## Complex reflection groups and associated braid groups

Michel Broué

Institut Henri–Poincaré

September 2008

# Polynomial invariants of finite linear groups

## Polynomial invariants of finite linear groups

• Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V.

Polynomial invariants of finite linear groups

• Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V. Each choice of a basis  $(v_1, v_2, \ldots, v_r)$  of V determines an identification of S with a polynomial algebra

$$S\simeq K[v_1,v_2,\ldots,v_r].$$

• Let K be a characteristic zero field and let V be an r-dimensional K-vector space. Let S be the symmetric algebra of V. Each choice of a basis  $(v_1, v_2, \ldots, v_r)$  of V determines an identification of S with a polynomial algebra

$$S\simeq K[v_1,v_2,\ldots,v_r].$$

Let G be a finite subgroup of GL(V). The group G acts on the algebra S, and we let  $R := S^G$  denote the subalgebra of G-fixed polynomials.

In general R is NOT a polynomial algebra,

$$P := K[u_1, u_2, \ldots, u_r]$$
 with deg  $u_i = d_i$ 

$$P := K[u_1, u_2, \dots, u_r] \quad \text{with} \quad \deg u_i = d_i$$

such that

$$P := K[u_1, u_2, \dots, u_r]$$
 with deg  $u_i = d_i$ 

such that



$$P := K[u_1, u_2, \dots, u_r]$$
 with deg  $u_i = d_i$ 

such that



- <sup>2</sup> As a *PG*-module, we have  $S \simeq (PG)^m$ .

- 2 As a PG-module, we have  $S \simeq (PG)^m$ .

Example.

- 2 As a PG-module, we have  $S \simeq (PG)^m$ .

Example.

$$\text{Consider } {\sf G} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset {\sf GL}_2({\sf K}) \,.$$

- 2 As a PG-module, we have  $S \simeq (PG)^m$ .

Example.

Consider 
$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \mathsf{GL}_2(K)$$
.

Denote by (x, y) the canonical basis of  $V = K^2$ .

- 2 As a PG-module, we have  $S \simeq (PG)^m$ .

Example.

$$\mathsf{Consider} \ \mathsf{G} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \mathsf{GL}_2(\mathsf{K}).$$

Denote by (x, y) the canonical basis of  $V = K^2$ . Then

- <sup>2</sup> As a *PG*-module, we have  $S \simeq (PG)^m$ .

Example.

$$\mathsf{Consider} \ \ \mathsf{G} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \mathsf{GL}_2(\mathsf{K}) \, .$$

Denote by (x, y) the canonical basis of  $V = K^2$ . Then



A finite reflection group on K is a finite subgroup of  $GL_K(V)$  (V a finite dimensional K-vector space) generated by *reflections*, *i.e.*, linear maps represented by

$$egin{pmatrix} \zeta & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

A finite reflection group on K is a finite subgroup of  $GL_K(V)$  (V a finite dimensional K-vector space) generated by *reflections*, *i.e.*, linear maps represented by

$$egin{pmatrix} \zeta & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

• A finite reflection group on  $\mathbb{R}$  is called a Coxeter group.

A finite reflection group on K is a finite subgroup of  $GL_K(V)$  (V a finite dimensional K-vector space) generated by *reflections*, *i.e.*, linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- A finite reflection group on  $\mathbb R$  is called a Coxeter group.
- A finite reflection group on  $\mathbb{Q}$  is called a Weyl group.

#### Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring  $K[v_1, v_2, ..., v_r]$ . The following assertions are equivalent.

#### Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring  $K[v_1, v_2, ..., v_r]$ . The following assertions are equivalent.

 $\bullet$  G is generated by reflections.

#### Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring  $K[v_1, v_2, ..., v_r]$ . The following assertions are equivalent.

- $\bullet$  G is generated by reflections.
- 2 The ring  $R := S^G$  of *G*-fixed polynomials is a polynomial ring  $K[u_1, u_2, ..., u_r]$  in *r* homogeneous algebraically independent elements.

#### Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring  $K[v_1, v_2, ..., v_r]$ . The following assertions are equivalent.

- $\bullet$  G is generated by reflections.
- 2 The ring  $R := S^G$  of *G*-fixed polynomials is a polynomial ring  $K[u_1, u_2, ..., u_r]$  in *r* homogeneous algebraically independent elements.
- 3 S is a free R-module.

#### Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring  $K[v_1, v_2, ..., v_r]$ . The following assertions are equivalent.

- $\bullet$  G is generated by reflections.
- 2 The ring  $R := S^G$  of *G*-fixed polynomials is a polynomial ring  $K[u_1, u_2, ..., u_r]$  in *r* homogeneous algebraically independent elements.
- 3 *S* is a free *R*-module.

In other words, unless... m = 1, *i.e.*, R = P.



becomes



becomes

$$S = K[v_1, v_2, \dots, v_r]$$
free of rank |G|
$$R = S^G = P = K[u_1, u_2, \dots, u_r]$$

### Examples

#### Examples

• For  $G = \mathfrak{S}_r$ , one may choose

$$\begin{pmatrix}
u_1 = v_1 + \dots + v_r \\
u_2 = v_1 v_2 + v_1 v_3 + \dots + v_{r-1} v_r \\
\vdots & \vdots \\
u_r = v_1 v_2 \cdots v_r
\end{pmatrix}$$

#### Examples

• For  $G = \mathfrak{S}_r$ , one may choose

$$\begin{cases} u_{1} = v_{1} + \dots + v_{r} \\ u_{2} = v_{1}v_{2} + v_{1}v_{3} + \dots + v_{r-1}v_{r} \\ \vdots & \vdots \\ u_{r} = v_{1}v_{2} \cdots v_{r} \end{cases}$$

• For  $G = \langle e^{2\pi i/d} \rangle$ , cyclic group of order d acting by multiplication on  $V = \mathbb{C}$ , we have

$$S = K[x]$$
 and  $R = K[x^d]$ .

## Classification

#### Classification

1) The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.

#### Classification

- 1 The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
- 1) The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups

- 1 The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups  $G_4$ ,  $G_5$ , ...,  $G_{37}$ .

- 1) The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups  $G_4$ ,  $G_5$ , ...,  $G_{37}$ .
- 2 The group G(de, e, r) (*d*, *e* and *r* integers) consists of all  $r \times r$ monomial matrices with entries in  $\mu_{de}$  such that the product of entries belongs to  $\mu_d$ .

