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FINITE COMPLEX REFLECTION GROUPS

Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of GLK (V ) (V a
finite dimensional K –vector space) generated by reflections, i.e., linear
maps represented by 

ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


A finite reflection group on R is called a Coxeter group.

A finite reflection group on Q is called a Weyl group.
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Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V ) (V an r–dimensional vector space
over a characteristic zero field K ). Let S(V ) denote the symmetric algebra
of V , isomorphic to the polynomial ring K [X1,X2, . . . ,Xr ].
The following assertions are equivalent.

1 G is generated by reflections.

2 The ring S(V )G of G –fixed polynomials is a polynomial ring
K [E1,E2, . . . ,Er ] in r homogeneous algebraically independant
elements.

Example
For G = Sr , one may choose

E1 = X1 + · · ·+ Xr

E2 = X1X2 + X1X3 + · · ·+ Xr−1Xr

...
...

Er = X1X2 · · ·Xr
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Classification

1 The finite reflection groups on C have been classified by Coxeter,
Shephard and Todd.

I There is one infinite series G (de, e, r) (d ,e and r integers),
I ...and 34 exceptional groups G4 , G5 , . . . , G37.

2 The group G (de, e, r) (d ,e and r integers) consists of all r × r
monomial matrices with entries in µde such that the product of
entries belongs to µd .

3 We have

G (d , 1, r) ' Cd oSr

G (e, e, 2) = D2e (dihedral group of order 2e)

G (2, 2, r) = W (Dr )

G23 = H3 , G28 = F4 , G30 = H4

G35,36,37 = E6,7,8 .
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FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

G is a connected reductive algebraic group over F̄q, with Weyl group
W , endowed with a Frobenius–like endomorphism F . The group
G := GF is a finite reductive group.

Example

G = GLn(F̄q) , F : (ai ,j) 7→ (aq
i ,j) , G = GLn(q)

Type of G — The type G = (X ,Y ,R,R∨ ; Wφ) of G consists of the
root datum of G endowed with the outer automorphism Wφ defined
by F .

Examples

GLn = (X = Y = Zn,R = R∨ = An ; φ = 1)

Un = (X = Y = Zn,R = R∨ = An ; φ = −1)
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Polynomial order — There is a polynomial in Z[x ]

|G|(x) =
εGxN

1

|W |
∑

w∈W

1

detV (1− xwφ)

= xN
∏
d

Φd(x)a(d)

such that |G|(q) = |G | .

Example

|GLn|(x) = x(n
2)

d=n∏
d=1

(xd − 1) = x(n
2)

d=n∏
d=1

Φd(x)[n/d ]

|GLn|(q) = |GLn(q)| and |GLn|(−q) = ±|Un(q)|
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Admissible subgroups — The tori of G are the subgroups of the shape
TF where T is an F –stable torus (i.e., isomorphic to some
F̄× × · · · × F̄× in G).

The Levi subgroups of G are the subgroups of the shape LF where L
is a centralizer of an F –stable torus in G.

Examples

The split maximal torus T1 = (F×q )
n

of order (q − 1)n

The Coxeter maximal torus Tc = GL1(Fqn) of order qn − 1

Levi subgroups have shape GLn1(qa1)× · · · × GLns (qas )

Cauchy theorem

The (polynomial) order of an admissible subgroup divides the (polynomial)
order of the group.
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Michel Broué Reflection groups and finite reductive groups



Levi subgroups and type — Let G = (X ,Y ,R,R∨ ; Wφ) be a type.

A Levi subtype of G is a type of the shape

L = (X ,Y ,R ′,R ′
∨

; W ′wφ)

where

I R ′ is a parabolic system of R, with Weyl group W ′,

I w ∈W is such that wφ stablizes R ′ and R ′
∨

.

There is a natural bijection between

I the set of G –conjugacy classes of Levi subgroups of G ,

and

I the set of W –conjugacy classes of Levi subtypes of G.
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Michel Broué Reflection groups and finite reductive groups



Levi subgroups and type — Let G = (X ,Y ,R,R∨ ; Wφ) be a type.

