
 
 

 

  

Abstract—Running a stable marriage algorithm to pairing 
images in vision, the global satisfaction and sex equality appear 
as important constraints as the stability itself. In the present 
paper we outline a novel algorithm based on the rotation of the 
“marriage table” to align satisfaction and equity with 
preferences. It turns out that a direct implementation through 
the lists is doable. Additionally, it shows improved flexibility in 
balancing constraints. Known algorithms are compared to the 
present one on 3000 instances of 200 large populations and 
performances are discussed. Results on real images are 
displayed in the case of stereo-pairing and motion 
understanding applications.  

I. INTRODUCTION 
N many computer vision applications including motion 
analysis, stereovision or model fitting, matching is a key 

step that deserves efficient optimization. In this paper we 
propose a stable marriage algorithm for image matching. It 
belongs to a bi-partite graph optimization technique based 
on the so called marriage table representation [1]. The BZ 
algorithm proposed in the latter paper achieves an efficient 
trade-off between the global satisfaction, the fairness (or sex 
equality) and the stability thanks to this representation. It 
provides matching results with maximum sex equality and 
global satisfaction, and with limited instability - about 5% 
found solutions are unstable. But its complexity is in 
O(N3/2), to be compared to the basic Gale-Shapley (GS) 
algorithm in O(N). Recently, the S-procedure was designed 
[2] in order to obtain stable matching-results by resolving 
the BZ oscillating and cycling behaviors in the marriage 
table. The satisfaction and equity are preserved but the 
complexity grows from O(N3/2) to O(N2). The present paper 
describes a process for generating intermediate versions 
between BZ and GS called RZ or RGS. The stress here is put 
on the algorithmic complexity decreasing from O(N3/2) to 
O(N), while controlling the satisfaction or equality as much 
as possible.. 

The paper is organized as follows: we first revisit the 
stable marriage problem, GS and then BZ based on the 
marriage table, section 2. Then we explain the RZ algorithm 
motivations and its variations RGS in section 3. New 
performances are compared with the GS algorithm and the 
BZ algorithm in section 4.  
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II. STABLE MARRIAGE REVISITED 
The stable marriage problem was studied by Gale and 

Shapley [3] who produced the first algorithm and it remains 
among the popular combinatory problems [4] [7].  In this 
problem, two finite sub-sets  and  of two respective 
populations, say men and women, have to match. Assume 

√   is the number of elements,  and 
. Each element  creates its preference list  i.e. it 

sorts all members of the opposite sex from most to less 
preferred (see example in the next section table 1). A 
matching  is a one to one correspondence between men 
and women. If ,  is a matched pair in ,  
and , and  is the rank of  in the list of  
(resp.  the rank of  in the list of . Man  and woman 

 form a blocking pair if ,  is not in  but  prefers  
to  and  prefers  to . The situation where 

,  is blocking ,  and ,  is called 
blocking situation. If there is no blocking pair, then the 
marriage  is stable. 

Gale-Shapley proposed the algorithm to find  with 
complexity O(N). GS has two different versions: men-
optimal and women-optimal. GS with men-optimal can be 
stated as follows: while there is an unpaired man, pick the 
unpaired man and the first woman on his list. If she is free, 
the man and woman are married. If not, she chooses between 
the challenger and her current partner according to her 
preferences. The process continues until there is no more 
unpaired man. However, the stable matching can be such 
that everybody is unsatisfied. Normally, Men-optimal brings 
a stable matching in which men have the best possible 
partner and women may have the worst and conversely. 

Let us note that Gusfield and Irving [8] quote open 
problems in conclusion for their extensive study of the 
algorithms of stable marriage and the derived models of 
optimization (15 years ago). One of them, problem 11 is the 
egalitarian stable marriage and can be solved in O(n4log n). 
Feder [9] has claimed a O(n2.5logn) and O(n3) [10]. For them 
"egalitarian" relates to minimal ∑ , however we 
preferred to call this property  "global satisfaction", more 
evocative of the properties of solutions in our applications. 
And "sex-equal" mentioned as open problem 6 is translated 
by Irving into ∑  ∑ , here again we preferred "sex 
equality" to be coded by min ∑| |.  

