Complex reflection groups and associated braid groups

Michel Broué
Institut Henri-Poincaré

September 2008

- Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V.
- Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V. Each choice of a basis $\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ of V determines an identification of S with a polynomial algebra

$$
S \simeq K\left[v_{1}, v_{2}, \ldots, v_{r}\right]
$$

- Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V. Each choice of a basis $\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ of V determines an identification of S with a polynomial algebra

$$
S \simeq K\left[v_{1}, v_{2}, \ldots, v_{r}\right] .
$$

- Let G be a finite subgroup of $G L(V)$. The group G acts on the algebra S, and we let $R:=S^{G}$ denote the subalgebra of G-fixed polynomials.

In general R is NOT a polynomial algebra,

In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$
P:=K\left[u_{1}, u_{2}, \ldots, u_{r}\right] \quad \text { with } \quad \operatorname{deg} u_{i}=d_{i}
$$

In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$
P:=K\left[u_{1}, u_{2}, \ldots, u_{r}\right] \quad \text { with } \quad \operatorname{deg} u_{i}=d_{i}
$$

such that

In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$
P:=K\left[u_{1}, u_{2}, \ldots, u_{r}\right] \quad \text { with } \quad \operatorname{deg} u_{i}=d_{i}
$$

such that

In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$
P:=K\left[u_{1}, u_{2}, \ldots, u_{r}\right] \quad \text { with } \quad \operatorname{deg} u_{i}=d_{i}
$$

such that

Moreover,

Moreover,
 (1) $m|G|=d_{1} d_{2} \cdots d_{r}$

> Moreover,
> (1) $m|G|=d_{1} d_{2} \cdots d_{r}$
> \& As a $P G$-module, we have $S \simeq(P G)^{m}$.

> Moreover,
> (1) $m|G|=d_{1} d_{2} \cdots d_{r}$
> \& As a $P G$-module, we have $S \simeq(P G)^{m}$.

Example.

Moreover,
(1) $m|G|=d_{1} d_{2} \cdots d_{r}$

2 As a $P G$-module, we have $S \simeq(P G)^{m}$.

Example.

Consider $G=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\} \subset \mathrm{GL}_{2}(K)$.

Moreover,
(1) $m|G|=d_{1} d_{2} \cdots d_{r}$

2 As a $P G$-module, we have $S \simeq(P G)^{m}$.

Example.

Consider $G=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\} \subset \mathrm{GL}_{2}(K)$.
Denote by (x, y) the canonical basis of $V=K^{2}$.

Moreover,
(1) $m|G|=d_{1} d_{2} \cdots d_{r}$

2 As a $P G$-module, we have $S \simeq(P G)^{m}$.

Example.

Consider $G=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\} \subset \mathrm{GL}_{2}(K)$.
Denote by (x, y) the canonical basis of $V=K^{2}$. Then

Moreover,
(1) $m|G|=d_{1} d_{2} \cdots d_{r}$

2 As a $P G$-module, we have $S \simeq(P G)^{m}$.

Example.

Consider $G=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\} \subset \mathrm{GL}_{2}(K)$.
Denote by (x, y) the canonical basis of $V=K^{2}$. Then

Unless...

A finite reflection group on K is a finite subgroup of $\mathrm{GL}_{K}(V)(V$ a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

A finite reflection group on K is a finite subgroup of $\mathrm{GL}_{K}(V)(V$ a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.

A finite reflection group on K is a finite subgroup of $\mathrm{GL}_{K}(V)(V$ a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.

Main characterisation

Main characterisation

Theorem (Shephard-Todd, Chevalley-Serre)
Let G be a finite subgroup of $G L(V)(V$ an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{r}\right]$.
The following assertions are equivalent.

Main characterisation

Theorem (Shephard-Todd, Chevalley-Serre)
Let G be a finite subgroup of $G L(V)(V$ an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{r}\right]$.
The following assertions are equivalent.
${ }^{1} G$ is generated by reflections.

Main characterisation

Theorem (Shephard-Todd, Chevalley-Serre)
Let G be a finite subgroup of $G L(V)(V$ an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{r}\right]$.
The following assertions are equivalent.
${ }^{1} G$ is generated by reflections.
2 The ring $R:=S^{G}$ of G-fixed polynomials is a polynomial ring $K\left[u_{1}, u_{2}, \ldots, u_{r}\right]$ in r homogeneous algebraically independant elements.

Main characterisation

Theorem (Shephard-Todd, Chevalley-Serre)
Let G be a finite subgroup of $G L(V)(V$ an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{r}\right]$.
The following assertions are equivalent.
${ }^{1} G$ is generated by reflections.
2 The ring $R:=S^{G}$ of G-fixed polynomials is a polynomial ring $K\left[u_{1}, u_{2}, \ldots, u_{r}\right]$ in r homogeneous algebraically independant elements.
${ }^{3} S$ is a free R-module.

Main characterisation

Theorem (Shephard-Todd, Chevalley-Serre)
Let G be a finite subgroup of $G L(V)(V$ an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{r}\right]$.
The following assertions are equivalent.
${ }^{1} G$ is generated by reflections.
2 The ring $R:=S^{G}$ of G-fixed polynomials is a polynomial ring $K\left[u_{1}, u_{2}, \ldots, u_{r}\right]$ in r homogeneous algebraically independant elements.
3 S is a free R-module.
In other words, unless... $m=1$, i.e., $R=P$.

becomes

$$
S=K\left[v_{1}, v_{2}, \ldots, v_{r}\right]
$$

$$
R=S^{G}=P=K\left[u_{1}, u_{2}, \ldots, u_{r}\right]
$$

Examples

Examples

- For $G=\mathfrak{S}_{r}$, one may choose

$$
\left\{\begin{array}{l}
u_{1}=v_{1}+\cdots+v_{r} \\
u_{2}=v_{1} v_{2}+v_{1} v_{3}+\cdots+v_{r-1} v_{r} \\
\vdots \\
\vdots \\
u_{r}=v_{1} v_{2} \cdots v_{r}
\end{array}\right.
$$

Examples

- For $G=\mathfrak{S}_{r}$, one may choose

$$
\left\{\begin{array}{l}
u_{1}=v_{1}+\cdots+v_{r} \\
u_{2}=v_{1} v_{2}+v_{1} v_{3}+\cdots+v_{r-1} v_{r} \\
\vdots \\
\vdots \\
u_{r}=v_{1} v_{2} \cdots v_{r}
\end{array}\right.
$$

