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FINITE COMPLEX REFLECTION GROUPS

Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of GLK (V ) (V a
finite dimensional K –vector space) generated by pseudo–reflections,
i.e., linear maps represented by

ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


A finite reflection group on R is called a Coxeter group.

A finite reflection group on Q is called a Weyl group.
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Michel Broué (Institut Henri–Poincaré) Complex reflection groups as Weyl groups July 2007 2 / 12



FINITE COMPLEX REFLECTION GROUPS

Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of GLK (V ) (V a
finite dimensional K –vector space) generated by pseudo–reflections,
i.e., linear maps represented by

ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


A finite reflection group on R is called a Coxeter group.

A finite reflection group on Q is called a Weyl group.
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1 The finite reflection groups on C have been classified by Coxeter,
Shephard and Todd.

There is one infinite series G (de, e, r) (d ,e and r integers),
...and 34 exceptional groups G4 , G5 , . . . , G37.

2 The group G (de, e, r) (d ,e and r integers) consists of all r × r
monomial matrices with entries in µde such that the product of
entries belongs to µd .

3 We have

G (d , 1, r) ' Cd oSr

G (e, e, 2) = D2e (dihedral group of order 2e)

G (2, 2, r) = W (Dr ) .
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FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

G is a connected reductive algebraic group over F̄q, with Weyl group
W , endowed with a Frobenius–like endomorphism F . The group
G := GF is a finite reductive group.

Example

G = GLn(F̄q) , F : (ai ,j) 7→ (aq
i ,j) , G = GLn(q)

Type of G — The type G = (X ,Y ,R,R∨ ; Wφ) of G consists of the
root datum of G endowed with the outer automorphism Wφ defined
by F .

Example

GLn = (X = Y = Zn,R = R∨ = An ; φ = 1)
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Polynomial order — There is a polynomial in Z[x ]

|G|(x) = xN
∏
d

Φd(x)a(d)

such that |G|(q) = |G | .

Example

|GLn|(x) = x(n
2)

d=n∏
d=1

(xd − 1) = x(n
2)

d=n∏
d=1

Φd(x)[n/d ]

Michel Broué (Institut Henri–Poincaré) Complex reflection groups as Weyl groups July 2007 5 / 12



Polynomial order — There is a polynomial in Z[x ]

|G|(x) = xN
∏
d

Φd(x)a(d)

such that |G|(q) = |G | .

Example

|GLn|(x) = x(n
2)

d=n∏
d=1

(xd − 1) = x(n
2)

d=n∏
d=1

Φd(x)[n/d ]
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Admissible subgroups — The tori of G are the subgroups of the shape
TF where T is an F –stable torus (i.e., isomorphic to some
F̄× × · · · × F̄× in G).

The Levi subgroups of G are the subgroups of the shape LF where L
is a centralizer of an F –stable torus in G.

Example

The split maximal torus T1 = (F×q )
n

of order (q − 1)n

The Coxeter maximal torus Tc = GL1(Fqn) of order qn − 1

Levi subgroups have shape GLn1(qa1)× · · · × GLns (qas )

Cauchy theorem — The (polynomial) order of an admissible subgroup
divides the (polynomial) order of the group.
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Levi subgroups and type — For

G = (X ,Y ,R,R∨ ; Wφ)

a type, a Levi subtype of G is a type of the shape

L = (X ,Y ,R ′,R ′
∨

; W ′wφ)

where R ′ is a parabolic system of R, with Weyl group W ′, and where
w ∈W is such that wφ stablizes R ′ and R ′∨.

There is a natural bijection between

the set of G –conjugacy classes of Levi subgroups of G ,

and

the set of W –conjugacy classes of Levi subtypes of G.
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FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For Φ(x) a cyclotomic polynomial, a Φ(x)–group is a finite reductive
group whose (polynomial) order is a power of Φ(x). Hence such a
group is a torus.

Sylow theorem —

(1) Maximal Φ(x)–subgroups (“Sylow Φ(x)–subgroups”) of G have as
(polynomial) order the contribution of Φ(x) to the (polynomial) order
of G .

(2) Sylow Φ(x)–subgroups are all conjugate by G (i.e., their types are
transitively permuted by the Weyl group W ).

(3) The (polynomial) index of the normalizer in G of a Sylow
Φ(x)–subgroup is congruent to 1 modulo Φ(x).
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Michel Broué (Institut Henri–Poincaré) Complex reflection groups as Weyl groups July 2007 8 / 12



FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For Φ(x) a cyclotomic polynomial, a Φ(x)–group is a finite reductive
group whose (polynomial) order is a power of Φ(x). Hence such a
group is a torus.