- 1 The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups  $G_4$ ,  $G_5$ , ...,  $G_{37}$ .
- 2 The group G(de, e, r) (*d*, *e* and *r* integers) consists of all  $r \times r$ monomial matrices with entries in  $\mu_{de}$  such that the product of entries belongs to  $\mu_d$ .
- 3 We have

- 1) The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - $\circ$  ...and 34 exceptional groups  $\textit{G}_{4}\,,\,\textit{G}_{5}\,,\,\ldots,\,\textit{G}_{37}.$
- 2 The group G(de, e, r) (*d*, *e* and *r* integers) consists of all  $r \times r$ monomial matrices with entries in  $\mu_{de}$  such that the product of entries belongs to  $\mu_d$ .
- 3 We have

$$G(d,1,r)\simeq C_d\wr\mathfrak{S}_r$$

- 1 The finite reflection groups on  $\mathbb C$  have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups  $G_4$ ,  $G_5$ , ...,  $G_{37}$ .
- 2 The group G(de, e, r) (d ,e and r integers) consists of all r × r monomial matrices with entries in μ<sub>de</sub> such that the product of entries belongs to μ<sub>d</sub>.
- 3 We have

$$G(d, 1, r) \simeq C_d \wr \mathfrak{S}_r$$
  
 $G(e, e, 2) = D_{2e}$  (dihedral group of order 2e)

- The finite reflection groups on C have been classified by Coxeter, Shephard and Todd.
  - There is one infinite series G(de, e, r) (d, e and r integers),
  - ...and 34 exceptional groups  $G_4$ ,  $G_5$ , ...,  $G_{37}$ .
- 2 The group G(de, e, r) (*d*, *e* and *r* integers) consists of all  $r \times r$ monomial matrices with entries in  $\mu_{de}$  such that the product of entries belongs to  $\mu_d$ .
- 3 We have

$$\begin{array}{l} G(d,1,r)\simeq C_d\wr \mathfrak{S}_r\\ G(e,e,2)=D_{2e} \quad (\text{dihedral group of order }2e)\\ G(2,2,r)=W(\mathsf{D}_r)\\ G_{23}=H_3 \ , \ G_{28}=F_4 \ , \ G_{30}=H_4\\ G_{35,36,37}=E_{6,7,8} \ . \end{array}$$

Let G be a finite subgroup of GL(V). A reflection s is associated with

Let G be a finite subgroup of GL(V). A reflection s is associated with

• a reflecting hyperplane  $H := \ker(s - 1)$ ,

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line L := im(s-1),

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line L := im (s 1),
- a reflecting pair (H, L).

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line  $L := \operatorname{im} (s 1)$ ,
- a reflecting pair (H, L).

Properties :

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line  $L := \operatorname{im} (s 1)$ ,
- a reflecting pair (H, L).

Properties :

 $\circ H \oplus L = V,$ 

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line  $L := \operatorname{im} (s 1)$ ,
- a reflecting pair (H, L).

Properties :

- $\circ H \oplus L = V,$
- H determines L, and L determines H,

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line L := im (s 1),
- a reflecting pair (H, L).

Properties :

- $\circ H \oplus L = V,$
- $\odot$  H determines L, and L determines H, hence, in terms of normalizers,

$$N_G(H) = N_G(L) = N_G(H, L) \,.$$

Let G be a finite subgroup of GL(V). A reflection s is associated with

- a reflecting hyperplane  $H := \ker(s 1)$ ,
- a reflecting line  $L := \operatorname{im} (s 1)$ ,
- a reflecting pair (H, L).

Properties :

- $H \oplus L = V$ ,
- $\odot$  H determines L, and L determines H, hence, in terms of normalizers,

$$N_G(H) = N_G(L) = N_G(H, L) \,.$$

• The fixator  $G_H$  (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

•  $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$ 

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ ,

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.

For L a line in V, the ideal q := SL of S is a height one prime ideal.

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.

Now the extension 
$$\int_{R=S}^{S}$$

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.



- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For  $H \in \mathcal{A}$ ,  $e_H := |G_H|$
- $s_H$  is the generator of  $G_H$  whose nontrivial eigenvalue is  $e^{2i\pi/e_H}$ , called a distinguished reflection.

Now the extension 
$$S$$
 (corresponding to the covering  $V$   
 $R = S^G$   $V/G$   
is ramified at  $q = SL$  if and only if  $L$  is a reflecting line.



 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

Ramification and parabolic subgroups

 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

Ramification and parabolic subgroups

Steinberg Theorem Assume *G* generated by reflections.

 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

**1** The ramification locus of  $V \longrightarrow V/G$  is  $\bigcup_{H \in A} H$ .

 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

## Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

- 1 The ramification locus of  $V \longrightarrow V/G$  is  $\bigcup_{H \in \mathcal{A}} H$ .
- 2 Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

 $\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$ 

## Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

- 1 The ramification locus of  $V \longrightarrow V/G$  is  $\bigcup_{H \in \mathcal{A}} H$ .
- 2 Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.
- The set Par(G) of fixators ("parabolic subgroups" of G) is in (reverse-order) bijection with the set I(A) of intersections of elements of A :

$$I(\mathcal{A}) \xrightarrow{\sim} Par(\mathcal{G}) \quad , \quad X \mapsto \mathcal{G}_X \, .$$

# Braid groups

Michel Broué Reflection groups and their braids

Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

Since the covering  $V^{\text{reg}} \longrightarrow V^{\text{reg}}/G$  is Galois, it induces a short exact sequence
Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

Since the covering  $V^{\text{reg}} \longrightarrow V^{\text{reg}}/G$  is Galois, it induces a short exact sequence

$$1 \longrightarrow \Pi_1(V^{\operatorname{reg}}, x_0) \longrightarrow \Pi_1(V^{\operatorname{reg}}/G, x_0) \longrightarrow G \longrightarrow 1$$

Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

Since the covering  $V^{\text{reg}} \longrightarrow V^{\text{reg}}/G$  is Galois, it induces a short exact sequence

Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

Since the covering  $V^{\text{reg}} \longrightarrow V^{\text{reg}}/G$  is Galois, it induces a short exact sequence

• Let  $H \in A$ , with associated line *L*.

• Let  $H \in \mathcal{A}$ , with associated line L. For  $x \in V$ , we set

 $x = x_L + x_H$  (with  $x_L \in L$  and  $x_H \in H$ ).