- For $G=\left\langle\mathrm{e}^{2 \pi i / d}\right\rangle$, cyclic group of order d acting by multiplication on $V=\mathbb{C}$, we have

$$
S=K[x] \quad \text { and } \quad R=K\left[x^{d}\right]
$$

Classification

Classification

${ }^{1}$ The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

Classification

1) The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),

Classification

1) The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups

Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

Classification

(1) The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

2 The group $G(d e, e, r)(d, e$ and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_{d}.

Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

2 The group $G(d e, e, r)(d, e$ and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_{d}.

3 We have

Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

2 The group $G(d e, e, r)(d, e$ and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_{d}.

3 We have

$$
G(d, 1, r) \simeq C_{d} \backslash \mathfrak{S}_{r}
$$

Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

2 The group $G(d e, e, r)(d, e$ and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_{d}.

3 We have

$$
\begin{aligned}
& G(d, 1, r) \simeq C_{d} \backslash \mathfrak{S}_{r} \\
& G(e, e, 2)=D_{2 e} \quad(\text { dihedral group of order } 2 e)
\end{aligned}
$$

Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(d e, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups $G_{4}, G_{5}, \ldots, G_{37}$.

2 The group $G(d e, e, r)(d, e$ and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_{d}.

3 We have

$$
\begin{aligned}
& G(d, 1, r) \simeq C_{d} \imath G_{r} \\
& G(e, e, 2)=D_{2 e} \quad(\text { dihedral group of order } 2 e) \\
& G(2,2, r)=W\left(D_{r}\right) \\
& G_{23}=H_{3}, G_{28}=F_{4}, G_{30}=H_{4} \\
& G_{35,36,37}=E_{6,7,8}
\end{aligned}
$$

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Properties:

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L=V$,

Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L=V$,
- H determines L, and L determines H,

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L=V$,
- H determines L, and L determines H, hence, in terms of normalizers,

$$
N_{G}(H)=N_{G}(L)=N_{G}(H, L) .
$$

Let G be a finite subgroup of $G L(V)$.
A reflection s is associated with

- a reflecting hyperplane $H:=\operatorname{ker}(s-1)$,
- a reflecting line $L:=\operatorname{im}(s-1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L=V$,
- H determines L, and L determines H, hence, in terms of normalizers,

$$
N_{G}(H)=N_{G}(L)=N_{G}(H, L) .
$$

- The fixator G_{H} (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Notation

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$,

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

For L a line in V, the ideal $\mathfrak{q}:=S L$ of S is a height one prime ideal.

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

For L a line in V, the ideal $\mathfrak{q}:=S L$ of S is a height one prime ideal. In other words, the hypersurface of V defined by \mathfrak{q} is a codimension one irreducible variety.

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

For L a line in V, the ideal $\mathfrak{q}:=S L$ of S is a height one prime ideal. In other words, the hypersurface of V defined by \mathfrak{q} is a codimension one irreducible variety.

Now the extension

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

For L a line in V, the ideal $\mathfrak{q}:=S L$ of S is a height one prime ideal. In other words, the hypersurface of V defined by \mathfrak{q} is a codimension one irreducible variety.

Notation

- $\mathcal{A}:=\{H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}, e_{H}:=\left|G_{H}\right|$
- s_{H} is the generator of G_{H} whose nontrivial eigenvalue is $\mathrm{e}^{2 i \pi / e_{H}}$, called a distinguished reflection.

For L a line in V, the ideal $\mathfrak{q}:=S L$ of S is a height one prime ideal. In other words, the hypersurface of V defined by \mathfrak{q} is a codimension one irreducible variety.

is ramified at $\mathfrak{q}=S L$ if and only if L is a reflecting line.

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of $S\}$

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of $S\}$

Ramification and parabolic subgroups

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of $S\}$

Ramification and parabolic subgroups

Steinberg Theorem
Assume G generated by reflections.

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of $S\}$

Ramification and parabolic subgroups

Steinberg Theorem
Assume G generated by reflections.
(1) The ramification locus of $V \longrightarrow V / G$ is $\bigcup_{H \in \mathcal{A}} H$.

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of S \}

Ramification and parabolic subgroups

Steinberg Theorem
Assume G generated by reflections.
(1) The ramification locus of $V \longrightarrow V / G$ is $\bigcup_{H \in \mathcal{A}} H$.

2 Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

Thus there are G-equivariant bijections
$\mathcal{A} \longleftrightarrow$ \{reflecting lines $\} \longleftrightarrow$ \{ramified height one prime ideals of S \}

Ramification and parabolic subgroups

Steinberg Theorem
Assume G generated by reflections.
(1) The ramification locus of $V \longrightarrow V / G$ is $\bigcup_{H \in \mathcal{A}} H$.

2 Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

3 The set $\operatorname{Par}(G)$ of fixators ("parabolic subgroups" of G) is in (reverse-order) bijection with the set $\mathrm{I}(\mathcal{A})$ of intersections of elements of \mathcal{A} :

$$
\mathrm{I}(\mathcal{A}) \xrightarrow{\sim} \operatorname{Par}(G) \quad, \quad X \mapsto G_{X}
$$

Braid groups

Braid groups

Set

$$
V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H .
$$

Set

$$
V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H .
$$

Since the covering $V^{\mathrm{reg}} \longrightarrow V^{\mathrm{reg}} / G$ is Galois, it induces a short exact sequence

Set

$$
V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H .
$$

 sequence

$$
1 \longrightarrow \Pi_{1}\left(V^{\mathrm{reg}}, x_{0}\right) \longrightarrow \Pi_{1}\left(V^{\mathrm{reg}} / G, x_{0}\right) \longrightarrow G \longrightarrow 1
$$

Set

$$
V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H .
$$

 sequence

Set

$$
V^{\text {reg }}:=V-\bigcup_{H \in \mathcal{A}} H .
$$

 sequence

Notation around H

Notation around H

- Let $H \in \mathcal{A}$, with associated line L.

Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$
x=x_{L}+x_{H} \quad\left(\text { with } x_{L} \in L \text { and } x_{H} \in H\right) .
$$

Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$
x=x_{L}+x_{H} \quad\left(\text { with } x_{L} \in L \text { and } x_{H} \in H\right) .
$$

$=$ Thus, we have $\quad s_{H}(x)=\mathrm{e}^{2 i \pi / e_{H}} x_{L}+x_{H}$.

Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$
x=x_{L}+x_{H} \quad\left(\text { with } x_{L} \in L \text { and } x_{H} \in H\right)
$$

$=$ Thus, we have $\quad s_{H}(x)=\mathrm{e}^{2 i \pi / e_{H}} x_{L}+x_{H}$.

- If $t \in \mathbb{R}$, we set :

$$
s_{H}^{t}(x)=\mathrm{e}^{2 i \pi t / e_{H}} x_{L}+x_{H} \quad \text { defining a path } s_{H, x} \text { from } x \text { to } s_{H}(x)
$$

Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$
x=x_{L}+x_{H} \quad\left(\text { with } x_{L} \in L \text { and } x_{H} \in H\right) .
$$

$=$ Thus, we have $\quad s_{H}(x)=\mathrm{e}^{2 i \pi / e_{H}} x_{L}+x_{H}$.

- If $t \in \mathbb{R}$, we set :

$$
s_{H}^{t}(x)=\mathrm{e}^{2 i \pi t / e_{H}} x_{L}+x_{H} \quad \text { defining a path } s_{H, x} \text { from } x \text { to } s_{H}(x)
$$

We have

$$
s_{H}^{t_{H}}(x)=\mathrm{e}^{2 \pi i t} x_{L}+x_{H} \quad \text { defining a loop } \pi_{H, x} \text { with origin } x
$$

Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$
x=x_{L}+x_{H} \quad\left(\text { with } x_{L} \in L \text { and } x_{H} \in H\right) .
$$

$=$ Thus, we have $\quad s_{H}(x)=\mathrm{e}^{2 i \pi / e_{H}} x_{L}+x_{H}$.

- If $t \in \mathbb{R}$, we set :

$$
s_{H}^{t}(x)=\mathrm{e}^{2 i \pi t / e_{H}} x_{L}+x_{H} \quad \text { defining a path } s_{H, x} \text { from } x \text { to } s_{H}(x)
$$

We have

$$
s_{H}^{t_{H}}(x)=\mathrm{e}^{2 \pi i t} x_{L}+x_{H} \quad \text { defining a loop } \pi_{H, x} \text { with origin } x
$$

In other words,

$$
\pi_{H, x}=\mathbf{s}_{H, x}^{e_{H}} \in P_{G}
$$

Braid reflections

Braid reflections

Braid reflections

$x_{H}{ }^{\bullet}$

Braid reflections

- $s_{H}\left(x_{H}\right)$

$x_{H} \bullet$

- x_{0}

Braid reflections

- $s_{H}\left(x_{0}\right)$

- $s_{H}\left(x_{H}\right)$

$x_{H}{ }^{\bullet}$

- x_{0}

Braid reflections

Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.

- $s_{H}\left(x_{0}\right)$

Braid reflections

Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.

$$
\mathbf{s}_{H, x} \cdot \gamma
$$

- $s_{H}\left(x_{0}\right)$

Braid reflections

Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.

$$
s_{H}\left(\gamma^{-1}\right) \cdot \mathbf{s}_{H, x} \cdot \gamma
$$

Braid reflections

Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.
We define : $\sigma_{H, \gamma}:=s_{H}\left(\gamma^{-1}\right) \cdot s_{H, X} \cdot \gamma$

Braid reflections

Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.
We define : $\sigma_{H, \gamma}:=s_{H}\left(\gamma^{-1}\right) \cdot \mathbf{s}_{H, X} \cdot \gamma$

Braid reflections
Let γ be a path in $V^{\text {reg }}$ from x_{0} to x_{H}.
We define : $\sigma_{H, \gamma}:=s_{H}\left(\gamma^{-1}\right) \cdot s_{H, X} \cdot \gamma$

Definition

We call braid reflections the elements $\mathbf{s}_{H, \gamma} \in B$ defined by the paths $\sigma_{H, \gamma}$.

The following properties are immediate.

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.
- $\mathbf{s}_{H, \gamma}^{e_{H}}$ is a loop in $V^{\text {reg }}$:

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.
- $\mathbf{s}_{H, \gamma}^{e_{H}}$ is a loop in $V^{\text {reg }}$:

The variety V (resp. V / G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.
- $\mathbf{s}_{H, \gamma}^{e_{H}}$ is a loop in $V^{\text {reg }}$:

The variety V (resp. V / G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

Theorem

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.
- $\mathbf{s}_{H, \gamma}^{e_{H}}$ is a loop in $V^{\text {reg }}$:

The variety V (resp. V / G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

Theorem

(1) The braid group B_{G} is generated by the braid reflections $\left(\mathbf{s}_{H, \gamma}\right)$ (for all H and all γ).

The following properties are immediate.

- $\mathbf{s}_{H, \gamma}$ and $\mathbf{s}_{H, \gamma^{\prime}}$ are conjugate in P.
- $\mathbf{s}_{H, \gamma}^{e_{H}}$ is a loop in $V^{\text {reg }}$:

The variety V (resp. V / G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

Theorem

(1) The braid group B_{G} is generated by the braid reflections $\left(\mathbf{s}_{H, \gamma}\right)$ (for all H and all γ).
2 The pure braid group P_{G} is generated by the elements $\left(\mathbf{s}_{H, \gamma}^{e_{H}}\right)$

Linear characters of the reflection groups

For $H \in \mathcal{A}$,

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Proposition

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Proposition

(1) The linear character $\operatorname{det}_{H}: G \rightarrow \mathbb{C}^{\times}$is defined by $g\left(\mathbf{j}_{H}\right)=\operatorname{det}_{H}(g) \mathbf{j}_{H}$

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Proposition

(1) The linear character $\operatorname{det}_{H}: G \rightarrow \mathbb{C}^{\times}$is defined by $g\left(\mathbf{j}_{H}\right)=\operatorname{det}_{H}(g) \mathbf{j}_{H}$
(2) $\operatorname{det}_{H}(s)=\left\{\begin{array}{lr}\operatorname{det}(s) & \text { if } H_{s}={ }_{G} H \\ 1 & \text { if not }\end{array}\right.$

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Proposition
(1) The linear character $\operatorname{det}_{H}: G \rightarrow \mathbb{C}^{\times}$is defined by $g\left(\mathbf{j}_{H}\right)=\operatorname{det}_{H}(g) \mathbf{j}_{H}$
(2) $\operatorname{det}_{H}(s)=\left\{\begin{array}{lr}\operatorname{det}(s) & \text { if } H_{s}={ }_{G} H \\ 1 & \text { if not }\end{array}\right.$

