Local group theory : from Frobenius to Derived Categories

Michel Broué

Université Paris-Diderot Paris 7

September 2012

Michel Broué (Université Paris–Diderot Paris Local group theory : from Frobenius to Deriv

LOCAL GROUP THEORY

 Feit–Thompson, 1963
 If G is a non abelian simple finite group, then 2 | |G|.

Cauchy (1789–1857)

If $p \mid |G|$, there are non trivial p-subgroups in G.

• Sylow, 1872

The maximal *p*-subgroups of *G* are all conjugate under *G*.

 Brauer–Fowler, 1956
 There are only a finite number of isomorphism types of finite simple groups with a prescribed type of centralizer of an involution. Assume $P \subset S$ and $P \subset S'$. There is $g \in G$ such that $S' = S^g$ $(=g^{-1}Sg)$, hence

$$P \subset S$$
 and ${}^{g}P(=gPg^{-1}) \subset S$.

This is a *fusion*.

The Frobenius Category

 $\operatorname{Frob}_p(G)$:

- Objects : the *p*-subgroups of *G*,
- $\operatorname{Hom}(P,Q) := \{g \in G \mid ({}^{g}P \subset Q)\}/C_{G}(P).$

Note that $\operatorname{Aut}(P) = N_G(P)/C_G(P)$.

Alperin's fusion theorem (1967) says essentially that $\operatorname{Frob}_p(G)$ is known as soon as the automorphisms of some of its objects are known.

Main question of local group theory

How much is known about G from the knowledge (up to equivalence of categories) of $\operatorname{Frob}_{P}(G)$?

Well, certainly not more than $G/O_{p'}(G)$!

(where $O_{p'}(G)$ denotes the largest normal subgroup of G of order not divisible by p)

Indeed, $O_{p'}(G)$ disappears in the Frobenius category, since, for P a p-subgroup,

$$O_{p'}(G) \cap N_G(P) \subseteq C_G(P)$$
.

But perhaps all of $G/O_{p'}(G)$?

Control subgroup

Let H be a subgroup of G. The following conditions are equivalent :

(i) The inclusion $H \hookrightarrow G$ induces an equivalence of categories

 $\operatorname{Frob}_p(H) \xrightarrow{\sim} \operatorname{Frob}_p(G)$,

(ii) *H* contains a Sylow *p*-subgroup of *G*, and if *P* is a *p*-subgroup of *H* and *g* is an element of *G* such that ${}^{g}P \subseteq H$, then there is $h \in H$ and $z \in C_{G}(P)$ such that g = hz.

If the preceding conditions are satisfied, we say that H controls p-fusion in G, or that H is a control subgroup in G.

The first question may now be reformulated as follows :

If H controls p-fusion in G, does the inclusion $H \hookrightarrow G$ induce an isomorphism

$$H/O_{p'}(H) \xrightarrow{\sim} G/O_{p'}(G)?$$

In other words, do we have

$$G = HO_{p'}(G)?$$

• Frobenius theorem, 1905

If a Sylow *p*-subgroup *S* of *G* controls *p*-fusion in *G*, then the inclusion induces an isomorphism $S \simeq G/O_{p'}(G)$.

p-solvable groups, ?

Assume that G is p-solvable. If H controls p-fusion in G, then the inclusion induces an isomorphism $H/O_{p'}(H) \simeq G/O_{p'}(G)$.

• Z_p^* -theorem (Glauberman, 1966 for p = 2, Classification for other primes)

Assume that $H = C_G(P)$ where P is a p-subgroup of G. If H controls p-fusion in G, then the inclusion induces an isomorphism $H/O_{p'}(H) \simeq G/O_{p'}(G)$.

• But

Burnside (1852-1927)

Assume that a Sylow *p*-subgroup S of G is abelian. Set $H := N_G(S)$. Then H controls *p*-fusion in G.