Sylow theorem —

(1) Maximal Φ(x)–subgroups (“Sylow Φ(x)–subgroups”) of G have as
(polynomial) order the contribution of Φ(x) to the (polynomial) order
of G .

(2) Sylow Φ(x)–subgroups are all conjugate by G (i.e., their types are
transitively permuted by the Weyl group W ).

(3) The (polynomial) index of the normalizer in G of a Sylow
Φ(x)–subgroup is congruent to 1 modulo Φ(x).

Michel Broué (Institut Henri–Poincaré) Complex reflection groups as Weyl groups July 2007 8 / 12



FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For Φ(x) a cyclotomic polynomial, a Φ(x)–group is a finite reductive
group whose (polynomial) order is a power of Φ(x). Hence such a
group is a torus.

Sylow theorem —

(1) Maximal Φ(x)–subgroups (“Sylow Φ(x)–subgroups”) of G have as
(polynomial) order the contribution of Φ(x) to the (polynomial) order
of G .

(2) Sylow Φ(x)–subgroups are all conjugate by G (i.e., their types are
transitively permuted by the Weyl group W ).

(3) The (polynomial) index of the normalizer in G of a Sylow
Φ(x)–subgroup is congruent to 1 modulo Φ(x).
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The centralizers of Φd(x)–subgroups are called the d–split Levi
subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow
Φd(x)–subgroups. They are all conjugate under G .

Example

For each d (1 ≤ d ≤ n), GLn(q) contains
a subtorus of order Φd(x)[ n

d
]

Assume n = md + r with r < d . Then a minimal
d–split Levi subgroup has shape GL1(qd)m × GLr (q).
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GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ` be a prime number which does not divide |W |.

If ` divides |G | = G(q), there is a unique integer d such that ` divides
Φd(q).

Then the Sylow `–subgroups of G are nothing but the Sylow
`–subgroups S` of S = SF (S a Sylow Φd(x)–subgroup of G).

We have
NG (S`) = NG (S) and CG (S`) = CG (S) .
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CYCLOTOMIC WEYL GROUPS AND SPRINGER THEOREM

Let L (or L, or L) be a minimal d–split Levi subgroup, the centralizer
of a Sylow Φd(x)–subgroup S.

(1) We have NG (L)/L ' NG (S)/CG (S) ' NW (L)/W ′ (where W ′ is the
Weyl group of L).
Denote that group by WG(L).

(2) For ζ a primitive d-th root of the unity, we have

|WG(L)| = G(ζ)/L(ζ) .

Example

For n = mr + d (d < r), we have WG(L) ' Cd oSr
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(1) We have NG (L)/L ' NG (S)/CG (S) ' NW (L)/W ′ (where W ′ is the
Weyl group of L).
Denote that group by WG(L).

(2) For ζ a primitive d-th root of the unity, we have

|WG(L)| = G(ζ)/L(ζ) .
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Michel Broué (Institut Henri–Poincaré) Complex reflection groups as Weyl groups July 2007 11 / 12



CYCLOTOMIC WEYL GROUPS AND SPRINGER THEOREM

Let L (or L, or L) be a minimal d–split Levi subgroup, the centralizer
of a Sylow Φd(x)–subgroup S.

(1) We have NG (L)/L ' NG (S)/CG (S) ' NW (L)/W ′ (where W ′ is the
Weyl group of L).
Denote that group by WG(L).

(2) For ζ a primitive d-th root of the unity, we have

|WG(L)| = G(ζ)/L(ζ) .

Example

For n = mr + d (d < r), we have WG(L) ' Cd oSr
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The case d = 1 — The Sylow Φ1(x)–subgroups, as well as the
minimal d–split subgroups, coincide with the split maximal tori.

In case G is split (i.e., the automorphism φ induced by F is the
identity), then the group WG(L) coincides with W .

Springer and Springer–Lehrer theorem — The group WG(L) is a
complex reflection group (in its representation over the complex
vector space C⊗ X ((ZL)Φd

)).

Example

For n = mr + d (d < r), we have WG(L) ' Cd oSr

The group WG(L) is called the d–cyclotomic Weyl group.

If G is split, the 1–cyclotomic Weyl group is nothing but the ordinary
Weyl group W .
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