi (x)−
∑
k∈N

Uk∩Un 6=∅

ϕk(x)Duki (x)
∣∣∣ =

∣∣∣ ∑
k∈N

Uk∩Un 6=∅

(
uki (x)− v(x)

)
Dϕk(x)

∣∣∣ < ηn, (29)

in particular

|Dvεi (x)| 6 ηn +
∑
k∈N

Uk∩Un 6=∅

ϕk(x)|Duki (x)| 6 1 + κ.

We infer that vε is Lipschitz–continuous in TN . In order to prove that vε is a critical
subsolution and is strict in TN \ A, it will be enough to show that

Hi(x,Dv
ε
i (x)) +

(
B(x)vε(x)

)
i
6 −δ(x)

2
for a.e. x ∈ TN ,

for all i ∈ {1, . . . ,m}.
Since Dvε(x) = Dv(x) for almost every x ∈ A, it suffices to establish the claim

in the complementary of A. To this aim, by recalling the definition of ηn and by
23



making use of (29) and of Jensen inequality, we get that, for every x ∈ Un and
i ∈ {1, . . . ,m},

Hi

(
x,Dvεi (x)

)
+
(
B(x)vε(x)

)
i
6 Hi

(
x,

∑
k∈N

Uk∩Un 6=∅

ϕk(x)Duki (x)
)

+
δn
6

+
∑
k∈N

Uk∩Un 6=∅

ϕk(x)
(
B(x)uk(x)

)
i

6
∑
k∈N

Uk∩Un 6=∅

ϕk(x)
(
Hi

(
x,Duki (x)

)
+
(
B(x)uk(x)

)
i

)
+
δn
6

< −2

3
δ(x) +

δn
6
6 −δ(x)

2
.

This concludes the proof of the first part of the statement.
For the density, let u be any critical subsolution. Let v be a critical subsolution

which is strict outside the Aubry set (whose existence is assured by Theorem 3.12).
Then, for any λ ∈ (0, 1), the function (1− λ)u + λv is a subsolution which is strict
outside the Aubry set. This subsolution can therefore be regularized using the above
procedure, giving a subsolution w which is strict and smooth outside the Aubry set.
Moreover, both these steps can be done in such a way that ‖u−w‖∞ is as small as
wanted. This establishes the density. �

We now additionally assume the Hamiltonians Hi to be strictly convex in p and
derive some further information on the behavior of Clarke’s generalized gradients of
the critical subsolutions on the Aubry set.

We start with a preliminary lemma.

Lemma 4.3. Let y ∈ A and let u1, · · · ,u` be critical subsolutions. Then, for all
i ∈ {1, . . . ,m}, ⋂̀

k=1

∂cuki (x) 6= ∅.

Moreover, it contains a vector pi which is extremal for all the sets ∂cuki (x) and which
satisfies

Hi(y, pi) +
(
B(y)uk(y)

)
i

= 0 for every k ∈ {1, . . . , `}.

Proof. Let w =
1

`

∑̀
k=1

uk ∈ H(0) and let pi ∈ ∂cwi(y) be such that

Hi(y, p) +
(
B(y)w(y)

)
i

= 0.

Such a pi must exist because otherwise wi would be strict at y. Note that, by strict
convexity of Hi, the vector pi must be an extremal point of ∂cwi(x), hence it is a
reachable gradient of wi. Let yn → y be such that uki is differentiable at yn for every
k ∈ {1, . . . , `} and n ∈ N, and

Dwi(yn) =
1

`

∑̀
k=1

Duki (yn)→ pi.
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Up to extraction of a subsequence, we can assume that Duki (yn) → qk for all k ∈
{1, . . . , `}. Then one readily obtains, by Jensen’s inequality, that

0 = Hi(y, pi) +
(
B(y)w(y)

)
i
6

1

`

∑̀
k=1

(
Hi(y, qk) +

(
B(y)uk(y)

)
i

)
6 0.