Consider the Monster, a finite simple group of order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \simeq 8.10^{53} \, .$

(predicted in 1973 by Fischer and Griess, constructed in 1980 by Griess, proved to be unique by Thompson)

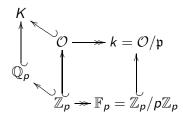
and the normalizer H of one of its Sylow 11–subgroups, a group of order 72600, isomorphic to $(C_{11} \times C_{11}) \rtimes (C_5 \times SL_2(5))$ (here we denote by C_m the cyclic group of order m).

Here we have $G \neq HO_{11'}(G)$ since G is simple.

Remark : one may think of more elementary examples...

LOCAL REPRESENTATION THEORY

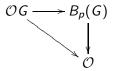
Let K be a finite extension of the field of p-adic numbers \mathbb{Q}_p which contains the |G|-th roots of unity. Let \mathcal{O} be the ring of integers of K over \mathbb{Z}_p , with maximal ideal \mathfrak{p} and residue field $k := \mathcal{O}/\mathfrak{p}$.



Block decomposition

$$\mathcal{O}G = \bigoplus B$$
 (indecomposable algebra)
 $\downarrow \qquad \qquad \downarrow$
 $kG = \bigoplus kB$ (indecomposable algebra)

The augmentation map $\mathcal{O}G \to \mathcal{O}$ factorizes through a unique block of $\mathcal{O}G$ called *the principal block* and denoted by $B_p(G)$.



Set $e_{p'}(G) := \frac{1}{|O_{p'}(G)|} \sum_{s \in O_{p'}(G)} s$. Then $e_{p'}(G)$ is a central idempotent of $\mathcal{O}G$ and $\mathcal{O}Ge_{p'}(G)$ is a product of blocks containing the principal block $B_p(G)$.

Factorisation and principal block

If *H* is a subgroup of *G*, the following assertions are equivalent (i) $G = HO_{p'}(G)$.

(ii) The map $\operatorname{Res}_{H}^{G}$ induces an isomorphism from $\mathcal{O}Ge_{p'}(G)$ onto $\mathcal{O}He_{p'}(H)$.

In particular, in that case, the map $\operatorname{Res}_{H}^{G}$ induces an isomorphism from $B_{p}(G)$ onto $B_{p}(H)$.

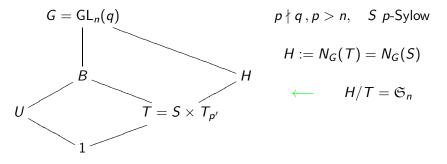
== Let us re-examine the counterexamples to factorization coming from Burnside's theorem.

Assume that a Sylow *p*-subgroup *S* of *G* is abelian, let $H := N_G(S)$ be its normalizer.

Even if $G \neq H O_{p'}(G)$, it appears that there is some connection between the (representation theory of) $B_p(G)$ and $B_p(H)$.

First of all, there are many examples where there is no factorization, but where the algebras are *Morita equivalent* — but then *not* through the $\operatorname{Res}_{H}^{G}$ functor.

A kind of generic example :



We certainly have

 $G \neq HO_{p'}(G)$.

But the principal block algebras of G and H respectively are Morita equivalent.

There exist M and N, respectively a OG-module-OH and a OH-module-OG with the following properties :

• (With appropriate cutting by the principal block idempotents)

 $M \otimes_{\mathcal{O}H} N \simeq B_p(G)$ as $\mathcal{O}G$ -modules- $\mathcal{O}G$ $N \otimes_{\mathcal{O}G} M \simeq B_p(H)$ as $\mathcal{O}H$ -modules- $\mathcal{O}H$

• Viewed as an $\mathcal{O}G$ -module- $\mathcal{O}T$, we have

 $M\simeq \mathcal{O}(G/U)$,

i.e., the functor $M \otimes_{\mathcal{OT}}$? is the Harish–Chandra induction.