3 $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(G_{H}, \mathbb{C}^{\times}\right)\right)^{G}$

Linear characters of the reflection groups
For $H \in \mathcal{A}$,

- j_{H} denotes a nontrivial element of L,
- $\mathbf{j}_{H}:=\prod_{\left\{H^{\prime} \mid\left(H^{\prime}={ }_{G} H\right)\right\}} j_{H^{\prime}} \quad$ (depends only on the orbit of H under G)

Proposition
(1) The linear character $\operatorname{det}_{H}: G \rightarrow \mathbb{C}^{\times}$is defined by $g\left(\mathbf{j}_{H}\right)=\operatorname{det}_{H}(g) \mathbf{j}_{H}$
(2) $\operatorname{det}_{H}(s)=\left\{\begin{array}{lr}\operatorname{det}(s) & \text { if } H_{s}={ }_{G} H \\ 1 & \text { if not }\end{array}\right.$

3 $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(G_{H}, \mathbb{C}^{\times}\right)\right)^{G} \simeq\left(\prod_{H \in \mathcal{A} / G} \operatorname{Hom}\left(G_{H}, \mathbb{C}^{\times}\right)\right)$

Linear characters of the braid groups

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$ $\Delta_{H} \in R=S^{G}$

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$ - $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$ - $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$ - $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism
$\Pi_{1}\left(\Delta_{H}\right): \Pi_{1}\left(V^{\text {reg }} / G\right) \rightarrow \Pi_{1}\left(\mathbb{C}^{\times}\right) \quad$ i.e.,

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$ - $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism
$\Pi_{1}\left(\Delta_{H}\right): \Pi_{1}\left(V^{\text {reg }} / G\right) \rightarrow \Pi_{1}\left(\mathbb{C}^{\times}\right) \quad$ i.e., $\quad \ell_{H}: B_{G} \longrightarrow \mathbb{Z}$

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$
- $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism
$\Pi_{1}\left(\Delta_{H}\right): \Pi_{1}\left(V^{\text {reg }} / G\right) \rightarrow \Pi_{1}\left(\mathbb{C}^{\times}\right) \quad$ i.e., $\quad \ell_{H}: B_{G} \longrightarrow \mathbb{Z}$
- For $H \in \mathcal{A}$,

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$
- $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism
$\Pi_{1}\left(\Delta_{H}\right): \Pi_{1}\left(V^{\text {reg }} / G\right) \rightarrow \Pi_{1}\left(\mathbb{C}^{\times}\right) \quad$ i.e., $\quad \ell_{H}: B_{G} \longrightarrow \mathbb{Z}$
- For $H \in \mathcal{A}$,

$$
G_{H} \simeq \mathbb{Z} / e_{H} \mathbb{Z}
$$

Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather $\mathcal{A} / G)$ is $\Delta_{H}:=\mathbf{j}_{H}^{e_{H}}$
- $\Delta_{H} \in R=S^{G}$ hence defines a (continuous) map

hence defines a morphism
$\Pi_{1}\left(\Delta_{H}\right): \Pi_{1}\left(V^{\text {reg }} / G\right) \rightarrow \Pi_{1}\left(\mathbb{C}^{\times}\right) \quad$ i.e., $\quad \ell_{H}: B_{G} \longrightarrow \mathbb{Z}$
- For $H \in \mathcal{A}$,

$$
G_{H} \simeq \mathbb{Z} / e_{H} \mathbb{Z}
$$

$$
B_{G_{H}} \simeq \mathbb{Z}
$$

Proposition

Proposition

1

Proposition

1
$\operatorname{Hom}\left(B_{G}, \mathbb{Z}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(B_{G_{H}}, \mathbb{Z}\right)\right)^{G}$

Proposition

1
$\operatorname{Hom}\left(B_{G}, \mathbb{Z}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(B_{G_{H}}, \mathbb{Z}\right)\right)^{G}$
$2 \ell_{H}$ is a length :

Proposition

1
$\operatorname{Hom}\left(B_{G}, \mathbb{Z}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(B_{G_{H}}, \mathbb{Z}\right)\right)^{G}$
2 ℓ_{H} is a length :

$$
\ell_{H}\left(\mathbf{s}_{H_{1}, \gamma_{1}}^{n_{1}} \cdot \mathbf{s}_{H_{2}, \gamma_{2}}^{n_{2}} \cdots \mathbf{s}_{H_{k}, \gamma_{k}}^{n_{k}}\right)=\sum_{\left\{i \mid\left(H_{i}={ }_{G} H\right)\right\}} n_{i}
$$

Proposition

1
$\operatorname{Hom}\left(B_{G}, \mathbb{Z}\right) \xrightarrow{\sim}\left(\prod_{H \in \mathcal{A}} \operatorname{Hom}\left(B_{G_{H}}, \mathbb{Z}\right)\right)^{G}$
2 ℓ_{H} is a length :

$$
\ell_{H}\left(\mathbf{s}_{H_{1}, \gamma_{1}}^{n_{1}} \cdot \mathbf{s}_{H_{2}, \gamma_{2}}^{n_{2}} \cdots \mathbf{s}_{H_{k}, \gamma_{k}}^{n_{k}}\right)=\sum_{\left\{i \mid\left(H_{i}={ }_{G} H\right)\right\}} n_{i}
$$

Center of the braid groups

Center of the braid groups

From now on we assume that G is irreducible on V.

Center of the braid groups

From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

Center of the braid groups

From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

- Let $\pi \in P_{G}$ defined by $\pi: t \mapsto e^{2 i \pi t} x_{0}$

Center of the braid groups

From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

- Let $\pi \in P_{G}$ defined by $\pi: t \mapsto e^{2 i \pi t} x_{0}$
- Let $\zeta \in B_{G}$ defined by $\zeta: t \mapsto e^{2 i \pi t / z_{x_{0}}}$

Center of the braid groups

From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

- Let $\pi \in P_{G}$ defined by $\pi: t \mapsto e^{2 i \pi t} x_{0}$
- Let $\zeta \in B_{G}$ defined by $\zeta: t \mapsto e^{2 i \pi t / z} x_{0}$

Theorem

Center of the braid groups

From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

- Let $\pi \in P_{G}$ defined by $\pi: t \mapsto e^{2 i \pi t} x_{0}$
- Let $\zeta \in B_{G}$ defined by $\zeta: t \mapsto e^{2 i \pi t / z} x_{0}$

Theorem
(1) $Z P_{G}=\langle\boldsymbol{\pi}\rangle$ and $Z B_{G}=\langle\boldsymbol{\zeta}\rangle$.