• Let  $H \in \mathcal{A}$ , with associated line L. For  $x \in V$ , we set

 $x = x_L + x_H$  (with  $x_L \in L$  and  $x_H \in H$ ).

= Thus, we have  $s_H(x) = e^{2i\pi/e_H}x_L + x_H$ .

• Let  $H \in A$ , with associated line L. For  $x \in V$ , we set

 $x = x_L + x_H$  (with  $x_L \in L$  and  $x_H \in H$ ).

= Thus, we have  $s_H(x) = e^{2i\pi/e_H}x_L + x_H$ .

• If  $t \in \mathbb{R}$ , we set :

 $s_{H}^{t}(x) = e^{2i\pi t/e_{H}}x_{L} + x_{H}$  defining a path  $s_{H,x}$  from x to  $s_{H}(x)$ 

• Let  $H \in A$ , with associated line L. For  $x \in V$ , we set

 $x = x_L + x_H$  (with  $x_L \in L$  and  $x_H \in H$ ).

= Thus, we have  $s_H(x) = e^{2i\pi/e_H}x_L + x_H$ .

• If  $t \in \mathbb{R}$ , we set :

 $s_{H}^{t}(x) = e^{2i\pi t/e_{H}}x_{L} + x_{H}$  defining a path  $s_{H,x}$  from x to  $s_{H}(x)$ We have

 $s_{H}^{te_{H}}(x) = e^{2\pi i t} x_{L} + x_{H}$  defining a loop  $\pi_{H,x}$  with origin x

• Let  $H \in A$ , with associated line L. For  $x \in V$ , we set

 $x = x_L + x_H$  (with  $x_L \in L$  and  $x_H \in H$ ).

= Thus, we have  $s_H(x) = e^{2i\pi/e_H}x_L + x_H$ .

• If  $t \in \mathbb{R}$ , we set :

 $s_{H}^{t}(x) = e^{2i\pi t/e_{H}}x_{L} + x_{H}$  defining a path  $s_{H,x}$  from x to  $s_{H}(x)$ 

We have

 $s_{H}^{te_{H}}(x) = e^{2\pi i t} x_{L} + x_{H}$  defining a loop  $\pi_{H,x}$  with origin x

In other words,

$$\pi_{H,x} = \mathbf{s}_{H,x}^{e_H} \in P_G$$



Η•







$$H \bullet s_H(x_H)$$



# • $s_H(x_0)$

# $H \bullet s_H(x_H)$



Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

•  $s_H(x_0)$ 



Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

 $\mathbf{s}_{H,x}\cdot \boldsymbol{\gamma}$ 

•  $s_H(x_0)$ 



Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

$$s_H(\gamma^{-1}) \cdot \mathbf{s}_{H,x} \cdot \gamma$$



Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

We define :  $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot \mathbf{s}_{H,x} \cdot \gamma$ 



Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

We define :  $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot \mathbf{s}_{H,x} \cdot \gamma$ 





Let  $\gamma$  be a path in  $V^{\text{reg}}$  from  $x_0$  to  $x_H$ .

We define :  $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot \mathbf{s}_{H,x} \cdot \gamma$ 



Definition

We call *braid reflections* the elements  $\mathbf{s}_{H,\gamma} \in B$  defined by the paths  $\sigma_{H,\gamma}$ .

•  $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in *P*.

- $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$  is a loop in  $V^{\text{reg}}$  :



- $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$  is a loop in  $V^{\text{reg}}$ :



The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

- $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$  is a loop in  $V^{\text{reg}}$ :



The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

Theorem

- $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$  is a loop in  $V^{\text{reg}}$ :



The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

## Theorem

• The braid group  $B_G$  is generated by the braid reflections  $(\mathbf{s}_{H,\gamma})$  (for all H and all  $\gamma$ ).

- $\mathbf{s}_{H,\gamma}$  and  $\mathbf{s}_{H,\gamma'}$  are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$  is a loop in  $V^{\text{reg}}$ :



The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

## Theorem

- The braid group  $B_G$  is generated by the braid reflections  $(\mathbf{s}_{H,\gamma})$  (for all H and all  $\gamma$ ).
- 2 The pure braid group  $P_G$  is generated by the elements  $(\mathbf{s}_{H,\gamma}^{\mathbf{e}_H})$

For  $H \in \mathcal{A}$ ,

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

For  $H \in \mathcal{A}$ ,

- $j_H$  denotes a nontrivial element of L,
- $\mathbf{j}_H := \prod_{\{H' | (H' =_G H)\}} j_{H'}$  (depends only on the orbit of H under G)

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

•  $\mathbf{j}_H := \prod_{\{H' | (H' =_G H)\}} \dot{j}_{H'}$  (depends only on the orbit of H under G)

Proposition

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

•  $\mathbf{j}_H := \prod_{\{H' | (H' =_G H)\}} j_{H'}$  (depends only on the orbit of H under G)

Proposition

1 The linear character det<sub>H</sub> :  $G \to \mathbb{C}^{\times}$  is defined by  $g(\mathbf{j}_H) = \det_H(g)\mathbf{j}_H$ 

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

•  $\mathbf{j}_H := \prod_{\{H' | (H' =_G H)\}} j_{H'}$  (depends only on the orbit of H under G)

Proposition

① The linear character det<sub>H</sub> :  $G \to \mathbb{C}^{\times}$  is defined by  $g(\mathbf{j}_H) = \det_H(g)\mathbf{j}_H$ 

2) 
$$\det_{H}(s) = \begin{cases} \det(s) & \text{if } H_{s} =_{G} H \\ 1 & \text{if not} \end{cases}$$

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

•  $\mathbf{j}_H := \prod_{\{H' | (H' =_G H)\}} j_{H'}$  (depends only on the orbit of H under G)

Proposition

① The linear character det<sub>H</sub> :  $G \to \mathbb{C}^{\times}$  is defined by  $g(\mathbf{j}_H) = \det_H(g)\mathbf{j}_H$ 

2) 
$$\det_{H}(s) = \begin{cases} \det(s) & \text{if } H_{s} =_{G} H \\ 1 & \text{if not} \end{cases}$$

3 
$$\operatorname{Hom}(G, \mathbb{C}^{\times}) \xrightarrow{\sim} \left(\prod_{H \in \mathcal{A}} \operatorname{Hom}(G_H, \mathbb{C}^{\times})\right)^G$$
Linear characters of the reflection groups