Therefore, all the inequalities 1
`

(
Hi(y, qk)+(B(y)uk(y))i

)
6 0 summing to an equal-

ity, we deduce, by strict convexity of Hi, that q1 = · · · = ql = p. Moreover, since

Hi(y, qk) +
(
B(y)uk(y)

)
i

= 0 for every k ∈ {1, . . . , `},

and because of the strict convexity of Hi, one sees that pi is extremal, and thus
reachable, for all the uki . �

We now extend the previous result as follows:

Proposition 4.4. Let y ∈ A. Then, for each i ∈ {1, . . . ,m}, there exists a vector
pi ∈ RN which is a reachable gradient of ui at y for every u ∈ H(0) and which
satisfies

Hi(y, pi) +
(
B(y)u(y)

)
i

= 0.

Proof. For each critical subsolution u, let us denote by Pu
i the set of reachable

gradients p of ui at y that satisfy Hi(y, p) +
(
B(y)u(y)

)
i

= 0. This set is not empty
and compact. The proposition amounts to proving that⋂

u∈H(0)

Pu
i 6= ∅.

If this were the case, by compactness we could extract a finite empty intersection.
But this would violate the previous lemma. �

5. Rigidity of the Aubry set and Comparison Principle

In this section we establish some interesting properties of the Aubry set and we
provide uniqueness results for critical solutions. As we will see, such results will
follow rather easily thanks to the information gathered so far.

We start with a remarkable rigidity phenomenon that takes place on the Aubry
set.

Theorem 5.1. Let y ∈ A and i ∈ {1, . . . ,m}. Then

v(y) = Φ·,i(y, y) + vi(y)1 for every v ∈ H(0).

In particular, v(y)−w(y) ∈ R1 for any v, w ∈ H(0).

Proof. Take v ∈ H(0) and set u := Φ·,i(y, ·) + vi(y)1. According to Proposition
3.2, u is a critical solution satisfying v 6 u in TN and vi(y) = ui(y). By applying
Proposition 2.3 with x0 := y we get the assertion. �

Remark 5.2. On the other hand, the above property does not hold when y 6∈ A.
Indeed, the proof of Lemma 3.7 shows that any critical subsolution v which is strict
at y can be modified in such a way that the output is a critical subsolution all of
whose components except one coincide at y with those of v.
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Next, we derive a comparison principle for sub and supersolutions of the critical
weakly coupled system (16) which generalizes to our setting an analogous result
established in [5] for Hamiltonians of a special Eikonal form, see Subsection 6.1 for
more details. In particular, we obtain that A is a uniqueness set for the critical
system.

Theorem 5.3. Let v, u ∈
(
C(TN )

)m
be a sub and a supersolution of the critical

weakly coupled system (16), respectively. Assume that

m∑
i=1

Λi(x)vi(x) 6
m∑
i=1

Λi(x)ui(x) for every x ∈ A, (30)

where Λ : A → (R+)m is a function satisfying

m∑
i=1

Λi(x) > 0 for every x ∈ A.

Then

v(x) 6 u(x) for every x ∈ TN .

In particular, two critical solutions that coincide on A coincide on the whole TN .

Remark 5.4. The above theorem also implies that two critical solutions u and
v are actually the same if their i–th components coincide on A, for some fixed
index i ∈ {1, . . . ,m}. This is consistent with Theorem 5.1, which assures that this
“boundary” condition amounts to requiring that u = v on A.

Proof. In view of the density result stated in Theorem 4.2, the critical subsolution
v can be approximated from below by a sequence of critical subsolutions that are,
in addition, smooth and strict outside A. Indeed, just pick a sequence (wn)n∈N such
that ‖wn−v‖∞ < n−1 and then define vn = wn−n−11 which then verifies vn 6 v
and ‖vn − v‖∞ < 2n−1. Clearly, each element of the sequence still satisfies the
boundary condition (30), hence it is enough to prove the statement by additionally
assuming v smooth and strict in TN \ A.