Center of the braid groups

From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z:=|Z G|$ and $\zeta:=e^{2 i \pi / z}$.

- Let $\pi \in P_{G}$ defined by $\pi: t \mapsto e^{2 i \pi t} x_{0}$
- Let $\zeta \in B_{G}$ defined by $\zeta: t \mapsto e^{2 i \pi t / z_{x_{0}}}$

Theorem
(1) $Z P_{G}=\langle\boldsymbol{\pi}\rangle$ and $Z B_{G}=\langle\boldsymbol{\zeta}\rangle$.

2 We have the short exact sequence

$$
1 \longrightarrow Z P_{G} \longrightarrow Z B_{G} \longrightarrow Z G \longrightarrow 1
$$

Case of Coxeter groups

Case of Coxeter groups
 The choice of a Coxeter generating set for G defines a presentation of B_{G}

Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_{G}

Example :

Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_{G}

Example :

and a "section" (not a group morphism !) of the map $B_{G} \rightarrow G$ using reduced decompositions.

Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_{G}

Example :

and a "section" (not a group morphism !) of the map $B_{G} \rightarrow G$ using reduced decompositions.

Let w_{0} be the longest element of G, and let \mathbf{g}_{0} be its lift in B_{G}.

Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_{G}

Example :

and a "section" (not a group morphism !) of the map $B_{G} \rightarrow G$ using reduced decompositions.

Let w_{0} be the longest element of G, and let \mathbf{g}_{0} be its lift in B_{G}.

$$
\pi=\mathbf{g}_{0}^{2}
$$

Case of Coxeter groups
The choice of a Coxeter generating set for G defines a presentation of B_{G}

Example :

and a "section" (not a group morphism !) of the map $B_{G} \rightarrow G$ using reduced decompositions.

Let w_{0} be the longest element of G, and let \mathbf{g}_{0} be its lift in B_{G}.

$$
\pi=\mathbf{g}_{0}^{2}
$$

Example: $\quad \pi=\left(\mathbf{s t}_{1} \mathbf{t}_{2} \cdots \mathbf{t}_{r-1}\right)^{2 r}$

Artin-like presentations

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous, i.e., such that (for each i) \mathbf{v}_{i} and \mathbf{w}_{i} are positive words in elements of \mathbf{S}

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
${ }^{1}$ The following integers are equal

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
(1) The following integers are equal

- The minimal number of reflections needed to generate G

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
(The following integers are equal

- The minimal number of reflections needed to generate G
- The minimal number of braid reflections needed to generate B_{G}

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
(The following integers are equal

- The minimal number of reflections needed to generate G
- The minimal number of braid reflections needed to generate B_{G}
- $\left\lceil\left(N+N_{h}\right) / d_{r}\right\rceil$

Artin-like presentations

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
${ }_{1}$ The following integers are equal (denoted by Γ_{G}) :

- The minimal number of reflections needed to generate G
- The minimal number of braid reflections needed to generate B_{G}
- $\left\lceil\left(N+N_{h}\right) / d_{r}\right\rceil$

An Artin-like presentation is

$$
\left\langle\mathbf{s} \in \mathbf{S} \mid\left\{\mathbf{v}_{i}=\mathbf{w}_{i}\right\}_{i \in I}\right\rangle
$$

where

- \mathbf{S} is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let $G \subset G L(V)$ be a complex reflection group. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ be the family of its invariant degrees.
${ }_{1}$ The following integers are equal (denoted by Γ_{G}) :

- The minimal number of reflections needed to generate G
- The minimal number of braid reflections needed to generate B_{G}
- $\left\lceil\left(N+N_{h}\right) / d_{r}\right\rceil$

2) Either $\Gamma_{G}=r$ or $\Gamma_{G}=r+1$, and the group B_{G} has an Artin-like presentation by Γ_{G} braid reflections.

The braid diagrams

The braid diagrams

Let \mathcal{D} be a diagram like

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

$\underbrace{\text { stustu } \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{\text { ustust } \cdots}_{e \text { factors }}$ and $s^{a}=t^{b}=u^{c}=1$

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

$$
\underbrace{s t u s t u \cdots}_{e \text { factors }}=\underbrace{t u s t u s \cdots}_{e \text { factors }}=\underbrace{u s t u s t \cdots}_{e \text { factors }} \quad \text { and } \quad s^{a}=t^{b}=u^{c}=1
$$

We denote by $\mathcal{D}_{\text {br }}$ and call braid diagram the diagram

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

$$
\underbrace{s t u s t u \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{u s t u s t \cdots}_{e \text { factors }} \quad \text { and } \quad s^{a}=t^{b}=u^{c}=1
$$

We denote by $\mathcal{D}_{\text {br }}$ and call braid diagram the diagram which represents the relations

$$
\underbrace{\text { stustu } \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{\text { ustust } \cdots}_{e \text { factors }}
$$

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

$$
\underbrace{s t u s t u \cdots}_{e \text { factors }}=\underbrace{t u s t u s \cdots}_{e \text { factors }}=\underbrace{u s t u s t \cdots}_{e \text { factors }} \quad \text { and } \quad s^{a}=t^{b}=u^{c}=1
$$

We denote by $\mathcal{D}_{\text {br }}$ and call braid diagram the diagram which represents the relations

$$
\underbrace{\text { stustu } \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{\text { ustust } \cdots}_{e \text { factors }}
$$

Note that

The braid diagrams

Let \mathcal{D} be a diagram like

\mathcal{D} represents the relations

$$
\underbrace{s t u s t u \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{u s t u s t \cdots}_{e \text { factors }} \quad \text { and } \quad s^{a}=t^{b}=u^{c}=1
$$

We denote by $\mathcal{D}_{\text {br }}$ and call braid diagram the diagram which represents the relations

$$
\underbrace{\text { stustu } \cdots}_{e \text { factors }}=\underbrace{\text { tustus } \cdots}_{e \text { factors }}=\underbrace{\text { ustust } \cdots}_{e \text { factors }}
$$

Note that

have same braid diagram.

For each irreducible complex irreducible group G,

For each irreducible complex irreducible group G,

 there is a diagram \mathcal{D},For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,
such that
Theorem
For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_{G}$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of $\mathcal{D}_{\mathrm{br}}$, is a presentation of B_{G}.