For  $H \in \mathcal{A}$ ,

•  $j_H$  denotes a nontrivial element of L,

•  $\mathbf{j}_H := \overline{\prod_{\{H' \mid (H'=_G H)\}} j_{H'}}$  (depends only on the orbit of H under G)

Proposition

1 The linear character  $\det_H : G \to \mathbb{C}^{\times}$  is defined by  $g(\mathbf{j}_H) = \det_H(g)\mathbf{j}_H$ 

2 
$$\det_H(s) = \begin{cases} \det(s) & \text{if } H_s =_G H \\ 1 & \text{if not} \end{cases}$$

3 
$$\operatorname{Hom}(G, \mathbb{C}^{\times}) \xrightarrow{\sim} \left( \prod_{H \in \mathcal{A}} \operatorname{Hom}(G_H, \mathbb{C}^{\times}) \right)^G \simeq \left( \prod_{H \in \mathcal{A}/G} \operatorname{Hom}(G_H, \mathbb{C}^{\times}) \right)^G$$

• The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$ 

• The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$ 

• 
$$\Delta_H \in R = S^G$$

- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

 $\Pi_1(\Delta_H):\Pi_1(V^{\operatorname{reg}}/G)\to\Pi_1(\mathbb{C}^{\times}) \quad i.e.,$ 

- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

 $\Pi_1(\Delta_H):\Pi_1(V^{\operatorname{reg}}/G)\to\Pi_1(\mathbb{C}^{\times}) \quad i.e., \quad \ell_H:B_G\longrightarrow\mathbb{Z}$ 

- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

 $\Pi_1(\Delta_H):\Pi_1(V^{\operatorname{reg}}/G)\to\Pi_1(\mathbb{C}^{\times}) \quad \text{ i.e., } \quad \ell_H:B_G\longrightarrow\mathbb{Z}$ 

• For  $H \in \mathcal{A}$ ,



- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

 $\Pi_1(\Delta_H):\Pi_1(V^{\operatorname{reg}}/G)\to\Pi_1(\mathbb{C}^{\times}) \quad \text{ i.e., } \quad \ell_H:B_G\longrightarrow\mathbb{Z}$ 

• For  $H \in \mathcal{A}$ ,

 $\mathsf{G}_{\mathsf{H}}\simeq\mathbb{Z}/\mathsf{e}_{\mathsf{H}}\mathbb{Z}$ 



- The discriminant at  $H \in \mathcal{A}$  (or rather  $\mathcal{A}/G$ ) is  $\Delta_H := \mathbf{j}_H^{e_H}$
- $\Delta_H \in R = S^G$  hence defines a (continuous) map



hence defines a morphism

 $\Pi_1(\Delta_H):\Pi_1(V^{\operatorname{reg}}/G)\to\Pi_1(\mathbb{C}^{\times}) \quad \text{ i.e., } \quad \ell_H:B_G\longrightarrow\mathbb{Z}$ 

1

• For  $H \in \mathcal{A}$ ,

 $G_H \simeq \mathbb{Z}/e_H\mathbb{Z}$ 

$$B_{G_H}\simeq\mathbb{Z}$$



• Hom $(G, \mathbb{C}^{\times}) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^{\times}))^{G}$ 

**1** Hom(G, C<sup>×</sup>)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(G<sub>H</sub>, C<sup>×</sup>))<sup>G</sup> Hom(B<sub>G</sub>, Z)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(B<sub>G<sub>H</sub></sub>, Z))<sup>G</sup>

- <sup>1</sup> Hom(G, C<sup>×</sup>)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(G<sub>H</sub>, C<sup>×</sup>))<sup>G</sup> Hom(B<sub>G</sub>, Z)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(B<sub>G<sub>H</sub></sub>, Z))<sup>G</sup>
- 2  $\ell_H$  is a length :

- <sup>1</sup> Hom(G, C<sup>×</sup>)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(G<sub>H</sub>, C<sup>×</sup>))<sup>G</sup> Hom(B<sub>G</sub>, Z)  $\xrightarrow{\sim}$  ( $\prod_{H \in \mathcal{A}}$  Hom(B<sub>G<sub>H</sub></sub>, Z))<sup>G</sup>
- 2  $\ell_H$  is a length :

$$\ell_{H}(\mathbf{s}_{H_{1},\gamma_{1}}^{n_{1}}\cdot\mathbf{s}_{H_{2},\gamma_{2}}^{n_{2}}\cdots\mathbf{s}_{H_{k},\gamma_{k}}^{n_{k}})=\sum_{\{i\mid(H_{i}=_{G}H)\}}n_{i}$$

- $\operatorname{Hom}(G, \mathbb{C}^{\times}) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \operatorname{Hom}(G_H, \mathbb{C}^{\times}))^{G}$  $\operatorname{Hom}(B_G, \mathbb{Z}) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \operatorname{Hom}(B_{G_H}, \mathbb{Z}))^{G}$
- 2  $\ell_H$  is a length :

$$\ell_H(\mathbf{s}_{H_1,\gamma_1}^{n_1}\cdot\mathbf{s}_{H_2,\gamma_2}^{n_2}\cdots\mathbf{s}_{H_k,\gamma_k}^{n_k})=\sum_{\{i\mid (H_i=_GH)\}}n_i$$



## Center of the braid groups

From now on we assume that G is irreducible on V.

• Let  $\pi \in P_G$  defined by  $\pi : t \mapsto e^{2i\pi t} x_0$ 

- Let  $\pi \in P_G$  defined by  $\pi: t \mapsto e^{2i\pi t} x_0$
- Let  $\zeta \in B_G$  defined by  $\zeta : t \mapsto e^{2i\pi t/z} x_0$

- Let  $\pi \in P_G$  defined by  $\pi: t \mapsto e^{2i\pi t} x_0$
- Let  $\zeta \in B_G$  defined by  $\zeta : t \mapsto e^{2i\pi t/z} x_0$

Theorem

- Let  $\pi \in P_G$  defined by  $\pi: t \mapsto e^{2i\pi t} x_0$
- Let  $\zeta \in B_G$  defined by  $\zeta : t \mapsto e^{2i\pi t/z} x_0$

Theorem

1)  $ZP_G = \langle \pi \rangle$  and  $ZB_G = \langle \zeta \rangle$ .