SOME NUMERICAL MIRACLES

Let us consider the case $G = \mathfrak{A}_5$ and p = 2. Then we have $H \simeq \mathfrak{A}_4$.

Remark : on a larger screen, we might as well consider the above case of the Monster and of the prime p = 11.

	(1)	(2)	(3)	(5)	(5')
1	1	1	1	1	1
χ4	4	0	1	-1	-1
χ_5	5	1	-1	0	0
<i>χ</i> з	3	-1	0	$(1 + \sqrt{5})/2$	$(1 - \sqrt{5})/2$
χ'_{3}	3	-1	0	$(1 - \sqrt{5})/2$	$(1 + \sqrt{5})/2$

Table : Character table of \mathfrak{A}_5

Table : Character table of $B_2(\mathfrak{A}_5)$

	(1)	(2)	(5)	(5')	(3)
1	1	1	1	1	1
χ_5	5	1	0	0	-1
<i>χ</i> з	3	-1	$(1 + \sqrt{5})/2$	$(1 - \sqrt{5})/2$	0
χ'_3	3	-1	$(1 - \sqrt{5})/2$	$(1+\sqrt{5})/2$	0

Table : Character table of \mathfrak{A}_4

	(1)	(2)	(3)	(3')
1	1	1	1	1
$-\alpha_3$	-3	1	0	0
$-\alpha_1$	-1	-1	$(1+\sqrt{-3})/2$	$(1 - \sqrt{-3})/2$
$-\alpha'_1$	-1	-1	$(1 - \sqrt{-3})/2$	$(1 + \sqrt{-3})/2$

ABELIAN SYLOW CONJECTURE

Assume that a Sylow *p*-subgroup *S* of *G* is abelian, let $H := N_G(S)$ be its normalizer.

• (ASC) :

The algebras $B_p(G)$ and $B_p(H)$ are derived equivalent.

Which means : There exist M and N, respectively a bounded complex of $B_p(G)$ -modules- $B_p(H)$ and a bounded complex of $B_p(H)$ -modules- $B_p(G)$ with the following properties :

 $M \otimes_{B_p(H)} N \simeq B_p(G)$ as complexes of $B_p(G)$ -modules- $B_p(G)$ $N \otimes_{B_p(G)} M \simeq B_p(H)$ as complexes of $B_p(H)$ -module- $B_p(H)$

• (Strong ASC) :

They are Rickard equivalent, that is, derived equivalent in a way which is compatible with the equivalence of Frobenius categories

Which means : There is a G-equivariant collection of derived equivalences

$$\{ \mathcal{E}(P) : \mathcal{D}^{b}(B_{p}(C_{G}(P)) \xrightarrow{\sim} \mathcal{D}^{b}(B_{p}(C_{H}(P))) \}_{P \subseteq S}$$

compatible with Brauer morphisms.

RICKARD'S EXPLANATION FOR \mathfrak{A}_5

- $G := \mathfrak{A}_5$
- $H := N_G(S_2)$, $(S_2 \text{ a Sylow 2-subgroup of } G)$
- View B₂(G) as acted on as follows

$$_{B_2(G)} \overset{\circ}{\cup} B_2(G) \underset{B_2(H)}{\cup}$$

- $_{B_2(G)} \cup IB_2(G) _{\cup B_2(H)} :=$ kernel of augmentation map $B_2(G) \twoheadrightarrow \mathcal{O}$.
- C := a projective cover of the bimodule $IB_2(G)$.