In [1], the marriage table representation is proposed for 
the marriage optimization to meet the three objectives of 
stability, sex equality and global satisfaction. It is a table 
with (n+1) lines and (n+1) columns. Lines (resp. columns) 
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frame the preference orders of men, 1 … … ∞  (resp. 
women, 1 … … ∞ ). The cell ,  contains pairs 

,  such that  is the  choice of , and  is the  
choice of . Cells can thus contain more than one pair or 
none. The cell , ∞  (resp. ∞, ) contains the pairs 

, , if any, where  is the  choice of  (resp  the 
choice of  but   does not exist in her preference list (resp. 

 is not in his preference list).  Figure 1 shows the marriage 
table. 

 

 
 

 
 
The global satisfaction of matching can be measured by 

∑ , . Note that a solution with 
maximum global satisfaction would get matched pairs 
around the origin of the table (bottom-left), as shown figure 
2. Conversely, sex equality tends to fit the diagonal of the 
marriage table. It is defined as ∑ | |, , 
figure 3. 
 

 

 
 
Stability can be translated into the marriage table too, a 

blocking situation is represented figure 4. Assuming ,   
and ,  were paired, then ,  cannot be in the grey 
rectangle and ,  cannot be in the dashed one. 

BZ is an algorithm based on that representation. It 
consists of scanning the marriage table cells in order to first 
maximize both criteria concurrently. It scans anti-diagonals 
forward from maximum to minimum global satisfaction 
while each one is read in swinging from center to sides 
meaning maximum to minimum sex equality. In each cell, 
pairs are married if both partners are free. As it is easily 
proven that no predefined scan warrants stability (see next 
section), after all cells have been visited the table is scanned 
again to remove blocking situations: a blocking pair gets 
married and corresponding blocked pairs are released. The 
process repeats until there is no more blocking situation or 
the iteration number is greater than the population size. 

Let us stress upon the bounding result in this process. 
Given a systematic scan i.e. a permutation of , , , 
there exists an instance of population i.e. a set of preference 
lists ,  such that  , , ,  and 

,  are met along the scan in that order, then , ,  
and ,  are married while ,  is blocking them. It 
is trivially enough that 

 
, , ,  

and   and  
 
With  the ranking order of  in . Figure 5 

shows an example of such a case for the anti-diagonal 
regular scan. 

 

 
  

Fig. 5.  Bounding result. 

 
Fig. 4.  Blocking situation. 

 
Fig. 3.  Sex equality. 

 
Fig. 2.  Satisfaction. 

 
Fig. 1.  Marriage table: x is the 2nd choice of y and y is  Nth for x. 



 
 

 

In the next section, an alternative algorithm is proposed to 
get matching results such that everybody is happy (resp. 
treated fairly) as much as possible while preserving a 
complexity in O(N). 

III. RZ AND RGS ALGORITHMS 
Here, we propose an algorithm that takes advantage from 

the lesser complexity of GS and from the coding of 
satisfaction and sex equality introduced through the 
marriage table. 

Indeed, if  is the  choice of  and  is the  
choice of , then  represents the satisfaction and 
| | shows sex equality between  and . The primary 
idea is that scanning the marriage table in a diagonal way is 
(quasi) equivalent to rotate the same 45  before scanning 
horizontally or vertically. Doing so, at least equivalent 
results to the first pass in BZ will be obtained. Figure 6(a) 
shows the rotated version of the marriage table. It is a table 
with 2 1 lines and 1 columns. Lines represent the 
satisfaction and columns the sex equality. The grey area 
shows the projected area from the original table. It contains 
in each cell the couples which have the corresponding 
satisfaction and sex equality. Thanks to the empty cells after 
rotation in a sampled space, there is room for expanding 
couples from one cell over several cells if they concern a 
same person. A complete order is then recovered following 
additional constraints. By scanning the latter array left-right 
and bottom-up, and marrying the occurring free pairs (see 
figure 6(b)), similar results to the OZ-like algorithm [1] are 
obtained. Let us call RZ (Rotated Zigzag) the algorithm. 
 