Let us set

M := max
16i6m

max
TN

(vi − ui)

and pick a point x0 ∈ TN where such a maximum is attained. By Proposition 2.3 we
know that v(x0) = u(x0) +M1. If x0 6∈ A, then v1 would be a smooth subtangent
to u1 at x0. The function u being a supersolution, we would have

0 6 H1

(
x0, Dv1(x0)

)
+
(
B(x0)u(x)

)
1

= H1

(
x0, Dv1(x0)

)
+
(
B(x0)v(x)

)
1
,

in contrast with the fact that v is strict in TN \ A. Hence x0 ∈ A and by (30) we
get

M

m∑
i=1

Λi(x0) =

m∑
i=1

Λi(x0)
(
vi(x0)− ui(x0)

)
6 0,

i.e. M 6 0 as it was to be proved. �

Last, we show that the trace of any critical subsolution on the Aubry set can be
extended to the whole torus in such a way that the output is a critical solution.

Theorem 5.5. For any v ∈ H(0), there exists a unique critical solution u such that
u = v on A.
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Proof. This assertion is derived as a consequence of Proposition 3.14 by setting

u(x) = lim
t→+∞

S(t)v(x) for every x ∈ TN .

Indeed, S(t)v = v on A for every t > 0. Since the functions {S(t)v : t > 0} are
equi–Lipschitz and non–decreasing with respect to t, we infer that S(t)v ⇒ u in
TN . Last, u being a fixed point of the semigroup S(t), we get that u is a critical
solution. �

6. Examples

The critical value and the Aubry set for a weakly coupled system of the kind
studied in this paper have, in general, no connections with those of each Hamiltonian,
considered individually. This happens also in simple situations, see for instance
Example 1.2 in [28]. In this section, we present a couple of examples where more
explicit results may be obtained for the critical value and for the Aubry set.

6.1. The setting of [5]. The first example we propose corresponds to the setting
considered in [5]. Assume that all the Hamiltonians are of the form Hi(x, p) =
Fi(x, p)− Vi(x), where:

(a) Fi and Vi take non–negative values;

(b) Fi is convex and coercive in p;

(c) Fi(x, 0) = 0 for all x ∈ TN and i ∈ {1, . . . ,m}.
Furthermore, assume that

m⋂
i=1

V −1i ({0}) 6= ∅.

Under these hypotheses, we claim that the critical value is 0 (whatever the coupling
matrix is) and that the Aubry set is nothing but

A =

m⋂
i=1

V −1i ({0}).

Indeed, it is easily seen that the null function u0 always belongs to H(0) under the
first set of hypotheses. Therefore, H(0) 6= ∅ and the critical value verifies c 6 0. To
see that there is actually equality, consider a point x0 ∈ ∩V −1i ({0}) and any (C1)
function u. An easy consequence of Proposition 1.4 yields that B(x0)u(x0) must
have a non–negative entry, say i, hence

Hi

(
x0, Dui(x0)

)
+
(
B(x0)u(x0)

)
i

= Fi
(
x0, Dui(x0)

)
+
(
B(x0)u(x0)

)
i
> 0.

Therefore, u cannot belong to a H(−ε) for a positive ε. The same argument can be
adapted in the viscosity sense for any (non necessarily C1) function. Therefore 0 is
the critical value.

To prove that ∩V −1i ({0}) is the Aubry set, first notice that, for every y 6∈
∩V −1i ({0}), there exists an index j such that Vj(y) > 0. Then the j–th compo-
nent of the null function u0 is strict at y. In view of Theorem 3.13 we get the
inclusion

A ⊆
m⋂
i=1

V −1i ({0}).

The opposite inclusion is obtained as previously. Take any u ∈ H(0) and x0 ∈
∩V −1i ({0}). We will do as if u is differentiable at x0, but the argument carries on
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in the general case using test functions and the viscosity subsolution property. At
x0 we must have (

Fi
(
x0, Dui(x0)

))
i∈{1,...,m}

+B(x0)u(x0) 6 01.