Thus we have

$$\{0\} \xrightarrow{C} \underbrace{} \\ \downarrow \\ IB_2(G) \xrightarrow{\sim} B_2(G) \xrightarrow{\sim} \{0\} \\ \downarrow \\ \{0\}$$

set

$$\Gamma_2:=\ \{0\}\to C\to B_2(G)\to \{0\}$$

where $B_2(G)$ is in degree 0 (and C in degree -1). We have homotopy equivalences :

$$\begin{split} &\Gamma_2 \underset{\mathcal{OH}}{\otimes} \Gamma_2^* \simeq B_2(G) \quad \text{as complexes of } (B_2(G), B_2(G)) - \text{bimodules,} \\ &\Gamma_2^* \underset{\mathcal{OG}}{\otimes} \Gamma_2 \simeq B_2(H) \quad \text{as complexes of } (B_2(H), B_2(H)) - \text{bimodules.} \end{split}$$

Usual notation

- G is a connected reductive algebraic group over F_q, with Weyl group W, endowed with a Frobenius endomorphism F defining a rational structure over F_q.
 Here we assume that (G, F) is split.
- $G := \mathbf{G}^F$ is the corresponding finite reductive group, with order

$$|G| = q^N \prod_{d>0} \Phi_d(q)^{a(d)}$$

a polynomial which depends only on the reflection representation of W on $\mathbb{Q} \otimes Y(\mathbf{T})$.

Indeed, that polynomial is

$$q^{\sum_i d_i-1}\prod_i (q^{d_i}-1)$$
 .

Sylow Φ_d -subgroups, d-cyclotomic Weyl group

 There exists a rational torus S_d of G, unique up to G-conjugation, such that

$$|S_d| = |\mathbf{S}_d^F| = \Phi_d(q)^{a(d)}.$$

- Set $\mathbf{L}_d := C_{\mathbf{G}}(\mathbf{S}_d)$ and $\mathbf{N}_d := N_{\mathbf{G}}(\mathbf{S}_d) = N_{\mathbf{G}}(\mathbf{L}_d)$
- W_d := N_d/L_d is a true finite group, a complex reflection group in its action on C ⊗ Y(S_d).

= This is the *d*-cyclotomic Weyl group of the finite reductive group G.

Example : For $G = GL_n(q)$ and n = dm + r (r < d), then

$$L_d = \operatorname{GL}_1(q^d)^m imes \operatorname{GL}_r(q) \quad , \quad W_d = \mu_d \wr \mathfrak{S}_m$$

The Sylow ℓ -subgroups and their normalizers

ℓ a prime number, prime to q, ℓ | |G|, ℓ ∤ |W|
 ⇒ There exists one d (a(d) > 0) such that ℓ | Φ_d(q), and the Sylow ℓ-subgroup S_ℓ of S_d is a Sylow of G.

•
$$L_d = C_G(S_\ell)$$
 and $N_d = N_\ell = N_G(S_\ell)$: N_ℓ
 $| \}_{W_d}$
 L_d
1

Since the "local" block is

$$B_{\ell}(\mathbb{Z}_{\ell}N_{\ell}) \simeq \mathbb{Z}_{\ell}[S_{\ell} \rtimes W_d]$$

our conjecture reduces to

Conjecture

$$\mathcal{D}^b(B_\ell(\mathbb{Z}_\ell G)) \simeq \mathcal{D}^b(\mathbb{Z}_\ell[S_\ell \rtimes W_d])$$

Michel Broué (Université Paris–Diderot Paris Local group theory : from Frobenius to Deriv

Role of Deligne-Lusztig varieties

• Let **P** be a parabolic subgroup with Levi subgroup **L**_d, and with unipotent radical **U**.

Note that **P** is never rational if $d \neq 1$.

• The Deligne–Lusztig variety is

$$\mathcal{V}_{\mathsf{P}} := {}_{\mathsf{G}} \circ \{ g\mathsf{U} \in \mathsf{G}/\mathsf{U} \mid g\mathsf{U} \cap F(g\mathsf{U}) \neq \emptyset \} \circ {}_{\mathsf{L}_{\mathsf{d}}}$$

hence defines an object

$$\mathsf{R}\Gamma_c(\mathcal{V}_{\mathbf{P}},\mathbb{Z}_\ell)\in\mathcal{D}^b(_{\mathbb{Z}_\ell G}\operatorname{\mathsf{mod}}_{\mathbb{Z}_\ell L_d})$$

Conjecture

There is a choice of \mathbf{U} such that

In RF_c(𝒱_P, ℤ_ℓ)₀ is a Rickard complex between B_ℓ(ℤ_ℓG) and its commuting algebra C(U).