 
 
Note that OZ is the simplest algorithm based on the 

marriage table. BZ is improved version of its to target 
maximum satisfaction and sex equality, and then SBZ [2] 
reaches the full stability constraint. It means that we can 
later complete RZ in the fashion to achieve stability, in 
contradiction with [11].  

Actually a horizontal (resp. vertical) scan of the marriage 
table is also the basis of GS, where the preference list is 
ordered following  for men and  for women. We should 
then improve the overall result by merely performing GS on 
lists transformed by ;   : Instead of 

transforming the preference lists into the marriage table and 
then finding the matching with maximum satisfaction and 
sex equality, we introduce the satisfaction and sex equality 
into the preference lists then finding the matching result by 
classical GS. Obviously the stability is no more guaranteed, 
although GS is run, since it would not be according to the 
original preferences. But one gets additional variants here as 
flexible stress can be put on satisfaction, equity or stability 
in departing more or less from the initial lists. The latter 
flexibility amounts to the above-mentioned additional 
constraints supporting the cell expansion up to complete 
order in the marriage table. In the current version of our 
algorithm, the man's and woman's preference lists are first 
reordered by increasing , then by increasing | | in 
case of equal , and then by increasing  for man 
(respectively  for woman) in case of equal   and 
| |. Table 1 shows an instance of three men and women 
with their preference list ordered by  and  respectively. 

 

 
 
Table 2 shows the value of satisfaction  and sex 

equality | | for each element in their preference list. 
 

 
 

Table 3 shows the same instance of men and women with 
their preference lists reordered by satisfaction, sex equality 
and initial preference in the order. We can see that the 
preference list of 3 and B are reordered by | | since 
there is the conflict on . Similarly, the preference list 
of A is reordered by  since there is a conflict on both  
and | |. 

 

 
 
Then the marriages result from executing GS on the 

preference lists of table 3. 
 
Remark: As both man's and woman's lists are shuffled 

here in stressing the satisfaction first, GS with man-optimal 
and woman-optimal are likely to give the same solution. 

TABLE III 
REORDERED PREFERENCE LISTS  

Man  Woman 
1 
2 
3 

C 
A 
B 

A 
C 
C 

B 
B 
A 

 A 
B 
C 

1 
3 
1 

2 
2 
2 

3 
1 
3 

TABLE II 
SATISFACTION AND SEX EQUALITY IN THE PREFERENCE LISTS 

Man  Woman 
(p+q , |p-q|)  (p+q , |p-q|) 

1 
2 
3 

(2,0) 
(3,1) 
(4,2) 

(3,1) 
(4,0) 
(4,0) 

(6,0) 
(4,2) 
(6,0) 

 A 
B 
C 

(3,1) 
(4,2) 
(2,0) 

(3,1) 
(4,0) 
(4,0) 

(6,0) 
(6,0) 
(4,2) 

TABLE I 
AN INSTANCE OF 3 MEN AND WOMEN AND THEIR PREFERENCE LISTS 

Man  Woman 
p 1 2 3  q 1 2 3 
1 
2 
3 

C 
A 
C 

A 
C 
B 

B 
B 
A 

 A 
B 
C 

1 
2 
1 

2 
3 
2 

3 
1 
3 

 
 

Fig. 6.  (a) rotated marriage table, (b) scan and reorder.. 



 
 

 

The novel algorithm introduced here is then a 
intermediate version between GS and OZ, let us call RGS 
this algorithm. Not that as previously mentioned the 

stability applies to RGS as well.   
In the next section, we compare RGS with GS and BZ to 

better understand respective performances. 