- Let  $\pi \in P_G$  defined by  $\pi: t \mapsto e^{2i\pi t} x_0$
- Let  $\zeta \in B_G$  defined by  $\zeta : t \mapsto e^{2i\pi t/z} x_0$

Theorem

- 1)  $ZP_G = \langle \pi \rangle$  and  $ZB_G = \langle \zeta \rangle$ .
- 2 We have the short exact sequence

$$1 \longrightarrow ZP_G \longrightarrow ZB_G \longrightarrow ZG \longrightarrow 1$$

The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 

The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 

Example :





The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 



and a "section" (not a group morphism !) of the map  $B_G \twoheadrightarrow G$  using reduced decompositions.

The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 



and a "section" (not a group morphism !) of the map  $B_G \twoheadrightarrow G$  using reduced decompositions.

Let  $w_0$  be the longest element of G, and let  $\mathbf{g}_0$  be its lift in  $B_G$ .

The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 



and a "section" (not a group morphism !) of the map  $B_G \twoheadrightarrow G$  using reduced decompositions.

Let  $w_0$  be the longest element of G, and let  $\mathbf{g}_0$  be its lift in  $B_G$ .

$$\boldsymbol{\pi} = \mathbf{g}_0^2$$

The choice of a Coxeter generating set for G defines a presentation of  $B_G$ 



and a "section" (not a group morphism !) of the map  $B_G \twoheadrightarrow G$  using reduced decompositions.

Let  $w_0$  be the longest element of G, and let  $\mathbf{g}_0$  be its lift in  $B_G$ .

$$oldsymbol{\pi} = \mathbf{g}_0^2$$

Example : 
$$\pi = (\mathbf{st}_1 \mathbf{t}_2 \cdots \mathbf{t}_{r-1})^{2r}$$

## Artin-like presentations

## Artin-like presentations

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

# Artin-like presentations

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

• **S** is a finite set of distinguished braid reflections,
An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{\mathbf{v}_i = \mathbf{w}_i\}_{i \in I} \rangle$$

where

- $\circ~\textbf{S}$  is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,
  - i.e., such that (for each i)  $\mathbf{v}_i$  and  $\mathbf{w}_i$  are positive words in elements of  $\mathbf{S}$

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

#### Theorem (Bessis)

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- *I* is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

Let  $G \subset GL(V)$  be a complex reflection group. Let  $d_1 \leq d_2 \leq \cdots \leq d_r$  be the family of its invariant degrees.

1 The following integers are equal

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- *I* is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

- 1 The following integers are equal
  - The minimal number of reflections needed to generate G

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

- 1 The following integers are equal
  - The minimal number of reflections needed to generate G
  - The minimal number of braid reflections needed to generate  $B_G$

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

- 1 The following integers are equal
  - The minimal number of reflections needed to generate G
  - The minimal number of braid reflections needed to generate  $B_G$
  - $\circ \left[ (N + N_h)/d_r \right]$

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

- 1 The following integers are equal (denoted by  $\Gamma_G$ ) :
  - The minimal number of reflections needed to generate G
  - The minimal number of braid reflections needed to generate  $B_G$
  - $\lceil (N + N_h)/d_r \rceil$  (N := number of reflections,  $N_h$  := number of hyperplanes)

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{ \mathbf{v}_i = \mathbf{w}_i \}_{i \in I} \rangle$$

where

- **S** is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,

Theorem (Bessis)

- 1 The following integers are equal (denoted by  $\Gamma_G$ ) :
  - The minimal number of reflections needed to generate G
  - The minimal number of braid reflections needed to generate  $B_G$
  - $\lceil (N+N_h)/d_r \rceil$
- 2 Either  $\Gamma_G = r$  or  $\Gamma_G = r + 1$ , and the group  $B_G$  has an Artin–like presentation by  $\Gamma_G$  braid reflections.

Let  $\ensuremath{\mathcal{D}}$  be a diagram like



Let  $\ensuremath{\mathcal{D}}$  be a diagram like



 $\ensuremath{\mathcal{D}}$  represents the relations



Let  $\mathcal{D}$  be a diagram like s (a) (b) t c (u)  $\mathcal{D}$  represents the relations  $\underbrace{stustu\cdots}_{e \text{ factors}} = \underbrace{ustust\cdots}_{e \text{ factors}} = \underbrace{ustust\cdots}_{e \text{ factors}}$  and  $s^a = t^b = u^c = 1$ 



We denote by  $\mathcal{D}_{\mathsf{br}}$  and call braid diagram the diagram





which represents the relations







Michel Broué

Reflection groups and their braids

#### For each irreducible complex irreducible group G,

For each irreducible complex irreducible group G, there is a diagram  $\mathcal{D}$ ,

such that

such that

#### Theorem

For each  $s \in \mathcal{N}(\mathcal{D})$ , there exists a braid reflection  $\mathbf{s} \in B_G$  above s such that the set  $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$ , together with the braid relations of  $\mathcal{D}_{br}$ , is a presentation of  $B_G$ .

such that

#### Theorem

For each  $s \in \mathcal{N}(\mathcal{D})$ , there exists a braid reflection  $\mathbf{s} \in B_G$  above s such that the set  $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$ , together with the braid relations of  $\mathcal{D}_{br}$ , is a presentation of  $B_G$ .

The groups  $G_n$  for n = 4, 5, 8, 16, 20, as well as the dihedral groups, have diagrams of type  $\underbrace{@}_{s} \xrightarrow{e}_{t} \underbrace{@}_{t}$ ,

such that

#### Theorem

For each  $s \in \mathcal{N}(\mathcal{D})$ , there exists a braid reflection  $\mathbf{s} \in B_G$  above s such that the set  $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$ , together with the braid relations of  $\mathcal{D}_{br}$ , is a presentation of  $B_G$ .

• The groups  $G_n$  for n = 4, 5, 8, 16, 20, as well as the dihedral groups, have diagrams of type  $\underbrace{ \operatorname{\mathcal{O}}_{s} - \operatorname{\mathcal{O}}_{t}}_{t}$ , corresponding to the presentation

such that

#### Theorem

For each  $s \in \mathcal{N}(\mathcal{D})$ , there exists a braid reflection  $\mathbf{s} \in B_G$  above s such that the set  $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$ , together with the braid relations of  $\mathcal{D}_{br}$ , is a presentation of  $B_G$ .