 $\ 2 \ C(\mathbf{U}) \simeq B_{\ell}(\mathbb{Z}_{\ell}N_{\ell}) \, .$

If d = 1,

•
$$\mathbf{S}_d = \mathbf{T} = \mathbf{L}_d$$
 and $W_d = W$
• $\mathcal{V}_{\mathbf{B}} = G/U$ and $\mathsf{R}\mathsf{F}_c(\mathcal{V}_{\mathbf{P}}, \mathbb{Z}_\ell) = \mathbb{Z}_\ell(G/U)$
• $\mathbb{Z}_\ell G^{\odot} \mathbb{Z}_\ell(G/U) ^{\odot} \mathcal{C}(U)$

where

$$\begin{array}{l} \bullet \quad \mathcal{C}(U) \simeq \mathbb{Z}_{\ell} T.\mathbb{Z}_{\ell} \mathcal{H}(W,q) \\ \\ \bullet \quad \overline{\mathbb{Q}}_{\ell} \mathcal{H}(W,q) \simeq \overline{\mathbb{Q}}_{\ell} W \end{array}$$

The unipotent part

- Extend the scalar to $\overline{\mathbb{Q}}_{\ell} =: \mathcal{K} \quad \Rightarrow \quad \text{Get into a semisimple situation}$
 - $\mathsf{R}\Gamma_c(\mathcal{V}(\mathbf{U}),\mathbb{Z}_\ell)$ becomes

$$H^{\bullet}_{c}(\mathcal{V}(\mathbf{U}), \mathcal{K}) := \bigoplus_{i} H^{i}_{c}(\mathcal{V}(\mathbf{U}), \mathcal{K})$$

• Replace $\mathcal{V}(\mathbf{U})$ by $\mathcal{V}(\mathbf{U})^{un} := \mathcal{V}(\mathbf{U})/L_d \Rightarrow$ Only unipotent characters of G are involved

Semisimplified unipotent conjecture

• The different $H^i_c(\mathcal{V}(\mathbf{U})^{\mathrm{un}}, K)$ are disjoint as KG-modules,

• $L_d =: T_d$ is a torus $\iff d$ is a regular number for W

- The set of tori L_d is a single orbit of rational maximal tori under G, hence corresponds to a conjugacy class of W.
- For w in that class, we have $W_d \simeq C_W(w)$.
- The choice of **U** corresponds to the choice of an element *w* in that class.
- We then have

$$\mathcal{V}(\mathbf{U}_w)^{\mathsf{un}} = \mathbf{X}_w := \{\mathbf{B} \in \mathcal{B} \ | \ \mathbf{B} \stackrel{w}{\rightarrow} \mathcal{F}(\mathbf{B})\}$$

- $\bullet~{\cal B}$ is the variety of all Borel subgroups of ${\bf G}$
- The orbits of G on B × B are canonically in bijection with W and we write B^w→B' if the orbit of (B, B') corresponds to w.

Relevance of the braid groups

Notation

•
$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H$$

•
$$B_W := \Pi_1(V^{\text{reg}}/W, x_0)$$

• "Section"
$$W \to B_W$$
, $w \mapsto \mathbf{w}$, since

If
$$W = \langle S \mid \underbrace{ststs...}_{m_{s,t} \text{ factors}} = \underbrace{tstst...}_{m_{s,t} \text{ factors}}, s^2 = t^2 = 1 \rangle$$

then
$$B_W = < \mathbf{S} \mid \underbrace{\mathbf{ststs...}}_{m_{s,t} \text{ factors}} = \underbrace{\mathbf{tstst...}}_{m_{s,t} \text{ factors}} >$$

•
$$\pi := t \mapsto e^{2i\pi t} x_0 \implies \pi \in ZB_W$$

Moreover $\pi = \mathbf{w}_0^2 = \mathbf{c}^h$ (c Coxeter element, *h* Coxeter number).