A Levi subtype of G is a type of the shape

L = (X ,Y ,R ′,R ′
∨

; W ′wφ)

where

I R ′ is a parabolic system of R, with Weyl group W ′,

I w ∈W is such that wφ stablizes R ′ and R ′
∨

.

There is a natural bijection between

I the set of G –conjugacy classes of Levi subgroups of G ,

and

I the set of W –conjugacy classes of Levi subtypes of G.
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FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For Φ(x) a cyclotomic polynomial, a Φ(x)–group is a finite reductive
group whose (polynomial) order is a power of Φ(x). Hence such a group is
a torus.

Sylow theorem

1 Maximal Φ(x)–subgroups (“Sylow Φ(x)–subgroups”) of G have as
(polynomial) order the contribution of Φ(x) to the (polynomial) order
of G .

2 Sylow Φ(x)–subgroups are all conjugate by G (i.e., their types are
transitively permuted by the Weyl group W ).

3 The (polynomial) index of the normalizer in G of a Sylow
Φ(x)–subgroup is congruent to 1 modulo Φ(x).
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The centralizers of Φd(x)–subgroups are called the d–split Levi subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow
Φd(x)–subgroups. They are all conjugate under G .

Example

For each d (1 ≤ d ≤ n), GLn(q) contains
a subtorus of order Φd(x)[ n

d
]

Assume n = md + r with r < d . Then a minimal
d–split Levi subgroup has shape GL1(qd)m × GLr (q).
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GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ` be a prime number which does not divide |W |.

If ` divides |G | = G(q), there is a unique integer d such that ` divides
Φd(q).

Then the Sylow `–subgroups of G are nothing but the Sylow
`–subgroups S` of S = SF (S a Sylow Φd(x)–subgroup of G).

We have
NG (S`) = NG (S) and CG (S`) = CG (S) .
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THIS IS AN ADVERTISEMENT

Starting this afternoon (well, actually, it will really start next
tuesday)...

Tuesday 3.40 pm to 5.00 pm and Thursday 3.40 pm to 5.00 pm

Room 174 Barrows Hall (subject to change)

UC Berkeley Graduate Course on

COMPLEX REFLECTION GROUPS AND ASSOCIATED BRAID
GROUPS
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Michel Broué Reflection groups and finite reductive groups



THIS IS AN ADVERTISEMENT

Starting this afternoon (well, actually, it will really start next
tuesday)...

Tuesday 3.40 pm to 5.00 pm and Thursday 3.40 pm to 5.00 pm

Room 174 Barrows Hall (subject to change)

UC Berkeley Graduate Course on

COMPLEX REFLECTION GROUPS AND ASSOCIATED BRAID
GROUPS
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CYCLOTOMIC WEYL GROUPS AND SPRINGER THEOREM

Let L (or L, or L) be a minimal d–split Levi subgroup, the centralizer
of a Sylow Φd(x)–subgroup S.

I We have

NG (L)/L ' NG (S)/CG (S) ' NW (L)/W ′

(where W ′ is the Weyl group of L).

Denote that group by WG(L).

I The “number of Sylow congruence” translates to

For ζ a primitive d-th root of the unity, we have

|WG(L)| = G(ζ)/L(ζ) .
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Michel Broué Reflection groups and finite reductive groups



The case d = 1 — The Sylow Φ1(x)–subgroups, as well as the
minimal d–split subgroups, coincide with the split maximal tori.

In case G is split (i.e., the automorphism φ induced by F is the
identity), then the group WG(L) coincides with W .

Springer and Springer–Lehrer theorem

The group WG(L) is a complex reflection group (in its representation over
the complex vector space C⊗ X ((ZL)Φd

)).

Example

For n = md + r (r < d), we have WG(L) ' Cd oSm

The group WG(L) is called the d–cyclotomic Weyl group.

If G is split, the 1–cyclotomic Weyl group is nothing but the ordinary
Weyl group W .
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UNIPOTENT CHARACTERS

Generic degree –

The set Un(G ) of unipotent characters of G is naturally parametrized
by a “generic” (i.e., independant of q) set Un(G). We denote by
Un(G) −→ Un(G ) , γ 7→ γq that parametrization.