But this is only possible if Dui(x0) = 0 for all i ∈ {1, . . . ,m} and if B(x0)u(x0) = 0.
Indeed, otherwise, B(x0)u(x0) will have a positive entry, which is impossible. In
particular, the above inequality holds with an equality. Since this happens for any
critical subsolution u, we get x0 ∈ A in view of Theorem 3.13. As a byproduct,
this also establishes that at any point of A, any critical subsolution must take as
value a vector belonging to R1. This is a particular case of Theorem 5.1 (and in
this particular form, it also appears in a weaker form in [5]).

6.2. Commuting Hamiltonians. In this second example we consider the case
when the Hamiltonians are strictly convex and pairwise commute. If the Hamilto-
nians are of class C1, that means

{Hi, Hj}(x, p) :=
(∂Hi

∂p

∂Hj

∂x
− ∂Hj

∂p

∂Hi

∂x

)
(x, p) = 0 in TN × RN

for every i, j ∈ {1, . . . ,m}. If the Hamiltonians are only continuous, the commu-
tation hypothesis must be expressed in terms of commutation of their Lax–Oleinik
semigroup, see [11] for more details. We also make the additional assumption that,
individually, all the Hamiltonians have 0 as critical value. Then, we claim that 0 is
the critical value of the system as well (whatever the coupling is).

Indeed, it is proved in [11, 30] that the Hamiltonians have the same critical solu-
tions. In particular, there exists a function u ∈ Lip(TN ) satisfying

Hi(x,Du) = 0 in TN for every i ∈ {1, . . . ,m}

in the viscosity sense. Since the coupling is degenerate, we infer that the function
u0 = u1 is a solution of

Hi(x,Du
0
i ) +

(
B(x)u0(x)

)
i

= 0 in TN for every i ∈ {1, . . . ,m}.

Therefore, the claim is a direct consequence of Proposition 2.11. Moreover, in this
setting, we may localize the Aubry set of the system using those of the individual
Hamiltonians. In order to do so, let us recall another result from [11].

Theorem 6.1. Let H1, · · · , Hm be pairwise commuting and strictly convex Hamil-
tonians, with common critical value equal to 0. Then they have the same Aubry set
A∗. Moreover, there exists a common critical subsolution v which is smooth outside
A∗ and strict for each Hamiltonian, i.e.

Hi

(
x,Dv(x)

)
< 0 for every x ∈ TN \ A∗ and i ∈ {1, . . . ,m}.

Using this theorem, we easily see that the inclusion A ⊆ A∗ holds. Indeed, the
function v(x) := v(x)1 is a critical subsolution for the system which is strict outside
A∗.

We also note that, as in the previous example, u(y) ∈ R1 for every y ∈ A and
every u ∈ H(0) in view of Theorem 5.1.

A particular case of this example is when all the Hi are equal. In this case we get
the more precise statement:
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Proposition 6.2. Let H be a convex Hamiltonian and assume H1 = · · · = Hm = H.
Then A = A∗. Moreover, all critical solutions of the system are of the form u = u1
where u is a critical solution of H.

Proof. The inclusion A ⊆ A∗ can be proved arguing as above (note that we do not
need the strict convexity assumption here). Let us prove the converse statement.
Pick v ∈ H(0) and set v := max(vi, i ∈ {1, . . . ,m}). We claim that v is a critical
subsolution for H. Indeed, let x ∈ TN and p ∈ D+v(x). Then v(x) = vi(x) for some
i ∈ {1, . . . ,m}. Since v > vi with equality at x, we get p ∈ D+vi(x). We now use
the fact that v is a subsolution of the system to get

H(x, p) 6 Hi(x, p) +
(
B(x)v(x)

)
i
6 0, (31)

where the first inequality comes from the fact that(
B(x)v(x)

)
i

=
m∑
j=1

bij(x)vj(x) >
m∑
j=1

bij(x)vi(x) = 0,

which holds true since bij(x) 6 0 and vj(x) 6 vi(x) for every j 6= i. Let us now
assume that v is strict outside A. Then the right inequality in (31) is strict as soon
as x /∈ A, yielding that v is a subsolution for H which strict on the complementary
of A. This proves that A∗ ⊆ A, hence A = A∗.