A theorem of Deligne

Theorem (Deligne)

Whenever $b \in B^+_W$ there is a well defined variety $\mathbf{X}^{(F)}_b$) such that

•
$$\mathbf{X}_{\mathbf{w}}^{(F)} = \mathbf{X}_{w}^{(F)}$$

• For
$$b = \mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_n$$
 we have

$$\mathbf{X}_{b}^{(F)} = \{ (\mathbf{B}_{0}, \mathbf{B}_{1}, \dots, \mathbf{B}_{n}) \mid \mathbf{B}_{0} \stackrel{w_{1}}{\rightarrow} \mathbf{B}_{1} \stackrel{w_{2}}{\rightarrow} \cdots \stackrel{w_{n}}{\rightarrow} \mathbf{B}_{n} \text{ and } \mathbf{B}_{n} = F(\mathbf{B}_{0}) \}$$

The variety X_{π}

$$\begin{aligned} \mathbf{X}_{\pi} &= \{ \left(\mathbf{B}_{0}, \mathbf{B}_{1}, \mathbf{B}_{2} \right) \mid \mathbf{B}_{0} \stackrel{w_{0}}{\rightarrow} \mathbf{B}_{1} \stackrel{w_{0}}{\rightarrow} \mathbf{B}_{2} \text{ and } \mathbf{B}_{2} = F(\mathbf{B}_{0}) \\ &= \{ \left(\mathbf{B}_{0}, \mathbf{B}_{1}, \dots, \mathbf{B}_{h} \right) \mid \mathbf{B}_{0} \stackrel{c}{\rightarrow} \mathbf{B}_{1} \stackrel{c}{\rightarrow} \dots \stackrel{c}{\rightarrow} \mathbf{B}_{h} \text{ and } \mathbf{B}_{h} = F(\mathbf{B}_{0}) \} \end{aligned}$$

The (opposite) monoid B_W^+ acts on \mathbf{X}_{π} : For $\mathbf{w} \in B_W^{\text{red}}$, and $\pi = \mathbf{w}b = b\mathbf{w}$,

$$\begin{array}{ll} \text{if} & B \stackrel{\textbf{w}}{\rightarrow} B_0 \stackrel{b}{\rightarrow} F(B) \\ D_{\textbf{w}} : (\textbf{B}, \textbf{B}_0, B_1 = F(\textbf{B})) \mapsto (\textbf{B}_0, F(\textbf{B}), F(\textbf{B}_0)) \end{array}$$

Hence B_W acts on $H_c^{\bullet}(\mathbf{X}_{\pi})$

Proposition : The action of B_W on H[•]_c(X_π) factorizes through the (ordinary) Hecke algebra H(W).

• Conjecture :

$$\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{\pi}) = \mathcal{H}(W)$$

Relevance of roots of π

Proposition

$$d$$
 regular for $W \iff$ there exists $\mathbf{w} \in B^+_W$ such that $\mathbf{w}^d = \pi$.

Application

3
$$\mathbf{X}_{\mathbf{w}}^{(F)}$$
 embeds into $\mathbf{X}_{\pi}^{(F^d)}$

$$\mathbf{X}_{\mathsf{w}}^{(F)} \hookrightarrow \mathbf{X}_{\pi}^{(F^d)}$$

 $\mathbf{B} \mapsto (\mathbf{B}, F(\mathbf{B}), \dots, F^d(\mathbf{B}))$

$$\{\mathbf{x} \in \mathbf{X}_{\pi}^{(F^d)} \mid D_{\mathbf{w}}(\mathbf{x}) = F(\mathbf{x})\}$$

3
$$C_{B_W^+}(\mathbf{w})$$
 acts on $\mathbf{X}_{\mathbf{w}}^{(F)}$

Belief

A good choice for \mathbf{U}_w is : **w** a *d*-th root of π .