Example for GLn : Un(GLn) is the set of all partitions of n.

Generic degree : For γ ∈ Un(G) there is Degγ(x) ∈ Q[x ] such that

Degγ(x)|x=q
= γq(1) .
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Example for GLn :

For λ = (λ1 ≤ · · · ≤ λm) a partition of n, we define

βi := λi + i − 1 .

Then

Degλ(x) =
(x − 1) · · · (xn − 1)

∏
j>i (xβj − xβi )

x(m−1
2 )+(m−2

2 )+... ∏
i

∏βi
j=1(x j − 1)

The (polynomial) degree Degγ(x) of a unipotent character divides the
(polynomial) order |G|(x) of G .

Note. The polynomial
|G|(x)

Degγ(x)
belongs to Z[x ] and is called the

(generic) Schur element of γ.
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Deligne–Lusztig induction and restriction –

Deligne and Lusztig have defined adjoint linear maps

RG
L : ZIrr(L) −→ ZIrr(G ) and ∗RG

L : ZIrr(G ) −→ ZIrr(L) .

These maps are generic :

Theorem

For any generic Levi subgroup L of G, there exist adjoint linear maps

RG
L : ZUn(L) −→ ZUn(G) and ∗RG

L : ZUn(G) −→ ZUn(L) .

which specialize to Deligne–Lusztig maps for x = q.
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d–Harish–Chandra theories –

Let Sd(G) denote the set of all pairs (M, µ) where

I M is a d–split Levi subtype of G,
I µ ∈ Un(M).

The elements of Sd(G) are called d–split pairs.

A binary relation on Sd(G) –

Definition :

(M1, µ1) ≤ (M2, µ2)

if and only if µ2 occurs in RM2
M1

(µ1) .
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First fundamental theorem

1 The relation ≤ is an order relation on Sd(G).

2 The minimal d–split pairs contained in a pair (G, γ) are all conjugate
under the Weyl group W .

I Such minimal pairs are called d–cuspidal.
I For (L, λ) d–cuspidal, define

Un(G, (L, λ)) := {γ ∈ Un(G) | (L, λ) ≤ (G, γ)} .

3 The sets Un(G, (L, λ)), where (L, λ) runs over a system of
representatives of the W –conjugacy classes of d–cuspidal pairs, form
a partition of Un(G).
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For (L, λ) a d–cuspidal pair, we set

WG(L, λ) := NW (L, λ)/WL = NG (L, λq)/L .

Second fundamental theorem

Whenever (L, λ) is a d–cuspidal pair, the group WG(L, λ) is (naturally) a
complex reflection group.

In the case where L is a minimal d–split Levi subtype, and λ is the trivial
character, the above theorem specializes onto Springer–Lehrer theorem.
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Michel Broué Reflection groups and finite reductive groups



For (L, λ) a d–cuspidal pair, we set

WG(L, λ) := NW (L, λ)/WL = NG (L, λq)/L .

Second fundamental theorem

Whenever (L, λ) is a d–cuspidal pair, the group WG(L, λ) is (naturally) a
complex reflection group.

In the case where L is a minimal d–split Levi subtype, and λ is the trivial
character, the above theorem specializes onto Springer–Lehrer theorem.
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Third fundamental theorem : description of RG
L (λ)

There exists a collection of isometries

I M
(L,λ) : ZIrr(WM(L, λ)

∼−→ ZUn(M, (L, λ)) ,

such that

1 The following diagram commute :

ZIrr(WG(L, λ)
IG
(L,λ) // ZUn(G, (L, λ))

ZIrr(WM(L, λ)
IM
(L,λ) //

Ind
WG(L,λ)

WM(L,λ)

OO

ZUn(M, (L, λ))

RG
M

OO

2 For all χ ∈ Irr(WG(L, λ)), let γχ := εχI G
(L,λ)(χ). Then if ζ is a

primitive d-th root of unity, we have

Degγχ(ζ) = εχχ(1) .
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