Let now u be a critical solution for the system. Then v := max(ui, i ∈ {1, . . . ,m})
is a critical subsolution for H. Moreover, as

u(x) = u1(x)1 for every x ∈ A,
we deduce that v = u1 on A. Since A = A∗, there exists a critical solution ũ for H
such that ũ = v on A. Now the function ũ = ũ1 is a critical solution of the weakly
coupled system satisfying ũ = u on A. By the comparison principle, i.e. Theorem
5.3, we conclude that u = ũ. �

Appendix A

In this appendix we want to give a proof of Proposition 2.7.

In what follows, a function u will be said to be semiconcave on an open subset U of
either TN or TN × R+ if, for every x ∈ U , there exists a vector px ∈ RN such that

u(y)− u(x) 6 〈px, y − x〉+ |y − x|ω(|y − x|) for every y ∈ U ,

where ω is a modulus. The vectors px satisfying such inequality are precisely the
elements of D+u(x), which is thus always nonempty in U . Moreover, ∂cu(x) =
D+u(x) for every x ∈ U . By the upper semicontinuity of the map x 7→ ∂cu(x) with
respect to set inclusion, we get in particular that Du is continuous in its domain of
definition, see [6].

Next, we prove the following

Proposition A.1. Let T > 0 and G : [0, T ]× TN × RN → R be a locally Lipschitz
Hamiltonian such that G(s, ·, ·) is a strictly convex Hamiltonian, for every fixed
s ∈ [0, T ]. Let u(t, x) be a Lipschitz function in [0, T ]×TN that solves the evolutive
Hamilton-Jacobi equation

∂u

∂t
+G(t, x,Dxu) = 0 in (0, T )× TN , (32)

in the viscosity sense. Then
29



(i) for every 0 < τ < T , the function u is semiconcave in [τ, T )× TN ;

(ii) if u(0, ·) is semi–concave in TN , then the functions {u(t, ·) : t ∈ [0, T ) } are
equi–semiconcave.

Proof. Since u is Lipschitz, up to modifying G outside [0, T ] × TN × BR for a
sufficiently large R > 0, we can assume that G is superlinear in p, uniformly with
respect to (t, x). We are then in the setting considered by Cannarsa and Soner in
[7] and item (i) follows from their results.

Let us prove (ii). Let us denote by L(t, x, q) the the Lagrangian associated with G
through the Fenchel transform and by u0 the initial datum u(0, ·). It is well known,
see for instance [6], that the following representation formula holds:

u(t, x) = inf
ξ(t)=x

(
u0
(
ξ(0)

)
+

∫ t

0
L
(
s, ξ(s), ξ̇(s)

)
ds
)
, (t, x) ∈ (0, T )× TN , (33)

where the infimum is taken by letting ξ vary in the family of absolutely continuous
curves from [0, t] to TN . Moreover, the minimum is attained by some curve γ, which
is, in addition, Lipschitz continuous (actually, of class C1), see [9].

We claim that there exists a constant κ, only depending on G and on the Lipschitz
constant of u in [0, T ]×TN , such that ‖γ̇‖∞ 6 κ. To this aim, we apply Proposition
2.4 in [22] to the function u(t, x) and the curve s 7→ (s, γ(s)) to get

d

ds
u
(
s, γ(s)

)
= pt(s) + 〈px(s), γ̇(s)〉 for a.e. s ∈ [0, t], (34)

where s 7→
(
pt(s), px(s)

)
is a measurable and essentially bounded function on [0, t]

such that (
pt(s), px(s)

)
∈ ∂cu

(
s, ξ(s)

)
for a.e. s ∈ [0, t].

By integrating (34) and using the Fenchel inequality we get

u(t, x) = u0
(
γ(0)

)
+

∫ t

0
pt(s) + 〈px(s), γ̇(s)〉 ds

6 u0
(
γ(0)

)
+

∫ t

0
pt(s) +G

(
s, γ(s), px(s)

)
+ L

(
s, γ(s), γ̇(s)

)
ds

6 u0
(
γ(0)

)
+

∫ t

0
L
(
s, γ(s), γ̇(s)

)
ds,

where in the last inequality we used the fact that u is a (sub)–solution of the time
dependent equation, i.e.

pt +G(t, x, p) 6 0 for every (pt, px) ∈ ∂cu(t, x) and (t, x) ∈ (0, T )× TN .