• The groups  $G_n$  for n = 4, 5, 8, 16, 20, as well as the dihedral groups, have diagrams of type  $\underbrace{ \operatorname{\mathcal{O}}_s \stackrel{e}{\longrightarrow} \operatorname{\mathcal{O}}_t}_{t}$ , corresponding to the presentation

$$s^d = t^d = 1$$

such that

#### Theorem

For each  $s \in \mathcal{N}(\mathcal{D})$ , there exists a braid reflection  $\mathbf{s} \in B_G$  above s such that the set  $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$ , together with the braid relations of  $\mathcal{D}_{br}$ , is a presentation of  $B_G$ .

• The groups  $G_n$  for n = 4, 5, 8, 16, 20, as well as the dihedral groups, have diagrams of type  $\underbrace{@}_{s} \xrightarrow{e} \underbrace{@}_{t}$ , corresponding to the presentation

$$s^d = t^d = 1$$
 and  $\underbrace{ststs\cdots}_{e \text{ factors}} = \underbrace{tstst\cdots}_{e \text{ factors}}$ 



$$s^5 = t^3 = 1$$
 and  $stst = tsts$ .

$$s^5=t^3=1$$
 and  $\ stst=tsts$  .

• The group  $G_{31}$  has diagram



$$s^5 = t^3 = 1$$
 and  $stst = tsts$ .

• The group  $G_{31}$  has diagram presentation



corresponding to the

$$s^5 = t^3 = 1$$
 and  $stst = tsts$ .

S

2 11

corresponding to the

• The group  $G_{31}$  has diagram presentation

$$s^2 = t^2 = u^2 = v^2 = w^2 = 1$$
,

$$s^5 = t^3 = 1$$
 and  $stst = tsts$ .

S

2 11

corresponding to the

• The group  $G_{31}$  has diagram presentation

$$s^2 = t^2 = u^2 = v^2 = w^2 = 1$$
,  
 $uv = vu$ ,  $sw = ws$ ,  $vw = wv$ ,  $sut = uts = tsu$ ,

$$s^5 = t^3 = 1$$
 and  $stst = tsts$ .

S

2 11

corresponding to the

• The group  $G_{31}$  has diagram presentation

$$s^{2} = t^{2} = u^{2} = v^{2} = w^{2} = 1,$$
  

$$uv = vu, sw = ws, vw = wv, \quad sut = uts = tsu,$$
  

$$svs = vsv, tvt = vtv, twt = wtw, wuw = uwu.$$

## More on the work of Bessis

• Solution of an old conjecture

### More on the work of Bessis

• Solution of an old conjecture

Theorem

#### The space $V^{\text{reg}}$ is a $K(\pi, 1)$ .
• Solution of an old conjecture

Theorem

The space 
$$V^{\mathsf{reg}}$$
 is a  $K(\pi,1)$ .

• Springer's theory of regular elements in complex reflections groups lifts to braid groups

• Solution of an old conjecture

Theorem

The space 
$$V^{\mathsf{reg}}$$
 is a  $K(\pi,1)$ .

• Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let  $\zeta_d := e^{2i\pi/d}$ .

• Solution of an old conjecture

Theorem

The space 
$$V^{
m reg}$$
 is a  $K(\pi,1)$ .

• Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let  $\zeta_d := e^{2i\pi/d}$ .

• The  $\zeta_d$ -regular elements in G are the images of the d-th roots of  $\pi$ .

• Solution of an old conjecture

Theorem

The space 
$$V^{
m reg}$$
 is a  $K(\pi,1)$ .

• Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let  $\zeta_d := e^{2i\pi/d}$ .

- 1 The  $\zeta_d$ -regular elements in G are the images of the d-th roots of  $\pi$ .
- 2 All *d*-th roots of  $\pi$  are conjugate in  $B_G$ .

• Solution of an old conjecture

Theorem

The space 
$$V^{\mathsf{reg}}$$
 is a  $K(\pi, 1)$ .

• Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let  $\zeta_d := e^{2i\pi/d}$ .

- The  $\zeta_d$ -regular elements in G are the images of the d-th roots of  $\pi$ .
- 2 All *d*-th roots of  $\pi$  are conjugate in  $B_G$ .
- 3 Let g be a d-th root of π, with image g in G. Then C<sub>BG</sub>(g) is the braid group of C<sub>G</sub>(g).

(after Knizhnik–Zamolodchikov, Cherednik, Dunkl, Opdam, Kohno, Broué-Malle-Rouquier)

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H,

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

Each family

$$(z_H)_{H\in\mathcal{A}}\in\left(\prod_{H\in\mathcal{A}}\mathbb{C}G_H\right)^G$$

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

• Each family

$$(z_H)_{H\in\mathcal{A}}\in\left(\prod_{H\in\mathcal{A}}\mathbb{C}G_H\right)^G$$

 $\circ\,$  defines a G-invariant differential form on  $V^{\mathsf{reg}}$  with values in  $\mathbb{C}G$ 

$$\omega := \sum_{H \in \mathcal{A}} z_H \omega_H$$

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

Each family

$$(z_H)_{H\in\mathcal{A}}\in\left(\prod_{H\in\mathcal{A}}\mathbb{C}G_H\right)^G$$

 $\circ\,$  defines a G-invariant differential form on  $V^{\mathsf{reg}}$  with values in  $\mathbb{C}G$ 

$$\omega := \sum_{H \in \mathcal{A}} z_H \omega_H$$

• hence a linear differential equation  $df = \omega f$  for  $f: V^{\mathsf{reg}} \to \mathbb{C}G$ ,

• For  $H \in \mathcal{A}$ , let  $\alpha_H$  be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

Each family

$$(z_H)_{H\in\mathcal{A}}\in\left(\prod_{H\in\mathcal{A}}\mathbb{C}G_H\right)^G$$

 $\circ$  defines a G-invariant differential form on  $V^{\mathsf{reg}}$  with values in  $\mathbb{C}G$ 

$$\omega := \sum_{H \in \mathcal{A}} z_H \omega_H$$

hence a linear differential equation  $df = \omega f$  for  $f: V^{\text{reg}} \to \mathbb{C}G$ , *i.e.*,

$$orall v \in V, x \in V^{\mathsf{reg}}, \quad df(x)(v) = rac{1}{2i\pi} \sum_{H \in \mathcal{A}} rac{lpha_H(v)}{lpha_H(x)} z_H f(x)$$