Theorem (David Bessis)

There is a natural isomorphism

$$B_{C_W(w)} \xrightarrow{\sim} C_{B_W}(w)$$

From which follows :

Theorem The braid group $B_{C_W(w)}$ of the complex reflections group $C_W(w)$ acts on $H_c^{\bullet}(\mathbf{X}_w)$.

Conjecture

The braid group $B_{C_W(w)}$ acts on $H_c^{\bullet}(\mathbf{X}_w)$ through a *d*-cyclotomic Hecke algebra $\mathcal{H}_W(w)$.

Michel Broué (Université Paris–Diderot Paris Local group theory : from Frobenius to Deriv

d-cyclotomic Hecke algebras

- A *d*-cyclotomic Hecke algebra for $C_W(w)$ is in particular
 - an image of the group algebra of the braid group $B_{C_W(w)}$,
 - a deformation in one parameter q of the group algebra of $C_W(w)$,
 - which specializes to that group algebra when q becomes $e^{2\pi i/d}$
- Examples :
 - The ordinary Hecke algebra $\mathcal{H}(W)$ is 1-cyclotomic,
 - Case where $W = \mathfrak{S}_6$, d = 3:

$$C_W(w) = B_2(3) = \mu_3 \wr \mathfrak{S}_2 \quad \longleftrightarrow \quad \mathfrak{S}_{s} = \mathfrak{S}_{t}$$

$$\mathcal{H}_{W}(w) = \left\langle S, T ; \begin{cases} STST = TSTS \\ (S-1)(S-q)(S-q^{2}) = 0 \\ (T-q^{3})(T+1) = 0 \end{cases} \right\rangle$$

•
$$W = D_4$$
, $d = 4$, $C_W(w) = G(4,2,2)$ \leftrightarrow s 2

$$\mathcal{H}_{W}(w) = \left\langle S, T, U; \left\{ \begin{array}{l} STU = TUS = UST \\ (S - q^{2})(S - 1) = 0 \end{array} \right\} \right\rangle$$

Let us summarize

- **1** $\ell \rightsquigarrow d$, d regular, *i.e.*, $L_d = T_w$, $\mathbf{w}^d = \pi$, $\mathcal{V}(\mathbf{U}_w)/L_d = \mathbf{X}_w$
- 2 End_{KG} $H_c^{\bullet}(\mathbf{X}_w) \simeq \mathcal{H}_W(w)$

• End_{Z_{\ell}G} RΓ_c($\mathcal{V}(\mathbf{U}_w), \mathbb{Z}_\ell$) $\simeq \mathbb{Z}_\ell(T_w)_\ell \cdot \operatorname{End}_{\mathbb{Z}_\ell G} \operatorname{R}\Gamma_c(\mathbf{X}_w, \mathbb{Z}_\ell) \simeq B_\ell(\mathbb{Z}_\ell N_\ell)$

What is really proven today

- Everything
 - if d = 1 (Puig),
 - for $G = GL_2(q)$ (Rouquier), $SL_2(q)$ (cf. a book by Bonnafé)
 - for $G = GL_n(q)$ and d = n (Bonnafé-Rouquier)
- About : $\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{w}) \simeq \mathcal{H}_{W}(w)$?
 - All $\mathcal{H}_W(w)$ are known, all cases (Malle)
 - Assertion $\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{w}) \simeq \mathcal{H}_{W}(w)$ known for
 - d = h (Lusztig),
 - d = 2 (Lusztig, Digne-Michel),
 - small rank GL,
 - d = 4 for $D_4(q)$ (Digne-Michel).