IV. ALGORITHM PERFORMANCE 
We study experimentally the global satisfaction, sex 

equality and stability obtained by RGS, and we compare 
with GS and BZ. About 3.000 instances are built at random 
for 200-large populations. Each algorithm is executed and its 
results are displayed. Figure 7 and figure 8 zoom on 30 
instances out of the 3.000 in order to display more in detail 
the global satisfaction and sex equality respectively. Let us 
define the number  of instances where RGS is better than 
the better GS or than BZ as:  

 

,
 

 

 
With 1 if 0 else 0, then  
 

100
number of instances 

 
We can first note that RGS performs totally better than the 

better GS for both satisfaction and sex equality, 100. 
Comparing RGS with BZ, 8.13 and 35.77 
repectively for the global satisfaction and sex equality. We 
note that RGS is comparable to BZ with respect to GS for 
the satisfaction and sex equality achieved. This is indicated 
by the following distances: ⁄ 5.75%, 

⁄ 22.64%, ⁄ 7.24%, 
and ⁄ 46.96% in average. 

Comparing the stability, the matching results issued by 
GS are totally stable while around 5% and 87\% of instances 
are unstable for BZ and RGS respectively. But, more 
important, the average number of blocking pairs per unstable 
instance is 10.8 for BZ and 3.3 for RGS, meaning that the 
expectation of the number of iterations starting from RGS to 
overcome oscillations towards complete stability is 
significantly lower than with OZ to BZ and then SBZ. 

 

 

 
 

Table 4 shows numeric comparison between RGS and BZ 
or GS for the stability (number of blocking pairs), global 
satisfaction and sex equality. 

 

V. CONCLUSION 
For a quick and temporary conclusion let us show two 

types of results: (1) comparative results of matching  and 
 to compute the transform af ine  projections   

between left  and right  images, (2) dominant motion 
extraction by our algorithms from an image sequence. In the 
comparison of stereo results, images come from 
“http://www.gravitram.com/stereoscopic\_photography.htm”, 
figure 9. Features to be matched are level line junctions [12]. 
Figures 10 and 11, we display images of the kind sup |

| | |, 0  and dark regions where  is 
obviously worse than , the darker the worse. Although 
several causes  like feature and parameters extraction or 
transform-computation  exist to explain local 
imperfections, it appears to the naked eye that stability of GS 
serves more a local goodness on details while satisfaction 
and equity would improve results in a wider fashion. That is 
part of our coming work, to test such conjectures.  

In the motion understanding application, extracted 
features are again level line junctions. The program runs on 
a PowerPC G4 /1.3GHz and delivers a dependable result 
every second. We will soon implement it on a Bi-processor 
Xeon onboard our autonomous vehicle PICAR [13] and 
extraction every 200 ms is expected. Figure 12 shows two 
consecutive images in a sequence. Matching results are 
displayed as flows in figure 13. Motion identification using 
optical flow classification separates the dominant mobile 
object, figure 14(a), and the background, figure 14(b). And 
figure 15 shows the rebuilt vehicle. 
 

TABLE IV 
COMPARISON OF STABILITY, GLOBAL SATISFACTION AND SEX EQUALITY 

BETWEEN METHODS 
 INB NBP  DST S E 

GS 
BZ 
RGS 
RZm 
RZw 

0 
3.9 
87.9 
100 
100 

0 
11.7 
3.3 
23.3 
73.1 

 (BZ, RGS) 
(BZ, RZm) 
(BZ, RZw) 
(GS, RGS) 
(GS, RZm) 
(GS, RZw) 

280 
1614 
8276 
1733 
854 
6277 

189 
1310 
2080 
2714 
4108 
4881 

INB = Instability, NBP = Number of blockages; DST = Distance, S = 
Satisfaction, and E = Equity. 

 
Fig. 8.  Comparing sex equality between methods : (a) GS man-
optimal, (b) GS woman-optimal, (c) BZ, (d) RGS. 

 
Fig. 7.  Comparing global satisfaction between methods : (a) GS man-
optimal, (b) GS woman-optimal, (c) BZ, (d) RGS. 



 
 

 

 

 

 

  
 

 
(a) (b) 

Fig. 12.  Original images. 

(e) sup c | |, 0  

(f) sup d | |, 0  
 
Fig.11. Comparative results. 

(c) | | 

(d) | | 
 
Fig.10. Comparative results. 

 
(a) L (b) R 

Fig. 9.  Stereo images. 
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Fig.15. Extracted object. 

(a) 

(b) 
 
Fig.14. Motion identification : (a) object, (b) background. 

 
Fig.13. Matching results. 