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,
such that
Theorem
For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_{G}$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of $\mathcal{D}_{\mathrm{br}}$, is a presentation of B_{G}.

- The groups G_{n} for $n=4,5,8,16,20$, as well as the dihedral groups, have diagrams of type (d) $\underset{s}{e} \underset{t}{\text { (d) }}$,

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,
such that
Theorem
For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_{G}$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of $\mathcal{D}_{\mathrm{br}}$, is a presentation of B_{G}.

- The groups G_{n} for $n=4,5,8,16,20$, as well as the dihedral groups, have diagrams of type (d) $\frac{e}{s}$ (d) , corresponding to the presentation

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,
such that
Theorem
For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_{G}$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of $\mathcal{D}_{\mathrm{br}}$, is a presentation of B_{G}.

- The groups G_{n} for $n=4,5,8,16,20$, as well as the dihedral groups, have diagrams of type (d) $\frac{e}{s}$ (d) , corresponding to the presentation

$$
s^{d}=t^{d}=1
$$

For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,
such that
Theorem
For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_{G}$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of $\mathcal{D}_{\mathrm{br}}$, is a presentation of B_{G}.

- The groups G_{n} for $n=4,5,8,16,20$, as well as the dihedral groups, have diagrams of type $\underset{s}{\text { (d) }} \frac{e}{t}$ (d) , corresponding to the presentation

$$
s^{d}=t^{d}=1 \text { and } \underbrace{s t s t s \cdots}_{e \text { factors }}=\underbrace{\text { tstst } \cdots}_{e \text { factors }}
$$

- The group G_{18} has diagram $\underset{s}{(5)}=\frac{3}{t}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{18} has diagram $\underset{s}{5}={ }_{t}^{3}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{31} has diagram

- The group G_{18} has diagram $\underset{s}{5}={ }_{t}^{3}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{31} has diagram

corresponding to the presentation
- The group G_{18} has diagram $\underset{s}{5}={ }_{t}^{3}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{31} has diagram
 corresponding to the presentation

$$
s^{2}=t^{2}=u^{2}=v^{2}=w^{2}=1
$$

- The group G_{18} has diagram $\underset{s}{5}={ }_{t}^{3}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{31} has diagram
 corresponding to the presentation

$$
\begin{aligned}
& s^{2}=t^{2}=u^{2}=v^{2}=w^{2}=1 \\
& u v=v u, s w=w s, v w=w v, \quad s u t=u t s=t s u
\end{aligned}
$$

- The group G_{18} has diagram $\underset{s}{5}={ }_{t}^{3}$ corresponding to the presentation

$$
s^{5}=t^{3}=1 \text { and } s t s t=t s t s
$$

- The group G_{31} has diagram
 corresponding to the presentation

$$
\begin{aligned}
& s^{2}=t^{2}=u^{2}=v^{2}=w^{2}=1 \\
& u v=v u, s w=w s, v w=w v, \quad s u t=u t s=t s u \\
& s v s=v s v, t v t=v t v, t w t=w t w, w u w=u w u
\end{aligned}
$$

- Solution of an old conjecture

More on the work of Bessis

- Solution of an old conjecture

Theorem
The space $V^{\text {reg }}$ is a $K(\pi, 1)$.

More on the work of Bessis

- Solution of an old conjecture

Theorem

$$
\text { The space } V^{\text {reg }} \text { is a } K(\pi, 1) \text {. }
$$

- Springer's theory of regular elements in complex reflections groups lifts to braid groups

More on the work of Bessis

- Solution of an old conjecture

Theorem

$$
\text { The space } V^{\text {reg }} \text { is a } K(\pi, 1) \text {. }
$$

- Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem
Let $\zeta_{d}:=\mathrm{e}^{2 i \pi / d}$.

More on the work of Bessis

- Solution of an old conjecture

Theorem

$$
\text { The space } V^{\text {reg }} \text { is a } K(\pi, 1) \text {. }
$$

- Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem
Let $\zeta_{d}:=\mathrm{e}^{2 i \pi / d}$.
(1) The ζ_{d}-regular elements in G are the images of the d-th roots of π.

More on the work of Bessis

- Solution of an old conjecture

Theorem

$$
\text { The space } V^{\text {reg }} \text { is a } K(\pi, 1) \text {. }
$$

- Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem
Let $\zeta_{d}:=\mathrm{e}^{2 i \pi / d}$.
(1) The ζ_{d}-regular elements in G are the images of the d-th roots of π.

2 All d-th roots of π are conjugate in B_{G}.

More on the work of Bessis

- Solution of an old conjecture

Theorem
The space $V^{\text {reg }}$ is a $K(\pi, 1)$.

- Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem
Let $\zeta_{d}:=\mathrm{e}^{2 i \pi / d}$.
(1) The ζ_{d}-regular elements in G are the images of the d-th roots of π.

2 All d-th roots of π are conjugate in B_{G}.
3 Let \mathbf{g} be a d-th root of π, with image g in G. Then $C_{B_{G}}(\mathbf{g})$ is the braid group of $C_{G}(g)$.

A monodromy representation

(after Knizhnik-Zamolodchikov, Cherednik, Dunkl, Opdam, Kohno, Broué-Malle-Rouquier)

A monodromy representation

- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H,

A monodromy representation

- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H, and

$$
\omega_{H}:=\frac{1}{2 i \pi} \frac{d \alpha_{H}}{\alpha_{H}}
$$

A monodromy representation

- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H, and

$$
\omega_{H}:=\frac{1}{2 i \pi} \frac{d \alpha_{H}}{\alpha_{H}}
$$

- Each family

$$
\left(z_{H}\right)_{H \in \mathcal{A}} \in\left(\prod_{H \in \mathcal{A}} \mathbb{C} G_{H}\right)^{G}
$$

A monodromy representation

- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H, and

$$
\omega_{H}:=\frac{1}{2 i \pi} \frac{d \alpha_{H}}{\alpha_{H}}
$$

- Each family

$$
\left(z_{H}\right)_{H \in \mathcal{A}} \in\left(\prod_{H \in \mathcal{A}} \mathbb{C} G_{H}\right)^{G}
$$