Since γ is minimizing, all the inequalities must be equalities, in particular we obtain

γ̇(s) ∈ ∂pG
(
s, γ(s), px(s)

)
for a.e. s ∈ [0, t]. (35)

This proves the claim by choosing

κ := sup
{
|q| : q ∈ ∂pG(s, x, p), (s, x) ∈ [0, T ]× TN , |p| 6 Lip

(
u; [0, T ]× TN

) }
,

which is finite thanks to the convexity and the growth assumptions assumed on G
with respect to p.

Let us now fix t ∈ (0, T ), x1, x2 ∈ TN , λ ∈ [0, 1] and set x = λx1 +(1−λ)x2. Note
that x1 = x+ (1− λ)h and x2 = x− λh for h = x1− x2. Let us denote by γ a curve
realizing the infimum in (33) for such a pair of (t, x), by K a Lipschitz constant for
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L restricted to [0, T ] × TN × B(0, 2κ) and by ω a semi–concavity modulus for u0.
We get

λu(t, x1) + (1− λ)u(t, x2)− u(t, x)

6 λ
(
u0
(
γ(0) + (1− λ)h

)
+

∫ t

0
L
(
s, γ(s) + (1− λ)h, γ̇(s)

)
ds
)

+ (1− λ)
(
u0
(
γ(0)− λh

)
+

∫ t

0
L
(
s, γ(s)− λh, γ̇(s)

)
ds
)

−
(
u0
(
γ(0)

)
+

∫ t

0
L
(
s, γ(s), γ̇(s)

)
ds
)

= λu0
(
γ(0) + (1− λ)h

)
+ (1− λ)u0

(
γ(0)− λh

)
− u0

(
γ(0)

)
+ λ
(∫ t

0

(
L
(
s, γ(s) + (1− λ)h, γ̇(s)

)
− L

(
s, γ(s), γ̇(s)

))
ds

+ (1− λ)

∫ t

0

(
L
(
s, γ(s)− λh, γ̇(s)

)
− L

(
s, γ(s), γ̇(s)

))
ds

6 λ(1− λ)
(
ω(|x1 − x2|) + tK|x1 − x2|

)
,

which proves the assertion. �

The result just proved will be applied to weakly coupled systems as follows:

Proposition A.2. Let T > 0 and u = (u1, . . . , um) ∈
(
Lip([0, T ] × TN )

)m
be

a solution of the evolutionary weakly coupled system (7). Let i ∈ {1, . . . ,m} and
suppose that Hi is locally Lipschitz and strictly convex. Then, for all 0 < τ < T ,
the function ui restricted to [τ, T ) × TN is semiconcave. Moreover, if, the initial
condition ui(0, ·) is semiconcave, then the functions {ui(t, ·) : t ∈ [0, T ] } are equi–
semiconcave.

Proof. The function ui solves, for the given index i ∈ {1, . . . ,m}, a Hamilton–Jacobi
equation of the kind (32) with

G(t, x, p) = Hi(x, p) +
(
B(x)u(t, x)

)
i
, (t, x, p) ∈ [0, T ]× TN × RN .

The conclusion follows by applying Proposition A.1. �

We are now ready to prove Proposition 2.7.

Proof of Proposition 2.7. We recall that, by convexity of the Hamiltonians,
subsolutions to the critical system coincide with almost everywhere subsolutions.
This fact will be repeatedly exploited along the proof.

Assume first that t 7→ S(t)u + t a1 is non–decreasing. Pick t0 > 0 such that the
map (t, x) 7→ S(t)u(x) is differentiable at (t0, x) for almost every x ∈ TN and

∂tS(t0)u(x) > −a for a.e. x ∈ TN .