For  $H \in \mathcal{A}$ ,  $\left\{ \right.$ 



Michel Broué Reflection groups and their braids

For  $H \in \mathcal{A}$ ,  $\begin{cases}
\bullet \quad G_{H}^{\vee} \text{ is the group of characters of } G_{H}, \\
\bullet \quad \text{for } \theta \in G_{H}^{\vee}, \ \mathbf{e}_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H}
\end{cases}$ 

For  $H \in \mathcal{A}$ ,  $\begin{cases} \bullet \ G_{H}^{\lor} \text{ is the group of characters of } G_{H}, \\ \bullet \ \text{for } \theta \in G_{H}^{\lor}, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H} \end{cases}$ 

We set 
$$q_H := \exp\left((-2i\pi/e_H)z_H\right) =: \sum_{\theta \in G_H^{\vee}} q_{H,\theta} e_{H,\theta}$$

Michel Broué Reflection groups and their braids

For  $H \in \mathcal{A}$ ,  $\begin{cases}
\bullet \ G_{H}^{\vee} \text{ is the group of characters of } G_{H}, \\
\bullet \ \text{for } \theta \in G_{H}^{\vee}, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H}
\end{cases}$ 

We set 
$$q_H := \exp\left((-2i\pi/e_H)z_H\right) =: \sum_{\theta \in G_H^{\vee}} q_{H,\theta} e_{H,\theta}$$

Theorem

For 
$$H \in \mathcal{A}$$
,   

$$\begin{cases}
\bullet \ G_{H}^{\vee} \text{ is the group of characters of } G_{H}, \\
\bullet \ \text{for } \theta \in G_{H}^{\vee}, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H} \\
\text{We set} \qquad q_{H} := \exp\left(\left(-2i\pi/e_{H}\right)z_{H}\right) =: \sum_{\theta \in G_{H}^{\vee}} q_{H,\theta}e_{H,\theta} \\
\end{cases}$$

Theorem

 ${\scriptstyle \textcircled{1}}$  The form  $\omega$  is integrable, hence defines a group morphism

$$\rho: B_{\mathcal{G}} \longrightarrow (\mathbb{C}\mathcal{G})^{\times}$$
.

For 
$$H \in \mathcal{A}$$
,   

$$\begin{cases}
\bullet \quad G_{H}^{\vee} \text{ is the group of characters of } G_{H}, \\
\bullet \quad \text{for } \theta \in G_{H}^{\vee}, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H} \\
\text{We set} \qquad q_{H} := \exp\left(\left(-2i\pi/e_{H}\right)z_{H}\right) =: \sum_{\theta \in G_{H}^{\vee}} q_{H,\theta}e_{H,\theta} \\
\end{cases}$$

Theorem

1 The form  $\omega$  is integrable, hence defines a group morphism

$$\rho: B_G \longrightarrow (\mathbb{C}G)^{\times}$$
.

2 Whenever  $s_{H,γ}$  is a braid reflection around *H*, there is  $u_H ∈ (ℂG)^×$  such that

$$\rho(\mathbf{s}_{H,\gamma}) = u_H(q_H s_H) u_H^{-1}$$

For 
$$H \in \mathcal{A}$$
,   

$$\begin{cases}
\bullet \quad G_{H}^{\vee} \text{ is the group of characters of } G_{H}, \\
\bullet \quad \text{for } \theta \in G_{H}^{\vee}, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_{H}
\end{cases}$$
We set
$$q_{H} := \exp\left(\left(-2i\pi/e_{H}\right)z_{H}\right) =: \sum_{\theta \in G_{H}^{\vee}} q_{H,\theta}e_{H,\theta}$$

Theorem

 ${\scriptstyle \textcircled{1}}$  The form  $\omega$  is integrable, hence defines a group morphism

$$\rho: B_G \longrightarrow (\mathbb{C}G)^{\times}$$
.

2 Whenever  $\mathbf{s}_{H,\gamma}$  is a braid reflection around H, there is  $u_H \in (\mathbb{C}G)^{\times}$  such that

$$ho(\mathbf{s}_{H,\gamma}) = u_H(q_H s_H) u_H^{-1}$$

In particular, we have

$$\prod_{ heta\in G_H^{ee}}\left(
ho({\sf s}_{H,\gamma})-q_{H, heta} heta(s_H)
ight)=0\,.$$

# Hecke algebras

Michel Broué Reflection groups and their braids

• Every complex reflection group G has an Artin-like presentation :

• Every complex reflection group G has an Artin-like presentation :

$$G_2$$
 :  $(2)$   $(2)$   $(2)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3)$   $(3$ 

and a field of realization  $\mathbb{Q}_G := \mathbb{Q}(\{\operatorname{tr}_V(g) \mid (g \in G)\}).$ 

• Every complex reflection group G has an Artin-like presentation :

$$G_2$$
:  $2$   $G_4$ :  $3$   $G_4$ :  $G_4$ :

and a field of realization  $\mathbb{Q}_G := \mathbb{Q}(\{\operatorname{tr}_V(g) \mid (g \in G)\}).$ 

• The associated generic Hecke algebra is defined from such a presentation :

$$\mathcal{H}(G_2) := \langle S, T ; \begin{cases} STSTST = TSTSTS \\ (S - q_0)(S - q_1) = 0 \\ (T - r_0)(T - r_1) = 0 \end{cases}$$
  
$$\mathcal{H}(G_4) := \langle S, T ; \begin{cases} STS = TST \\ (S - q_0)(S - q_1)(S - q_2) = 0 \end{cases} >$$

 The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring Z[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring ℤ[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring ℤ[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

if 
$$G = \underbrace{ \bigcirc m }_{s} \underbrace{ \circ \cdots }_{t}$$
, then for

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring ℤ[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

if 
$$G = \underbrace{@}_{s} \underbrace{m}_{t} \underbrace{@}_{t} \cdots$$
, then for

$$(x_i^{|\mu(\mathbb{Q}_G)|} = \zeta_d^{-i} q_i)_{i=0,1,\dots,d-1}$$
 ,  $(y_j^{|\mu(\mathbb{Q}_G)|} = \zeta_e^{-j} r_j)_{j=0,1,\dots,e-1}$ 