- defines a G-invariant differential form on $V^{\text {reg }}$ with values in $\mathbb{C} G$

$$
\omega:=\sum_{H \in \mathcal{A}} z_{H} \omega_{H}
$$

- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H, and

$$
\omega_{H}:=\frac{1}{2 i \pi} \frac{d \alpha_{H}}{\alpha_{H}}
$$

- Each family

$$
\left(z_{H}\right)_{H \in \mathcal{A}} \in\left(\prod_{H \in \mathcal{A}} \mathbb{C} G_{H}\right)^{G}
$$

- defines a G-invariant differential form on $V^{\text {reg }}$ with values in $\mathbb{C} G$

$$
\omega:=\sum_{H \in \mathcal{A}} z_{H} \omega_{H}
$$

- hence a linear differential equation $d f=\omega f$ for $f: V^{\text {reg }} \rightarrow \mathbb{C} G$,
- For $H \in \mathcal{A}$, let α_{H} be a linear form with kernel H, and

$$
\omega_{H}:=\frac{1}{2 i \pi} \frac{d \alpha_{H}}{\alpha_{H}}
$$

- Each family

$$
\left(z_{H}\right)_{H \in \mathcal{A}} \in\left(\prod_{H \in \mathcal{A}} \mathbb{C} G_{H}\right)^{G}
$$

- defines a G-invariant differential form on $V^{\text {reg }}$ with values in $\mathbb{C} G$

$$
\omega:=\sum_{H \in \mathcal{A}} z_{H} \omega_{H}
$$

- hence a linear differential equation $d f=\omega f$ for $f: V^{\mathrm{reg}} \rightarrow \mathbb{C} G$, i.e.,

$$
\forall v \in V, x \in V^{\mathrm{reg}}, \quad d f(x)(v)=\frac{1}{2 i \pi} \sum_{H \in \mathcal{A}} \frac{\alpha_{H}(v)}{\alpha_{H}(x)} z_{H} f(x)
$$

For $H \in \mathcal{A}, \quad\{$

For $H \in \mathcal{A}, \quad\left\{\bullet G_{H}^{\vee}\right.$ is the group of characters of G_{H},

For $H \in \mathcal{A}, \quad\left\{\begin{array}{l}\bullet G_{H}^{\vee} \text { is the group of characters of } G_{H}, \\ \bullet \text { for } \theta \in G_{H}^{\vee}, e_{H, \theta} \text { is the corresponding primitive idempotent in } \mathbb{C} G_{H}\end{array}\right.$

For $H \in \mathcal{A},\left\{\begin{array}{l}\bullet \\ G_{H}^{V}\end{array}\right.$ is the group of characters of G_{H},

- for $\theta \in G_{H}^{\vee}, e_{H, \theta}$ is the corresponding primitive idempotent in $\mathbb{C} G_{H}$

We set

$$
q_{H}:=\exp \left(\left(-2 i \pi / e_{H}\right) z_{H}\right)=: \sum_{\theta \in G_{H}^{\vee}} q_{H, \theta} e_{H, \theta}
$$

For $H \in \mathcal{A}, \quad\left\{\begin{array}{l}\bullet G_{H}^{\vee} \text { is the group of characters of } G_{H}, \\ \bullet \text { for } \theta \in G_{H}^{\vee}, e_{H, \theta} \text { is the corresponding primitive idempotent in } \mathbb{C} G_{H}\end{array}\right.$
We set

$$
q_{H}:=\exp \left(\left(-2 i \pi / e_{H}\right) z_{H}\right)=: \sum_{\theta \in G_{H}^{\vee}} q_{H, \theta} e_{H, \theta}
$$

Theorem

For $H \in \mathcal{A}, \quad\left\{\begin{array}{l}\bullet G_{H}^{\vee} \text { is the group of characters of } G_{H}, \\ \bullet \text { for } \theta \in G_{H}^{\vee}, e_{H, \theta} \text { is the corresponding primitive idempotent in } \mathbb{C} G_{H}\end{array}\right.$

$$
\text { We set } \quad q_{H}:=\exp \left(\left(-2 i \pi / e_{H}\right) z_{H}\right)=: \sum_{\theta \in G_{H}^{V}} q_{H, \theta} e_{H, \theta}
$$

Theorem

(1) The form ω is integrable, hence defines a group morphism

$$
\rho: B_{G} \longrightarrow(\mathbb{C} G)^{\times}
$$

For $H \in \mathcal{A}, \quad\left\{\begin{array}{l}\bullet G_{H}^{\vee} \text { is the group of characters of } G_{H}, \\ \bullet \text { for } \theta \in G_{H}^{\vee}, e_{H, \theta} \text { is the corresponding primitive idempotent in } \mathbb{C} G_{H}\end{array}\right.$

Theorem

(1) The form ω is integrable, hence defines a group morphism

$$
\rho: B_{G} \longrightarrow(\mathbb{C} G)^{\times}
$$

2 Whenever $\mathbf{s}_{H, \gamma}$ is a braid reflection around H, there is $u_{H} \in(\mathbb{C} G)^{\times}$ such that

$$
\rho\left(\mathbf{s}_{H, \gamma}\right)=u_{H}\left(q_{H} s_{H}\right) u_{H}^{-1}
$$

For $H \in \mathcal{A}, \quad\left\{\begin{array}{l}\bullet G_{H}^{\vee} \text { is the group of characters of } G_{H}, \\ \bullet \text { for } \theta \in G_{H}^{\vee}, e_{H, \theta} \text { is the corresponding primitive idempotent in } \mathbb{C} G_{H}\end{array}\right.$

$$
\text { We set } \quad q_{H}:=\exp \left(\left(-2 i \pi / e_{H}\right) z_{H}\right)=: \sum_{\theta \in G_{H}^{\vee}} q_{H, \theta} e_{H, \theta}
$$

Theorem

(1) The form ω is integrable, hence defines a group morphism

$$
\rho: B_{G} \longrightarrow(\mathbb{C} G)^{\times}
$$

2 Whenever $\mathbf{s}_{H, \gamma}$ is a braid reflection around H, there is $u_{H} \in(\mathbb{C} G)^{\times}$ such that

$$
\rho\left(\mathbf{s}_{H, \gamma}\right)=u_{H}\left(q_{H} s_{H}\right) u_{H}^{-1}
$$

In particular, we have

$$
\prod_{\theta \in G_{H}^{\vee}}\left(\rho\left(\mathbf{s}_{H, \gamma}\right)-q_{H, \theta} \theta\left(s_{H}\right)\right)=0 .
$$

Hecke algebras

- Every complex reflection group G has an Artin-like presentation :

- Every complex reflection group G has an Artin-like presentation :

and a field of realization $\mathbb{Q}_{G}:=\mathbb{Q}\left(\left\{\operatorname{tr}_{V}(g) \mid(g \in G)\right\}\right)$.
- Every complex reflection group G has an Artin-like presentation :

$$
G_{2}: \underset{s}{(2)}={ }_{t}^{2} \quad, \quad G_{4}: \underset{s}{(3)-\underset{t}{3}}
$$

and a field of realization $\mathbb{Q}_{G}:=\mathbb{Q}\left(\left\{\operatorname{tr}_{V}(g) \mid(g \in G)\right\}\right)$.