By the Lipschitz character of the map (t, x) 7→ S(t)u(x) and Fubini’s theorem, this
holds true for almost every t0 > 0. Using the evolutionary equation, which is verified
at every differentiability point of S(t)u(x), we deduce that, for every i ∈ {1, . . . ,m},

Hi

(
x,D

(
S(t0)u

)
i
(x)
)

+
(
B(x)S(t0)u(x)

)
i
6 a for a.e. x ∈ TN ,
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that is, S(t0)u ∈ H(a). This being true for almost every t0 > 0, the conclusion
follows by stability of viscosity subsolutions.

Let us now assume reciprocally that u ∈ H(a). We first approximate each Hamil-
tonian Hi with a sequence (Hk

i )k of convex Hamiltonians that are, in addition,
locally Lipschitz in (x, p) and strictly convex in p. This can be done by taking a
sequence (ρk)k of standard mollifiers on RN and by setting

Hk
i (x, p) =

∫
B1

ρk(y)Hi(x− y, p) dy +
|p|2

k
, (x, p) ∈ TN × RN .

Note that, for each index i ∈ {1, . . . ,m}, H i
k ⇒ H i in TN×RN as k → +∞. Let

us denote by Hk(a) the set of a–subsolution of the weakly coupled system (6) with
a = a1 and Hk

1 , . . . ,H
k
m in place of H1, . . . ,Hm, and by Sk the semigroup associated

with the corresponding time–dependent equation (7).
Next, we approximate u with a sequence of (un)n of functions that are component–

wise semi–concave by setting

uni (x) = inf
y∈TN

ui(y) + n|y − x|2 for every x ∈ TN and i = 1, · · · ,m.

Fix ε > 0. A standard argument shows that, for n large enough, un ∈ H(a + ε).
Moreover, by the Lipschitz character of un and by the local uniform convergence of
(Hk

1 , . . . ,H
k
m) to (H1, . . . ,Hm), we also have that un ∈ Hk(a+ 2ε) for k sufficiently

large. We now apply Proposition A.2 to infer that the map (t, x) 7→ S(t)un(x) is
semiconcave in [0, τ ]× TN for every τ > 0. By using the fact that the gradient of a
semiconcave function is continuous in its domain of definition and by choosing τ > 0
small enough, we get S(t)un ∈ Hk(a + 3ε) for every 0 6 t 6 τ . By exploiting this
information in the evolutive weakly coupled system, we get

∂

∂t
Sk(t)un(x) > −(a+ 3ε)1 for a.e. (t, x) ∈ (0, τ)× TN ,

i.e.

Sk(t+ h)un > Sk(t)un − h(a+ 3ε)1 for every 0 < t < t+ h 6 τ .

Now, by the comparison principle for the evolution equation and by using the fact
that the semigroup commutes with the addition of scalar multiples of the vector 1,
we obtain that t 7→ Sk(t)un− t(a+ 3ε)1 is non decreasing. We now exploit the fact
that

Sk(t)un ⇒
k→+∞

S(t)un and S(t)un ⇒
n→+∞

S(t)u in R+ × TN

to infer that

t 7→ S(t)un − t(a+ 3ε)1 is non–decreasing on [0,+∞).

Being this true for every ε > 0, we finally have that t 7→ S(t)un − ta1 is non–
decreasing on [0,+∞).

The last assertion follows from the equivalence just proved, together with the fact
that the semigroup S(t) is non–decreasing and commutes with addition of vectors
of the form a1 with a ∈ R. �

The next result can be seen as a refinement of Proposition 2.7, where we assume
inequality to hold only for one of the equations of the system. The proof follows via
the same argument and is omitted.
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Proposition A.3. Let u ∈
(
Lip(TN )

)m
and assume that there exist an index i ∈

{1, . . . ,m}, an open subset U of TN and a ∈ R such that

Hi

(
x,Dui(x)

)
+
(
B(x)u(x)

)
i
6 a for a.e. x ∈ U .

Then for every open set V compactly contained in U there exists τV > 0 such that(
S(t)u

)
i
(x) > ui(x)− a t for every x ∈ V and t ∈ [0, τV ].
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