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring ℤ[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

if 
$$G = \underbrace{@}_{s} \underbrace{m}_{t} \underbrace{@}_{t} \cdots$$
, then for

$$\begin{aligned} (x_i^{|\mu(\mathbb{Q}_G)|} &= \zeta_d^{-i} q_i)_{i=0,1,\dots,d-1} \quad , \quad (y_j^{|\mu(\mathbb{Q}_G)|} &= \zeta_e^{-j} r_j)_{j=0,1,\dots,e-1} \\ \text{he algebra } \mathbb{Q}_G((x_i),(y_j),\dots))\mathcal{H}(G) \text{ is split semisimple,} \end{aligned}$$

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring Z[(q<sub>i</sub><sup>±1</sup>), (r<sub>i</sub><sup>±1</sup>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

if 
$$G = \underbrace{ \operatorname{d}}_{s} \underbrace{ \operatorname{m}}_{t} \underbrace{ \operatorname{e}}_{t} \cdots$$
, then for

$$(x_i^{|\mu(\mathbb{Q}_G)|} = \zeta_d^{-i} q_i)_{i=0,1,\dots,d-1} \quad , \quad (y_j^{|\mu(\mathbb{Q}_G)|} = \zeta_e^{-j} r_j)_{j=0,1,\dots,e-1}$$

the algebra  $\mathbb{Q}_G((x_i), (y_j), \dots))\mathcal{H}(G)$  is split semisimple,

• Through the specialisation  $x_i \mapsto 1$   $y_j \mapsto 1, \ldots$ , that algebra becomes the group algebra of G over  $\mathbb{Q}_G$ .

- The generic Hecke algebra H(G) is free of rank |G| over the corresponding Laurent polynomial ring Z[(q<sup>±1</sup><sub>i</sub>), (r<sup>±1</sup><sub>i</sub>),...].
- 2 It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates :

if 
$$G = \underbrace{ \operatorname{d}}_{s} \underbrace{ \operatorname{m}}_{t} \underbrace{ \operatorname{e}}_{t} \cdots ,$$
 then for

$$(x_i^{|\mu(\mathbb{Q}_G)|} = \zeta_d^{-i} q_i)_{i=0,1,\dots,d-1} \quad , \quad (y_j^{|\mu(\mathbb{Q}_G)|} = \zeta_e^{-j} r_j)_{j=0,1,\dots,e-1}$$

the algebra  $\mathbb{Q}_G((x_i), (y_j), \dots))\mathcal{H}(G)$  is split semisimple,

- Through the specialisation  $x_i \mapsto 1$   $y_j \mapsto 1, \ldots$ , that algebra becomes the group algebra of G over  $\mathbb{Q}_G$ .
- The above specialisation defines a bijection

$$\operatorname{Irr}(G) \xrightarrow{\sim} \operatorname{Irr}(\mathcal{H}(G)) \quad , \quad \chi \mapsto \chi_{\mathcal{H}} \, .$$

Theorem–Conjecture

Michel Broué Reflection groups and their braids

### Theorem–Conjecture

1 There exists a unique linear form

$$t_{\mathbf{q}}:\mathcal{H}(W,\mathbf{q})
ightarrow\mathbb{Z}[\mathbf{q},\mathbf{q}^{-1}]$$

with the following properties.

### Theorem-Conjecture

1 There exists a unique linear form

$$t_{\mathbf{q}}:\mathcal{H}(W,\mathbf{q})
ightarrow \mathbb{Z}[\mathbf{q},\mathbf{q}^{-1}]$$

with the following properties.

•  $t_{\mathbf{q}}$  is a symmetrizing form on the algebra  $\mathcal{H}(W, \mathbf{q})$ .

### Theorem-Conjecture

1 There exists a unique linear form

$$t_{\mathbf{q}}:\mathcal{H}(W,\mathbf{q})
ightarrow\mathbb{Z}[\mathbf{q},\mathbf{q}^{-1}]$$

with the following properties.

- $t_{\mathbf{q}}$  is a symmetrizing form on the algebra  $\mathcal{H}(W, \mathbf{q})$ .
- $t_q$  specializes to the canonical linear form on the group algebra.

#### Theorem–Conjecture

1 There exists a unique linear form

$$t_{\mathbf{q}}:\mathcal{H}(W,\mathbf{q})
ightarrow\mathbb{Z}[\mathbf{q},\mathbf{q}^{-1}]$$

with the following properties.

- $t_{\mathbf{q}}$  is a symmetrizing form on the algebra  $\mathcal{H}(W, \mathbf{q})$ .
- $t_q$  specializes to the canonical linear form on the group algebra.
- For all  $b \in B$ , we have

$$t_{\mathbf{q}}(b^{-1})^{ee} = rac{t_{\mathbf{q}}(b\pi)}{t_{\mathbf{q}}(\pi)}\,.$$


2 The form  $t_q$  satisfies the following conditions.

Michel Broué Reflection groups and their braids

- 2 The form  $t_q$  satisfies the following conditions.
  - As an element of  $\mathbb{Z}[\mathbf{q}, \mathbf{q}^{-1}]$ ,  $t_{\mathbf{q}}(b)$  is multi-homogeneous with degree  $\ell_H(b)$  in the indeterminates  $q_{H,\theta}$ .

- 2 The form  $t_q$  satisfies the following conditions.
  - As an element of  $\mathbb{Z}[\mathbf{q}, \mathbf{q}^{-1}]$ ,  $t_{\mathbf{q}}(b)$  is multi-homogeneous with degree  $\ell_H(b)$  in the indeterminates  $q_{H,\theta}$ .
  - If W' is a parabolic subgroup of W, the restriction of  $t_q$  to a parabolic sub-algebra  $\mathcal{H}(W', W, \mathbf{q})$  is the corresponding specialization of  $t_{\mathbf{q}'}(W')$

- 2 The form  $t_q$  satisfies the following conditions.
  - As an element of  $\mathbb{Z}[\mathbf{q}, \mathbf{q}^{-1}]$ ,  $t_{\mathbf{q}}(b)$  is multi-homogeneous with degree  $\ell_H(b)$  in the indeterminates  $q_{H,\theta}$ .
  - If W' is a parabolic subgroup of W, the restriction of  $t_q$  to a parabolic sub-algebra  $\mathcal{H}(W', W, \mathbf{q})$  is the corresponding specialization of  $t_{\mathbf{q}'}(W')$

The canonical forms  $t_q$  are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.