- The associated generic Hecke algebra is defined from such a presentation :

$$
\begin{aligned}
& \mathcal{H}\left(G_{2}\right):=<S, T ;\left\{\begin{array}{l}
S T S T S T=T S T S T S \\
\left(S-q_{0}\right)\left(S-q_{1}\right)=0> \\
\left(T-r_{0}\right)\left(T-r_{1}\right)=0
\end{array}\right. \\
& \mathcal{H}\left(G_{4}\right):=<S, T ;\left\{\begin{array}{l}
S T S=T S T \\
\left(S-q_{0}\right)\left(S-q_{1}\right)\left(S-q_{2}\right)=0
\end{array}>\right.
\end{aligned}
$$

(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

$$
\text { if } G=\text { (d) } m \text { el } \cdots, \quad \text { then for }
$$

Theorem (G. Malle and al.)
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

$$
\begin{gathered}
\text { if } G=\underset{s}{(d)}-\underbrace{m}_{t}-\cdots, \quad \text { then for } \\
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} q_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} r_{j}\right)_{j=0,1, \ldots, e-1}
\end{gathered}
$$

Theorem (G. Malle and al.)
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

$$
\begin{aligned}
& \text { if } G=(\mathrm{d})-\underbrace{m}_{t}-\cdots, \quad \text { then for } \\
& \left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} q_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} r_{j}\right)_{j=0,1, \ldots, e-1}
\end{aligned}
$$

the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,

Theorem (G. Malle and al.)
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

$$
\begin{aligned}
& \text { if } G=(d)-m-\cdots, \quad \text { then for } \\
& \left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} q_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} r_{j}\right)_{j=0,1, \ldots, e-1}
\end{aligned}
$$

the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,

- Through the specialisation $x_{i} \mapsto 1 \quad y_{j} \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_{G}.

Theorem (G. Malle and al.)
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(q_{i}^{ \pm 1}\right),\left(r_{j}^{ \pm 1}\right), \ldots\right]$.
2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

$$
\begin{gathered}
\text { if } G=\underset{s}{(d)}-\underbrace{e}_{t}-\cdots, \quad \text { then for } \\
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} q_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} r_{j}\right)_{j=0,1, \ldots, e-1}
\end{gathered}
$$

the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,

- Through the specialisation $x_{i} \mapsto 1 \quad y_{j} \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_{G}.
- The above specialisation defines a bijection

$$
\operatorname{lrr}(G) \xrightarrow{\sim} \operatorname{lrr}(\mathcal{H}(G)) \quad, \quad \chi \mapsto \chi_{\mathcal{H}} .
$$

Theorem-Conjecture

Theorem-Conjecture
(1) There exists a unique linear form

$$
t_{\mathbf{q}}: \mathcal{H}(W, \mathbf{q}) \rightarrow \mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right]
$$

with the following properties.

Theorem-Conjecture
(1) There exists a unique linear form

$$
t_{\mathbf{q}}: \mathcal{H}(W, \mathbf{q}) \rightarrow \mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right]
$$

with the following properties.

- $t_{\mathbf{q}}$ is a symmetrizing form on the algebra $\mathcal{H}(W, \mathbf{q})$.

Theorem-Conjecture
(1) There exists a unique linear form

$$
t_{\mathbf{q}}: \mathcal{H}(W, \mathbf{q}) \rightarrow \mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right]
$$

with the following properties.

- $t_{\mathbf{q}}$ is a symmetrizing form on the algebra $\mathcal{H}(W, \mathbf{q})$.
- $t_{\mathbf{q}}$ specializes to the canonical linear form on the group algebra.

Theorem-Conjecture
(1) There exists a unique linear form

$$
t_{\mathbf{q}}: \mathcal{H}(W, \mathbf{q}) \rightarrow \mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right]
$$

with the following properties.

- $t_{\mathbf{q}}$ is a symmetrizing form on the algebra $\mathcal{H}(W, \mathbf{q})$.
- $t_{\mathbf{q}}$ specializes to the canonical linear form on the group algebra.
- For all $b \in B$, we have

$$
t_{\mathbf{q}}\left(b^{-1}\right)^{\vee}=\frac{t_{\mathbf{q}}(b \pi)}{t_{\mathbf{q}}(\pi)}
$$

Michel Broué Reflection groups and their braids
2) The form $t_{\mathbf{q}}$ satisfies the following conditions.

2 The form $t_{\mathbf{q}}$ satisfies the following conditions.

- As an element of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right], t_{\mathbf{q}}(b)$ is multi-homogeneous with degree $\ell_{H}(b)$ in the indeterminates $q_{H, \theta}$.

2 The form $t_{\mathbf{q}}$ satisfies the following conditions.

- As an element of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right], t_{\mathbf{q}}(b)$ is multi-homogeneous with degree $\ell_{H}(b)$ in the indeterminates $q_{H, \theta}$.
- If W^{\prime} is a parabolic subgroup of W, the restriction of t_{q} to a parabolic sub-algebra $\mathcal{H}\left(W^{\prime}, W, \mathbf{q}\right)$ is the corresponding specialization of $t_{\mathbf{q}^{\prime}}\left(W^{\prime}\right)$

2) The form $t_{\mathbf{q}}$ satisfies the following conditions.

- As an element of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right], t_{\mathbf{q}}(b)$ is multi-homogeneous with degree $\ell_{H}(b)$ in the indeterminates $q_{H, \theta}$.
- If W^{\prime} is a parabolic subgroup of W, the restriction of t_{q} to a parabolic sub-algebra $\mathcal{H}\left(W^{\prime}, W, \mathbf{q}\right)$ is the corresponding specialization of $t_{\mathbf{q}^{\prime}}\left(W^{\prime}\right)$

The canonical forms t_{q} are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.

